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 27 

Abstract 28 

Hypothalamic kisspeptin (KP) neurons are key players of the neuronal network that regulates the onset of 29 

puberty and the pulsatile secretion of gonadotropin-releasing hormone (GnRH). In various mammalian 30 

species, the majority of kisspeptin synthesizing neurons are concentrated into two distinct cell populations 31 

in the preoptic region and the arcuate nucleus (ARC). While studies of female rodents provide evidence 32 

that preoptic KP neurons play a critical sex-specific role in positive estrogen feedback, KP neurons of the 33 

ARC have been implicated in negative sex steroid feedback and also hypothesized to contribute to the 34 

pulse generator network which regulates episodic GnRH secretion in both females and males. Except for 35 

relatively few morphological studies available from monkeys and humans, our neuroanatomical 36 

knowledge in the hypothalamic KP systems is dominantly based on observations on laboratory species 37 

which are phylogenetically distant from the human. This review article discusses the currently available 38 

literature about the topographic distribution, network connectivity, neurochemistry, sexual dimorphism 39 

and aging-dependent morphological plasticity of the human hypothalamic kisspeptin neuronal system.   40 

41 
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1. Introduction 63 

 Members of the kisspeptin (KP) neuropeptide family encoded by the KISS1 gene are potent 64 

stimulators of luteinizing hormone (LH) secretion in various mammalian species, including rodents [1], 65 

sheep [2], monkeys [3] and humans [4]. The hypothalamic KP neuronal system is critically involved in the 66 

central regulation of puberty and reproduction. KP acts mainly via stimulating gonadotropin-releasing 67 

hormone (GnRH) secretion from the hypothalamus. Accordingly, the KP-induced release of LH can be 68 

prevented by GnRH antagonists in mice [1] and monkeys [5]. The actions of KP on GnRH neurons are 69 

mostly direct. GnRH neurons receive KP-immunoreactive (IR) afferent inputs [6-10], express the KP 70 

receptor (Kiss1r) transcripts [2, 11, 12] and respond with cFos expression [11, 13] and depolarization [12, 71 

14, 15] to KP. 72 

 Inactivating mutations of the KISS1 [16] or the KISS1R [17, 18] genes produce hypogonadotropic 73 

hypogonadism in humans and similar reproductive deficits also characterize the Kiss1- [19, 20] or the 74 

Kiss1r [18, 21] knockout mice. While resembling fertility problems observed in mutants of the two 75 

species suggest that the reproductive significance of KP/KISS1R signaling is conserved in different 76 

mammals, potentially significant species differences have remained mostly unexplored in the absence of 77 

sufficient neuroanatomical information from the human. About 150 KP review articles have been 78 

published over the past 8 years to address various aspects of KP/KISS1R signaling. The aim of the 79 

present article is to provide an overview of the currently available anatomical literature on the human 80 

hypothalamic KP system. The topographic distribution, network connectivity, neurochemistry, sexual 81 

dimorphism and aging-dependent morphological plasticity of human hypothalamic KP neurons are 82 

discussed in the light of anatomical and functional information mostly available from animal experiments.  83 

2. Major groups of human hypothalamic kisspeptin neurons 84 

 KP synthesizing neurons in various mammalian species have been localized to two major anatomical 85 

sites, the preoptic area and the arcuate nucleus (ARC) [22]. Both cell populations have also been 86 
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identified in the human hypothalamus [10]. The distribution of human hypothalamic KP neurons is 87 

illustrated schematically in Figure 1.  88 

2.1. Kisspeptin neurons in the rostral periventricular area of the third ventricle 89 

 In several species, a major KP cell population has been identified in the preoptic region [22]. In 90 

laboratory rodents, the somata of these neurons form a compact cell mass in the anteroventral 91 

periventricular nucleus (AVPV) and the preoptic periventricular nucleus [1, 7, 23], defined together as the 92 

rostral periventricular area of the third ventricle (RP3V) [24]. Importantly, this KP cell group comprises 93 

many more neurons in females than in males; this conspicuous sexual dimorphism (see also section 4.1) 94 

develops in response to the organizational effects of neonatal testosterone exposure in males [7, 25, 26]. A 95 

KP synthesizing cell population is also present in the preoptic region of the sheep, although preoptic KP 96 

neurons in this species appear to be more scattered and less numerous [27, 28] than in rodents. The KP 97 

cell group of the ovine preoptic area also exhibits higher cells numbers in females compared with males; 98 

this sexual dimorphism develops prenatally in response to testosterone exposure of the male [29]. Some 99 

neurochemical properties of preoptic (RP3V) KP neurons have already been investigated and revealed in 100 

rodents. In situ hybridization and immunohistochemical studies identified galanin mRNA and 101 

immunoreactivity, respectively, in varying subsets of RP3V KP neurons in mice [30, 31]. In addition, 102 

subpopulations of the RP3V, but not of the ARC, KP neurons exhibited immunoreactivities to met-103 

enkephalin [31] and to the dopaminergic marker tyrosine hydroxylase [32]; in this species KP/tyrosine 104 

hydroxylase neurons were proposed to represent the major source of dopamine in the afferent regulation 105 

of GnRH neurons [32]. In situ hybridization studies on mice also identified GABA-ergic and 106 

glutamatergic marker mRNAs in subsets of the RP3V KP neurons [33], indicating that these cells also use 107 

classic amino acid neurotransmitters for synaptic communication.  108 

 The first systematic study to localize KP expressing neurons in post-mortem human hypothalami used 109 

in situ hybridization with radiolabeled cDNA oligonucleotide probes on sagittal sections [34]. In addition 110 

to visualizing the bulk of KP neurons in the hypothalamic infundibular (arcuate) nucleus (Inf), this study 111 
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only identified rare, sparsely labeled neurons scattered within the hypothalamic sections including the 112 

medial preoptic area; notably, these preoptic neurons were not grouped in discrete foci in a distribution 113 

reminiscent to the AVPV (or RP3V) of the rodent [34]. Similarly, the immunohistochemical mapping of 114 

KP neurons in neonatally gonadectomized male monkeys only identified KP-IR neurons in the posterior 115 

two-thirds of the ARC but not in the preoptic area [8]. In contrast with the results of the above two 116 

studies, the in situ hybridization analysis of KISS1 mRNA in cycling female monkeys detected quite 117 

significant numbers of KP neurons in the preoptic area [35]. Preoptic KP neurons of the monkey formed a 118 

compact cell group and exhibited the highest levels of expression in the late follicular phase [35], 119 

suggesting the positive estrogenic regulation of their KISS1 mRNA expression which also characterizes 120 

