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Abstract: There is a growing interest in the characterization of mining residues, both for environmen-
tal assessments and critical raw materials recovery. The lack of sufficient in situ samples hampers an
effective geostatistical modelling of material concentrations variability. This paper proposes a method
to characterize the aluminum spatial variability in a mine residue from remote sensing data and
imprecise information from daily dumping procedures. The method is proposed for the mapping of
aluminum within a Greek bauxite residue, using Sentinel-2 imagery. The spatial correlation between
metal concentrations and remote sensing indicators (e.g., spectral band ratios) is the premise for
mapping aluminum varieties. The proposed method is based on Conditional Gaussian Co-Simulation,
where Sentinel-2 images can be used as auxiliary variables. Simulation results are compared with
the Co-kriging estimation method. To perform the Co-kriging estimation, the same conditions as
simulation are used (same inputs, models, and neighborhoods). Simulation results quantified the
metals variability in mining residues, presenting the metal concentration of piled materials in two
time periods. For results validation and selecting the best map, fourteen validation samples were
used. For the best representative maps of aluminum concentration, a correlation coefficient of about
0.7 between the validation data and obtained aluminum concentration map was obtained.

Keywords: Sentinel-2; bauxite residuals; geostatistical co-simulation; turning bands

1. Introduction

The recovery of metals, specifically critical raw materials (CRMs) from mining residues
(stockpiles and tailings) is a current concern of EU research activity [1] and an essential
reason to call them “mining residues” instead of stockpiles and tailings or in general mining
wastes. Besides, the environmental aspects have caused a strong push for more effective
managements of mining residues in many mining sites [2]. The characterization of mining
residues—necessary, for example, to construct and classify database or for environmental
assessment or for materials recovery projects—is a difficult and challenging task for several
reasons. First of all, the scarce availability of data: often there are not sufficient economic
justifications for mining companies in sampling the stockpiles and landfills [3,4]. This
is done just for checking the ore dressing process or when imposed by environmental
legislation, and even when available, the quality of such sampling is often imprecise (with
poor or missing georeferencing) [5,6].

Moreover, standard approach for resource characterization is based on a geostatistical
modelling (an unbiased estimation with minimum error variance), which is possible when
the materials of interest have a spatial distribution [7]. However, the spatial distribution of
metal concentrations (grades) in a mining residue (for example tailings from processing
plant) is artificial, meaning that the natural spatial variability of materials (e.g., metals)
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in the deposit, is not obeyed inside residues. While ore bodies have smooth and natural
variability, mining residuals are formed by a highly artificial component (piled material
belongs to the different process and are daily stocked in small areas by trucks). This is due
to the mining process and to the interval time of piling materials [8]. In practice, the original
variability of materials in a deposit changes due to the specific part of the deposit mined
during a given time interval (for example, richer zone of the deposit as possible premier
excavations); the excavation methods and volumes size of the ore extracted; the strong
homogenization of ore process because of crushing and milling; the definition of new prod-
ucts as the waste (tailings) because of metal separation and on the tailings disposal method
which defines the localization of the new product sent to the tailings. This produces an
“artificial” space-time variability of mining residue materials. For these reasons, a different
analysis accounting for this artificial spatial variability must be established. Addition to
this artificial effect, the lack of samples and difficulties in sampling from mining residues
is another reason why classical estimation methods, such as ordinary kriging, cannot be
easily adapted for mining tailings [9].

In this perspective, remote sensing technology, with its potential to provide consistent
data in space and time, can assist the analyses and compensate for the scarce basic informa-
tion available. Nowadays, large data sources based on Earth Observation (EO) data are
available for mapping different environmental variables. In particular, data from satellite
imaging sensors flying as part of the European Union’s Copernicus Earth observation pro-
gram can be utilized for a wide range of applications in a variety of sectors including the
urban area management, regional and local planning, forestry and fisheries, etc. Moreover,
the continuity of data in time (with free access of data) gives the possibility of continuous
land monitoring.

There are already a number of researches exploiting the advantages of remote sensing
interaction with geostatistical techniques, to map different variables in mining resources,
mining residues, and acid mine drainage, mainly on pollution and environmental as-
pects [10–14]. The reason is the use of fast and accessible methods for preliminary analysis
using remote sensing approaches. Since 1999, Ferrier [15] worked on waste rock and tail-
ings produced from mining activities, focusing on environmental pollutions of materials
and trace elements of tailings using airborne mapping and high imaging spectrometer data.
As another example, Choe et al. [16] used the spectral reflectance variations associated with
the presence of heavy metals in soils to characterize the distribution of areas affected by
heavy metals.

In other applications, in order to improve any variable (or thematic) map accuracy and
to validate results, the remote sensing and geostatistical methods are integrated, however,
with smoothing effects on results [17,18]. To generate maps with finer resolution pixels,
the Sequential Indicator Simulation (SIS) approaches can be used [19]. SIS and estimation
approaches can be used to integrate the uncertainty of remote sensing data and in situ
samples, to identify their spatial cross-correlation and to evaluate the uncertainty from
land cover classified remotely sensed imagery. The Indicator Simulation can approximate
the probability, if a pixel at the fine resolution map belonged to a specific class [20]. In
high resolution hyperspectral imagery, by geostatistical filtering of noise and regional back-
ground, detection of small anomalies was attained. As an example, one-meter resolution
data were used and validated with in situ samples from a mine tailings site, and results
demonstrated a reasonable efficient approach for very complex landscape [21].

To improve any type of map (for space variables) in remote sensing, while there
is a need to deal with the interaction among multiple variables and spatial information
from neighbor data, joint Sequential Co-Simulation (SCS) with satellite images can be
used. Gertner et al. [22] showed that the SCS could reproduce the spatial variability of
different variables and the spatial correlation among them, in order to quantify the effect of
variation from all the components on the prediction of the vegetation cover factor. In the
joint SCS, a hierarchy of the dependent variables should be defined and a variable with
the high correlation is the starting point of a co-simulation. Other attempts were done by
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other authors with different techniques, such as Multiple-Point Statistics approaches (MPS)
with applications in subsurface modeling, remote sensing, climate modeling, and rainfall
simulations with a training image adaption [23–27].

