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Introduction

The main aim of this paper is to formulate precisely and to prove the follow-
ing statement:

If we have an information source, more precisely, a sequence of random
variables &, &,, ... with entropy H(%Z) and we code this sequence in a uniquely
decodable manner, the obtained sequence # has the entropy

M ) = 10,

where L is the average length of the codes.

The intuitive meaning of (1) is clear: it expresses the principle of conservation
of information, when the coding is uniquely decodable (and no noise is present). In
spite of this according-to our best knowledge (1) has not been proved in full gener-
ality up to now.

If we have finite number of code signals y,, ..., y,,, the maximum of H(#)
is log m, where log denotes the logarithm with respect to the base 2. It follows from
(1) that

H) =L
logm

This is a well known theorem of SHANNON, and according to our best knowledge
only this consequence of (1) was proved (e.g. [1]).
In the case when the coding is not necessarily uniquely decodable instead of
(1) we prove the inequality
H®#) =

which has also an intuitive meaning.

HE)
L bl

Precise Formulation

Let X ={x, ..., x,} be the set of possible signals (the alphabet) of the information
source, and let X be the set of all infinite sequences formed from the letters x,, ..., x,.
If 1=i,=n, .., 1=i,=n, we denote by [x;,, ..., x;] the set of all sequences having
Xis «ees X;, ON the first k& places. We call such subsets of X cylinder sets. Let 9,
denote the o-field generated by the cylinder sets. The measure space % =(X=, Ay, px)
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30 G. KATONA AND G. TUSNADY

is called an information source, if py is a probability measure on 2. This space
defines an other space on the sequences of length k: 2% =(X*, UL, p%), where X*
is the space of the sequences (x;,, ..., X;). The average information contained in
the first k signals of the information source is

HZY=~- 2 pi(xi,, ..., x3) log P (xips ooos ) =
l=it=n
]:’_=ik§u

=— 2 px[Xi - xllog pxlxigs o Xy

1=i1=n

lél.kg.."
Finally, the definition of the entropy of % is

... M
H@ = fim 1

(the average information content of one signal), if this limit exists.

Consider now the definition of the coding. Let ¥ ={y, ..., ..} be the set of
possible code signals. Let ¢(x;) (1 =i=n) be a finite, non empty sequence formed from
clements of ¥. We call this function coding. Thus we may associate to every (X;,, ...,x;),
resp. (x;,, Xj,, -..) a sequence of y/’s. Let us write successively the codes c(x;), ...,
oo €(x3), tesp. c(x;), e(x;,), ... . Denote by e(xy, s -oos X3, TESP. d(X;, X, ...) the
resulting sequence. Let Y= be the set of all infinite y-sequences. Thus the function
d(x;,, x;,, ...) transforms the set X~ into a subset ¥* of Y. Let Ay be the o-field
in Y* generated by the mapping d(x;,, x;,, ...) of 2y and let us define the measure

Py on Ay by putting:
pr(A) =px(d=1(A)) AUy

where d~1(4) denotes the inverse image of A. % =(Y*, Ay, py) is the space of coded
sequences. As above [y;,, ..., »;] denotes the cylinder set consisting of all sequences
in Y= of which the first k terms are y;,, ..., V.-

Lemma 1. [y, oo Y] OV Y* €Ay

PRrOOF. We have to prove that the set of all sequences (x;, . x;,, ...) having the image
in [yis ..,y ] Y*is in Ay. We say that (y;,, ..., ¥;) is a segment of (y; , ..., y;,)
if k=s, and y; =y, , ---» ¥i, =)1,. Obviously, the image of (x;,, x;,, ...) is in
[iys - YRl Y* if and only if (y;,, . ¥y) 1S a segment of e(x;,, ..., x;). Thus

2) d=([Yips -yl VY= Ulxy,, oo X3),

where union runs over sequences j, ..., j; for which (y;, ..., y;) is a segment of
c(xj,5 .- X;,). However the right side of (2) is a union of cylinder sets in 2 which
proves the Lemma.

