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Abstract Colicin E7 (ColE7) is a metallonuclease toxin of E. coli belonging to the HNH 

superfamily of nucleases. It contains highly conserved amino acids in its HHX14NX8HX3H 

ββα-type metal ion-binding C-terminal active centre. However, the proximity of the arginine 

at the N-terminus of the nuclease domain (NColE7, 446-576) is necessary for the hydrolytic 

activity. This poses a possibility of an allosteric activation control in this protein. To get more 

information on this phenomenon two protein mutans were expressed, i.e. the N-terminal 4 and 

25 amino acids from the nuclease domain of ColE7 were removed. The effect of the N-

terminal truncation on the Zn2+-ion and DNA binding, as well as, on the activity was 

investigated in this study by mass spectrometry, SRCD and fluorescence spectroscopy, and 

agarose gel mobility shift assays. The dynamics of protein backbone movement was 

simulated by molecular dynamics. Semiempirical quantum chemical calculations were 

performed to get better insight into the structure of the active centre. The longer protein 

interacted both with Zn2+-ion and DNA stronger than its shorter counterpart. The results were 

explained by the structural stabilization effect of the N-terminal amino acids on the catalytic 

centre. In agreement with this, the absence of the N-terminal sequences resulted in 

significantly increased movement of the backbone atoms: in N25-NColE7 the amino acid 

strings between residues 485-487, 511-515 and 570-571, while in N4-NColE7 those 

between 467-468, 530-535 and 570-571 compared to that of the native NColE7.  

 

Keywords Metallonuclease, Colicin E7, N-terminally truncated mutants, zinc(II)-binding 
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Introduction 

 

Colicin E7 (ColE7) is a metallonuclease toxin of E. coli [1]. Its role is to protect the host cell 

from other related bacteria and bacteriophages [2] by degradation of their chromosomal DNA 

during environmental stress. In order to exert cell killing activity, ColE7 has to get across 

both the outer and the inner cell membrane, facilitated by the receptor-binding and 

translocation domains [3, 4]. The host cell itself is protected by the simultaneously expressed 

immunity protein Im7 blocking the DNA-binding site [5, 6] of the NColE7 domain due to 

tight interactions based on charge-complementarity [7–12].  

ColE7 belongs to the HNH superfamily of nucleases [13–15] possessing a 30-40 

amino acids long ββα-type metal ion-binding motif in their active centre. The His and Asn 

amino acids are highly conserved within the sequence HHX14NX8HX3H corresponding to this 

motif at the C-terminal region of bacterial colicins and pyocins [16, 17]. At the same time, the 

HNH motif is found in various regions of a wide range of enzymes including group I homing 

endonucleases (e.g. I-Hmu-I [18]), procaryotic extracellular nucleases (Nuclease A [19]) and 

also in increasing number of restriction endonucleases (e.g. MnlI [20], KpnI [21, 22], HphI 

[23], Eco31I [24], Hpy99I [25]). Sequences are collected in the HNH [26] and Pfam 

databases [27]. The first His (H) out of the name-giving HNH amino acids acts as the general 

base in DNA hydrolysis. The Asn (N) residue plays structural role constraining the HNH loop 

by extensive hydrogen-bonding interactions [14, 28]. The third conserved residue out of the 

HNH string is a metal-binding His (H). The HNH-motif of ColE7 binds to the 3' site of the 

scissile phosphate in the minor groove of the DNA while the other parts of the nuclease 

domain provide strong, nonspecific binding within the major groove [16, 29] similarly to 

Colicin E9 [30, 31]. As such, NColE7 catalyses the nonspecific hydrolysis of nucleic acids. 

There is still a debate about the role of the different divalent metal ions in colicin 

nucleases [30–38]. In NColE7 three His amino acid side-chains bind a metal cofactor, which 

is most probably Zn2+-ion under physiological conditions [32], but the apo protein could be 

reactivated to a different extent by other divalent metal ions like Mn2+, Ni2+, Co2+, Cu2+, 

Mg2+, Ca2+ and Sr2+ [5, 39]. The metal ion having a free coordination site has an essential 

multiple roles in DNA-cleavage: it binds to the scissile phosphodiester, polarizes the P-O 

bond for nucleophylic attack, stabilizes the phosphoanion transition state and the leaving 

group. As mentioned above, the attacking nucleophylic OH– is supposed to be generated by 

the most conserved His residue of the HNH motif - not coordinating to the Zn2+-ion. The 

hydrolytic reaction is also facilitated by the 19 degree bending of the DNA due to the protein-
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binding [32]. The Zn2+-ion is not required for DNA-binding, but it is essential for DNA-

hydrolysis [39]. 

In a recent paper [40] it was demonstrated that during the membrane translocation 

process the periplasmic extracts cleave ColE7 between K446 and R447 and only the nuclease 

domain (R447-K576) enters the cell. The R447E ColE7 mutant lost its cell killing activity due 

to failed inner membrane translocation, but K446E and N448A mutants retained it. However, 

it was shown in an in vitro assay that the R447E mutant of NColE7 (444-576) has only ~15% 

endonuclease activity of that of the wild-type NColE7. This difference was assumed to be the 

consequence of lower affinity towards DNA and not of the decrease in catalytic activity. 

Based on the crystal structure of VVn endonuclease with DNA it was proposed that the role 

of such a spatially close arginine residue might also be the stabilization of the enzyme – 

product complex [41]. 