KP neurons in the rodent RP3V [23, 25, 26]. The different results of this [35] and the previous two [8, 34] 121 

studies may have technical explanations. The choice of the sagittal human tissue sections [34] and the use 122 

of the neonatally gonadectomized male monkey model [8] could be suboptimal for visualizing preoptic 123 

KP neurons. To map the human hypothalamic KP system in our laboratory, we performed 124 

immunohistochemical studies on free-floating sections that were prepared from immersion-fixed post-125 

mortem human hypothalamic tissue blocks [10]. Two different KP antisera were used in these studies. The 126 

first one (#566; gift from Dr. A. Caraty; Nouzilly, France) was directed against peptide YNWNSFGLRY-127 

NH2 which is common to all forms of mouse kisspeptin [27] and 90% identical to the corresponding 128 

human sequence (YNWNSFGLRF). Although the single amino acid substitution at the C-terminal KP 129 

sequence of the human results in a relatively low cross-reactivity (1%) of the #566 rabbit antiserum with 130 

the human kisspeptin-10 peptide in radioimmunoassay [27], this antibody was still suitable for the 131 

immunohistochemical detection of human KP with the highly sensitive ABC technique and silver-gold-132 

intensified nickel-diaminobenzidine chromogen [10]. A second polyclonal antiserum (GQ2; gift from Dr. 133 

S.R. Bloom; London, UK) we used was raised in sheep specifically against the full-length KP-54 134 

sequence of the human. This antiserum reacts with human KP-54, KP-14 and KP-10 and shows virtually 135 

no cross-reactivity (<0.01%) with other related human RF amide peptides, including prolactin releasing 136 
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peptide, neuropeptide FF, neuropeptide AF and RF amide-related peptides (RFRP1, RFRP2, RFRP 3) [4]. 137 

In immunohistochemical assays, both KP antibodies visualized a group of relatively lightly labeled 138 

neurons in the rostral periventricular area, overlapping with the ventral periventricular nucleus, the 139 

anterior parvicellular paraventricular nucleus and the parvicellular and magnocellular subdivisions of the 140 

paraventricular nucleus, according to the anatomical atlas of Mai et al. [36] (Figures 1A, B). This 141 

relatively compact cell group showed sexual dimorphism and was most obvious in tissue samples 142 

obtained from young women [10]. Information regarding the presence of tyrosine hydroxylase, 143 

enkephalins, galanin or amino acid neurotransmitters in the rostral periventricular KP neurons of the 144 

human is currently unavailable. Moreover, an AVPV/RP3V-like anatomical entity and other sexually 145 

dimorphic systems at a similar location of the primate hypothalamus have not been reported yet.  146 

 From a functional point-of-view, there is a strong case that in rodents, the KP cell population of the 147 

RP3V is critically involved in positive estrogen feedback to GnRH neurons [24]. The higher number of 148 

KP neurons in the female vs. the male rodent RP3V [7, 25, 26] correlates with the ability of female, but 149 

not male, rodents to respond to the positive feedback action of estradiol with a GnRH/LH surge (see also 150 

section 4.1). Preoptic KP neurons are activated before the preovulatory GnRH/LH surge not only in 151 

rodents [26, 37-39] but also in the sheep [40, 41]. 152 

 The presence of a sexually dimorphic KP cell population in the rostral periventricular area of the 153 

human [10] and monkey [35] hypothalami raises a challenge to the prevailing view that the positive 154 

estrogen feedback in primates takes place exclusively in the infundibular region [42]. Spontaneous 155 

menstrual cyclicity and LH/FSH responses to estrogen in non-human primates remain well preserved after 156 

mediobasal hypothalamic deafferentation [43, 44] and estradiol can elicit gonadotropin surges after acute 157 

complete removal of the neural tissue dorsal and anterior to the optic chiasm [45]. Although the above 158 

data seem to suggest that the preoptic/anterior hypothalamic region is not essential for the GnRH/LH 159 

surge, multiple feedback centers and some redundancy in the mechanism of the preovulatory GnRH/LH 160 

surge remain possible, with important modulatory roles of an anterior preoptic KP cell population. 161 
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Notably, Cogen and colleagues reported that monkeys with bilateral anterior hypothalamic disconnection 162 

ceased to have cyclic gonadotropin release and ovulation after surgery, and these animals also failed to 163 

release FSH and LH in response to estrogen [46]. However, 4-7 months after surgery, the animals showed 164 

spontaneous resumption of cyclic gonadotropin release in response to endogenous or exogenous estrogen 165 

[46]. These data make it likely that although the cycles can be maintained by an anatomically isolated 166 

medial basal hypothalamic-hypophyseal unit, the preoptic/anterior hypothalamic region plays important 167 

modulatory roles in normal menstrual cyclicity. The preoptic region also contains a considerable 168 

population of hypophysiotropic GnRH neurons in the monkey [47], indicating further that the 169 

reproductive significance of this anatomical site should not be overlooked in primates. Future studies of 170 

cFos expression in the rostral preoptic KP neurons of monkeys will be critically important to clarify 171 

whether these neurons are activated at the time of the positive estrogen feedback and the mid-cycle 172 

GnRH/LH surge.  173 

2.2. Kisspeptin neurons in the infundibular area 174 

In a variety of mammalian species including non-human primates [8, 35], the largest KP cell 175 

population has been localized to the mediobasal hypothalamus. Unlike the preoptic KP cell population, 176 

KP neurons in the ARC co-synthesize the tachykinin peptide neurokinin B (NKB) in the sheep [28, 29], 177 

the goat [48], the mouse [49] and the monkey [50]. NKB plays a crucial role in reproduction and 178 

inactivating mutations of the genes encoding for NKB (TAC3) and the NKB receptor NK3 (TACR3) cause 179 

hypogonadotropic hypogonadism in the human [51, 52]. The Tacr3 knockout mice are also subfertile [53], 180 

suggesting that NKB/NK3 signaling also plays important roles in the reproduction of this species. The 181 

recently introduced ‘KNDy neuron’ terminology [54] to refer to the KP cell population of the ARC is 182 

based on the synthesis of the opioid peptide dynorphin by the majority of KP/NKB cells, at least in the 183 

sheep [28, 29, 55], the goat [48], the mouse [49] and the rat [56, 57]. In the sheep, dynorphin neurons of 184 

the ARC are critically involved in progesterone negative feedback to GnRH neurons. The majority of 185 

these cells contain progesterone receptor [58] and progesterone treatment increases preprodynorphin 186 
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mRNA expression in the ARC and dynorphin levels in the cerebrospinal fluid [59]. Endogenous opioid 187 

peptides exert inhibitory effect on the episodic secretion of LH in this species [60]. In mice, varying 188 

subsets of KNDy neurons, similarly to RP3V KP cells, contain galanin mRNA and immunoreactivity [30, 189 

