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Abstract Large-scale environmental models can successfully be used in different
important for the modern society studies as, for example, in the investigation of the
influence of the future climatic changes on pollution levels in different countries.
Such models are normally described mathematically by non-linear systems of par-
tial differential equations, which are defined on very large spatial domains and have
to be solved numerically on very long time intervals. Moreover, very often many
different scenarios have also to be developed and used in the investigations. There-
fore, both the storage requirements and the computational work are enormous. The
great difficulties can be overcome only if the following four tasks are successfully
resolved: (a) fast and sufficiently accurate numerical methods are to be selected, (b)
reliable and efficient splitting procedures are to be applied, (c) the cache memories
of the available computers are to be efficiently exploited and (d) the codes are to be
parallelized.
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1 Description of a large scale environmental model

For the sake of simplicity we shall restrict ourselves on the area of long-range trans-
port of air pollution and to a particular model (UNI-DEM, the Unified Danish Eu-
lerian Model, [9]), but most of the results can easily be extended to other environ-
mental models. UNI-DEM is described mathematically by the following system of
partial differential equations (PDEs):

∂ci

∂ t
=−u

∂ci

∂x
− v

∂ci

∂y
- horizontal transport (1)

+
∂
∂x

(
Kx

∂ci

∂x

)
+

∂
∂y

(
Ky

∂ci

∂y

)
- horizontal diffusion

+Qi(t,x,y,z,c1,c2, . . . ,cq)+Ei(t,x,y,z) - chemical reactions + emission
+(k1i + k2i)ci - dry and wet depositions

−w
∂ci

∂ z
+

∂
∂ z

(
Kz

∂ci

∂ z

)
, - vertical transport

i = 1,2, . . . ,q - number of equations (chemical species)

The different quantities involved in (1) are briefly described below:

• ci = ci(t,x,y,z) is the concentration of the chemical species i at point (x,y,z) of
the space domain and at time t of the time-interval,

• u = u(t,x,y,z), v(t,x,y,z) and w = w(t,x,y,z) are wind velocities (along the Ox,
Oy and Oz directions, respectively) at the spatial point (x,y,z) and time t,

• Kx = Kx(t,x,y,z), Ky = Ky(t,x,y,z) and Kz = Kz(t,x,y,z) are diffusivity coeffi-
cients at the spatial point (x,y,z) and time t (it is often assumed that Kx and Ky
are non-negative constants, while the calculation of Kz is normally rather com-
plicated),

• k1i = k1i(t,x,y,z) and k2i = k2i(t,x,y,z) are deposition coefficients (dry and wet
deposition respectively) of chemical species i at the spatial point (x,y,z) and time
t of the time-interval. It should be mentioned here that for some of the species
these coefficients are non-negative constants. The wet deposition coefficients k2i
are equal to zero when it is not raining.

• Ei(t,x,y,z) is emission source for chemical species i at the spatial point (x,y,z)
and time t of the time-interval.

2 Splitting the model

The mathematical model defined by (1) is normally split (see [9]) into the following
three sub-models:
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The first of these three sub-models describes the vertical exchange. The second sub-
model describes the combination of the horizontal transport (the advection) and the
horizontal diffusion. The last sub-model describes the chemical reactions together
with the emission sources and the deposition terms.

Note that the three sub-models are fully defined by (2)-(4), but the splitting pro-
cedure is not. It will be completely determined only when it is explained how these
sub-models are combined. The simple sequential splitting procedure is applied in
UNI-DEM. It is obtained in the following way. Assume that the space domain is
discretized by using a grid with Nx ×Ny ×Nz grid-points, where Nx, Ny and Nz are
the numbers of the grid-points along the grid-lines parallel to the Ox, Oy and Oz
axes. Assume further that the number of chemical species involved in the model is
Ns = q. Finally, assume that approximate values of the concentrations (for all species
and at all spatial grid-points) have been found for some t = tn. These values can be
considered as components of a vector-function c(tn,xi,y j,zk) ∈ RNx×Ny×Nz×Ns . The
next time-step, time-step n+ 1 (at which approximations of the concentrations are
found at tn+1 = tn +∆ t where ∆ t is some increment), can be performed by solving
successively the three sub-models. The values of c(tn,xi,y j,zk) are used as an initial
condition in the solution of (2). The solution of (2) is used as an initial condition
of (3). Finally, the solution of (3) is used as an initial condition of (4). The solution
of (4) is accepted as an approximation to c(tn+1,xi,y j,zk). In this way, everything is
prepared to start the calculations in the next time-step, step n+2.

The major advantage of any splitting procedure based on the above three sub-
models is due to the fact that no extra boundary conditions are needed when (2)–(4)
are used. This is true not only for the sequential splitting procedure sketched above,
but also for any other splitting procedure based on the sub-models defined by (2)–
(4).