Denote by Y* the set of sequences (y;,, ..., »;) for which the cylinder set
[Wiys oo 3] is in Y*. Let A be the o-field of all subsets of Y*, By Lemma 1 we can
define

P’ff()’i. NP :PY([J’.'“ “ees }"ik]m Y*)-
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PRINCIPLE OF CONSERVATION OF ENTROPY 31

The average information content of the first k& signals of the coded sequence is

H@® =— 2 P’}(J’ila it i) IOEP,f'(J’i. PR .Vi,):

1 éyilém
1 %yikém
where &% =(¥*, A, p}). Finally the definition of the entropy of # is

H (W
k

1) = Jim

(the average information content of one signal of the coded sequence), if this limit

exists.
If /; denotes the length of the sequence c(x;) (1=i=n) then the length of
k

¢(Xips oo xy) B8 27 1. Let Ly be a random variable in the probability space 2%,
i=1
k
which takes on the value 3/, if we have the sequence %1y 505 %) We say
j=1
that the average code length is L, if

,‘gc‘,’f:,L

for k- eo, where = denotes convergence in probability.
A coding c(x;) (1=i=n) is called uniquely decodable, if

C(Xis vies X ) =00y ones X))
holds only in the case k=g, x; =x;,, s Xy =X
We would like to point out that in the above sequence of definitions only the
definitions of entropies, average code length and uniquely decodable coding are
important, and the other ones are technical.

Finally, one more definition is necessary to the proof. Denote by Z" the set of
the sequences (x;,, ..., x;) satisfying the conditions

s s—1
Zh,=N 2L <N
Jj=1 Jj=1
Let A} be the o-field of all subsets of Z¥ and put

P%[(xi, 3 rens xis) =px[x;, ..., xi,]-
It is easy to see, that
pg(xils vesy xis) = 1
(Xjyreen X7 JEZN

thus ¥ =(Z~, Y, p}) is a probability space, and
H(ZY) = — 2 Px(Xs s X;,) l0g Py (x;, cees X))

(Xjps s X EZN
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32 G. KATONA AND G. TUSNADY

Theorems and Proofs

To prove our main theorem we need a lemma.

LemMmA 2. If L exists,

[H(ﬂ"*) H(ff”)] ”
Lk N )7

provided that k = {%] and N — o=,

Proor. Let H(Z™|Z*) be the conditional entropy
H(Z"|2") = - €Zkax(u, z) log px (z[u),
:eZN

where py(u, z) denotes the probability of the subsets of elements in X, for which
the first k elements are x;, ..., X; and the first s elements are Xx;, ..., X;, if
=By, 5 san By ) 2= Ripys vonsiXy)- Further
= pX(u’ Z)

px ()

Obviously, px(u, z) #0 (px(z|u) #0) if and only of if one of the wand zis a segment
of the other.

It is well known that (e. g. [1])

3) H(Z% + H(ZN| %)= H(ZY) + H(Z*| ZN),
so it is sufficient to show, that

px(zlu)

H(ZNZ*) =0(N)
and
H(@*ZN)=0(N)

if k = [%7] Namely, in this case

H@Y H@Y) _ H@MZY _ HE@N2Y |

N N N N v
follows from (3).
However
C)) H(ZMZY) = €Zx'kpx(u)H(ﬁ””Iu)

where H(2"|u) denotes the entropy — > py(z|u) log px(z|u). Let Ly(u) = I(u) be the
z€ZN

k
number 2> [, if u=(x;,, ..., X;).

s

Jj=1
If I(u) =N, px(z|lu) #0 can hold only if z is a segment of u (as u cannot be a
proper segment of z only if u=z), but because of definition of Z there can be
only one segment of u in ZV. Thus px(zlu) =1 for a certain z, and

&) H(ZNu)=0.
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PRINCIPLE OF CONSERVATION OF ENTROPY 33

In the case /(1) < N, px(zlu) #0 if and only if u is a segment of z. On the other
hand s—k =N —/(u) since in the case s—k =N —I(u) for the length /(z) the in-
equality /(z) = /(u) + s —k = N holds. Obviously, we have only #V -/ such sequences
z, that is, .

(6) H(Z"|u) =log n¥~1@ =(N —Ku)) log n

(as the maximum of the entropy of a distribution on a set of M elements is log M).
Applying (4), (5) and (6) we have

H(ZNT* = 5’ px(u)H(i“’“ lu) = 2 PxW)(N—1I(w)logn =

ue

r(u)<N l(u)<N
= ‘;k px (W) (N —1(u))log n+ f},’k pxW)(N—I(u)logn =
N(1 —usﬁél(u)<N l’(u)Z(ei —e)N

= Nelogn+px(ueX*, I(u) < (1—e)N)Nlogn.