The necessity of the N-terminal amino acids in NColE7 for the function of the C-

terminal catalytic centre poses a possibility of an allosteric activation within the enzyme that 

would be a desired property for use in an artificial nuclease [42]. The N-terminal end of 

NColE7 forms a loop leaning near to the active centre, and the interactions between them 

might be decisive in control of the function. In this paper two N-terminally truncated 

derivatives of NColE7 (446-576): GST-N25-NColE7 and GST-N4-NColE7-C* (instead of 

the GST-N4-NColE7 protein we studied its C-terminal mutant GST-N4-NColE7-C* 

selected by bacterial cells; the sequences are defined later in Figure 1a) were expressed in E. 

coli. The proteins with and without the GST tag were purified for the studies of DNA and 

Zn2+-binding activities. Gel mobility shift assay, synchrotoron-radiation circular dichroism 

(SRCD), fluorescence spectroscopic and mass spectrometric experiments were carried out and 

complemented by bioinformatics, molecular dynamics and semiempirical quantum chemical 

calculations. The results will lead us to better understanding of the role of the N-terminal loop 

in the catalyzed reaction, as well as, its structural effects. 
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Materials and methods 

 

Cloning, protein expression and purification 

 

The genes of the mutant proteins were amplified by PCR from the pQE70 plasmid (a 

generous gift of Prof. K.-F. Chak, Institute of Biochemistry and Molecular Biology, National 

Yang Ming University, Taipei, Taiwan) by using the oligonucleotides N4-NColE7-F: 5'-

ggaattcccagggaaggcaacaggta-3' and N25-NColE7-F: 5'-ggaattcgacttaggttctcctgttcca-3' as 

forward and NColE7-R: 5’-gccgctcgagctatttacctcggtgaatatcaatatgc-3' as the reverse primer 

and inserted into the pGEX-6-P1 (GE Healthcare) vector between the EcoRI and XhoI 

restriction enzyme sites (underlined sequences). The insert DNA sequences contained a C-

terminal stop codon (formatted to italic in the primer sequence). The plasmids encoding the 

mutant proteins with a glutathione S-transferase (GST) affinity tag at the N-terminus were 

cloned in E. coli DH10B or Mach1 (Invitrogen) cells and then transformed into E. coli BL21 

(DE3), spread on LB/Amp plates and colonies were grown overnight at 37 °C. A small scale 

(4 ml) LB/Amp medium (Luria-Bertani medium supplemented with 100g/ml ampicillin) was 

inoculated with a single colony and incubated overnight at 37 °C with shaking at 300 rpm. 

For large scale protein production, the small scale overnight cultures were transferred in 250 

ml LB/Amp medium and bacteria were grown at 37 °C. The protein expression was induced 

by adding isopropyl-β-thiogalactoside (IPTG, 200 mg/ml) to the final concentration of 0.42 

mM to the cultures at OD600 0.5-0.6. The shaking at 140 rpm was continued for 2-3 hours, 

until OD600 increased up to 0.9-1.0. Cells were sedimented by centrifugation at 4 °C, 5000×g 

for 10 minutes, then resuspended in PBS buffer (1.4 M NaCl, 27 mM KCl, 100 mM 

Na2HPO4, 18 mM KH2PO4, pH 7.3). Pellets were disrupted by sonication and the debris was 

removed by centrifugation at 5000×g, 4 °C, 10 minutes. The supernatant, as well as the 

resuspended aggregates were analyzed by 12.5 % sodium dodecyl sulphate - polyacrylamide 

gel electrophoresis (SDS-PAGE). A significant amount of the desired protein was present in 

inclusion bodies. The GST based affinity purification step was only done with the soluble 

fractions. The protein solutions were loaded onto a 4 ml Glutathione Sepharose 4B affinity 

column (Amersham Bioscience). The column was washed with ice-cold PBS buffer to 

remove unbound material and then the bound fusion proteins were eluted with 15 mM 

reduced glutathione dissolved in PBS buffer, containing 0.1 % Triton X-100 non-ionic 

detergent. Following an SDS-PAGE analysis, the fractions containing the target protein were 
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pooled. Before the cleavage of the GST fusion tag, the excess of reduced glutathione was 

removed by dialysis against PBS buffer, applying 150-times dilution. For digestion 1 μl (2 

units/μl) of PreScission Protease (GE Healthcare) for each 100 μg of fusion protein was 

added. The solution was incubated at 5 °C for 4 hours. Following cleavage, batch purification 

was applied to remove the GST moiety and the PreScission Protease (siliconized tubes were 

used to prevent the resin to stick to the wall of the tubes): the Glutathione Sepharose 4B resin 

was incubated with the protein solution for 30 minutes at 4 °C with gentle rotation. The 

medium was sedimented by centrifuging at 500×g for 5 min and the supernatant was carefully 

transferred to new tubes. The efficiency of cleavage was checked by 17.5 % SDS-PAGE. The 

concentration was estimated from the gel, comparing the intensity of the protein band with the 

intensity of the standard low range (14-97 kDa) protein marker (BioRad) applied in known 

concentrations (i.e. 5 μl, 10 μl, 15 μl and 20 μl from a 100 ng/μl stock solution). The large 

scale protein expression and purification procedure has been detailed elsewhere [43].  

 

Electrospray ionization mass spectrometry (nano-ESI-MS) 

 

Mass spectrometric (MS) measurements were obtained on a LCT Premier (Waters) 

instrument equipped with a Nanoflow Electrospray Ionization (nano-ESI) source and a time-

of-flight (TOF) analyzer. The instrument was operated in positive ion mode and it was 

calibrated using 100 mg/ml CsI in 50 % 2-propanol in the m/z range from 600 to 12000. 

Samples were sprayed from middle size Au/Pd-coated borosilicate glass capillary needles 

(Proxeon) loaded with 3 l protein solution. The protein concentartion was 10 – 20 M in 100 

mM ammonium acetate (Sigma) buffer. The de-salting of the protein solution and buffer 

exchange to the volatile buffer was done using Micro BioSpin chromatography columnn 

(BioRad). The needle voltage was typically around 1200 V and 50 V cone voltage was 

applied, with a cone gas maintained at 20 L/h and the source temperature was maintained at 

50 C. A stock solution of 100 M Zn(acetate)2 (Sigma) was used to titrate the 20 M N25-

NColE7 protein solution. The recorded m/z data were deconvoluted using the MassLynxTM 

v4.1 (Waters) software equipped with the MaxEnt1 algorithm. The high charge states of the 

multiply charged spectrum, ranging from +10 to +17, were used to calculate the apparent 

mass.  

