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ABSTRACT

We give necessary and sufficient conditions for coverability of parallelepipeds
by a given figure. Two types of figures are considered: 1. parallelepiped, 2.
figure consisting of two relatively fixed, not necessarily connected, unit cubes,
e.g. the field en the chess-board where the knight stands and a field attacked
by the knight.

In 1962 Matematikai Lapok published the interesting problem [1] of
N. G. de Bruijn: An n-dimensional rectangular parallelepiped is to decom-
pose to congruent rectangular parallelepipeds the edge lengths of which are
the given natural numbers a, , a, ,..., a, . Under what conditions can we say
that such a decomposition exists if and only if there exists a decomposition
with parallel parallelepipeds (i.e., the parallel edges of the parallelepipeds
involved in the decomposition are equal)?

The solution of the problem was given by G. Hajds and the authors [2].

(o) In solving the problem, the question arosed: What is the necessary
and sufficient condition in general of the decomposibility of a paral-
lelepiped to congruent parallelepipeds of given edge lengths?

* The results of the first part of this paper are contained in the author’s work entered
for the competition of the Hungarian Scientific Circle of Students in 1962,
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(B) After answering this question we should like to give conditions
for the decomposibility of a parallelepiped to congruent lattice figures
of given type: a very simple case in which the lattice figure consists of
two cubes. We solved this problem only in the two-dimensional case.

(y) We considered another generalization of problem («). In this case
we allowed decomposition of the parallelepiped to parallelepipeds of
several given types.

DEFINITIONS AND RESULTS

Let us consider the set of n-dimensional lattice points (i.e., the points
with integer coordinates).

An n-dimensional lattice figure is an arbitrary subset of lattice points.

There exists a natural correspondence between the lattice points and
lattice fields (unit cubes). Thus, sometimes we shall use the more illus-
trative expression “lattice field” instead of “lattice point.”

We accept the usual concept of congruency, that is, we allow shift,
rotation, and symmetry.

For the sake of simplicity we suppose (unless we emphasize the contrary)
that the parallelepiped we want to decompose will be situated in the
non-negative octant and one of its vertices is the origin (i.e., a paral-
lelepiped B with edge lengths b, , b, ,..., b, consists of the lattice points
(%1, X3 5..., X,,) satisfying the conditions 0 < x; < b; (1 < i < n)).

DerINITION A. We say that a parallelepiped B can be filled up
(covered) by the given lattice figures 4, , 4, ,..., 4, if we can decompose B
into disjoint subsets each of which is congruent to one of A4,’s; and in
this case we write

(Al. s A2 sreey Am) J B.

(If m = 1, we write simply 4, | B.)
If we use the above natural definition of coverability, then the necessary
and sufficient conditions are valid only if all the edges of parallelepiped B

are large enough. However, in the. case of the next definition we can omit
this.

DerFiNITION B. We say that a parallelepiped B can be filled up
(covered) in weak sense by the given lattice figures A4, , A4, ,..., A,, if there
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exist the parallelepipeds Ay(1),..., 4;(ry), As(1),..., Ax(rg)seees Am(1)s..s Ap(rim)
and the integers vyy ,..., Y1y, s Vai seees Vary sees Vit 30005 Viar,, such that

z %I, if xeB,
Vij = .

o 0, if x¢B,

1<i<r;

WEA{U)

where A,(j) (1 <j <r,) is congruent to A; (1 < i< m). In this case
we write
(4, ,A4,,..., 4,) |* B.

The number v;; is called the multiplicity of A4,(j).

It is easy to see that (4, , 4, ,..., 4,,) | B results in (4, , A5 ,..., A,) |* B
and we can choose the integers v;; sothatv,; =1 (1 <i<m,1 <j<r).

DeriniTioON C. We say that a parallelepiped B can be filled up
(covered) in a parallel manner by a given parallelepiped 4 if we can
decompose B into disjoint subsets each of which is congruent to 4 and
the parallel edges are equal. In this case we write 4 |? B.

DeriniTiON D, If 44,4a,,...,a, are given non-negative integers
(3, a; > 0), then the lattice points (x; , Xa ..., X,) (¥, V2 5eer V) fOrm
a knight figure of type a; X a, X -=* X a, if |x; —w» |, X2 — Yalses
| X, — y,. | is a permutation of the integers a,,as,...,a, . The knight
figure of type a; X a, X - X a, will be denoted by K(a, , a, ,..., a,).

In Part 1 we give a necessary and sufficient condition for the validity of
(4, A,,...,A,,) |*B (Theorem 2), and for the validity of (4, ,4; ,....An) | B
and A4 | B if B is large enough (Theorems 3 and 4, respectively). Some
special cases are also explained because of the simpler form of conditions
(Theorems 1, 5, 6, 7). In the course of the proofs we need a generalization
(Lemma 7) of the well-known marriage principle, which may be interesting
in itself.

In Part 2 we give a necessary and sufficient condition for the validity of
K(a, b) | B if B is large enough (Theorem 10). For the case K(a, 1) a
covering is constructed. Two simple n-dimensional generalizations
(Theorems 11, 12) are also given.

1. COVERINGS WITH PARALLELEPIPEDS

The simplest but very interesting case is the case of the parallelepiped
with edge lengths 1, 1,..., 1, a. The following theorem concerning this
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type is obviously a special case of the general Theorem 2, but the proof
is very simple and interesting; we think it is worth writing [6]:

THeOREM 1. Let A and B be n-dimensional parallelepiped and the
edge lengths of A be 1, 1,..., 1, a, then A | B if and only if at least one edge
of B is divisible by a.