3 Choice of numerical methods

Assume that the spatial derivatives are discretized by some numerical algorithm
(it must be mentioned here that different numerical algorithms can be applied in
the different sub-models and this is one of the big advantages of using splitting
techniques: for each sub-model one can select the most suitable algorithm). Then
the three systems of PDEs represented by (2)–(4) will be transformed into three
systems of ODEs (ordinary differential equations):
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= f (3)(t,g(3)). (5)
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The components of functions g(m)(t) ∈ RNx×Ny×Nz×Ns , m = 1,2,3 are approxima-
tions at time t of the concentrations at all spatial grid-points and for all species. The
components of functions f (m)(t)∈RNx×Ny×Nz×Ns , m= 1,2,3 depend both on quanti-
ties involved in the right-hand-side of (1) and on the particular numerical algorithms
that are used in the discretization of the spatial derivatives.

A simple linear finite element method is used to discretize the spatial derivatives
in (2) and (3). The spatial derivatives can also be discretized by using other numer-
ical methods as, for example, a pseudo-spectral discretization, a semi-Lagrangian
discretization (which can be used only to discretize the first-order derivatives, i.e.,
the advection part should not be combined with the diffusion part when this method
is to be applied) and methods producing non-negative values of the concentrations.

The first system of ODEs in (5) can be solved by using many classical time-
integration methods. The well-known θ -method is currently used in UNI-DEM.

Predictor-corrector (PC) methods with several different correctors, which are
fully discussed in [7], are used in the solution of the second ODE system in (5).
The correctors are carefully chosen so that the stability properties of the method can
be enhanced. If the code judges the time-stepsize to be too large for the currently
used PC method (and may lead to unstable computations), then it switches to a more
stable (but also more expensive, because more corrector formulae are used in order
to obtain better stability) PC scheme. On the other hand, if the code judges that the
stepsize is too small for the currently used PC method, then it switches to a not so
stable but more accurate PC scheme (which is using less corrector formulae and,
therefore, is less expensive). In this way the code is trying both to keep the same
stepsize and to optimize the performance. More details about this strategy can be
found in [7].

The solution of the third system in (5) is much more complicated, because this
system is both time-consuming and very stiff. Often the QSSA (Quasi-Steady-State-
Approximation) method is used in this part of the model. It is simple and relatively
stable but not very accurate (therefore it has to be run with a small time-stepsize). An
improved QSSA method was implemented in UNI-DEM. The classical numerical
methods for stiff ODE systems (such as the Backward Euler Method, the Trape-
zoidal Rule and Runge-Kutta algorithms) lead to the solution of non-linear systems
of algebraic equations and, therefore, they are normally more expensive. On the
other hand, these methods can be incorporated with an error control and perhaps
with larger time-steps. Partitioning can also be used. Some convergence problems
related to the implementation of partitioning have been studied in [8]. More details
about the numerical algorithms can be found in [9].

4 Applying parallelization

Another great advantage of using splitting is the appearance of many natural paral-
lel tasks. It is easy to see that (a) the first system in (5) contains Nx ×Ny ×Ns inde-
pendent tasks (for each chemical compound, each system along a vertical grid-line



Mathematical treatment of environmental models 5

can be treated independently), (b) the second system in (5) contains Nx ×Ny ×Nz
independent tasks (the chemical compounds at each grid-point can be treated in-
dependently of the chemical compounds at the other grid-points) and (c) the third
system in (5) contains Nz ×Ns independent tasks (for each chemical compound the
system along a horizontal grid-plane can be treated independently). These parallel
tasks, which appear in a natural way when any splitting based on (2)–(4) is applied,
were efficiently exploited during the parallelization process. Furthermore, standard
parallel tools, OpenMP and MPI, have been extensively used. Much more details
can be found in [1] and [9].

5 Applications

UNI-DEM has been used in many different studies (many of them are reported
in [9]). Investigations of the influence of the climate changes on pollution levels in
Europe [6] and Hungary with its surroundings [10] have recently been carried out.

6 Conclusions

Assume that Nx = Ny = 480,Nz = 10,Ns = 35 are used (this was the case in [6]
and [10]). Then the number of equations is 80640000 and 213120 time-steps are
needed to perform calculations with meteorological and emission data covering a
whole year. Moreover, calculations over a long time-period (sixteen years) were
needed in [6] and [10]. It is clear that it was possible to resolve the enormous tasks
only if (a) efficient splitting procedures are used, (b) suitable numerical methods
are selected for each sub-model and (c) parallel computations are applied. It should
nevertheless be pointed out that further improvements in connection with the tasks
related to (a)-(c) are highly desirable.

Much more details about the mathematical treatment of large environmental
models can be found in [2]. More precisely the splitting techniques are treated
in [3, 4], the organization of parallel computations described in [11] and the han-
dling of the most difficult part, the sub-model containing the chemical reactions is
discussed in [5]. Different applications of environmental models are also reported
in [2].
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10. Zlatev, Z., Havasi, Á., Faragó, I.: Influence of climatic changes on pollution levels in Hungary
and its surrounding countries. Atmosphere, vol. 2, pp. 201-221 (2011)

11. Zlatev, Z., Georgiev, K., Dimov, I.: Parallel computations in a large-scale air pollution model.
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