 

Gel mobility shift assay 
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A ~ 400 bp (bp) dsDNA was used as substrate for gel mobility shift assays. 50-100 ng of this 

DNA was used for each assay. The protein:dsDNA molar ratio varied between 0.5:1 and 50:1, 

the protein:Zn2+ molar ratio was 1:1, 50 mM Tris/HCl buffer, pH 7.4 or PBS buffer was used, 

and NaCl was adjusted to 50 mM final concentration. The solutions also contained 5 % 

glycerol. The reaction mixtures were incubated for 20-40 minutes at room temperature and 

then loaded onto 1% agarose gel and run at 30-50 V in TBE buffer (44.5 mM Tris, 1 mM 

EDTA, 44.5 mM boric acid, pH 7.3). Finally the gel was stained with ethidium-bromide 

solution with a concentration of 0.5 μg/ml for 30 minutes, followed by washing for several 

times with distilled water. The documentation was done using UV-light (Bioinstrument 

ATTO or UviDoc – Uvitec, Cambridge – gel documentation systems) at 312 nm.  

 

SRCD spectroscopic measurements 

 

The synchrotron radiation CD (SRCD) spectra of the proteins were recorded at the SRCD 

facility at the CD1 beamline [44] on the storage ring ASTRID at the Institute for Storage Ring 

Facilities (ISA), University of Aarhus, Denmark. The instrument was calibrated against 

camphor-sulfonic acid. All spectra were recorded with 1 nm steps and a dwell time of 3 

s/step, using 10 m quartz cells (SUPRASIL, Hellma GmbH, Germany), for the wavelength 

range of 175-350 nm. The proteins were dissolved in distilled water and the pH was adjusted 

by HCl and NaOH solutions. The protein concentrations ranged from 10-50 M. From raw 

spectra the water baseline was subtracted.  

 

Fluorimetry 

 

The most popular fluorescent probes for Zn2+-ions in living organism contain quinoline-units, 

such as 6-Methoxy-(8-p-toluenesulfonamido)quinoline (TSQ) and its derivatives. These 

coordinate to the Zn2+-ion by four nitrogen donor atoms in the biscomplex as illustrated in 

Fig. S1, but the protonation state of the complex changes with pH [45]. The fluorofor used in 

this study is an acid derivative of the above mentioned TSQ compound: TFLZn test (Sigma-

Aldrich). It is soluble in water and shows high Zn2+-ion selectivity compared to other cations. 

Its affinity towards Zn2+-ions is high enough to bind the free biological metal ion (KD ≈ 20 

μM), but is not high enough to extract Zn2+ coordinated in proteins. TFLZn shows little 

fluorescence in the absence of Zn2+. Upon formation of the biscomplex, a 100-fold increase in 
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intensity is experienced. Maxima of the excitation and emission spectra are at 360 nm and 498 

nm, respectively. 

The measurements were carried out on a Hitachi F-4500 fluorescence spectrometer in 

a 1x1 cm pathlength quartz cell. The solutions were irradiated in a wavelength range between 

340 and 420 nm, while the emission spectrum was recorded between 400 and 600 nm. TFLZn 

concentration was adjusted to 5 µM in all cases, mutant proteins were added in a 

concentration range between 0.37 and 4.8 µM. Zn2+ concentration ranged from 1.2 to 27.5 

µM, EDTA concentration ranged from1.2 to 30 µM and the DNA concentration (a 10 bp 

DNA string was considered to be a binding unit) ranged from 0.5 to 1.5 µM in the titration 

experiments. 

 

Calculations 

 

Initial conformation of NColE7 and the shortened mutants was taken from the structure of 

1M08 [6]. This structure has a methionine (M446) instead of K446 at the N-terminus. The 

wilde-type (WT) NColE7 calculations were made from the M446K mutant of the original pdb 

structure. All proteins had unprotected termini (ie. NH3
+ and COO- groups). 

Molecular dynamics (MD) calculatuions were performed with GROMACS 4.05 

[46,47], Gromos 53a6 [48] force field. The ionizable residues were charged according to the 

default pKa values at pH = 7.2, as no reason was found to alter the default pKa values by 

propKa 3.0 [49]. The protein was placed in a cubic box edge size of ca. 8 nm, and solvated by 

explicit SPC/E water model. About 16000 equilibrated water molecules were needed to fill 

the box that was neutralised due to positive charge of the protein by Cl– ions replacing water 

molecules at the most positive parts of the box using GENION. Energy minimization was 

carried out using steepest descent method. 200 ps position restrained dynamics were 

performed in NVT ensemble to equilibrate the system (solvate and generate initial velocities 

with Maxwell distribution) including explicit water molecules. 20 ns productive MD 

simulations were performed in the NPT ensemble with periodic box conditions with the 

integration steps of 2 fs. The temperature was set to 300K and isotropic Berendsen p-coupling 

and T-coupling was used. For Coulomb interactions PME was applied with a 0.9 nm 

electrostatic and 1.6 nm van der Waals interactions cut-off, the dielectric constant was set to 

1.0. The constraint algorithm LINCS was used. Trajectories were analyzed starting at 500 ps. 

Semiempirical quantum chemical computations were performed by using 

MOPAC2009 [50] with PM6 method [51, 52]. Localized molecular orbitals were applied by 
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the MOZYME [53] model implemented in MOPAC2009. The solvation was considered by 