The present work aims to propose an appropriate method to map the metal concen-
trations of a critical raw material (aluminum oxide) in a bauxite residue (BR) [28]. The
main novelty is the use of the geostatistical co-simulation method (turning band algorithm)
for the first time in a complex application of mining residues (red mud from the process
of alumina). Moreover, this method is for the first time integrated with remote sensing
multispectral imagery for mining residues applications. As mentioned, one of the main
challenges for the materials characterization in mining residues, is a high-concentration
variability within a small area, as a consequence of the so-called artificial spatial struc-
ture [29]. Moreover, a variety of reasons (limited economic benefits, ponds or muddy areas,
not accessible parts of wastes, stability hazards, inhomogeneity of grain size, among others)
make the sampling from mining residues difficult and cumbersome [8,9].

Hence, according to this artificial spatial variability, the new approach proposed in this
work has been used. It consists in a combined use of remote sensing data and Conditional
Co-simulation (CCS) to improve the classical estimation methods (as an example: ordinary
kriging, co-kriging, etc.).

Using data from a bauxite mine in Greece, the proposed approach was tested for (I)
the characterization of a critical raw material content and (II) a comparison between the
common methods (estimation) and proposed model (simulation) aided by EO variables for
metals concentration mapping. The application of this framework on mining residue is
possible only by exploiting remote sensing information, due to the lack of detailed in-situ
information and the existence of spatial correlation between metal concentration and pixel
values from remote sensing data.

2. Methodology

EO can be an appropriate data source for the analysis of mining residuals. Specifi-
cally, the remote sensing multispectral images provided by the Copernicus services can
be merged with the daily dumping data information, to both characterize mineral concen-
trations (metals, non-metals or CRMs) and monitor tailings area in time and space. There
are different types of data available from the case study used in this research. Conditional
co-simulation (CCS) using the turning band (TB) method [30] has been used for the first
time in this work to check how it can improve the metals concentration maps accuracy in
mining residues. Due to the presence of fourteen field samples (validation samples), there
was the possibility of validating the simulation results. The number of validation samples
was limited because of not accessible parts, humidity and trucks piling movements. More-
over, because of daily materials accumulation, sampling had to be done exactly at the date
of available satellite image and this point made more limitation of in-field sampling. The
proposed approach is presented in the flow sheet of Figure 1, showing the methodology
and remote sensing data and daily dumping data interaction for mapping.

The different contents of the building blocks are illustrated hereinafter. Firstly, after
collection of the daily dumping data and relative Sentinel-2 images [31], the basic statistical
analysis (histograms) is performed (as the main variable). At the same time, within the
Sentinel-2 images, the appropriate band ratios are calculated (as the auxiliary variable).
Moreover, because of the randomly accumulation of materials by the Company, an un-
supervised classification of the images is used to define homogenous areas as a guide to
optimize the choice of the validation samples within the BR. One of the common methods
for un-supervised classification is the K-means cluster analysis method [32]. Then, based
on the distribution of data, both (the main and the auxiliary variables) are transformation
into Gaussian distribution to be ready for geostatistical analysis [33]. As it is shown in the
flow chart (see Figure 1), the spatial analysis (direct and cross variograms) is performed on
data and by the most consistent models, the CCS is tested. Fourteen validation samples are
used to validate the results and better choosing the simulated concentration maps.
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Figure 1. Proposed approach for mapping metal concentrations, by merging geostatistical conditional
simulation and remote sensing analysis.

2.1. Remote Sensing Background

In multispectral solar wavelength remote sensing studies, different minerals in a
target area (mainly in geological mapping), are often identified through the analysis of
some band ratios [34,35]. Usually, they involve at least one band with higher reflectance
features of the given material and another band with strong absorption features for the
same material [36]. There are many studies on spectral analysis of minerals based on
different satellite images. One common tool, used for bauxite sources, is laterite band
ratio [37–39]. In this work, since the strategy of the project was using only free-access data,
Sentinel-2 (Level-2, with atmospheric correction) images were selected for remote sensing
analysis. Moreover, other band ratios were tested, but laterite band ratio (Table 1) was
selected as appropriate auxiliary variable for aluminum in this research.

Table 1. Band ratio of Sentinel-2 used as proxy for mapping aluminum-rich minerals [39].

Feature Sentinel-2A Bands
with Their Central Wavelength

Band Width (nm)
Values Measured at Full Width Half Maximum (FWHM)

Laterite 11 (1613.7 nm)
12 (2202.4 nm)

11 (91 nm)
12 (175 nm)

The band ratio information, as it is an indirect measurement, is to be calibrated and
validated with in situ samples to provide concentration estimates. The daily dumping
data and the band ratio information can be combined for the estimation of the resource.
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This integration can be implemented in geostatistical modeling for mapping a spatial
variable in an area with limited information. It has been shown by preceding studies [40]
that spectral signature analysis aids the identification of the appropriate bands and ratios.
Besides, the key point for choosing the appropriate band ratio and its integration with
daily dumping data, is the meaningful spatial correlation between samples and the band
ratios derived from Sentinel-2 images. The spatial correlation is defined in Geostatistical
background section.

2.2. Geostatistical Background

Geostatistical conditional simulation is used to predict complex variables (which
depend on the regionalized variable at hand and need to consider a distribution compatible
with the true one) and allows to quantify properties on which problems in different fields
depend such as mineral resources evaluation, reservoir characterization, hydrology, soil,
and environmental sciences [41–43]. Geostatistical simulation allows the generation of dif-
ferent realizations of a regionalized variable that reproduce the original spatial variability
over a field. In order to use the characteristics of spatial variability over the field, the exper-
imental variograms (Equation (1)) need to be calculated for values of the target variable in
space (with the distance h between samples) and fitted by a mathematical model [44]. The
fitted mathematical model quantifies the correlation between values as a function of the
distance and demonstrates the continuity in average of regionalized variables.

γ(h) =
1
2

E[z(x + h)− z(x)] (1)

where γ(h) is the experimental variogram (direct variogram for one variable) obtained from
data values, z(x + h) is a value at location x + h, while z(x) is a value at location x. There are
a range of variogram models which can be used due to the variability behavior of target
variable that can be found in almost all geostatistical references [30,45].

The standard geostatistical estimation is efficiently applied to natural variables, and
simulation approaches mostly for local fluctuations. However, due to the artificial compo-
nent of mining residues, testing the simulation approach can be suggested for mapping
the concentration variability [8], because of high variability of grades in small area and
skipping the smoothing effect of estimation results.