31] and also express glutamatergic [33, 56] and GABAergic [33] phenotype markers. 190 

In humans, the largest KP cell population has been detected in the Inf (analogous to the ARC) both 191 

with in situ hybridization [34] and with immunohistochemistry [10, 61] (Figures 1D, E, 2A). The 192 

majority of these KP neurons appear to be multipolar, although dendritic labeling is often insufficient to 193 

safely assess cell morphology (Figure 2B). KP-IR cell bodies in the Inf, which often intermingle with 194 

scattered GnRH neurons (Figure 2B), form a continuum with labeled KP perikarya in the infundibular 195 

stalk (InfS) (Figure 1E, 2A).  196 

Previous colocalization experiments in our laboratory addressed the presence of NKB [10, 61, 62] and 197 

dynorphin [63] immunoreactivities in KP neurons of the human Inf. These immunohistochemical studies 198 

revealed that the majority of KP and NKB neurons in the Inf of postmenopausal women express both 199 

neuropeptides [10]. In recent studies of a large cohort of postmenopausal women (>55 years; N=19), we 200 

have found that 71.3±5.9% of KP-IR somata contain NKB immunoreactivity and 83.7±3.7% of NKB-IR 201 

somata contain KP immunoreactivity (Figure 4). These specimens were processed in parallel with 202 

samples from male individuals [61], allowing quantitative comparisons with the young male (<50 years) 203 

and aged male (>50 years) human models. Combined results of these dual-immunofluorescent 204 

experiments indicate that the extent of KP colocalization in NKB neurons of young men [61, 63] is much 205 

lower (35.8±5.1%) than observed in postmenopausal women (83.7±3.7%), whereas in aged male 206 

individuals (>50 years) it increases to a similarly high percentage (68.1±6.8%) [61]. On the other hand, 207 

the percentages of NKB-immunopositive KP perikarya in the Inf are similarly high in postmenopausal 208 

women (71.3±5.9%), young men (72.7±6.0%) [61] and aged men (77.9±5.9%) [61]. Colocalization results 209 

from the three available models are combined in Figure 4. Unfortunately, similar coexpression data are 210 

currently unavailable from premenopausal women. In addition to identifying many single-labeled 211 
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perikarya in the human Inf (in particular, NKB neurons without KP labeling in the young male model), in 212 

previous immunofluorescent studies [10, 61-64] we also observed a remarkable segregation of KP and 213 

NKB immunoreactivities in neuronal fibers and identified many single-labeled KP and NKB axons in and 214 

around the Inf. It is interesting to note that the majority of KP-IR and NKB-IR axons forming contacts 215 

with GnRH neurons of the Inf were also single-labeled [61, 62], although sex-specific subsets (~ 8-10% in 216 

young and aged males and ~ 25-30% in postmenopausal females) co-contained KP and NKB signals [61, 217 

62]. The differential coexpression of KP and NKB immunoreactivities in the distinct human models may 218 

have important functional implications which will require clarification.  219 

We have also carried out colocalization studies in an attempt to detect dynorphin A and dynorphin B 220 

immunoreactivities in KP (putative ‘KNDy’) neurons of the Inf [63]. These experiments revealed 221 

unexpectedly low levels (if any) of dynorphin signal in neuronal cell bodies of the Inf from young human 222 

male subjects [63]. Dynorphin signal was absent from most KP neurons and fibers, in contrast with the 223 

extensive coexpression reported previously in rodents [49, 56, 57, 65], sheep [28, 29, 55] or goat [48]. 224 

Given that opioid peptides play important roles in the negative regulation of pulsatile prolactin and LH 225 

release in humans [66, 67] and similarly to the ARC of laboratory animals, the human Inf [68] and the 226 

monkey ARC [69] also express preprodynorphin mRNA, the absence of dynorphin immunoreactivity in 227 

the majority of KP-IR neurons of the human Inf (at least in young men) was somewhat unexpected [63]. It 228 

will require clarification if the negative colocalization data represent an important species difference of 229 

the human from laboratories species or caused by post-mortem degradation of dynorphin in KP-IR 230 

neuronal elements. 231 

Information regarding the putative expression of galanin and glutamatergic/GABAergic markers in 232 

KP neurons of the human Inf is currently unavailable. 233 

In previous in situ hybridization studies by Rance and Young [70], NKB neurons in the Inf showed a 234 

similar distribution pattern as did Substance P (SP) neurons. This observation raised the possibility that 235 

the two tachykinin peptides derived from different genes might be co-expressed in a subset of KP 236 
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neurons. Indeed, results of our recent triple-immunofluorescent studies indicate that 25.1% of NKB-IR 237 

and 30.6% of KP-IR perikarya contain SP in the Inf of postmenopausal women; furthermore, 16.5% of all 238 

immunolabeled cell bodies are triple-labeled (KP/NKB/SP-positive) in this human model [64]. The 239 

quantitative analysis of SP cell numbers in the Inf of postmenopausal women also revealed significantly 240 

more SP-immunoreactive neurons in the Inf of postmenopausal women than in either age-matched or 241 

young men [64]. 242 

 From a functional point-of-view, KP (KNDy) neurons of the ARC/Inf in different species have been 243 

strongly implicated in negative sex steroid feedback to GnRH neurons [28, 71, 72]. Accordingly, the 244 

selective ablation of these cells in rats with the locally injected neurotoxin NK3-saporin prevented the rise 245 

in serum LH and attenuated the rise in serum follicle stimulating hormone (FSH) following ovariectomy 246 

[73]. It is worthy of note that the suppressive effects of estradiol on gonadotropin secretion were not 247 

entirely blocked in this lesioned animals, indicating some redundancy in the neuronal pathways that 248 

mediate estrogen negative feedback [73]. The hypothalamic Inf of humans has also been known for a long 249 

time to represent an important site of sex steroid negative feedback to the reproductive axis. In situ 250 

hybridization studies revealed a robust postmenopausal hypertrophy of neurons that express estrogen 251 

receptor alpha mRNA at this site [74] and later in situ hybridization experiments determined that neuronal 252 

hypertrophy in the absence of estrogens occurs selectively in SP [70], NKB [70], KP [34] and dynorphin 253 

[68] neurons (see also section 4.2). 254 

 In some species, KP neurons of the ARC may also play a role in positive estrogen feedback to GnRH 255 

neurons. In sheep, estradiol treatment to induce a GnRH/LH surge results in cFos expression in ARC KP 256 

neurons [41]. In monkeys, menstrual cyclicity is preserved after deafferentation of the mediobasal 257 

hypothalamus [43, 44].   258 

   As discussed further in section 3.1, KP (KNDy) neurons of the ARC establish frequent contacts 259 

among one another [28, 55, 57]; this intranuclear communication was proposed to play a critical role in 260 

the regulation of GnRH/LH pulses [29, 48, 49, 54, 65].   261 
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2.3. Additional kisspeptin neurons 262 