Proof. The sufficiency of the divisibility condition is trivial; we have
to prove only the necessity.
Denote by S(k) the number of points in B for which

X+ X+ +x, =k (moda) (0 <k < a),

where x; , X, ,..., x,, are the coordinates of the point. Consider now the
points of a covering parallelepiped 4 congruent to A. There is an
i(1 <i < n) for which the i-th coordinates are a consecutive integers;
the other coordinates are the same for all points. Thus, the sums
x, + x, + - + x,, are incongruent (mod a) for points of A. Obviously,
if A | B, then the set of points of B is a union of 4’s; thus S(0) = S(1) =
= =8(a — 1).

We will now prove that S(0) = - = S(a — 1) if and only if at least
one side of B is divisible by a. The following generator function is used:

D FxX)=(00 4+ x+ - + xbrl) (14 x4+ xbn_l)'
Denote now by S’(k) the number of points in B for which

X3+ X+ +x, = k.
Obviously

Fix) = ) S'(k) x*.
k=0
Substitute the complex number €, = cos(2w/a) + i sin(2r/a):

@ a—1
Fle)= Y SO et =Y & T S
k=0 k=0

l=k(mod a)

However, 3, _1mod a) S'(/) = S(k); thus

Fle) = ¥ S0 e,
k=0
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or using S(0) = S(1) = - = S(a — 1) we obtain
a—1

F(e;) = S0) Y €*=0.
K=0

(In the case of @ = 1 it is not true, but in this case the theorem is trivial.)
Therefore at least one factor of (1) vanishes for €, , say the i-th, which
results from

bi—1 b,

€' — 1
2 €t = — = 0,
k=0 €a

the desired relation a | b; .
Passing over to the general case, first we prove a recursive property.
Let us introduce the following definition:

DerNITION 1. Let A be an n-dimensional parallelepiped and d a
natural number. We denote by R(A, d) the set of those n — 1-dimensional
parallelepipeds obtained from A by omitting any edge of A such that it is
not divisible by 4. If all the edges of A are divisible by d, then R(4, d) = &.

If A,,..., A, are n-dimensional parallelepipeds and 4 is a natural

number, then

R(Al LECL) ) Am ’ d) = U R(At H d)
=1

After this definition we can formulate the recursive property:

LemmA 1. If (A4, ,..., Ay) |* B and

dt b,
then
R(A44,..., A, ,d) |* B,

where B’ is an n — 1 dimensional parallelepiped with edges b, , b, ,..., b, .

Heuristic Proof. Since d+b,, the number of layers whose n-th
coordinate =0 (mod m) is greater by 1 than the number of layers whose
n-th coordinate =d — 1 (mod d). Let us now consider a fixed filling up
of B, and project the layers congruent with 0 or d — 1 onto B. Taking
with sign + the former and with sign — the latter, we obtain a filling up
of B’. However, we do not need the A4,(j)’s, whose edge lying in the n-th
dimension is divisible by d, because such 4,(j)’s contain the same number
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13
of layers taken with 4 and —. In this way, we obtained a filling up of B’
with R(A4, ,..., A, , d).

Formal Proof. If (A,,..., 4,,) |* B by Definition B, we know that
there exist the parallelepipeds A,(1),..., Ay(ry), Ax(1),..., As(rs), Ap(1),...,
A,(r.,) and the integers v ,..., Vir, s Va1 sees Var, seees Vil sees Ve, SUCh that

1, if xe€ B,

) = %o, if x¢B.
lgiiri
zeA (7))

Denote by prime the projection on the first » — 1 dimension, that is,
if x e E™ then x' € E»! and the coordinates of x’ are equal to the first
n — 1 ones of x, and C’ is the set of the points x’ for all x e C. Let us
consider a fixed point y € B’ and the difference

©) 2 L = b3 T

x'=y 1<i<m 1<<issm
z: 50<mn<bﬂ71 1<i<r; §0<x"gb -1 . S A )
(:c =0(modd) zeA, u) x,,—d Z1(mod df zeA, (g)

Using (2) we trivially obtain that (3) gives

5  d= b3 1= 3 L= ¥ i

z =y x'=y o<r,<b,—1 0<x,<b,—1

2 )0<a, <b, —1 2 10<x,<b,—1 wﬂ={zn =0(mod d) %1, =d—1(mod d)
(m”—o(modd) gm"_d Z1{modd)

which equals I by assumption d 1 b,, . If y ¢ B’, then for every x satisfying

x' = y the relation x ¢ B holds; thus using (2) the sum (3) gives 0. In this

way, we have seen that (3) gives 1 for y € B’ and O for y ¢ B’. However,

we may write (3) in the following manner:

4) Z Z Vii — Z Vii

1<i<m a:EA-(j) x€A,(j)
i 1<i<r; =y ' =y
T ved G 0<a:,,<b -1 X1 0<E, <b,—1
Ty =0(mod d) z, =d—1(mod d)

That means the parallelepipeds 4,'(j) fill up B’ with multiplicity (which
is independent of y, if y € 4,'(y)):

Z Vi — Z Vij

TEA;(5) xEA;(j)
x’'=y x’ =y
x 02, <b,—1 X 0<®w,<<hy—1
z,=0(mod d) x, =d—1(mod d)
= Vi > L= > 1

::EA.(J‘) xEA;(7)
z'=y ' =y
0<z,<b,—1 x4 0<®w,<b,—1
, =0(mod d) z,=d—1(mod d)

582/10/1-5b
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If the n-th edge of A,(j) is divisible by d, then the latter formula vanishes,
i.e., its multiplicity is 0. Hence it follows that we can replace y € 4,(j)
in (@) by ye 4,(j) € R(A, ..., A, , d), which means R(A4, ,..., A,, ,d) |* B,
indeed.