Different methods and algorithms for simulation have been developed in the literature
for modeling the regionalized variable or coregionalized variables (in the multivariate case)
in Gaussian random fields with the spatial covariance of original variable [46]. The turning
bands (TB) algorithm, proposed by Matheron [7], has the advantage of fast calculations and
an accurate reproduction of the spatial correlation structure (in univariate and multivariate
cases), even with distributions slightly different from the target ones [47]. In the case of
multi-variable, there is a need of cross-covariance functions to model the relationships
between the main variable (the variable to be estimated or simulated) and the auxiliary
variables (additional information and data) [41]. Even in presence of medium correla-
tion [48], CK can be performed for verifying, by the analysis of the estimation variance, the
effect of the secondary variable on estimation smoothing [30]. Most of the geostatistical
simulation methods rely on the (multi) gaussian framework, so data transformation from
the raw to the gaussian space is needed. Afterwards, the posterior transformation of the
gaussian simulated results to the raw scale is necessary. This transformation is called
the gaussian anamorphosis and it includes different methodologies such as log-normal,
Hermite polynomials, etc. An anamorphosis allows to reproduce the original distribution
of the variable [33]. In multivariate applications, some of simulation algorithms may be
challenging and require simplifications [49]. In the case of the TB, the method generates
multi-dimensional simulations by 2D or 3D convolution of several random independent
1D simulations along lines with specific variogram models able to reproduce the true
variogram (2D or 3D). The simulated values are obtained from the average of the projected
values at the desired locations (e.g., the structured grid). To formulate the simulation, due
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to Matheron (1973), the true value of a variable at a location, is equal to its kriging estimated
value, plus the kriging error (Equation (2)): The TB simulation estimates by kriging the
values at grid nodes and adds the simulated estimation error [30]:

Z(x) = Z∗
k (x) + [Z(x)− Z∗

k (x)] [Z(x)− Z∗
k (x)] = Error (2)

where Zk
∗(x) represents the kriging estimator of Z(x) at the point x based on the sample

Z(x). The kriging error is unknown since Z(x) is not known. Considering the same equality
for simulation, S(x), where Sk

∗(x) is the kriging estimator, and the simulation is obtained
only at the sample points (conditioned by samples) (see Equation (3)):

S(x) = S∗
k (x) + [S(x)− S∗

k (x)] (3)

In Equation (3), the true value S(x) is known (we have samples) and so is the error
S(x) − Sk

∗(x). Hence, with substituting, the conditional simulation Ycs (x) of TB can be
performed by two kriging parts and can be written as Equation (4):

Ycs(x) = Z∗
k (x) + [S(x)− S∗

k (x)] (4)

Kriging at sample points is an exact interpolator, so at a sample location Zk
∗(x) = Z(x)

and the simulated error is zero: Sk
∗(x) = S(x), so Ycs(x) = Z(x). Each realization (in a condi-

tional simulation) shows a random result, that matches the sample points. Equivalently, it
is a realization of a random function with a conditional spatial distribution [30].

To validate the simulation results, and to choose the coherent map (between all
simulation realizations), several methods can be applied [30]:

• Reproduction of the variogram model by the simulation results [46]: it means that the
reproduced variograms from simulation results should be coherent with the variogram
model of the samples (the experimental variogram).

• Matching the histogram: comparison of statistical parameters of simulation real-
izations with input data; the histogram match means the comparison between the
histograms and statistical parameters of the simulation results with the histograms
of input data. The simulation results with the highest correlation coefficients are the
most acceptable realizations.

• Validation of simulation results with real data (validation samples from the case
study). The validation samples can be used to select the most accurate maps among
all simulated realizations. After back transformation of simulation results, they can be
compared with the validation sample values, and due to correlation parameters, the
most accurate maps among all simulation realizations can be selected.

It is useful to compare conditionally simulated and estimated kriged models. Indeed,
the characteristics of the simulated variable results should be similar to the kriged values
but with larger dispersion, namely equal to the input data one. In this case study, the
co-kriging estimation (using the same input data, variogram models and estimation param-
eters) as simulation is performed to do a comparison with simulation results. Moreover, to
perform the anamorphosis, the hermit polynomial function was used to transform input
data (daily dumping data and band ratios) into Gaussian field, because of the better fitting.

3. Study Area: Bauxite Residuals in Greece

The selected case study is an active BR site from the alumina refinery of Mytilineos
S.A. in Greece. It is located on the Gulf of Corinth, 136 km from Athens (latitude 38.354177◦

and longitude 22.704671◦, WGS84) with an area of around (700 m × 600 m). From 2006, a
total of four filter presses were installed in the plant, to dewater the BR and since 2012 all
BR produced is filter-pressed and stored as a “dry” (water content < 26%) by-product in an
appropriate industrial landfill (see Figure 2) [50].

The dry stacking of the BR is the best technique for BR materials accumulating,
because it significantly decreases the volume to be deposited, and it decreases the risk
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of dam failures [49]. The BR, stored nearby the processing plant, contains a significant
amount of raw materials which can be used for effective utilization. Different types of data
were collected to characterize BR. Due to the analysis done on the BR, it has potential as a
secondary resource for REEs extraction [51], and TiO2, V2O5, Al2O3, Fe2O3, CaO, Na2O,
and SiO2 resources. The underlying target of this research is assessing the potential for
recovering CRMs from BR of the selected case study. Hence, the characterization of Al2O3
concentrations within the BR (bauxite as CRM) was fundamental.

Figure 2. (a) Bauxite residue (BR) location in Greece, (b) BR location in the Gulf of Corinth, (c) general
view of the BR, (d) daily disposals of materials on BR and the layer of geofabric and gravel (after
each 5 m), for slope stability.

3.1. Daily Dumping Data

As a part of the standard management practices adopted by the mining company, daily
information about piling operations is collected from the processing plant after performing
filtering into piles. The daily dumping data include the tonnage of materials with their
mean concentration value, and the area in which they were accumulated (Z, H, B, A, E, Γ, or
∆ in Figure 3); however, the exact coordinates where trucks discharged the daily load of
materials are not recorded. This lack is quite common while discharging materials in mining
residues and it is not a peculiarity of this case study. Therefore, to use this information,
each daily reported concentration, was considered as a point sample according to the piling
direction and defined inside the recorded area of BR (each point is representative of one day
due to the piling direction within the area of Z, H, B, A, E, Γ, or ∆). This step was performed
in GIS as follows.