COSMO method [54] with the dieletric constant of 78.4. The geometry optimization was 

carried out by the quasi-Newton L-BFGS method after the initial minimization of the 

hydrogen positions. A gradient norm of ca. 2-3 kcal/mol was achieved while the heat of 

formation became essentially stationary. 
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Results and discussion 

 

Cytotoxic effect of the mutant proteins 

 

To study the necessity of the N-terminal end of the NColE7 protein for its activity first the 

genes of the truncated mutants were constructed and inserted into a pGEX-6P-1 vector. The 

N4-NColE7 and N25-NColE7 proteins were designed to delete the 4 and 25 N-terminal 

amino acids from the original NColE7 sequence (starting with K446 according to the ColE7 

protein original numbering). It is known that the native ColE7 gene is toxic for the cells, due 

to the unwanted minor expression level of the protein during the cloning process [55]. Thus, 

the success of the cloning and expression of a ColE7 mutant indicates that the given protein is 

not toxic for the cells. According to the PCR followed by agarose gel electrophoresis the 

genes were successfully inserted into the vector and cloned in either DH10B or Mach1 cells. 

The transformed BL21 (DE3) cells based on the change in OD600 after the induction of the 

protein expression were grown in a similar manner as the cells expressing GST itself, unlike 

to those of the toxic variant of NColE7, where the cells started to die shortly after induction 

(Fig. 1b). The SDS-PAGE of the expressed proteins showed intense bands around the 

expected molecular mass (Fig. 1c). However, the DNA sequencing and the mass spectra of 

the proteins showed that while the GST-N25-NColE7 sequence was correct, instead of the 

GST-N4-NColE7 we had expressed a new mutant GST-N4-NColE7-C* with a modified C-

terminus – but containing all the amino acids necessary for the Zn2+-ion binding. This 

strongly suggests that the GST-N4-NColE7 was cytotoxic. The sequences of the proteins 

after the GST cleavage are depicted in Fig. 1a.  

 

Fig. 1 

 

To check the effect of the C-terminal modification in GST-N4-NColE7-C* we have 

also shown that the N4-NColE7 mutant expressed from pET21a plasmid without any N-

terminal tag but having the correct sequence at the C-terminus is non-toxic for the cells [43]. 

These results together proved that the N-terminal basic amino acids are necessary for the cell 

killing acitivity of the enzyme if it is overexpressed in bacterial cells. Looking at the available 

crystal structures of the NColE7 (Table 1) these amino acid residues with a special emphasis 

on R447 residue were observed in only few of them. In those few including this amino acid, 
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however, the R447 side-chain is situated close to the Zn2+-ion in the active centre [5, 6, 10]. 

The two positively charged residues are bridged by a phosphate ion (Fig. 1d), which is most 

probably replaced by the scissile phosphodiester group of the DNA in the catalytically active 

complex [16]. In the NColE7-DNA crystals the R447 is mostly missing from the solved 

structure [16, 29, 32], but it is close to the phosphate backbone in the structure of a metal ion 

deficient mutant [57]. 

 

Table 1. 

 

In view of the possible allosteric control, it is important to know, what is the function 

of the N-terminal residues with positively charged side-chains (one arginine and two lysines) 

and the role of the whole N-terminal chain - a component without autonomous secondary 

structure - regarding the activity of the NColE7 protein. Further in this manuscript we try to 

get closer to the solution of this problem by means of the investigation of the Zn2+ and DNA-

binding abilities of the expressed mutant proteins.  

 

Protein – Zn2+ interaction 

 

Mass spectrometric investigations 

 

Intact protein mass spectrometry was used to indentify the truncated proteins and to further 

investigate their Zn2+-ion binding abilities. Fig. 2a shows the mass spectrum of the purified 

N4-NColE7-C* mutant recorded in the volatile ammonium acetate buffer without addition of 

Zn2+-ions. The apparent mass of the main peak, i.e. 16251.9 Da, corresponded to the mass of 

the holo protein. This clearly demonstrates that the N4-NColE7-C* mutant was purified in 

its Zn2+-bound form. The multiply charged spectrum showed at almost all charge states the 

presence of a significant amount of acetato-complex as a result of a non-covalent interaction. 

Its amount increased with the decrease in the protein’s charge state (see Fig. S2 for the m/z 

spectrum in ESI). Since the metal binding site consists of three histidine imidazole nitrogen 

ligands from the HNH motif, the presence of the acetate ligand, completing the tetrahedral 

coordination around Zn2+-ion is expected here instead of the phosphate ion, occurring usually 

in the crystal structures.  

 

Fig. 2 
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In contrast to N4-NColE7-C*, Fig. 2b shows that the purified N25-NColE7 mutant 

did not conatin Zn2+-ions, and that it was not able to complete the metallation of the apo form 

even in the presence of 20-fold molar excess of Zn2+-ions at pH 6.7 (pH of the ammonium 

acetate buffer used for MS measurements). The apparent mass of the apo protein (13124.8 

Da) fits very well with the calculated theoretical mass. As a result of increasing amounts of 

Zn2+-ions the molar ratio of the holo protein increased. In the presence of 10-fold metal ion 

excess the molar ratio of the apo and holo proteins is approximately 1:1, while 20-fold excess 

of Zn2+-ions is required to achieve approximately 85% metallation. The KD value calculated 

from the ratio of the ion signal intensities of the apo and holo proteins in the m/z spectra of 

the 11×charged ion (see the series of the spectra in Fig. S3) was 7418 M, assuming that no 

dissociation occurs during the transmission through the mass spectrometer and the metal ion 

binding to the protein does not alter the ionization efficiency of the non-covalent complex 

[59]. It shall, however, be noted that the above estimated constant would largely depend on 

the protonation state of the protein molecule. This means that the stability of the metal ion 

complex is lower than that published for the Zn2+-binding of NColE9 nuclease (nanomolar 

KD) and is similar to Ni2+-binding of the same protein [33]. These data unambigously indicate 

that the 21 N-terminal amino acids of the N4-NColE7-C* mutant play an important role in 

the metal binding in the HNH motif at the C-terminus of the protein. The amino acids of the 

N-terminal loop may e.g. affect the dynamics of the protein folding and promote the 

formation of the proper structure of the protein. 