Thus we have the inequality

a¥ N|ork
7) ]?(-fN-L—f-) = clogn+px(ue X* I(u) < (1—¢)N)logn.
Since /—(]5—) = é—"}g ) converges stochastically to L, px[MEX" I(u) L‘ >g] con-
verges to zero if k —<c. It follows that on the right side of (7)
px(ue X5 lu) = (1—e)N) = py [uEX" M—L = (1 —a)%—L] =
<P,\'[HEX" i ~L-§]

N . < ’
tends to zero for N — <o, because of k = [z] Thus, if N is sufficiently large,

px(eEX® u)y<(1—¢g)N)<e
that is
ag¥N|ark
7]1(,42;\[[.1 ) = 2elogn
consequently

lim

N—oo

Hziahy ]
w2

We prove in similar way that

k| oFN [ A/ ]
lim S 27D [k:N]_
N—eco N

Obviously
H@MZY) = 2 py(2)H(2¥2),

z€LN
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34 G. KATONA AND G. TUSNADY

where H(Z*z)=0 in the case z=(x;,, ..., x;), s=k. Further, if s<=k, we have
only nt=s different u’s with py(ulz) 0, that is, H(2*|z)=(k —s)logn. Finally,
as above

HZ" 2" = ,_S;: pa(2)(k —s)logn+ 2,:~ px(2)k —s)logn =
ik sloerel s(L(él—‘—s)k

= eklogn+klognpy(z€Z®, s < (1 —¢g)k).
Here on the right side
px(z€ZN, s < (1—g)k) = prlue X1 =98 [(y) = N) =
H(u) N )
ke i 7, R, S AT - - - -~ v M r = o
—pX{ur_X M L =k L]px[uc/\ Iy L =¢€L

which converges to zero if M=[(1 —&)k]—~<. Thus H(@*|Z")=0(N), indeed,
which proves the Lemma.

[y

Turorem 1. If the entropy H(Z) and the average code length L exist, and the
coding is uniquely decodable, then H(%) exists, and

H(%)
e
H (%%

H@) =

tends to

H(UJK—) and so ———

Prook. If H(Z) exists, in Lemma 2 L N

does, too. Thus, it is sufficient to show that
. H(ZY Z
lim 22 )— = lim

N—=oco N oo

H (%)
—

We can write
(®) H(@N) + H(ZN Yy = H(Z)+ H@N 2

where =
H(ZVN)y = — 3 px(v, 2)logpx(z]v),

z€ZN
veYWN

H@MZN) = — 3 px(v: 2)log px (v)2),
z€ZN
ve YN

Px(U’Z)

X 2Bl 1y = Px(v, 2)
px(zlv) = (D) ° px(v|z) =

px(2) 7
and py(r, z) is the probability of the set of sequences in X, for which the first s
clements are Xx;,, ..., X;, and the first N elements of its code are y;, ..., Vjx» if
gy, 5 woss B e 0= W oo M)

Obviously py(v, z) #0 only if v is a segment of ¢(z). Thus for given z there
is only one v satisfying py(v, z) #0, that is, px(v, z) = 1. Applying this result we obtain

©) H@N2ZY) = 3 px(DH@Y2) =0

because of H(%"|z)=0. On the other hand
(10) H(ZY®N) = 3 py()H(Z"|v).
veY™
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PRINCIPLE OF CONSERVATION OF ENTROPY 35

Let / be the maximum of the numbers /,, ..., /,. Because of definition of Z¥, N=
=[(z) =N +1 holds. Thus for a fixed ¢, the sequences z satisfying py(zlv) =0 are
such that the first N elements of ¢(z) are equal to v, and the other elements are
arbitrary. The number of such ¢(z)’s is at most m!~!. Since the coding is uniquely
decodable i.e.to a given c¢(z) there exists only one z,the number of different z is
also at most m'~!. From (10) we obtain

H(ZN#N)y = > py(v)logm!'—! = logm'~1,
vEYN
which tends to zero divided by N, if N — <. The proof is finished by (8).

If the coding is not necessarily uniquely decodable, we can not prove the existence
of H(%). In this case let us put

= e gk
H(%) = khm H(kJ ) .

In this case from the above proof we get only H(#V)=H(Z") that is, the
following theorem holds.

THEOREM 2. If the entropy H(Z) and the average code length L exist, then

= H(%
(11) H®) = - i)

Further Questions

1. A natural question is the following: under which assumption does the
. H@® gk ; o .
limit }1m —r—(kr ) exists in the not uniquely decodable case ? Probably it is not difficult

to answer this question if 4" is an information source, which produces independent
signals.

2. It is easy to see, that for independent 2°, and not uniquely decodable coding
the strict inequality
[9
H((i?/) - _}_Iig:(ri)

holds. In other words, in the independent case equality holds in (11) if and only
if the coding is uniquely decodable. What is the necessary and sufficient condition,
in general, of the equality in (11)? '

We are greatly indebted to A. RENy1 and I. CsiszARr for several helpful comments
and ideas.
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