A topographic map [52] was used as the base map to identify the seven piling areas
(Figure 3). After georeferencing, the map was inserted in a Geographic Information System
(GIS) software to identify the sample locations; through monitoring, the daily piling
procedures were tracked (see Figure 3). Two months are considered the appropriate time
interval to map the concentrations variability, because during a period of two months there
is no over-layer material accumulations, and each layer, which can be mapped superficially
by satellite images, can be approximately considered as the extension of materials that
were piled during this period. Therefore, to map the Al2O3 variability within the BR,
two periods of two months each were selected (March–April 2019 and then June–July 2019).
As it can be seen in Figure 3, in the first two sequential months (March–April), materials
were accumulated on areas Z, H, E, A, Γ, and ∆, without any over layering. Then during
June–July, materials were piled over Z, H, E, A, and ∆.
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Overall, within two months, 60 daily dumping data were considered for mapping
(see Figure 3a samples of March–April and Figure 3b samples of June–July).

To validate the approach proposed here, a dedicated field campaign was carried out
on 30 July, and 14 samples were collected from the BR field, this time recording the position
through GPS. These samples were analyzed (through X-ray Fluorescence analysis-XRF)
to obtain the same concentration information provided by the daily dumping data (TiO2,
V2O5, Al2O3, Fe2O3, CaO, Na2O, and SiO2), and were used only to validate the results.
Basic statistical parameters from daily dumping data were calculated for available elements
(see Table 2).

The statistical parameters of input data (daily dumping data) are important, since
they should be used for comparison of histogram matching of simulation results.

Figure 3. Daily dumping data (red points) showing the area of accumulated materials within BR for
March–April (a) and June–July (b) used for mapping Al2O3 concentration.

Table 2. Statistical parameters of daily dumping data.

Elements Concentration (%)
March–April

Concentration (%)
Variance

Number of Samples
(Locations are Defined in Figure 3a)Min Max Mean

Fe2O3 36.52 47.48 41.63 5.47 60
Al2O3 13.42 20.35 15.58 1.73 60
CaO 9.08 14.11 11.91 1.50 60
SiO2 4.70 11.22 8.53 1.25 60
SO3 0.33 0.55 0.41 0.01 60

Elements Concentration (%)
June–July

Concentration (%)
Variance

Number of Samples
(Locations are Defined in Figure 3b)Min Max Mean

Fe2O3 39.31 51.65 45.35 9.49 60
Al2O3 11.30 18.87 14.57 3.91 60
CaO 6.00 15.07 10.92 3.34 60
SiO2 3.60 9.03 7.30 1.10 60
SO3 0.32 1.69 0.66 0.13 60

3.2. Remote Sensing Data

In this research, Sentinel-2 imagery was used. Sentinel-2 mission orbit is sun-synchronous
orbit with 98.62◦ inclination and the Mean Local Solar Time (MLST) at the descending node is
10:30 (a.m.). The multispectral Instrument (MIS) on board Sentinel-2 has been driven by the
requirement for large swath high geometrical and spectral performance of the measurements.
The MSI measures the Earth’s reflected radiance in 13 spectral bands from VNIR to SWIR
(Table 3) [31].

Coherently with available daily dumping data, two images were selected, one in the
end of April (representing the period March–April 2019), and the second in July (repre-
senting the period June–July 2019). Level-2 atmospherically corrected spectral reflectance
images were used:

1. S2B_MSIL_2A (30 July 2019), Processing level: Level 2A, and Sensing orbit direc-
tion: descending;
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2. S2B_MSIL_2A (29 April 2019), Processing level: Level 2A, and Sensing orbit direc-
tion: descending.

The target zone in the presented images of Figure 4 is the triangular area (reddish
color) in the center of image, which shows the accumulated materials from the wastes of
bauxite processing plant.

To map the Al2O3 concentration variability, the presented data (daily dumping data
and Sentinel-2 images) were firstly analyzed separately, and then, by their integration, the
spatial variability and geostatistical analysis were performed.

As a first step, the spectral patterns of BR surfaces extracted from the images were
studied [40]. All the Sentinel-2 bands were stacked and resampled at the 10 × 10 m spatial
resolution. Resampling (Nearest Neighborhood method) is done because of different
spatial resolution of bands (see Table 3) in Sentinel-2 images. The spectrum analysis
showed a certain variability within the BR deposits and some classes can be distinguished.
Figure 5 shows seven spectral patterns belonging to areas appearing spectrally different
from photointerpretation. The selected seven classes are based on seven areas of materials
accumulations (previously shown in Figure 3 including Z, H, B, A, E, Γ, or ∆) that might
have different material concentrations. The reason of the reflectance variability can result
from several factors, such as, mineral grades, different humidity, or just being fresh or
old materials.

Table 3. Spectral bands for the Sentinel-2 sensor; the Bandwidth (nm) is measured at Full Width Half
Maximum (FWHM) [31].

Band Number Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

1 442.7 21 60
2 492.4 66 10
3 559.8 36 10
4 664.6 31 10
5 704.1 15 20
6 740.5 15 20
7 782.8 20 20
8 832.8 106 10

8A 864.7 21 20
9 945.1 20 60

10 1373.5 31 60
11 1613.7 91 20
12 2202.4 175 20

Figure 4. Sentinel-2-true color composite image (RGB = 4,3,2, date: 29 April 2019) representative
of piled materials in March–April and Sentinel-2-Image (30 July 2019-Left) representative of piled
materials in June–July (29 April 2019-Right).

A simple cluster analysis was performed to have a preliminary view of the piled
materials before mapping the concentration variabilities. Since the spectral pattern analysis
can explain the presence of different spectral clusters within the tailings, the un-supervised
classifications were performed by K-means method [32] with the assumption of seven
classes. As explained before, the number of classes is based on the seven areas of materials
accumulations (Z, H, B, A, E, Γ, and ∆ areas) that may present different physical or chemical
properties, such as mineral composition, concentration, different humidity, or just being
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fresh or old materials (see Figure 5). Results of the unsupervised classifications are reported
in Figure 6, where the seven classes are represented with different colors and with their
relative frequency.

Figure 5. Sentinel-2-Images (30 July 2019) of Greece BR and the spectrum view (left) of selected
areas (right).