 In addition to the two major KP cell populations, relatively darkly stained KP neurons are scattered 263 

throughout the rostro-caudal extent of the human periventricular nucleus [10]. The neurochemical 264 

characterization of these neurons will help to determine if they are functionally analogous with KP 265 

neurons of the rostral periventricular region or rather, the Inf. KP neurons at similar periventricular 266 

locations have not been reported in rodents [22].  267 

The small population of KP mRNA-expressing cells identified with in situ hybridization in the bed 268 

nucleus of the stria terminalis of monkeys [35] has not been revealed yet in the human [10, 34], although a 269 

relatively dense KP-IR fiber network occurs at this site [10]. KP-IR fibers in the human bed nucleus of the 270 

stria terminalis are devoid of NKB immunoreactivity, indicating their origin outside the Inf [10]. The 271 

possibility of KP expression in other extrahypothalamic areas of the human has not been addressed using 272 

morphological tools. Anatomical studies will thus need to confirm the presence of KP neurons in the 273 

caudate nucleus, globus pallidus, nucleus accumbens, putamen, and striatum, sites where the KISS1 274 

transcript has been detected with RT-PCR [75]. 275 

3. Connections of kisspeptin neurons 276 

 The major anatomical projections of rodent KP neurons have been mapped using lesioning [76] and 277 

classical neuroanatomical tract tracing studies [76, 77] as well as with the application of site-specific 278 

topographic markers [30, 32, 78] colocalized with the two distinct subsets of KP neurons and their 279 

projections. Similar neuroanatomical information from the human is less complete and restricted to the 280 

NKB-containing fiber projections that arise from the Inf [10]. 281 

3.1. Intranuclear network connectivity of kisspeptin neurons in the infundibular region 282 

ARC KNDy neurons provide abundant axo-somatic and axo-dendritic inputs to one another [28, 55, 283 

57]. It occurs that this intranuclear communication primarily uses excitatory neurotransmission by NKB 284 

via NK3 autoreceptors and inhibitory dynorphin signaling through -opioid autoreceptors. Accordingly, 285 

NK3 immunoreactivity [49, 57, 79, 80] as well as Tac2 and -opioid receptor mRNA expression [49, 81] 286 
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have been revealed in mouse KNDy neurons. These cells respond with cFos expression [82] and 287 

depolarization [82] to the NK3 agonist senktide. NKB increases [65, 81, 83], whereas dynorphin or a 288 

selective kappa-opioid receptor agonist decreases [81, 83] the activity of mouse KNDy neurons. While KP 289 

does not seem to influence the electric activity of KNDy neurons [83], it is the likely protagonist in the 290 

communication between KNDy cells and GnRH neurons, which, indeed, express Kissr1 [2, 11, 12]. The 291 

pulsatile KP output and GnRH secretory pulses are temporally correlated in the median eminence of the 292 

female rhesus monkey [84]. 293 

Information on the major neuropeptides and receptors in the above communication network was 294 

incorporated into new models of the GnRH/LH pulse generator [29, 48, 49, 54, 65]. Evidence from 295 

ovariectomized goats indicates that central NKB increases whereas dynorphin A decreases the 296 

frequencies of multiunit activity volleys and LH secretory pulses [48]. The pulse generator model is very 297 

likely to change substantially in the future. For example the role of some players including dynorphin [63] 298 

might not be universal in all species, whereas others can have more complex actions than thought 299 

initially. KP can also act in the ARC to modulate LH pulse frequency, in addition to providing the output 300 

signal of KNDy neurons toward the GnRH neuronal system. Accordingly, administration of a KP 301 

antagonist into the ARC could suppress LH pulse frequency [85]. In addition, in male humans chronic KP 302 

infusion could stimulate LH pulsatility [86] and a single injection of KP could reset the hypothalamic 303 

GnRH clock [87]. The role of new neurotransmitters/neuromodulators and receptors influencing and/or 304 

fine-tuning the GnRH/LH pulse generator may also emerge in the future, including SP that has been 305 

colocalized in human KP and NKB neurons [64]. Recent evidence from male mice indicates that multiple 306 

tachykinin receptors (NK1-3) account together for the excitatory effects of NKB on ARC KP neurons 307 

[83]. Interestingly, while the NK3 agonist senktide did not elicit a discernible electrophysiological 308 

response from GnRH neurons in earlier studies [65], recent evidence indicates that it can elicit GnRH 309 

release from the median eminence via a KP-independent mechanism [88]. 310 
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The presence of the classic amino acid neurotransmitters GABA and glutamate in KP neurons [33] 311 

increases further the complexity of signaling mechanisms in ARC KP neurons.    312 

In our studies of human hypothalami, we also found numerous axo-somatic and axo-dendritic 313 

appositions among NKB neurons of the Inf [63] which are partly identical with KP neurons [10]. High-314 

power light microscopic images reveal that KP-immunoreactive neurons form a compact cell group in the 315 

Inf (especially in aged human individuals) and establish frequent contacts with one another (Figures 2B, 316 

3A).  317 

3.2. Axo-somatic and axo-dendritic efferent connections to GnRH neurons 318 

 Previous studies analyzing the efferent targets of KP cells focused on GnRH neurons in view of 319 

convincing evidence that the KP-induced release of LH can be prevented by GnRH antagonists in mice 320 

[1] and monkeys [5]. KP-IR neuronal contacts onto GnRH cell bodies and dendrites exist in all species 321 

examined so far [6-9, 35], although several authors noted the surprising paucity and restricted occurrence 322 

of these contacts on a subpopulation of GnRH neurons [7, 8]. While immunohistochemical data are still 323 

unavailable to visualize the putative distribution of the KISS1R protein on the somatic and dendritic 324 

compartments of GnRH neurons, the findings that KP induces cFos expression [11, 13] and depolarization 325 

[12, 14, 15] in GnRH neurons provide functional support to the concept that KP can excite GnRH neurons 326 

via these axo-somatic and axo-dendritic inputs. The major source of the KP input to GnRH neurons of the 327 

rodent preoptic area appears to be the RP3V, in view that these KP inputs rarely contain the ARC-specific 328 

neuropeptide marker NKB [30].   329 

Light microscopic immunohistochemical studies from our laboratory established that axo-somatic 330 