 

Fluorimetry 

 

Fluorimetry can also be applied to monitor the Zn2+-ion binding of proteins by probes being 

fluorescent in their zinc(II)-complexes [45], such as the TFLZn probe used by us. The 

maximal fluorescence intensity at 490 nm were monitored (Fig. S4). In the solutions 

containing the TFLZn probe and the truncated NColE7 proteins in 2:1 molar ratio different 

behaviour was observed for N25-NColE7 and N4-NColE7-C*. There was no significant 

change in the fluorescence intensity of TFLZn in the presence of N25-NColE7, while the 

addition of an equivalent (c(Zn2+) = c(P)) of Zn2+-ions caused a large increase in the intensity. 

At the same time increase of the fluorescence was observed upon addition of N4-NColE7-C* 

to the TFLZn solution. The resulting fluorescence intensity was in both cases significantly 

higher in the presence of the proteins (and metal ion), than in the Zn2+ – TFLZn binary 
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system. This suggests that in agreement with the MS result N25-NColE7 does not contain 

Zn2+-ions, and that the proteins can not completely replace the TFLZn probe from the 

coordination sphere of the Zn2+-ion. The latter can be explained, supposing that the proteins 

do not fill all the coordination sites around the metal ion (coordination occurs through the 

three histidine side-chains). Therefore, according to the thermodynamics of the system the 

formation of Zn2+(protein)(TFLZn) ternary complexes is also possible in which an 

enhancement of the fluorescence can be observed. The addition of DNA to protein containing 

solutions slightly decreased the fluorescence, probably due to the replacement of the dye from 

the ternary complex. The slightly larger extent of the change for N4-NColE7-C* protein 

points to its stronger DNA binding (see later).  

 

SRCD spectroscopic results 

 

In a chiral environment there is a difference between the absorption of the left and right 

circularly polarized light, and the plot of the difference in their absorption coefficients (Δε = 

εleft – εright) vs. wavelength yields a characteristic circular dichroism (CD) spectrum of the 

sample. The relative position of chiral amide chromophores in proteins i.e. the secondary 

structure and its changes are responsible for this effect in the wavelength region of the UV 

light (180-250 nm). Since the synchrotron radiation circular dichroism (SRCD) spectroscopy 

provides an optimal and even flux of the UV light in a highly controlled manner it can be 

applied for accurate study of the solution structure and interactions of proteins [60]. 

The effect of metal ion binding on the structure of the mutant NColE7 proteins was 

investigated by monitoring the changes in their SRCD spectra on addition of Zn2+ ions and/or 

EDTA to their solutions, as described in the experimental part. Fig. 3a shows the spectra 

obtained for N4-NColE7-C* protein. As it can be seen, the addition of Zn2+-ions did not 

affect the SRCD spectrum (not even at 5-fold Zn2+ excess – data not shown). This again 

suggests that the N4-NColE7-C* protein already includes a bonded metal ion. At the same 

time, an excess of EDTA caused a slight decrease in the intensity. This suggests that the 

removal of the Zn2+ ions by EDTA from the protein caused only a negligible change in the 

secondary structure composition of the protein suggesting that the structure is also stable 

without the metal ion. 

 

Fig. 3 
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In similar experiments with N25-NColE7 both the intensity and the shape of the 

SRCD spectra changed continuously (the spectral pattern becoming more similar to that of the 

N4-NColE7-C* spectrum) upon gradual addition of up to 10 equivalents of Zn2+-ions, while 

the extent of this change became negligible at higher metal ion excess. The addition of an 

excess of EDTA resulted in a similar spectrum to that recorded in the absence of metal ions 

(Fig. 3b). These results further show that the shorter protein binds Zn2+-ions more weakly 

than N4-NColE7-C*, which could result from the more extensive distortion of the metal ion 

binding site upon the deletion of the further 21 amino acids.  

 

Protein – DNA interactions 

 

SRCD spectroscopic results 

 

SRCD was also applied to study the double-strand DNA (dsDNA) binding of the mutant 

proteins. The spectra recorded in the presence of dsDNA are presented in Fig. S5. Although 

the gel mobility shift experiments (see below) proved the DNA binding, the recorded spectra 

showed that the addition of DNA did not change the structure of N4-NColE7-C* in solution. 

This is in line with the crystal structures of the NColE7 and NColE9 bound to dsDNA [16, 29, 

31, 32, 57]. There was, however, a clear differene between the calculated and experimental 

spectra upon addition of DNA to N25-NColE7 suggesting that the dsDNA binding induces a 

slight conformational change in the more flexible mutant, probably by the stabilization of the 

wild-type structure. 

 

Gel mobility shift assays  

 

To compare the DNA-binding ability of the truncated mutants a gel mobility shift 

experiment was conducted, in which increasing amounts of proteins were added to a 0.874 

M solution of a ~ 400 bp dsDNA sample (Fig. 4). For N25-NColE7 approximately 10 

times larger protein concentration than for N4-NColE7-C* was applied to achive substantial 

gel mobility shift, in agreement with its weaker DNA binding.  

 

Fig. 4 
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Addition of Zn2+-ions to the N25-NColE7 solution containing 20-fold excess of 

protein (see Fig. 4a) did not cause change in the position of the band. Two reasons may 

account for this: (1) the protein already bound metal ions, however, this would be in contrast 

with our previous results, or (2) the binding of Zn2+-ions is not necessary for DNA-binding – 

similarly as for NColE7. In agreement with this latter observation an excess of EDTA added 

to N4-NColE7-C* – DNA system did not cause any change in the position of the DNA band 

(Fig. 4a).  