From the above proof it is clear that, if d is a divisor of all edges
of A;,A,,...,A4,, then R(A4,,.,A4,,d)|* B is impossible, since
R(A;, A, ..., A,, ,d) = . In other words, in this case, d | b, must hold
and in the same way d|b; (1 <j < n). Thus, we have the following
lemma:

LEMMA 2. [If(A4y, As,..., A,) |* B and all the edges of A;'s (1 < i < m)
are divisible by d, then
d| b; (1 <i<n).

DEfFINITION 2. If e,,e,,..., e, are natural numbers and B an n-
dimensional parallelepiped, then M(B, e, ,..., ,,) denotes the “divisibility
matrix’’: the j-th element of the i-th row is 1 if e; | b; (Where b; is the j-th
side of B, and O if e; + b, .

DEFINITION 3. We say that a n X n matrix M has no independent
0’s (or 1’s) if there are no n 0’s (or 1’s) in different rows and columns.
We can now formulate the following theorems:

THEOREM 2. (A, , A, ,..., A,) |* B holds if and only if

(Fp choosing in arbitrary manner k; (=>1) edges of A; , denoting
by d; their greatest common divisor, and making n sets
of the numbers d; in an arbitrary manner but using every d,
exactly in n — k; + 1 sets, finally, denoting by e, ..., e,
the greatest common divisor of the numbers in one set
(e; = oo if the j-th set is void), the matrix M(B, e, , e, ,..., €,)
has no n independent 0’s.

THEOREM 3. In the case of
(5) bi > Jnme2nm 42042

(where a is the maximum of edges of A;’s) (A ,..., A,,) | B holds if and
only if (Fy) holds.

The proofs of the two theorems will be given together. More exactly,
we will prove the necessity of the condition of Theorem 2; obviously,
the same condition must be necessary in the case of ““|” instead of “|*”,
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On the other hand we will prove that condition (F,) is sufficient in
Theorem 3; from the proof it will be clear that in the case of “|*” the
condition is sufficient even without (5).

Proof of Necessity. Let e, ,.,, €, 1,5 ,..., €, be the finite numbers
among €;,e€;,...€, (e, =00, 1 <i<n—1I ¢, <oo,n—1<i<n),
where e; ,e;,..., e, are some greatest common divisors defined in the
theorems. Suppose that, in contradiction with our assumption, M(B, e, ...,
e,) has n independent 0’s, and that the edges of B are indexed in such
a way that the 0’s are in the main diagonal. That is,

(6) €n_111 T bﬂ—l+l oy Cal bn .
Using now / — 1 times Lemma 1 we obtain
(7) R(R(R -+ R(4y, Ag ooy A s €x)s €n-1) =), €n—143)s €n—142) |* B4,

where B%1 denotes the n —/ + 1 dimensional parallelepiped with
edges b, , by ..., b,y , b,_;,, . Here, obviously

(8) R(R(R o -R(Al EILEE] Am k] en),-")s eﬂ—l+3)’ en—l+2)

= U B(R i R{g, 6y) **) Eiiiva):
i=1
On the right-hand side all the R(R ‘- R(A4;, e,) **) €n_1.5)’s cannot be
void. In the contrary case, there would be a maximalr (n — I + 1 <r < n)
for which

R(R(R -~ Ry yovs A 5 85 Bnalisvis Cpyn) F &
and
©) R(R(R *** R(Ay ..., Ay 5 €,), €4_1),..n ) = &

should hold. However, (9) means that all the edges of all parallelepipeds
in R(R(R -** R(4y ,..., Ap,) €,),..., e,,,) are divisible by e,. Taking into
account that

R(R(R - R(A, , Ay ..., Ay, , €,), €5_1)..., €,44) |* B

and using Lemma 2, we obtain that e, is a divisor of all the edges of B,
that is, e, | b, , which contradicts (6).

By Definition 1, R(R --- R(4;, e,),...,) €,_,,5). consists of the paral-
lelepipeds obtained by omitting from 4, one edge non-divisible by e, ,
one edge non-divisible by e,_;..., and one side non-divisible by
€n_142 -

582b/10/1-5*
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If R(R - R(A;, €,),---» €n_149) 1S non-void, then all the remaining
edges are divisible by e,_;,, , because in the contrary case 4; would have

one edge non-divisible by e,

(10) :
one edge non-divisible by e,,_;,, ,
one edge non-divisible by e,_;,; ,
one edge non-divisible by e,,_;, = o0,

one edge non-divisible by e; = co.

However, we have k; (==1) edges of A; with greatest common divisor d;
and n — k; + 1 of e;’s are divisors of d;. Thus, there are n — k; + 1
e;’s which are divisors of at least k, edges of A, ; but this contradicts (10)
by the pigeon hole principle. The proof is finished.

LemMAS TO THE PROOF OF SUFFICIENCY. In the proof we shall use a
number of lemmas:

LemmA 3. If ¢, ¢y, c3 are arbitrary natural numbers, then

([e1 5 €5], €2) | [cs 5 (e 5 €2)],

where (x, y) denotes the greatest common divisor and [x, y] denotes the
least common multiple of x and y.