(Figure 3A) and axo-dendritic (Figure 3B) appositions also occur on human GnRH neurons [10]. The 331 

quantitative analysis of this innervation was carried out in the Inf which contains relatively high numbers 332 

of GnRH neurons in the human. Comparison of the innervation patterns between aged male and female 333 

individuals provided evidence for a robust sexual dimorphism in the incidence of these KP-IR axo-334 

somatic and axo-dendritic contacts, being several times higher in postmenopausal women compared with 335 
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age-matched men [62]. For further sexually dimorphic features of the human KP and NKB systems, see 336 

section 4.1. Comparison of hypothalamic tissue samples from men below and above 50 years of age also 337 

revealed a significant aging-related enhancement in the density of this innervation [61] (See also section 338 

4.2). Unlike in ovariectomized and estrogen treated mice where only 5.6% of the KP-IR appositions to 339 

GnRH neurons contained NKB as an index of their ARC origin [30], about 26% and 10% of KP-IR 340 

afferent contacts on GnRH neurons in postmenopausal women and age-matched men, 341 

respectively, contained also NKB. Together with the frequent occurrence of single-labeled KP-342 

IR and NKB-IR axons in the Inf which indicates a considerable degree of segregation of the two 343 

neuropeptides in the human [10], the Inf is likely a major source of the KP-IR input to human 344 

GnRH neurons. Topographic markers that would help identify putative KP projections to GnRH 345 

neurons from the human rostral periventricular region need to be identified.        346 

3.3. Axo-axonal connections between kisspeptin and GnRH neurons 347 

 In addition to influencing the somatic and dendritic compartments of GnRH neurons, there is 348 

accumulating evidence from different species that KP also regulates GnRH secretion via acting in the 349 

median eminence where GnRH axon terminals are apposed to KP-IR [8, 10, 89] fibers. A large subset of 350 

the participating KP fibers arises from the ARC KP neuron population; these fibers are partly identical 351 

with NKB-IR fibers of ARC origin [76, 78] that are immediately apposed to GnRH-IR axons [56, 79]. 352 

Such direct axo-axonal contacts lack classical synaptic specializations at the ultrastructural level in goats 353 

[89] and rats [56]. While immunohistochemical evidence is still missing to indicate KISS1R expression on 354 

GnRH axons, NK3 receptors have already been detected on hypophysiotropic GnRH axons of the rat [79]. 355 

These receptors may account for the KP-independent induction of GnRH release from the mouse median 356 

eminence by senktide [88]. 357 

 Dual-label immunohistochemical studies of the human hypothalami established that KP-IR axons in 358 

the mediobasal hypothalamus form sporadic appositions to the hypophysiotropic GnRH-IR fibers in the 359 

InfS (Figures 3C, D) and around the portal capillary vessels of the postinfundibular eminence [10]. 360 
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Unlike in rats where most GnRH axons entering the median eminence terminate in the external zone, 361 

many GnRH axons in the human and the monkey travel large distances in the InfS and descend all the 362 

way down to the neurohypophysis [90]; GnRH fibers in this descending GnRH fiber tract are also 363 

accompanied and occasionally contacted by KP-IR axons.  364 

 There is abundant functional evidence from different species that KP has an important site of action on 365 

the axonal compartment of GnRH neurons. First, GnRH release from the mediobasal hypothalamic 366 

explants of mice (which contain the hypophysiotropic GnRH axons but only few, if any, GnRH cell 367 

bodies) can be stimulated by KP in a Kiss1r-dependent and action potential-independent manner [91] and 368 

KP can similarly stimulate GnRH release from cultured ovine ME explants [92]. Furthermore, systemic 369 

KP injection induces in vivo LH secretion in a variety of species [5, 13, 93] including humans [4, 94], in 370 

accordance with putative site/s of KP action outside the blood-brain barrier. It has to be recognized that 371 

GnRH neurons send fiber projections to multiple circumventricular organs that can be reached by KP 372 

from the systemic blood. Such brain sites include the organum vasculosum of the lamina terminalis. It has 373 

been shown recently that mouse GnRH neurons in the immediate vicinity of the organum vasculosum of 374 

the lamina terminalis have a highly branched dendritic tree which is accessible to molecules circulating in 375 

the systemic blood [95]; KP puffed onto these dendrites could excite GnRH neurons [95]. Of note, the 376 

relevance of this site and mechanism of action of KP in the human is uncertain, considering that human 377 

GnRH neurons are widely distributed in the hypothalamus and most of them do not seem to send 378 

projections to the lamina terminalis [90]. 379 

In different species the GnRH/LH pulse generator is thought to be located in the mediobasal 380 

hypothalamus. Accordingly, mediobasal hypothalamic explants from fetal and adult human brains release 381 

GnRH in a pulsatile manner [96]. Similarly, GnRH is released episodically from mediobasal hypothalamic 382 

explants of the rat which are devoid of GnRH cell bodies and only contain the hypophysiotropic GnRH 383 

axon projections [97]. This observation makes it likely that the proposed pacemaker KP cells of the 384 

ARC/Inf generate GnRH pulses via influencing the secretory output of GnRH axons, instead of acting on 385 
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the somato-dendritic compartment. This assumption gains support from the observation that pulsatile KP 386 

output and GnRH secretory pulses are temporally correlated in the median eminence of the monkey [84]. 387 

3.4. KP fiber projections to the hypophysial portal vasculature 388 

 KP-IR fibers in the mouse [98] and the rat [99] median eminence preferentially target the internal zone, 389 

suggesting little if any communication between KP neurons and the hypophysial portal capillaries of the 390 

external zone. This view is strengthened by the lack of Fluorogold uptake from the systemic circulation 391 

by mouse KP neurons [77]. KP fibers were also observed mostly in the internal zone of the monkey 392 

median eminence [8]. The major source of KP fibers in the rodent median eminence appears to be the 393 

ARC [76, 78], although KP fibers of RP3V origin also reach the mediobasal hypothalamus [78]. 394 

 Previous immunohistochemical studies from our laboratory [10, 63] showed a highly abundant 395 

network of KP-IR axons around the portal vasculature of the human postinfundibular eminence which 396 

contains a superficial and a deep portal capillary plexus [100]. These observations raise the possibility 397 

that, unlike in rodents, KP is secreted into the hypophysial portal circulation of the human as a 398 

hypophysiotropic factor. It occurs that species may vary considerably regarding the presence/absence of 399 

hypophysiotropic KP axon projections. While there is evidence from ewes to indicate KP secretion into 400 

the portal circulation [101], similarly low portal blood KP levels observed in ovariectomized ewes that 401 

were untreated or given estrogen to elicit an LH surge, suggest that the anterior pituitary is not a major 402 

site of action of KP on LH release. This view is supported by the lack of effect of iv. KP on LH release in 403 

hypothalamo-pituitary-disconnected ewes [101]. Somewhat conflictingly, some [101-103], albeit not all 404 