The unsupervised classification images were used only to check the tailings materials
in different areas, and as a preliminary information to design the field sampling campaign
for the validation of the final results.

To map the concentration variability of the Al2O3, the geostatistical Gaussian co-
simulation using TB algorithm was used. The simulation is conditioned by daily dumping
data (Al2O3 concentration data) but needs an auxiliary variable that is representative of
the piling materials. Therefore, the laterite band ratio described in Section 2.1 (see Table 1)
was computed from the Sentinel images (Figure 7) and the correlation coefficient between
selected band ratio (laterite band ration) and samples are shown in Figure 7 (as example
for data of June–July.

Figure 6. Unsupervised classification of piling images using K-means Cluster Analysis.

Figure 7. Laterite band ratio applied to Sentinel-2-Images (Left) and the correlation coefficient
between samples and laterite band ratio values (Right) (30 July 2019).
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For verifying the use of image information, the spatial modelling of pile Al2O3 con-
centrations with band ratios was sought.

3.3. Spatial Analysis of Daily Dumping Data and Band Ratio

The spatial variability and the spatial correlation between laterite band ratio and daily
dumping data were computed with the direct and the cross variograms. Direct variograms
demonstrate the spatial variability of the main variable (Al2O3 grades of 60 daily data)
and of the auxiliary variable (laterite band ratio), while the cross variogram identifies the
spatial correlation between the Al2O3 grades and the laterite band ratio data (Figure 8).
The histograms, below each variogram, show the number of data pairs used for variogram
calculations. Since the number of band ratios (2939 values equal to image pixels of BR) is
much higher than 60 daily dumping data, the histograms of pairs have a higher number
of pairs. The variogram models were composed of a nugget effect and two spherical
structures (see Table 4 for March and April 2019 and Table 5 for June and July 2019) and
called linear model of coregionalization [41]. The total sills of direct variograms are close
to 1 (0.85 for Al2O3 grade and 1.01 for laterite band in March–April variograms, and 1 for
Al2O3 and 1.08 for laterite band in June–July).

The variogram behaviors suggest there is no specific trend in daily dumping data.
Moreover, due to the selected ranges (maximum range is 180 m in Table 4), locally stationary
variograms are used. Therefore, spatial analysis does not need de-trending.

One thousand co-simulation of the Al2O3 concentration and with its band ratio was
performed at nodes of a regular grid of 10 m × 10 m (equal to pixels resolution after
resampling). TB method has been implemented conditioned by the 60 daily dumping data
and the laterite band ratios as auxiliary variable using the presented variogram models.

Table 4. Direct and cross-variogram models between Al2O3 and laterite band ratio (data from
March–April 2019).

Variogram Models Nugget Effect
Structure 1: Spherical Structure 2: Spherical

Range (m) Sill Range (m) Sill

Al2O3 0.05 85 0.70 180 0.100

Laterite bands 0.05 85 0.30 180 0.660

Cross-variogram 0.00 85 −0.15 180 −0.004

Table 5. Direct and cross-variogram models between Al2O3 and laterite band ratio (data from
June–July 2019).

Variogram Models Nugget Effect
Structure 1: Spherical Structure 2: Spherical

Range (m) Sill Range (m) Sill

Al2O3 0.00 40 0.4 160 0.60

Laterite-bands 0.08 40 0.2 160 0.80

Cross-variogram 0.00 40 −0.1 160 −0.06
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Figure 8. Direct and cross-variograms between Al2O3 and laterite band ratio with histograms of pair
numbers in each variography, histograms show the sample pairs number used for variogram calculations.

4. Results

The simulation results are shown in Figure 9: the reproduced variograms from simu-
lation results (black lines) respect accurately the variogram model of the samples (Al2O3
experimental variogram, red line), in both cases, March–April and June–July. At small
distances (50 m) the variograms follows accurately the shape of variogram model, while at
larger distances sills vary, as commonly observed for TB.
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Figure 9. Comparison among the variogram reproduction from 1000 realizations of geostatistical
simulation (black lines), and the variogram model of the main variable (red line) for March–April
and June–July.

The most consistent simulation results due to their histogram matching are shown
in Figure 10 (June–July). As it is shown, the histograms and statistical parameters of the
best simulation results (realizations, n◦ 204, 387, and 706), were similar to the Gaussian
distribution of input data for Al2O3 concentrations.

Moreover, to validate the simulation results, the comparison of the 14 validations
samples and the most consistent simulation realizations are shown for June–July period.
Figure 11 shows the scatter plots between real values (validation samples) and estimated
and simulated results, while Table 6 shows the validation parameters.

Finally, the Al2O3 concentration maps (for the selected simulation realizations) and
the co-kriging estimation map are shown in Figure 12.

Figure 10. Comparison between the histogram and statistical parameters of the input data and the
histograms of three realizations of the geostatistical simulation performed for Al2O3 (June–July).



Remote Sens. 2021, 13, 1517 14 of 18

Figure 11. Scatter plots of validation samples (real values) and estimation and simulation results (the
best three selected realizations). Red lines represent identity, while blue lines are regressions.

Figure 12. Maps of Al2O3 concentration distribution in June–July: estimated (Co-kriging); and three
different realizations of co-simulation.

Table 6. Statistical parameters between validation samples (taken on 30 July 2019) and simulation results (three best
realizations) and Co-kriging estimation of Al2O3.

Comparison of Results with
Real Samples

Correlation
Coefficient

Slope of Linear Regression
(Degree) with Zero Intercept

Difference with the 1:1
Line (45 Degree)

Co-Kriging Estimation 0.571 42.79 2.21
Realization 204 of Simulation results 0.711 40.96 4.04
Realization 387 of Simulation results 0.622 40.71 4.29
Realization 706 of Simulation results 0.705 40.54 4.46
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5. Discussion

The use of free EO data, such as Sentinel images, can provide the missing information
about the spatial variability of mineral grades, improving also the overall accuracy of the
estimates. In this work, geostatistical conditional co-simulation using TB method was
chosen for simulating CRM concentrations, to improve the variability map of aluminum.
Sentinel-2 images provided a large amount of data that were used as auxiliary variable for
the simulation.

The spatial analyses of selected variable (60 daily data and band ratio relating to
aluminum concentration—Al2O3) were performed through direct and cross variograms.
The direct variograms showed similar spatial behaviors during March–April and June–July
(similar structures—Spherical—and similar ranges—between 160 and 180 m). In cross-
variograms, both cases showed the negative spatial correlations. This confirms the similar
spatial variability during the March–April and June–July time periods.