Proof. If p is a prime number and p? | ([¢,, ¢s5], ¢5), then p? | ¢y, and
either p* | ¢; or p* | ¢; holds.

In the first case, p*| (¢;, ¢;) and, in the second case, p* | ¢y, holds,
that is, p* | [¢s, (¢1 » €2)], which proves the lemma.

LeEMMA 4. If the natural number b is divisible by c; and (¢, , ¢5), further, if
(11) b = 3[61’63] C2 s
then there are two natural numbers b(1) and b(2) such that

(12) b = b(1) + b(2),
(13) ezl b(l), ey, 0| B(2),

b b
(14) b)) =3, b2 =3.
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Proof. Let us consider the Diophantine equation
(15) [er; Glx + ¢y = b.

It is solvable because by Lemma 3 ([¢;, ¢5], ¢5) | [cs, (¢1 » €5)] and by
the condition of the lemma [cg, (¢, , ¢5)] | b; thus ([¢; , c5], ) | b.

For arbitrary solution x,, y, of (15) the numbers b(1) = [c, , c5] X, ,
b(2) = ¢, y, satisfy the conditions (12) and. (13). We have to search for
only such a solution of (15) for which (14) also holds. If x, , y, is a solution,
Xo + #cy, yo — t[c1, ¢g] is also a solution (7 integer). Thus, if the above
b(1) and &(2) ([c;, €3] x, and c,y,) satisfy (12) and (13), the pair
[er, es]l xo + tler, e5] €5, €29 — tey , €3] 5 also satisfies them.

Hence it is clear that, if /3 > [c;, ¢5] c,, then we have a b(1) =
[e1, €3] xo + tey , €3] ¢; lying in the interval [b[3, 2b/3] and from (12) it
follows that b(2) = ¢, ¥, — t[c; , €3] €3 = b/3, too.

Lemma 5. If b is a natural number divisible by (cy , €1z »...s C18,)515
@ux s Ciasess Cys,) and
(16) b > 3cu+?
(where ¢ = max; <i<u;i<i<s, Cij), then we can divide b into two parts
b = b(1) + b(2)
satisfying the conditions
(Ca1 505 Casp)s (€31 5enes Csg)senns (Cup seens Cus) | B(L), B(2),
cu | b(1),  (crp5eens €15) | B(2),
b(1) = b/3, b(2) = b/3.

Proof. We use Lemma 4 with ¢y, , (13 ,..., ¢y5,) and

[(621 Jssey 0232)5 (031 sussy Casa gy (cul seeey cus,,)]

instead of ¢, ¢, , and ¢, taking into account that (¢y; , (€12 5 €13 5.5 15)) =
(€11 55 €15))- The only problem is whether (16) ensures (11) or does not.
But this follows from the inequality

3[er, €3] €2 < 3cyeqcs

== 3611(612 FIH) Clsl) E [(6‘21 eees 0283),“'! (cul seees cusu)]
< 3ecret

= Jewtl,
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LEMMA 6. If b is a natural number, divisible by (cyy ..., €15)se-s
(Cur sees Cus,) and

b 2 351+"'+3,‘ e Cu+1,

then we can divide b into s,5, *** s, non-negative parts

§189° " Sy

= Z b(i)

in such a way that for every i (1 <i <s, - s,) there are (depending on i)
By s 0g sees by (1 < By < 8y 5.0, 1 <y < 8y) Such that

C1iy ! b(l): Cziz ! b(1)9a cusu I b(l)

(That is, every part is divisible by at least one from every group of ¢;;’s.)

Proof. The lemma is a simple consequence of Lemma 5.

The proof will be given by induction over v = Yok, Sas=1
can hold only if # = 1, 5; = 1. For this case the lemma is trivial.

Suppose now that the lemma is proved for all numbers less than v
and prove for v = Yias. If =+ =5, =1, then the statement is
trivial; thus we may assume that some s, , €.g., 5, , > 1.

We can use Lemma 5; there are b'(1) and 5'(2) such that

(17 b=>5'(1) + b'(2),

(Cll greey clsl)a"‘a (Cu—l.l ’ cu—l,z geomy Cu—l.su-l) t b’(l), b’(Z),

cusu ‘ b’(l), (cu.l LELLS ) Cu.su—l) i b’(Z),

and
b’(l), br(z) ; b/3 2 3sl+---+su—l 3 Cu+l.

For b'(2) we may use our inductive hypothesis with (g ,...; €155
{Cur sves Cona e There is a partition

sp0e(8,—1)
(18) b = Y bG)

t=1

such that for all b() (1 <i < s - (s, — 1)) there are iy, iy,..., Iy
(a1 <i <59, 1 <y <5 — 1) satisfying

(]9) Clil ’ sz‘z b | cu;,, I b(l)
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On the other hand, for 5'(1) we may also apply our induction hypothesis
with (¢yq ..., €18, )05 (Cuy,1 500 Cu—l-su_l)’ Cu,s, : There is a partition

817078y

(20) b'(1) = 3 b(i)

=8y (8,—1)+1

such that for all b(i) (s, = (s, — 1) <i < 5,5, - 5,) we have the indices
J1 s J2 seees Ju = 8y satisfying

(21) €13 5 Oty svves Cuirt, iy o 5 Ciiay, | DI

Thus (17), (18), and (20) give a partition of » whose members satisfy
the desired conditions by (19) and (21); the lemma is proved.