For N4-NColE7-C* an apparent stability constant was estimated based on the gel 

mobility shift assay. Simplifying conditions were introduced assuming 1:1 DNA binding site 

(10 bp DNA) - protein complex (P-DNA) formation and 100% complex formation at the 

saturation of the curve. In Fig. 4b the relative gel mobility shift vs. equilibrium protein 

concentration ([P]) was plotted. The latter was estimated as [P] = cP – [P-DNA], where cP is 

the total concentration of the protein, and [P-DNA] is the equilibrium concentration of the 

protein-DNA complex, which is proportional with the relative distance of the shifted band 

from the unbound DNA on the gel. KD = ([P] × [DNA]) / [P-DNA], at the inflection point, 

where 50% of the DNA binding sites are occupied by the protein, i.e. [DNA] = [P-DNA], and 

thus [P] = KD, where KD is the apparent dissociation constant related to the formation of 

protein-DNA complexes at each binding site. By the above considerations KD was estimated 

to be ~ 5.0 M (pKD ~ 5.3) for a N4-NColE7-C*-DNA binding site complex.  

 

Molecular Dynamics Calculations 

 

Structural changes of NColE7 and the mutant proteins (it shall be noted that in the 

calculations the native sequences were applied without any tags) in explicit SPC/E water were 

tracked by 22 ns molecular dynamics (MD) calculations. Fig. 5a describes the change in 

RMSD (root mean square deviation of backbone atoms in the molecule with respect to the 

reference structure at 500th ps) during the simulation. According to the RMSD diagram of 

NColE7 (446-576) simulation a relatively stable structure is formed after 2.5 ns of solvation, 

causing 0.2 nm difference, as compared to the start of the simulation. The structure slightly 

changes until 10 ns, and then it is fluctuating around 0.2 nm.  

The structure of the N4-NColE7 (450-576) mutant behaves similarly to the wild type 

NColE7, but the N25-NColE7 (471-576) mutant goes through more serious changes 

reaching an RMSD of 0.35 nm by the end of simulation. The RMSD for both mutants 
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increased with time during the whole simulation in contrast to that of WT-NColE7. This 

means that shortening the protein caused remarkable changes in protein dynamics even if only 

4 residues were cut at the N-terminus. 

 

Fig. 5 

 

Fig. 5b shows the average motion of each backbone atoms (RMSF, root mean square 

fluctuation) during the whole simulation. HNH-motif is at the C-terminal part of the protein, 

and such at the right side of the diagram. The intense peak at about the 550th residue 

corresponds to the loop that joins the two β-sheets of the HNH-motif. It is a functionally 

important part of the protein: the conserved residue N560 is located here, which is responsible 

for orienting the general base H545.  

Significant difference can be observed between NColE7 and the shortened mutants. In 

two regions of the protein N25-NColE7, i.e. the amino acid residues 485-487 and 511-515 

show an increased motion. These parts of NColE7 are loops leaning approximately paralell to 

the original N-terminal part that is missing from N25-NColE7. The α-helices in the 

neighborhood remained unchanged. The region including residues 530-535 also forms a loop 

at the N-terminal end of N25-NColE7, and it is in interaction with the helix of the HNH-

motif. Interestingly, these residues also show an increased RMSF in case of ΔN4-NColE7 

which suggests that the deletion of the last four residues at the N-terminus has an influence on 

the dynamics of the middle part of the protein. Residues 547-560 form the loop between the 

β-strands of the HNH motif. Changes in the dynamics of this loop can strongly influence the 

function of the protein as mentioned above. 

Fig. 5c shows the average structure of each mutants taken from the 20-25th ns region 

of simulation. The most obvious effect of shortening the N-terminus is the change in the 

orientation of the loop between the two β-strands of the HNH-motif (highlighted by a circle 

on the figure). In case of ΔN25-NColE7 the missing N-terminal loop caused an approach 

between the two neighbouring loops. Therefore, the loop in the HNH motif lost its original 

orientation. A smaller but not negligible movement can be also seen in ΔN4-NColE7, the 

HNH loop is shifted also in this case. As mentioned above, there are catalitically important 

residues here. The change of average orientation and flexibility of the loop between β-strands 

of HNH motif can be a reason of the decreased nuclease activity of the shortened proteins. 

The N-terminal loop can be considered as a structural spacer between the HNH loop and the 
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DNA binding loop of the protein. It is also worth mentioning, that the N-terminal loop 

remained in the unchanged position in ΔN4-NColE7 even without the positively charged 

amino acids deleted in this mutant. This has also been observed for the N4-NColE7-C* 

mutant [43].  

In a previous study of NColE7 [32] it was supposed that N-ColE7 can bind the DNA 

substrate in two different manner: coordinating also a water molecule or without it. That is, 

the Zn2+-ion may have a temporary 5th coordination site that can provide a general acid 

(assisting in the protonation of the leaving group) in the form of an induced coordinated water 

molecule. During the 25 ns simulations no such structure was found, there was no water 

molecule in the proximity of the metal ion. However, a change could be detected in the 

solvent distribution around the Zn2+-ion in the mutants. The shorter the protein the looser the 

structure is, that allows more water molecules to get near or in the active center (Fig. S6). 

 

Semiempirical Quantum Chemical Calculations 

 

PM6/MOZYME/COSMO semiempirical quantum chemical calculations were performed to 

further investigate the fine changes in the active centre of the protein. Fig. 6 shows the active 

centre in the optimised structures of NColE7, ΔN4-NColE7 and N25-NColE7. The proteins 

were superimposed with PyMOL [58] using the whole length of the corresponding sequences. 