[13, 93], in vitro studies did identify mild stimulatory KP effects on LH release. Furthermore, Kiss1r 405 

mRNA expression [75, 101, 102, 104] and Kiss1r immunoreactivity [104] have been detected in the 406 

adenohypophysis.  407 

  3.5. Other efferent projections 408 

 Further important KP fiber tracts arising from the ARC as well as the RP3V were localized 409 

periventricularly and found to carry fibers to several important preoptic, hypothalamic and septal nuclei 410 
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and to the bed nucleus of the stria terminalis [76, 77]. A few hypothalamic target neurons to KP fiber 411 

projections have already been been identified, Anatomical information exists from rats that the 412 

tuberoinfundibular dopaminergic system of the dorsomedial ARC receives sexually dimorphic KP-IR and 413 

NKB-IR innervation from KNDy neurons [105] whereby KP and NKB may regulate the secretion of 414 

prolactin [106]. Neuronal NO synthase cells in the preoptic region also receive KP-IR innervation and 415 

express Kiss1r [107]. The KP-induced phosphorylation of neuronal NO synthase in this circuitry has been 416 

strongly implicated in the KP-dependent preovulatory activation of GnRH neurons, whereas basal NO 417 

synthase activity maintains the tonic inhibition on the GnRH system during negative estrogen feedback 418 

[107]. 419 

 The bulk of KP fiber projections in the human hypothalamus also occurs periventricularly in the 420 

medial hypothalamus [10]. Beyond GnRH cells innervated by the KP axon projections [10], further target 421 

cells of KP fibers in the human remain to be explored. Preliminary immunohistochemical data from our 422 

laboratory suggest that a similar connectivity between KP cells and the dopaminergic systems also exists 423 

in the human periventricular nucleus. The distinction between axon projections arising from KP neurons 424 

in the rostral periventricular area of the third ventricle and from those in the infundibular area, 425 

respectively, will be greatly facilitated once site-specific immunofluorescent markers for the two subsets 426 

of KP neurons are identified.  427 

3.6. Afferent inputs to kisspeptin neurons  428 

Specific inputs to the KP cells may play important roles in mediating stress-, metabolic-, and 429 

hormonal signals to the putative GnRH pulse generator in adults. Relatively little information has been 430 

published about these neuronal afferents. For example, KP neurons in the RP3V of mice receive 431 

vasopressinergic innervation from the suprachiasmatic nucleus which is thought to play a critical role in 432 

the circadian signaling to GnRH neurons for the timing of the proestrous afternoon GnRH/LH surge 433 

[108]. Recent evidence indicates that GnRH-immunoreactive axons also provide synaptic input to both the 434 

RP3V and ARC populations of KP neurons [109]. Further neurotransmitters acting upstream from KP 435 
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cells, possibly include glutamate which can induce the bursting activity of KP neurons [110]. The 436 

glutamatergic regulation of KP neurons may also be critically involved in the onset of puberty [111].  437 

The innervation of human KP neurons is currectly unexplored.  438 

4. Sexual dimorphism and aging-dependent changes of the human kisspeptin system 439 

4.1. Sexual dimorphism of human kisspeptin and neurokinin B neurons  440 

Both the preoptic (RP3V) and the ARC subsets of KP neurons contain receptors for estradiol, 441 

testosterone and progesterone [23, 26, 27, 71]. In rodents, androgens as well as estrogens can upregulate 442 

KP expression in the RP3V [23, 26, 71] at the putative site of positive estrogen feedback [24]. In contrast, 443 

KP expression in the ARC/Inf is regulated negatively by sex steroid hormones in rodents and other 444 

mammals [23, 26, 69, 71] and so is NKB expression at this site [69, 70, 112]. Sex differences of the KP 445 

and NKB neuronal systems are partly caused by the activational effects of the gonadal steroid hormone 446 

milieu which changes depending on the reproductive status and differs in the male and the female. Steroid 447 

hormones also exert robust organizational effects on the expression of KP and NKB in various species 448 

during development. Organizational effects have been studied most extensively in case of the sexually 449 

dimorphic KP neuron population of the rodent RP3V which is imprinted neonatally and results in higher 450 

KP cell numbers in adult females compared with males [25] (see also section 2). Other studies identified 451 

organizational effects in the formation of sex-specific projection fields by NKB neurons in the rat ARC 452 

[56] and in KP immunoreactive labeling of the mouse ARC [113]. Unlike in rodents where the sexual 453 

dimorphism of the ARC KP and NKB systems seems to be relatively mild, the ARC of the female sheep 454 

contains much higher NKB [114] and KP [29] cell numbers, compared with males. A recent study 455 

identified estrogen-dependent and -independent components of the sexual dimorphism developing in the 456 

mouse RP3V and ARC [113].  457 

Putative anatomical sex differences of the human hypothalamic KP and NKB systems are likely to 458 

develop under combined organizational and activational gonadal steroids effects. Recent 459 
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immunohistochemical work provides evidence that human KP and NKB neurons are highly sexually 460 

dimorphic [10, 62, 115].  461 

First, the rostral periventricular region of the third ventricle was found to contain a compact KP cell 462 

population in premenopausal women but not in men [10]. The full characterization of this cell population 463 

will require the further investigation of samples from male and female individuals of different age groups. 464 

In this study we also noticed a conspicuous sex difference in the regional density of KP-IR cell bodies 465 

and fibers in the Inf [10]; specimens from male subjects (especially those derived from young men) often 466 

exhibited extremely low numbers of KP-IR perikarya and fibers at this site. 467 

A second quantitative immunohistochemical study from our laboratory analyzed sexually dimorphic 468 

features in hypothalamic samples from ‘aged male’ (>50 years) and postmenopausal female (>55 years) 469 

subjects [62]. The density of KP-IR cell bodies, the density of KP-IR fibers and the incidence of contacts 470 

these fibers established on the cell bodies and dendrites of GnRH neurons were significantly higher in 471 

aged women compared with men [62]. A milder sex difference of the NKB system was reflected in a 472 

somewhat higher regional density of NKB-IR somata in women compared with men [62]. In addition, 473 

larger KP-IR and NKB-IR cell bodies (mean immunolabeled profile area) were observed in females than 474 

in males. Somewhat unexpectedly, immunofluorescent studies only identified a partial overlap between 475 