DeFINITION 4. Let €; and ¢, be equal to 0 or 1. We call the logical sum
of € and e, the number

Os ‘if‘ € = == 07
v =
1YV € 1, otherwise.
Similarly, if 7, and ¢, are row vectors with 0, I coordinates then the
coordinates of the logical sum of #, and #, are the logical sums of the
corresponding coordinates.

LemMmA 7. Let My, M, ..., M,, be n X m matrices with elements 0
and 1. If they have the property that
(F,) choosing in arbitrary manner k; > 1 rows from M,
(1 < i < m), denoting by w; the logical sum of these rows,
and making n sets of the row vectors w; in arbitrary manner
but using every w, exactly in n —k, + 1 sets, finally
denoting by z; (1 <j < n) the logical sum of the w,s
lying in the j-th set (if the j-th set is void, then w, =
(0,0,...,0)) the matrix formed from z,, z, ..., z, as rows
has no n independent 0’s,
then there is an index p (1 < p << m) such that M, has n independent 1’s.

Remark. This lemma is a generalization of the well-known marriage
principle [3], which states:

MARRIAGE PRINCIPLE. Let M be an n x n matrix with elements 0 and 1.
If choosing in arbitrary manner k (1 < k << n) rows, the number of columns
containing 1 in these rows (or the numbers of 1’s of the logical sum of these
rows) =k, then M has n independent 1’s. :
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Proof of Lemma 7. We prove the lemma in an indirect way. Suppose
that none of the M,’s has n independent 1’s. Thus, by the marriage
principle, in every M; (1 < i < m) there are k; rows with their logical
sum #, having less than k; 1’s. That is, #; has at least n — k; + 1 0’s.
Form n sets from #;’s in the following way: Let the j-th set contain all
the t;,’s which have 0 in the j-th place, taking into account only the first
n — k; + 10’sinevery ¢, . Thus, every {; is contained by exactlyn — k; + 1
sets, and the logical sum ¢; of the #;’s contained by the i-th set has 0 in
the i-th place. The matrix formed from z,, z,,..., z, as rows has 0’s in
the main diagonal. This is a contradiction with property (F,); the lemma
is proved.

Proof of Sufficiency of Theorem 3. Let the condition (F,) be fulfilled.
Consider a fixed edge b; (1 < i < n) of B. Choose an arbitrary set of
edges of the A4;’s, and form the greatest common divisor of its elements.
Let fi1 5., fiq, b€ the sequence of the possible greatest common divisors
which divide b, . Remember that f;; = e, is the greatest common divisor
of certain d;’s and d;’s are the greatest common divisors of certain edges
of A;’s, that is, f;; is the greatest common divisor of certain edges of A4,’s
(using ((a, b), ¢) = (a, b, ¢)). We can use Lemma 6, since

f;l | bi 5‘ﬁ2 | bi s""ﬁqi l bi s

and the inequality condition of Lemma 6 also holds:

9;
28

bi > Jnm-2M 42N ML > 3i=1 a0e+1_

(The first inequality is a condition of Theorem 3; the second inequality
is a consequence of the fact that f;; = e; is a greatest common divisor
of at most nm edges of A;’s (s; << nm) and that we can form at most 2"™
such greatest common divisors from nm elements (g; < 2"™).)

Thus Lemma 6 gives that we can divide b; into parts

(22) by = 3 bl
so that
(23) every by(I) is divisible by at least one A-edge from every f;;

1 <j<aq)

Now we divide B into parts on the basis of the partition (22) of its
edges and we prove that it is possible to fill up these parts of B with
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Ay, Ay ,..., Ay, . Denote by B a part of B with edges b,(1,), by(ly),..., bu(l,).
If we prove for arbitrary B

(24) (Al £l A2 Jesisy Am) [ B;

then Theorem 3 is already proved too.
It is easy to see that for the matrices

M(Bs Ay 5oy al'n):---: M(Ba aml yeedy amu)

the condition (F;) is a consequence of (F,) and (23), because, if e; | b;,
then b;(/;) is divisible by at least one of a’s from e; ; thus z; (see (Fy))
has 1 in the j-th place. The reason is that z; is constructed similarly to e; .
That shows, if in a place in the matrix M(B, e, ,..., e,) stays a 1, then in
the matrix formed from the rows z,, z,,..., z, also stays a 1. Hence it
follows that the latter matrix cannot contain »n independent 0’s because
M(B, e, ,..., e,) also has none.
Now we use Lemma 7 for the matrices

M(B: all Jemay aln)s"'s M(Br aml grewy amn)'

There is an / such that M(B, a,, ,..., a;,) has n independent 1’s, that is,
we can order to every edge of B an a,; (1 <j < n) to different edges
different a;; which is divisor of it. Moreover in this case trivially (Defini-
tion C)

A; |” B;
(24) and the theorems are proved.
Now we should like to consider some interesting special cases:

THEOREM 4. In the case of
bi 2 3n.2”‘ N it

(where a is the maximum of edges of A)

A|B
holds if and only if
choosing k(1 < k < n) edges of A in arbitrary manner

(Fy) their greatest common divisor d is a divisor of at least
k edges of B.

Proof. We have to verify only that in this special case (F,) leads to
(Fy).
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In our case (F;) has the following form: choose in arbitrary manner
k edges (1 <<k <<n) of A, denote by d their greatest common divisor,
form n sets with only element 4, in such a way that let d be an element of
n — k + 1 sets. Thus in our case n — k + 1 sets have one element and
k — 1 sets will be void.