The RMSD of the full-length backbone relative to the initial structure of calculations (PDB 

entry: 1M08) was 1.010 nm for the NColE7 (127 atoms fitted), 0.604 nm for ΔN4-NColE7 

(109 atoms fitted) and 0.893 for ΔN25-NColE7 (100 atoms fitted). Aligning with the 

optimised structure of the NColE7 resulted in a RMSD of 0.527 nm (110 atoms) for ΔN4-

NColE7 and 0.824 (89 atoms) for ΔN25-NColE7. The active centre of the ΔN4-NColE7 

mutant is similar to that of the WT enzyme, as the orientation of histidine sidechains is almost 

identical (Fig. 6b). However, the small differences in the structures lead to different 

orientations of the phosphate and Zn2+-ions. This is even more obvious in the case of ΔN25-

NColE7. The changed geometry around Zn2+ and phosphate ions can be a reason of the 

decreased metal- and DNA-binding ability of the N25-NColE7 mutant. This again points to 

the fact that the removal of the N-terminal part has significant effect on the structure of the C-

terminal active centre. 

 

Fig. 6 
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Conclusions 

 

The necessity of the arginine residue at the N-terminus for the hydrolytic activity of 

NColE7 poses a possibility of a positive allosteric control in this protein. Mass spectrometry, 

SRCD and fluorescence spectroscopy, and agarose gel mobility shift assays provided 

information on the effect of the removal of N-terminal sequences on the Zn2+-ion and DNA 

binding in N4-NColE7-C* and N25-NColE7 mutants. The longer protein bound both Zn2+-

ion and DNA stronger than the shorter counterpart due to the structural stabilization effect of 

the N-terminal amino acids. The C-terminal mutation in N4-NColE7-C* might affect these 

properties, but our results here and in ref. 43 strongly suggest that the C-terminal flankig 

sequence does not participate in the metal ion or DNA binding. Molecular dynamics and 

semiempirical quantum chemical calculations performed in parallel showed that the absence 

of the N-terminal sequences resulted in significantly increased movement of the backbone 

atoms in regions of possible interactions with N-terminal loop: 485-487, 511-515 and 570-

571 for N25-NColE7, while 467-468, 530-535 and 570-571 residues for N4-NColE7. The 

distortion of the active centre predicted by semiempirical quantum chemical calculations 

could also be the reason for weak Zn2+-binding of N25-NColE7. These results lead to a 

conclusion, that the N-terminal loop plays an important role in the positioning of the arginine 

residue for the control of the DNAse acitivity. The question arose, whether this could be a 

common feature among the HNH family of endonucleases? Since the amino acid sequences 

of the bacterial colicins and pyocins display high similarity, the arginine is frequently found 

in similar position as in the NColE7. Also in the available crystal structures of different 

members of the HNH family, e.g. the SM endonuclease, VVn endonuclease or nuclease A we 

found arginine side-chains in the spatial vicinity of the catalytic centre (Fig. 7). The answer 

thus, seems to be positive. However, since the arginines are not always situated at the N-

termini of the proteins, it is difficult to identify them without knowing the 3D structure. 

Therefore, a detailed bioinformatic study is foreseen in a future communication. 

 

Fig. 7 
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Table 1. Crystal structures of NColE7 containing different lengths of amino acid sequences. 

PDB code / ref. Mutation Complex Sequence in pdb file* Reason for inactivity 

1M08 / [6] K446M protein-Zn-PO4
** 446 MRNK-HRGK 576 - 

1MZ8 / [5] - protein-Zn-PO4-Im7 447 RNKP-IDIH 573 - 

1PT3 / [16] - protein-8bpDNA 449 KPGK-HRGK 576 no metal ion 

1ZNS / [32] K443M/H545E proten-Zn-12bpDNA 450 PGKA-DIHR 574 mutation 

1ZNV / [32] K443M/H545E protein-Ni-PO4-Im7 450 PGKA-HRGK 576 - 

7CEI / [10] - protein-Zn-Im7 447 RNKP-IDIH 573 - 

2IVH / [29] H545Q protein-Zn-18bpDNA 449 KPGK-IDIH 573 mutation 

2JAZ / [28] N560D protein-Zn-PO4-Im7 450 PGKA-HRGK 576 - 

2JB0 / [28] H573A protein-Zn-Im7 449 KPGK-HIDI 572 - 

2JBG / [28] N560A protein-Zn-SO4-Im7 448 NKPG-HRGK 576 - 

3GJN / [55] H545A protein-Zn-Im*** 450 PGKA-HRGK 576 - 

3GKL / [55] H545A protein-Zn-Im*** 450 PGKA-HRGK 576 - 

3FBD / [56] D493Q protein-18bpDNA 445 SKRN-HRGK 576 no metal ion 

 
*All the proteins were expressed in the presence of the immunity protein. A general sequence 

of the NColE7 was MLDKES+446-576, with the exception of the one with PDB code 7CEI 

where an N-terminal hexahistidine tag in a form of MRGSHHHHHHGSES was attached to 

the 446-576 sequence. **Charges are omitted for simplicity in the table. ***Mutant Immunity 

proteins were applied in these experiments. The expression of the NColE7 was not described 

in detail in the original paper [55]. 
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Figure legends 

 

Fig. 1a The sequences of the NColE7 (from K446 to K576 according to the original ColE7 

numbering) and the deletion mutants: N4-NColE7-C*, N4-NColE7 and N25-NColE7. 