Results have proved the convergence of produced simulation variograms and their
coherency with the experimental variogram of samples (see Figure 9). The second step for
validation of simulation results was carried out by using 14 in situ samples (validation
samples) for BR, collected on 30 July 2019. The series of simulation results (1000 realizations)
were checked with the validation samples; the best realizations (in terms of correlation
parameters) were selected for mapping the Al2O3 concentration variabilities. The most
coherent simulation was realization n◦ 204 with the correlation coefficient of 0.70 with
validation samples. In addition to simulation, the geostatistical estimation method (Co-
kriging) was used to estimate the Al2O3 variabilities in BR. Primary results (cross-validation
of ordinary kriging with only daily dumping data and co-kriging using daily dumping
and remote sensing data) proved that adding remote sensing data improves results with
smaller estimation variance. In fact mapping only by the use of infield samples without EO
data, could not reach to enough accuracy of estimation, while adding EO could improve
the accuracy of concentration mapping. Results of estimation were compared with the
selected simulation results. As it could be seen (in Figure 12), the estimated maps show the
smoothed concentration variations. However, since in mining residues the concentration
variabilities are artificial (so there are high variations in small areas), in simulation maps,
this sharp variability can be seen. Moreover, the simulation results were consistent with
the estimation map.

The conditional co-simulation using TB method is an efficient method for mapping
the metals variabilities within the BR and for evaluating the concentration variability of
any possible mining residuals exploration and design. Remote sensing data have the
potential to increase the accuracy and fill the gap of lacking in-situ samples, since it can
supply a large amount of data. In Al2O3 concentration mapping, simulation realizations
showed a higher correlation with validation samples, which approves the appropriate
methodology used in this case-study. Hence, simulation results showed higher correlation
with validation samples and might be considered as coherent maps for Al2O3 concentration
variability. It is worthwhile to point out that the correlation of simulation results is also
remarkably higher than the original correlation between the adopted band ratio and the
mineral concentration of samples (Figure 7); this proves the advantage of including a
rigorous treatment of spatial correlation in remote sensing analyses. Finally, there are
similarities between estimation map of the BR (rich areas on north-east and south-west),
and the simulated maps (with realizations n◦ 204 and 706, but not in realization n◦ 387). The
simulated map (realization n◦ 204), with the highest correlation can be considered as the
most coherent map for Al2O3 concentration variabilities. The estimation map with smoothed
results has the maximum similarity to this realization. To sum up, it can be noted that CCS
is an appropriate method to characterize the sharp variability of metals within mining
residues. However, the use of adequate validation samples is highly recommended. Besides,
having the co-kriged map also will help to have a general view (smoothed) of concentrations
variability. Further studies can be done for adding extra CRMs (such as vanadium) and
check the possible spatial correlations. The proposed co-kriging methodology may result
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from new experiments on spatial cross-correlations, especially concerning the choice of
the best auxiliary variables to be considered beside the existing ones. Moreover, it may be
possible to include more than one auxiliary variable, if experimental results will justify it.

6. Conclusions

The strategical importance of mining residuals and the technological advance in
mineral processing methods lead to consider mining residues as new sources of raw
materials. The characterization and estimation of the contained metals and critical raw
materials play an essential role for the mine industry. Due to the random nature of the
piling procedures, the mining residuals show an artificial spatial variability different from
natural spatial variability of deposits and do not follow the classical spatial variability
observed in natural ore deposits. Moreover, because of economic considerations, few
samples are available on mining residuals, and often they are not properly geolocated.
Therefore, remote sensing data can play a fundamental role in mapping, since nowadays
are easily available and provide a precise and large amount of information.

Conditional co-simulation using turning band method was performed on daily dump-
ing data and laterite band ratio (extracted from Sentinel-2 image), to map the aluminum
concentration. The final maps were validated with field samples. Results were also com-
pared through different statistical parameters with the classical co-kriging method. Results
demonstrated the efficiency of conditional co-simulation method for metal variability
mapping. Moreover, results confirmed the essential benefit of a combined use of remote
sensing and geostatistics techniques in mapping the metals variability.

Author Contributions: Conceptualization, E.M.; Data curation, E.B. and F.T.; Investigation, S.K.;
Methodology, S.K.; Project administration, S.B.; Supervision, R.B.; Writing—original draft, S.K.;
Writing—review & editing, E.M. and F.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Cop-Piles Project, from the RawMatCop Programme (2018–
2019), funded by the European Commission and EIT RawMaterial, grant agreement number 271/G/
Gro/COPE/17/10036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to thank Irene Benito Rodríguez the RawMatCop Pro-
gramme manager, Rima Dapous and Wesley Crock, from EIT RawMaterials. Moreover, authors
would like to thank Dimitrios Panias from National Technical University of Athens and Panagio-
tis Davris from MYTILINEOS S.A., for their support during the field trip and data access for the
case study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. European Commission. Communication from the Commission to the European Parliament and the Council COM (2008) 699. In

The Raw Materials Initiative—Meeting Our Critical Needs for Growth and Jobs in Europe, Council Document 16053/08, CELEX Number
52008DC0699; European Commission: Brussels, Belgium, 2008.

2. Lèbre, E.; Glen, D.; Corder, G.D.; Golev, A. Sustainable practices in the management of mining waste: A focus on the mineral
resource. Miner. Eng. 2017, 107, 34–42. [CrossRef]

3. European Commission. Development of a guidance document on best practices in the Extractive Waste Management Plans. In
Circular Economy Action. DG Environment, 070201/2017/768854/ETU/ENV.B.3, B-1049 Brussels; European Commission: Brussels,
Belgium, 2019.

4. EESI. Easy Guide to Mining Waste Characterisation. Available online: www.eesigroup.com/insights/easy-guide-to-mining-
waste-characterisation/ (accessed on 14 April 2021).