The greatest common divisors of the elements of one set are the
following:

e =€ =" =€y =d, €nkiz = T = €y = O.

That is, the matrix M(B, e, ,..., e,) has n — k + 1 identical rows, and
k — 1 0 rows. A matrix of this type has no » independent 0’s if and only
if the number of 0’s in the first row is less or equal to n — k. However,
this means that 4 is a divisor at least k edges of B. The latter condition
is just (F).

The next theorem gives the answer for the problem of de Bruijn [1].
It has a simpler proof [2] but here it is an easy consequence of our former
results.

THEOREM 5. A has the property “A | B if and only if A |? B” if and
only if from any two edges of A one of them is the divisor of the other.

Proof. Suppose the edges of A are indexed monotonically. If 4 has
the above property then a,|a,| - |a,. We can use Theorem 4; the
greatest common divisor of any k edges of A is the least one of them.
Choosing the k largest edges we obtain by (F;) that at least k edges of B
are divisible by a,_;,,. For k =1, 2,...,n, we obtain that there are
1 edge (say b;) of B divisible by a, , 2 edges (one is different from b, ,
say b;) of B divisible by a,_,, 3 edges (one is different from b, b, ,
say b;) of B divisible by a,_,,..., and n edges (one is different from
b,-1 S555s bi..ml’ that is b,-’) of B divisible by a,. Here i ,1i5,...,1, is a
permutation of 1, 2,..., n; thus a, | b, ,..., a, | bil means A |? B. The first
part of the theorem is proved.

If A does not have the property a, |a,| *** | a, , then there are two
edges a; and a; (i <j) for which a; + @; holds. Now we construct a B
for which A4 | B does, but 4 |» B does not; hold. Let p be a prime number
greater than 372" - g2 and let

b, = ayp,..., b,y = a; 4p, b; = (a; , a;)p,
(25) biyx = @iy biy = a;4p, b; = [a;, aj]p,

b5+1 = Aj11Dse--s b'n = anp

be the edges of B. We first verify 4 | B by Theorem 4. If we choose k




MATCHING PROBLEMS 75

edges a; ,..., a; and there is neither a; nor a; among them, then for
d = (a"l ..... a,-k)

d| by ... d|b,

trivially hold. If there is only one of g, and @, among them, e.g., i, = i or j,
then d | b, sy | b";.- , d | b; ensures the condition (F,). Similarly, if i, = i,
Iy =j,thend | b, ,..,d|b; ,d|b;,d|b;hold.

On the other hand, 4 | B does not hold. Here (a;,a;) < a;. Let m
be the largest index such that a,, < a;. If we want to do the one-to-one
ordering between the edges of 4 and B, we cannot order b, , b, ..., b,,
and b; t0 Gpyy 5 Apys »..., @, because the divisors of b, , b, ..., b,, and b;
are less than a; or greater than a,, and a; < @, , Guig »eoes Gp < dp, -
Thus, to @4 ..., @, we can order the edges Doy sevs Dog 5Dy svess D
but they are few, the ordering is impossible, and the theorem is proved.

In Theorem 5 we have shown that it is true only in a special case that
we can fill up something only if we can fill it up in a “regular” way.
However, we may define the word ““regular” in a wider sense:

DErFINITION 5. A filling up A | B is regular if we can reach this filling
up by cuts, where “cut” is the operation in which we divide the whole
parallelepiped by an » — 1 dimensional hyperplane.

After this definition we can formulate the following theorem, the
validity of which is clear from the proof of Theorem 3.

THEOREM 6. (Ay, Ay ,..., A,) | B if and only if it is possible regularly,
too (Assuming (5)).

Another interesting special case of Theorem 3 is if we have n-dimen-
sional cubes with relative prime edges.

THEOREM 7. Let C,, C,,..., C,, be n-dimensional cubes with edges
€15 Cy 5eens O SALisfying (c; , ¢;) = 1 (i #j) and let

bJ_ > Jnma2™™ c?.’""+1 (1 & ] < n)
where ¢ = max(c, ,..., ¢,,). Then
(¢, Cr) | B

holds if and only if the m x n matrix M(B, ¢, ,..., ¢,,) has no m independent
0s.

Proof. We apply Theorem 3 and first reformulate (F,) for this case.




76 KATONA AND SZASZ

Choosing k; (1 << k; << n) edges from C;, ¢; is their greatest common
divisor. We form sets and every ¢; will contained by n — k; + 1 =1 sets.

(a) Case m > n. In this case there is obviously a set of at least two
different elements. The greatest common divisor of the number of this
set will be 1, because they are relative prime numbers. Thus M(B, e, ,..., e,)
cannot have n independent 0’s because it contains a row consisting of 1’s,
that is, in this case (C; ,..., C,,) | B always holds.

(b) Case m < n. In this case it is also sufficient to consider the
one-element sets. The most important case is

e = ¢, €5 == O yrees By = Cin 5 Cpiy = 7 = €, = 00,

We have the condition from (F,) that M(B, c, ,..., ¢ , 0,..., 00) cannot
contain » independent 0’s, or M(B, ¢, ,..., ) cannot contain m inde-
pendent 0’s. It is easy to see that the other cases (if one ¢, is contained
in more than one set) do not give new condition; the theorem is proved.

However, we may modify the above theorem by using the Konig-
Egervdry theorem [4]:

KONIG-EGERVARY THEOREM. In a 0, 1 matrix the maximal number of
independent O’s is equal to the minimal number of rows and columns
containing all the 0’s.