KP-IR and NKB-IR axons. The colocalization in fibers showed a significant sex-dependence, with KP 476 

being colocalized in a higher percentage of NKB-IR afferents to GnRH neurons in women (31%) 477 

compared with men (9%). The percentage of KP-IR contacts co-containing NKB was also higher in 478 

females (26%) than in males (10%) [62]. These sex differences might be mostly attributable to the lack of 479 

estrogen negative feedback in aged women, whereas testosterone can continue to suppress KP, and to a 480 

lesser extent, NKB synthesis in men. Accordingly, comparative in situ hybridization studies of KISS1 [34] 481 

and TAC3 [70] mRNA expressing neurons in pre- vs. postmenopausal women provided evidence that 482 

these cells exhibit hypertrophy and higher cell numbers and cellular mRNA levels in the postmenopausal 483 

compared with the premenopausal period. The negative regulation of the KP- and NKB-encoding genes 484 
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by sex steroids is in accordance with similar observations from other species [23, 25, 26, 69, 71, 116, 485 

117]. Because samples from young individuals were not available for immunohistochemical comparisons 486 

to samples from young males, based on these studies it was impossible to determine whether or not the 487 

quantified neuroanatomical features would also be sexually dimorphic when sex steroid levels are high 488 

and negative feedback is in place in both sexes.  489 

The sexual dimorphism of the human hypothalamic NKB system has also been addressed by other 490 

investigators [115]. In this study the NKB-IR innervation of the Inf was found to be higher in adult human 491 

females compared with males, whereas the pars tuberalis received dense NKB-IR innervation in adult 492 

males but not females [115]. Furthermore, the Inf volume occupied by NKB immunoreactivity was 493 

significantly lower in adult men than in adult women and in adult male-to-female transsexuals [115]. 494 

These anatomical differences were present in young adults under the influence of negative sex steroid 495 

feedback, raising the possibiliy that they are partly due to organization sex steroid effects earlier in 496 

development. 497 

4.2. Menopausal changes of kisspeptin and neurokinin B neurons in the infundibular nucleus 498 

With the onset of menopause, the depletion of ovarian follicles leads to the loss of circulating 499 

estrogens. This causes the absence of negative estrogen feedback [118]. Comparison of histological 500 

samples from pre- and postmenopausal women revealed profound anatomical changes in the Inf where 501 

negative feedback is thought to take place [118]. In situ hybridization studies identified postmenopausal 502 

hypertrophy in neurons that express the transcripts encoding for estrogen receptor alpha [74], SP [70], 503 

NKB [70], KP [34] and dynorphin [68]. These morphometric alterations were also associated with 504 

increased TAC1 [70], TAC3 [70] and KISS1 [34] and decreased prodynorphin [68] mRNA expression in 505 

this region.  506 

The increased synthesis of TAC3 [70] and KISS1 [34] mRNAs in postmenopausal women also results 507 

in very high levels of KP and NKB immunoreactivities [62]. It is interesting to note that our laboratory 508 

has processed a large number of samples for KP and NKB immunohistochemistry from women above 80 509 
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years of age; KP and NKB immunoreactivities (including KP and NKB cell and fiber densities, and 510 

incidences of contacts on GnRH cell bodies and dendrites) remained very high in these aged individuals, 511 

indicating that these neurons do not have an intrinsic mechanism to halt the enhanced neuropeptide 512 

synthesis in the absence of circulating estrogens. The dysregulation of NKB (or another KNDy peptide) 513 

synthesis during menopausal transition was proposed to contribute to hot flushes via an altered NKB 514 

input to thermoregulatory centers [119]. In addition, KNDy neuron ablation prevented the dramatic effects 515 

of ovariectomy and estradiol replacement on body weight and abdominal girth. This finding indicates that 516 

KP and/or NKB also play an important role in the estrogenic regulation of body weight homeostasis [73].  517 

4.3. Aging-dependent changes of the kisspeptin and neurokinin B systems in men 518 

Aging-related decline in reproductive functions is less dramatic in human males than in females 519 

because of the sustained testosterone production by the testes [120]. Although the gonadal functions of 520 

men can be well preserved throughout life, the negative feedback response of the reproductive axis to 521 

testosterone shows a declining trend in aging men [121]. Clinical symptoms of hypogonadism, including 522 

decreased morning erections, erectile dysfunction and decreased frequency of sexual thoughts, become 523 

more common in men with aging [122]. Midlife transition is often characterized by decreased serum 524 

levels of free testosterone and dihydrotestosterone and increased levels of LH, FSH and sex hormone 525 

binding globulin [123, 124]. In addition, aging is associated with decreased pulsatile and increased 526 

basal LH secretion, and a decline in the LH secretory burst mode [121]. Elderly men also secrete LH 527 

and testosterone more irregularly and more asynchronously than do young men [125, 126]. Some of 528 

these endocrine alterations result from a reduced androgen receptor-mediated negative feedback to 529 

the hypothalamus [121]. In view of animal experiments indicating that KP and NKB neurons also play 530 

an important role in testosterone negative feedback to the male hypothalamus [65, 71], we anticipated 531 

enhanced central KP- and NKB-signaling in the Inf of aged vs. young men. To address the predicted 532 

age-dependent enhancements of central KP- and NKB-signaling, we carried out quantitative 533 
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immunohistochemical studies on a relatively large number (N=20) of hypothalamic samples from men 534 

[61]. 535 

Indeed, the comparative analysis of KP and NKB immunoreactivities of the Inf between 536 

arbitrarily defined ‘young’ (<50 years) and ‘aged’ (>50 years) men revealed conspicuous aging-537 

related anatomical changes [61]. Robust aging-dependent enhancements were identified in the 538 

regional densities of KP-IR perikarya and fibers, and in the incidence of contacts they established 539 

with the cell bodies and dendrites of GnRH neurons [61]. NKB-IR perikarya, fibers and axonal 540 

appositions to GnRH neurons also increased with age, but to lesser extents [61]. In addition, in dual-541 

immunofluorescent studies, the incidence of NKB-IR perikarya that co-contained KP increased from 542 

36% in young to 68% in aged men, indicating that more NKB neurons started to express detectable 543 

levels of KP in aged individuals (Figure 4) [61]. Finally, we identified a mild but significant 544 

hypertrophy of KP-IR and NKB-IR neurons which was reminiscent in magnitude to the previously 545 

reported hypertrophy of unidentified neurons in the Inf of aged men [127]. 546 

It seems likely that the aging-related enhancements of the immunohistochemical signals are the 547 

consequences of the reduced negative sex steroid feedback to KP and NKB neurons in aged, compared 548 

with young, men. The heavier KP and NKB inputs to GnRH neurons may cause the enhanced stimulation 549 

of the reproductive axis in aged men. It is worthy of note that the KP system showed an overall higher 550 

response (fold-change of quantified immunohistochemical measures) to aging than the NKB system [61]. 551 

This finding might be explained by a higher sex steroid responsiveness of the KISS1 vs. the TAC3 gene. 552 