The amino acids in red are fused to the N-terminus as a consequence of expression and 

purification from pGEX-6-P1 vector and cleavage by Prescission protease. The green amino 

acids indicate the result of the random mutation the C-terminus in N4-NColE7-C*. All the 

blue residues are cut from N25-NColE7 and only the dark blue residues from N4-

NColE7(-C*) and the HNH motif is in orange similarly to Fig. 1d. b Growth of the E. coli 

cells expressing different GST-protein variants after induction with IPTG as monitored by 

OD600 measurements. GST protein itself was applied as a control protein without any nuclease 

activity. The uncertainty of the measurements has not been plotted to simplify the figure. The 

average error was considered to be  0.03 OD600 units. c The SDS PAGE of the expressed 

proteins. (GST-NColE7’ is a toxic variant of NColE7 – not detailed here.) d The structure of 

NColE7 (PDB id: 1MZ8) in complex with a phosphate ion. Among the N-terminal amino 

acids, R447 is the closest to the phosphate ion that is bridging it with the Zn2+-ion. Figure was 

created by PyMOL software [57]. 

 

Fig. 2a Mass spectrum of the N4-NColE7-C* mutant. The main peak corresponds to the 

mass of the holo protein. The theoretical average mass of the apo protein is calculated to be 

16188.1 Da, while the mass of the Zn2+-complex is 16253.5 Da. b Mass spectra of the N25-

NColE7 mutant in the presence of 1 to 20-fold molar excess of Zn2+-ions. The theoretical 

average mass of the apo protein is 13123.7 Da, while the mass of the Zn2+-complex is 

calculated to be 13189.1 Da. 

 

Fig. 3 The comparison of the SRCD spectra recorded for a N4-NColE7-C* (c = 36 M) and 

b N25-NColE7 (c = 18 M) under various conditions. The spectra of the aqueous solutions 

of the proteins are in blue. The yellow curves belong to the systems where one equivalent of 

Zn2+-ions has been added to protein solutions. For N25-NColE7 the SRCD spectrum 

recorded in the presence of ten equivalents of Zn2+-ions has also been plotted (orange curve), 

since the change here is more expressed than in the case of N4-NColE7-C*. Finally, an 

excess of EDTA was added to the previous solutions and the spectra were recorded (green). In 

all cases the average of three measurements were plotted.  
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Fig. 4a Gel mobility shift assay for studying DNA-binding ability of N25-NColE7 (left) and 

N4-NColE7-C* (right). Lane 1 contains a 1000 base pair marker DNA; lane 2: 0.874 M 

dsDNA sample. In the following lanes equal amounts of the same DNA sample incubated for 

one hour with increasing amounts of mutant proteins in a constant volume of 10 l were 

loaded. The excess of the proteins was 10, 20, 30, 50, 80, 100 and 200×fold for N25-

NColE7 and 1, 2, 3, 5, 8, 10 and 20×fold for N4-NColE7-C*. b Plot of the relative gel 

mobility shift of the N4-NColE7-C* mutant (i.e. the normalized distance of the shifted band 

and the band of the unbound dsDNA; the saturation distance was taken as 1.0) vs. equilibrium 

protein concentration, [P]. At the inflection point [P] = KD. 

 

Fig. 5a The RMSD vs. time diagrams as a result of 22 ns molecular dynamics calculations in 

explicit SPC/E water. b The average motion of backbone atoms during the MD simulation in 

proteins. c The average structure of the proteins in the 20-25th ns of the simulations. The loop 

between the two beta-strands of HNH motif is higlighted by a circle. (WT NColE7 is in black, 

ΔN4-NColE7 in red and ΔN25-NColE7 in green in 5a, b and c figures.)  

 

Fig. 6 Superposition of the metal ion binding residues in the optimised structures of NColE7 

(in blue), ΔN4-NColE7 (in yellow) and ΔN25-NColE7 (in red) with phosphate and zinc ions. 

The backbone atoms of the proteins were aligned with a 1M08 structure [6] and b with the 

optimised structure of the NColE7. 

 

Fig. 7. The alignment of the HNH-motifs of NColE7 (red, PDB id: 1MZ8) and selected 

proteins belonging to the HNH superfamily. a) VVn endonuclease (PDB id: 1OUP) b) SM 

endonuclease (PDB id: 1G8T) c) nuclease A (PDB id: 1ZM8) 
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Fig. 1 

 

a 
NColE7        GPLGSPEFKRNKPGKATGKGKPVNNKWLNNAGKDLGSPVPDRIANKLRDKEFKSFDDFRKKFWEEVSKDPEL 

N4-NColE7-C* GPLGSPEF----PGKATGKGKPVNNKWLNNAGKDLGSPVPDRIANKLRDKEFKSFDDFRKKFWEEVSKDPEL 

N4-NColE7    GPLGSPEF----PGKATGKGKPVNNKWLNNAGKDLGSPVPDRIANKLRDKEFKSFDDFRKKFWEEVSKDPEL 

N25-NColE7   GPLGSPEF-------------------------DLGSPVPDRIANKLRDKEFKSFDDFRKKFWEEVSKDPEL 

 

NColE7        SKQFSRNNNDRMKVGKAPKTRTQDVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGKStop----- 

N4-NColE7-C* SKQFSRNNNDRMKVGKAPKTRTQDVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHQVNSSSGRIVTDStop 

N4-NColE7    SKQFSRNNNDRMKVGKAPKTRTQDVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGKStop----- 

N25-NColE7   SKQFSRNNNDRMKVGKAPKTRTQDVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGKStop----- 
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Fig. 2 

 

a 

0

20

40

60

80

100

15500 15750 16000 16250 16500 16750
Mass / Da

%
 re

la
tiv

e 
ab

un
da

nc
e

16251.90

16312.20

holo-protein

acetato-complex

16187.4
apo-protein

 

b 

Mass / Da

%
 re

la
tiv

e 
ab

un
da

nc
e

13124.8

13186.9

13187.2

13124.8

13124.5

13187.5

13124.5
13187.5

13187.5

apo-protein

holo-protein 1×Zn(II)

2×Zn(II)

5×Zn(II)

10×Zn(II)

20×Zn(II)

13124.2

 

 

 



 28

Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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