In our case M(B, ¢, ,..., ¢,,) has at most m — 1 independent 0’s, by the
Konig-Egervdry theorem there are m — 1 rows and columns containing
all the 0’s. We separate two cases:

(«) There are m — 1 columns containing all the 0’s. In this case there
are n — m -+ 1 columns consisting of 1’s, that is, B has n —m + 1
edges divisible by all the ¢;’s.

(B) There are p(p = 1) rows and m — 1 — p columns containing all the
0’s. For example, let the first row be one of the above rows. Then the
matrix M(B, ¢, ,..., ¢,) cannot have m — 1 independent 0’s, that is,
(C,,..., Cp) | B.

We have obtained the following modified form of Theorem 7.

TueEOREM 7A. Under the condition of Theorem 7 (C,,..., C,,) | B if and
only if

(a) m > n,

(b) m < n, and there are n — m + 1 edges of B divisible by all the
numbers ¢ ,..., Cp, , Or we can fill up B by less than m of C;’s.
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2. COVERINGS WITH KNIGHT FIGURES

Let us consider the two-dimensional lattice points. For the sake of
visuality the elementary lattice squares, corresponding to the lattice
points, will be called fields. We define a graph G; its vertices are the
fields of the whole plane and two vertices are connected with an edge,
if the corresponding fields can be covered with a knight figure of type
a X b (i.e., with K(a, b)). Now to every set S of fields there corresponds
a subgraph G of G, the vertices of which are the elements of S and the
edges of which are those edges of G, which connect elements of S.

We say that a field is white (or black), if the sum of its coordinates
is even (or odd). Let 4 denote the set of the white fields of S. If a subset 4
of Ag is given, then the elements of 4 will be called knights. We say that
a knight attacks a field of S if they are connected with an edge in G .
So we can speak about the set of fields attacked by the elements of A4.
We denote by Bs the set of the fields, attacked by elements of A . First
we consider an infinite stripe .S, consisting of the fields (k, /), for which

0<k<<m—1,
—00 < 1 < 400,

where m is a positive integer. We mark each row of S by the common
second coordinate of its fields. We denote the r-th row of S by S™. We
introduce some notations

AT = A N ST,
B" = B; N ST,
A"(p) ={(k,1): (k,]) e A", k = p (mod 2b)},
Br(p) ={(k,]): (k,])e B", k = p (mod 2b)},
where p runs over the residual classes mod 2b. Obviously A"(p) = 0 if
p#r(mod2)and B(p) =0if p=£r +a + b (mod 2).

Let us fix the value of r and let 4 be an arbitrary subset of A". Let C
be the set of fields, attacked by elements of 4, and let

A(p) = A7(p)n 4,
Crra — Brta A C’v’ C'-r‘-r+b = Br+b N C"
Crra(p) = Brr(p) N C,  Erri(p) = Br+(p)  C.

We say that the r-th row is a-defective if

Iér.r+a|<i/j1
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and b-defective if
| s | < | L.

REMARK. The notions of defectivity will be useful because our proofs
will have the following outline: our aim is to give necessary and sufficient
conditions for the coverability of a lattice rectangular R. The difficulty
lies in the proof of sufficiency. Here we shall use the marriage principle,
which is formulated in the previous section in the language of matrices.

MARRIAGE PRINCIPLE. Let G be a bipartite graph, that is, the vertices
of G can be decomposed for two disjoint classes A and C so that within
a class there is no connection. Then a necessary and sufficient condition
Jor the existence of a one-to-one correspondence between A and C along
the edges of the graph, i.e., a decomposition for factors of degree 1, is the
following: | A| = | C | and

condition (C): If A is an arbitrary subset of A, and C
denotes the set of vertices, connected with at least one
element of A, then

14| <€)

Now if we could give a one-to-one transformation of the set of rows
of R onto itself so that, if in the r-th row of R, there are g, knights, then
they attack at least g, knights in the image of the r-th row, then we could
apply the marriage principle, and the existence of a covering would be
proved. Naturally the image of the r-th row may be only one of the
r — b-th, r — a-th, r 4 a-th, and r + b-th rows. Unfortunately it may
happen that a row is defective, but we can prove that, if the r-th row is,
e.g., a-defective, then the difference | €77+ | — | 4| is relatively big,
and this fact makes it possible to use the marriage principle.

We say that the residue p (modulo 2b) for which p = r (mod 2) is
deficient, if

| B"t%(p +b)| = | A"(p)| — 1;
it is profitable, if

| B™+%(p + b)| = | A"(p)| + 1;
and neutral if

| B%(p + b)| = | A"(p)I.

LEMMA 8. If p is the least non-negative element of the corresponding
residual class and p = r (mod 2), then
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(i) p is deficient, if and only if 0 < p < b — 1 and

mhl—p_[m—l~p]<l

2b 2b 2"

(ii) p is profitable, if and only if b < p < 2b — 1 and

m—1—p _[m—l—p]

2b 5

(iii) p is neutral if and only if it is neither deficient nor profitable.

The proof of the lemma is trivial.

The following lemma is also easily provable:
LEMMA 9. If p is profitable and A(p) is not empty, then
| Crrro(p + b)| = | A(p)] + 1.
If p is neutral, then
| Crrie(p + B)| > | A(p)l,
while, if p is deficient, then
| Crrre(p + )| = | A(p)|
unless A(p) = A"(p), and in this case
| Crrta(p + b)| = | A(p)| — 1.