5. De Lurdes Dinis, M.; Fiúza, A.; Futuro, A.; Leite, A.; Martins, D.; Figueiredo, J.; Góis, J.; Vila, M.C. Characterization of a mine
legacy site: An approach for environmental management and metals recovery. Environ. Sci. Pollut. Res. 2020, 27, 10103–10114.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.mineng.2016.12.004
www.eesigroup.com/insights/easy-guide-to-mining-waste-characterisation/
www.eesigroup.com/insights/easy-guide-to-mining-waste-characterisation/
http://doi.org/10.1007/s11356-019-06987-x
http://www.ncbi.nlm.nih.gov/pubmed/31975010


Remote Sens. 2021, 13, 1517 17 of 18

6. Velásquez, G.; Carrizo, D.; Salvi, S.; Vela, I.; Pablo, M.; Pérez, A. Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by
LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings. Minerals 2020, 10, 109. [CrossRef]

7. Matheron, G. The intrinsic random functions and their applications. Adv. Appl. Probab. 1973, 5, 439–468. [CrossRef]
8. Kasmaee, S.; Gholamnejad, J.; Yarahmadi, A.; Mojtahedzadeh, H. Reserve estimation of the high phosphorous stockpile at the

Choghart iron mine of Iran using geostatistical modelling. Min. Sci. Technol. 2010, 20, 0855–0860.
9. Kuhn, K.; Meima, J.A. Characterization and Economic Potential of Historic Tailings from Gravity Separation: Implications from a

Mine Waste Dump (Pb-Ag) in the Harz Mountains Mining District, Germany. Minerals 2019, 9, 303. [CrossRef]
10. Swayze, G.A.; Smith, K.S.; Clarck, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.K.; Briggs, P.H.; Meier, A.L.; Singleton,

M.J.; et al. Using Imaging Spectroscopy to Map Acidic Mine Waste. Environ. Sci. Technol. 2000, 34, 47–54. [CrossRef]
11. Mars, J.C.; Crowley, J.K. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho

using AVIRIS imagery and digital elevation data. Remote Sens. Environ. 2003, 84, 422–436. [CrossRef]
12. Pascucci, S.; Belviso, C.; Cavalli, R.M.; Palombo, A.; Pignatti, S.; Santini, F. Using imaging spectroscopy to map red mud dust

waste: The Podgorica aluminum complex case study. Remote Sens. Environ. 2012, 123, 139–154. [CrossRef]
13. Buzzi, J.; Riaza, A.; García-Meléndez, E.; Weide, S.; Bachmann, M. Mapping Changes in a Recovering Mine Site with Hyperspectral

Airborne HyMap Imagery (Sotiel, SW Spain). Minerals 2014, 4, 313–329. [CrossRef]
14. Werner, T.T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr.

Ind. Soc. 2019, 6, 993–1012. [CrossRef]
15. Ferrier, G. Application of Imaging Spectrometer Data in Identifying Environmental Pollution Caused by Mining at Rodaquilar,

Spain. Remote Sens. Environ. 1999, 68, 125–137. [CrossRef]
16. Choe, E.; Van der Meer, F.; Van Ruitenbeek, F.; Van der Werff, H.; Boudewijn de Smeth, B.; Kim, K.W. Mapping of heavy metal

pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study
of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [CrossRef]

17. Pringle, M.J.; Schmidt, M.; Muir, J.S. Geostatistical interpolation of SLC-off Landsat ETM plus images. ISPRS J. Photogramm.
Remote Sens. 2009, 64, 654–664. [CrossRef]

18. Zhang, C.; Li, W.; Travis, D. Gaps-fill of SLC-off Landsat ETM plus satellite image using a geostatistical approach. Int. J. Remote
Sens. 2007, 28, 5103–5122. [CrossRef]

19. De Bruin, S. Predicting the Areal Extent of Land-Cover Types Using Classified Imagery and Geostatistics. Remote Sens. Environ.
2000, 74, 387–396. [CrossRef]

20. Boucher, A.; Kyriakidis, P.C. Super-resolution land cover mapping with indicator geostatistics. Remote Sens. Environ. 2006, 104,
264–282. [CrossRef]

21. Goovaerts, P.; Jacquez, G.T.; Marcus, A. Geostatistical and local cluster analysis of high resolution hyperspectral imagery for
detection of anomalies. Remote Sens. Environ. 2005, 95, 351–367. [CrossRef]

22. Gertner, G.; Wang, G.; Fang, S.; Anderson, A.B. Mapping and uncertainty of predictions based on multiple primary variables
from joint co-simulation with Landsat TM image and polynomial regression. Remote Sens. Environ. 2002, 83, 498–510. [CrossRef]

23. Tang, Y.; Atkinson, P.T.; Wardrop, N.A.; Zhang, J. Multiple-point geostatistical simulation for post-processing a remotely sensed
land cover classification. Spat. Stat. 2013, 5, 69–84. [CrossRef]

24. Wojcik, R.; McLaughlin, D.; Konings, A.G.; Entekhabi, D. Conditioning Stochastic Rainfall Replicates on Remote Sensing Data.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 8. [CrossRef]

25. Jha, S.K.; Mariethoz, G.; Evans, J.P.; McCabe, M.F. Demonstration of a geostatistical approach to physically consistent downscaling
of climate modeling simulations. Water Resour. Res. 2013, 49, 245–259. [CrossRef]

26. Abdollahifard, M.J.; Faez, K. Stochastic simulation of patterns using Bayesian pattern modeling. Comput. Geosci. 2013, 17, 99–116.
[CrossRef]

27. Abdollahifard, M.J.; Mariéthoz, G.; Ghavim, M. Quantitative evaluation of multiple-point simulations using image segmentation
and texture descriptors. Comput. Geosci. 2019, 23, 1349–1368. [CrossRef]

28. COM. Final communication from the commission to the European parliament, the council, the European economic and social
committee and the committee of the regions. In Critical Raw Materials Resilience: Charting a Path towards Greater Security and
Sustainability; COM: Brussels, Belgium, 2020; p. 474.

29. Kasmaee, S.; Tinti, F.; Bruno, R. Characterization of metal grades in a stockpile of an iron mine (case study—Choghart iron mine,
Iran). Rud. Geol. Naft. Zb. 2018, 33, 51–59. [CrossRef]

30. Chiles, J.P.; Delfiner, P. Geostatistics Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012;
ISBN 978-0-470-18315-1.

31. SENTINEL-2, ESA’s Optical High-Resolution Mission for GMES Operational Services (ESA), SP-1322/2 (March 2012). Available
online: https://www.esa.int/About_Us/ESA_Publications/ESA_SP-1322_2_Sentinel_2/ (accessed on 14 April 2021).

32. Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 5th ed.; John Wiley & Sons: New York, NY, USA, 2004;
pp. 573–577.

33. Lantuejoul, C. Geostatistical Simulation: Models and Algorithms; Springer: Berlin/Heidelberg, Germany, 2002.
34. Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [CrossRef]

http://doi.org/10.3390/min10020109
http://doi.org/10.2307/1425829
http://doi.org/10.3390/min9050303
http://doi.org/10.1021/es990046w
http://doi.org/10.1016/S0034-4257(02)00132-3
http://doi.org/10.1016/j.rse.2012.03.017
http://doi.org/10.3390/min4020313
http://doi.org/10.1016/j.exis.2019.06.011
http://doi.org/10.1016/S0034-4257(98)00105-9
http://doi.org/10.1016/j.rse.2008.03.017
http://doi.org/10.1016/j.isprsjprs.2009.06.001
http://doi.org/10.1080/01431160701250416
http://doi.org/10.1016/S0034-4257(00)00132-2
http://doi.org/10.1016/j.rse.2006.04.020
http://doi.org/10.1016/j.rse.2004.12.021
http://doi.org/10.1016/S0034-4257(02)00066-4
http://doi.org/10.1016/j.spasta.2013.04.005
http://doi.org/10.1109/TGRS.2009.2016413
http://doi.org/10.1029/2012WR012602
http://doi.org/10.1007/s10596-012-9319-x
http://doi.org/10.1007/s10596-019-09901-z
http://doi.org/10.17794/rgn.2018.2.5
https://www.esa.int/About_Us/ESA_Publications/ESA_SP-1322_2_Sentinel_2/
http://doi.org/10.1109/36.700991


Remote Sens. 2021, 13, 1517 18 of 18

35. Yamaguchi, Y.; Fujisada, H.; Tsu, H.; Sato, I.; Watanabe, H.; Kato, M.; Kudoh, M.; Kahle, A.B.; Pniel, M. ASTER early image
evaluation. Adv. Space Res. 2001, 28, 69–76. [CrossRef]

36. Kalinowski, A.A.; Oliver, S. Internal report 39. In ASTER Processing Manual, Remote Sensing Applications; Geoscience Aus-
tralia: Canberra, Australia, 2004. Available online: https://www.ga.gov.au/webtemp/image_cache/GA7833.pdf/ (accessed on
14 April 2021).

37. Guha, A.; Singh, V.K.; Parveen, R.; Vinod Kumar, K.; Jeyaseelan, A.T.; Dhanamjaya Rao, E.N. Analysis of ASTER data for mapping
bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 184–194.
[CrossRef]

38. Krishnamurthy, Y.V.N.; Sreenivasan, G. Remote Sensing Technology for Exploration of Mineral Deposits with Special Reference
to Bauxite and Related Minerals. In Proceedings of the 16th International Symposium of ICSOBA, “Status of Bauxite, Alumina,
Aluminium, Downstream Products and Future Prospects”, Nagpur, India, 28–30 November 2005; pp. 68–83.

39. Van der Werff, H.; van der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing.
Remote Sens. 2016, 8, 883. [CrossRef]

40. Ducart, D.F.; Silva, A.M.; Bemfica, C.L.; de Assis, L.M. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery
from the Serra Norte iron deposits in the Carajás, Mineral Province, Brazil. Braz. J. Geol. 2016, 46, 331–349. [CrossRef]

41. Emery, X. Statistical tests for validating geostatistical simulation algorithms. Comput. Geosci. 2008, 34, 1610–1620. [CrossRef]
42. Boisvert, J.B.; Rossi, M.E.; Ehrig, K.; Deutschbeucer, C.V. Geometallurgical modeling at Olympic Dam Mine, South Australia.

Math. Geosci. 2013, 45, 901–925. [CrossRef]
43. Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer Science and Business Media: Dordrecht, Germany, 2014;

Volume XIV, p. 332.
44. Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997.
45. Wackernagel, H. Multivariate Geostatistics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003.
46. Paravarzar, S.; Emery, X.; Madani, N. Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in

multi-element deposits. Comptes Rendus Geosci. 2015, 347, 84–93. [CrossRef]
47. Emery, X.; Lantuejoul, C. TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields

via the turning bands method. Comput. Geosci. 2006, 32, 1615–1628. [CrossRef]
48. Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003.
49. Almeida, A.; Journel, A. Joint simulation of multiple variables with a Markov-type corregionalization model. Math. Geol. 1994,

26, 565–588. [CrossRef]
50. Balomenos, E.; Davris, P.; Pontikes, Y.; Panias, D.; Delipaltas, A. Bauxite Residue Handling Practice and Valorisation Research in

Aluminium of Greece. In Proceedings of the Bauxite Residue Valorization and Best Practices Conference, Athens, Greece, 7–10
May 2018; Pontikes, Y., Ed.; 2018; Volume 7, pp. 27–36.

51. Davris, P.; Balomenos, E.; Dimitrios, P.; Paspaliaris, I. Selective leaching of rare earth elements from bauxite residue (red mud),
using a functionalized hydrophobic ionic liquid. Hydrometallurgy 2016, 164, 125–135. [CrossRef]

52. Aluminum of Greece topography Map, Volume Measurement of the Entire Deposit, SA Artemidos 8—Maroussi Athens, DATE:
31-1-2019, “METOCHI” Community of Kyriaki, Prefecture of Viotia. 2019.

http://doi.org/10.1016/S0273-1177(01)00287-3
https://www.ga.gov.au/webtemp/image_cache/GA7833.pdf/
http://doi.org/10.1016/j.jag.2012.08.003
http://doi.org/10.3390/rs8110883
http://doi.org/10.1590/2317-4889201620160023
http://doi.org/10.1016/j.cageo.2007.12.012
http://doi.org/10.1007/s11004-013-9462-5
http://doi.org/10.1016/j.crte.2015.05.008
http://doi.org/10.1016/j.cageo.2006.03.001
http://doi.org/10.1007/BF02089242
http://doi.org/10.1016/j.hydromet.2016.06.012

	Introduction 
	Methodology 
	Remote Sensing Background 
	Geostatistical Background 

	Study Area: Bauxite Residuals in Greece 
	Daily Dumping Data 
	Remote Sensing Data 
	Spatial Analysis of Daily Dumping Data and Band Ratio 

	Results 
	Discussion 
	Conclusions 
	References