This putative regulatory difference is also reflected in the higher degree of sexual dimorphism of the KP 553 

vs. the NKB system that we observed in aged subjects [62]. Of note, the mouse Kiss1 gene also shows a 554 

higher responsiveness to estrogen in comparison with the NKB-encoding Tac2 gene [128]. It requires 555 

clarification to what extent the enhanced KP and NKB signaling upstream from the human GnRH neurons 556 

represents an adaptive response to reduced androgen levels or alternatively, the consequence of an aging-557 

related decline in the androgen sensitivity of the hypothalamus.  558 
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 559 

5. Remaining important issues 560 

In situ hybridization and immunohistochemical studies of post-mortem human hypothalami will 561 

remain valuable tools to study several questions unanswered so far. The aims of future studies will 562 

include:   563 

5.1. Further anatomical characterization of the KP cell population in the human rostral periventricular 564 

area  565 

5.2. Localization of steroid hormone receptors in human KP neurons  566 

5.3. Identification and subcellular localization of neuropeptide receptors (KISS1R; NK1-3; -opioid 567 

receptor, etc.) in KP and GnRH neurons  568 

5.4. Identification of new hypothalamic and extrahypothalamic target cells to KP neurons 569 

5.5. Characterization of the afferent connectivity of KP neurons 570 

5.6. Neurochemical characterization of KP neuron populations 571 

5.7. Identification of pubertal changes in KP neurons  572 

5.8. Clarification of organizational and activational effects contributing to the sexual dimorphism of 573 

the human KP neuronal system 574 
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Legends  581 

 582 

Figure 1. Topographic distribution of kisspeptin-immunoreactive cell bodies in the human 583 

hypothalamus.  584 

Schematic diagrams of coronal sections were generated with CorelDRAW from representative Nissl-585 

stained sections of human hemihypothalami. Green dots correspond to the distribution of kisspeptin-586 

immunoreactive cell bodies at the different rostro-caudal 1evels (A-F). Anatomical information is 587 

combined from male and female individuals of various ages. Most rostrally (A), a prominent group of 588 

faintly-stained kisspeptin neurons occurs in the VPe and in the PaAP. Behind this level (B), labeled 589 

somata are accumulated in the PaMc. These two cell groups are most numerous in young female 590 

individuals and appear to be analogous, at least anatomically, to kisspeptin neurons in the rostral 591 

periventricular area of the third ventricle (RP3V) in rodents [24]. Kisspeptin neurons are most numerous 592 

in the caudal Inf (E). This cell group is likely to correspond to kisspeptin neurons of the arcuate nucleus 593 

in laboratory animals and extends into the proximal portion of the InfS. Kisspeptin neurons in this region 594 

are most numerous in samples from postmenopausal women [62]. A third population of relatively darkly 595 

labeled kisspeptin neurons is scattered in the periventricular region through the rostro-caudal extent of the 596 

human hypothalamus. Abbreviations: 3V, third cerebral ventricle; Ac, anterior commissure; BST, bed 597 

nucleus of the stria terminalis; DHA, dorsal hypothalamic area; DMH, dorsomedial hypothalamic 598 

nucleus; Fx, fomix; HDB, horizontal limb of the diagonal band of Broca; Inf, infundibular nucleus; InfS, 599 

infundibular stalk; LHA, lateral hypothalamic area; LSV, ventrolateral septal nucleus; Ltu, lateral tuberal 600 

nucleus; Mfb, medial forebrain bundle; MMC, rnagnocellular part of the mammillary nucleus; Opt, optic 601 

tract; OX, optic chiasm; Pa, paraventricular hypothalamic nucleus; PaAP, anterior parvocellular 602 

subdivision of the paraventricular nucleus; PaMc, magnocellular part of the paraventricular hypothalamic 603 

nucleus; Sch, suprachiasmatic nucleus; SO, supraoptic nucleus; VMH, ventromedial hypothalamic 604 

nucleus; VPe, ventral periventricular hypothalamic nucleus. Scale bar=2.5 mm. 605 
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 606 

 607 

Figure 2. Immunohistochemical detection of kisspeptin neurons in the mediobasal hypothalamus of 608 

the human. A: The largest kisspeptin cell population of the human is located in the infundibular area. 609 

Immunoreactive neurons in the infundibular nucleus (Inf), detected with black silver-gold-intensified 610 

diaminobenzidine, are most numerous in samples from postmenopausal women. This cell population 611 

extends to the infundibular stalk (InfS). B: High-power image illustrates that scattered gonadotropin-612 

releasing hormone-immunoreactive neurons (brown diaminobenzidine chromogen) often intermingle with 613 

kisspeptin-immunoreactive perikarya in the Inf. Scale bar=285µm in A and 20µm in B. 614 

 615 

616 
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 617 

Figure 3. Efferent targets of kisspeptin neurons. In the infundibular nucleus (Inf), kisspeptin-618 

immunoreactive axons (black silver-gold-intensified diaminobenzidine) establish frequent contacts with 619 

the cell bodies and dendrites of other kisspeptin neurons (A) and innervate (arrows) the somatic (A) and 620 

dendritic (B) compartments of gonadotropin-releasing hormone-immunoreactive neurons (brown 621 

diaminobenzidine). Hypophysiotropic gonadotropin-releasing hormone axon projections in the 622 

infundibular stalk (InfS; C) intermingle with a dense kisspeptin-immunoreactive fiber network. At high-623 

power (D), the two types of axon form occasional contacts (arrows). Scale bar=20µm in A-C and 10µm in 624 

D. 625 

626 
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 627 

Figure 4. Overlap between neurokinin B-immunoreactive and kisspeptin-immunoreactive 628 

perikarya in three different human models. The ratios of double-labeled neurokinin B (NKB) and 629 

kisspeptin (KP) perikarya were determined quantitatively from dual-immunofluorescent specimens in 630 

which tyramide signal amplification approaches were applied to maximize both types of labeling [61]. In 631 

young male (<50 years), aged male (>50 years) and aged (postmenopausal) female (>55 years) models 632 

available for these quantitative studies, the majority of KP-IR perikarya (72.7±6.0% in young men, 633 

77.9±5.9% in aged men and 83.7±3.7% in postmenopausal women) also contained NKB 634 

immunoreactivity. Similarly, the majority of NKB-IR neurons in aged human subjects (68.1±6.8% in 635 

aged men and 71.3±5.9% in postmenopausal women) contained KP immunoreactivity. However, in 636 

young human males, most of the NKB-IR perikarya were single-labeled and only 35.8±5.1% contained 637 

KP immunoreactivity. *P<0.05. For details of methods, analysis and the colocalization results from 638 

males, see Molnár et al., 2012 [61].  639 

 640 

641 
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