LEMMA 10. If m is even, then the number of profitable p’s is equal to
the number of the deficient p’s (r = p (mod 2)).

Proof. 1f b is even, then p is deficient if and only if p + b is profitable.
Really r=p=p +b(mod2) and 0 <p<bh—1 if and only if
b <p -+ b <2b— 1. Further, if

)

et - ] <

B[ =
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then

m—1—(p+b) _[m—l—(p+b)
2b 2b

_ﬁf;};ﬂ_l_[ﬂ_—_l_—_l)_l
o 2b 2 2b 2

%JL %ﬁ(m——l—P]_l)

5 m—1—p _[m—l~p
2b

The contrary direction is provable similarly.

If b is odd, then we suppose that r is even (the case when r is odd can
be reduced to this case). In this case we can consider only the even p’s.
We assert that it is impossible that both 0 and b — 1 be deficient. If they
were, then we should have

5 — 1 m—17 1
G 2b “[ 2b ]< 5 amd
Ty m—1—(kb—1D7 1
2b _[ 2b ]<2'

The latter inequality leads to

27) %—[%~%]<1 and 2%—[%]2%.

Both (26) and (27) can be true if and only if

1

m:[m .

% = [35] +

But in this case
m
m = Zb ['—Z'b—] + b.

We supposed that m is even, so this equality may not be true, because b
is odd.

Now applying again Lemma 8 we can show that, if 5 — 1 is not deficient,
then p is deficient if and only if p + & + 1 is profitable, and, if 0 is not
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deficient, then p is deficient if and only if p + b — 1 is profitable. The

lemma is proved.
by

Lemma 11.  If mis even, (a, b) = 1 and the r-th row is a-defective, then

7, r4b m _ a —
e8| 22 el | gy =~ 5 —~ B
Similarly, if the r-th row is b-defective, then
rrta | LI é o
| C |>|/1|+2a 5 — 4

Proof. If the r-th row is a-defective, then by Lemmas 9 and 10 there
is at least one deficient p’, for which A(p’) = A"(p’), and at least one
profitable p”, for which 4(p") = 0. We remark that from the proof of
Lemma 10 it follows that » > 1. For p’ we have

| Crrid(p' + a)| = Br+(p’ + a)

and
| Crr4¥(p’ — @)l = B(p' — a);

therefore

e rb( p! Il
(28) | Crrp’ + a)l = [55]
and

A, r+b f o ﬂ
(29) | Cresi(p’ — @)l = [55]
while

; m

(30) 1A < [5] + 1.

Using (@, b) = 1 we obtain that the sequence
p,p +2ap +2 2a..,.p +({b—1)-2a

of residual classes modulo 2b consists of disjoint classes, because if|
for some ¢, and 2, (0 < t; < t, < b),

P+t 2a=p +t-2a (mod 2b),
that is,
(tp, —t)2a =5-2b
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is valid, then from (a, b) = | we have a | 5, and so a < s, but in this case
(thh—t)a <b-s= (4 — t)a,

and this is a contradiction. Further, this sequence contains every residue
for which A7(p) + 0. Thus, p” is an element of the sequence, for example,

p'=p 45, 2a (mod 2b)

(I <59 < b — 1). Now, obviously, if 1 <s < Sy, then

@O [ Crrp + 520+ a) = | AP + s - 2a)| — ([55] + 1)
and, if s, <5 << b — 1, then

(2) 1Crp + s 20— @) = | A(p' + 5+ 20) — ([55] +1).
Using (23), (29), (31), and (32):

| Crr® | = | Crrd(p’ + a)] + | Crr¥(p’ — a))

Sp—1

+ Z i C‘r.rer(p’ + 5 2a + a)!
=1

b—-1

+ Y |Crrid(p' 5 2a — q)

§=35+1

Sp—1

>2[3] + L 14 + 5 20)

b—1
+ A(p' +s-2a) — (b —2) ([2] + 1);
E s m =0 (5]
so from (30) we have
- So—1 b—1
[Crm2 | = 1A+ Y | A(p +5-2a) + Y |A(p' + s 2a)
s=1 8=85+1

m

o] )
=i+ 5] -6 -2 (5] +1) -1

Now the assertion of the lemma follows easily by using b > 1.
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TueoreM 10. If (a, b) = 1 and both a and b are odd numbers, then
a rectangular R with large enough sizes (m = my(a, b), n = ny(a, b)) is
coverable with knight figures of type a X b if and only if the edge lengths of
R are even.

Proof. We restrict our considerations for Gg .

To prove the necessity we remark that the fields of an arbitrary knight
figure belong to rows, the marks of which are incongruent modulo 2,
because a and b are odd. If R is coverable, then it must have the same
number of fields in rows with even marks and in rows with odd marks.
This is true if and only if the number of rows is even. The same is true
for the number of columns, so the necessity is proved.

Turn to the proof of sufficiency. @ + b is odd, so the fields of an arbitrary
knight figure are identically colored. Therefore it is sufficient to prove
that the white fields of R are coverable. We define a bipartite graph G*
as follows: each of the disjoint classes A and C contains | Az | elements,
the elements of 4 represent the elements of A; and the elements of C
represent the elements of By = Ay ; an element of 4 and an element of C
are connected if the corresponding fields can be covered with a knight
figure. We hope that it does not lead to misunderstanding if we identify
the vertices of the graph with the corresponding fields (this is inaccurate,
because in this case 4 and C are not disjoint).

Let A be an arbitrary subset of Az, and C the set of fields, attacked
by elements of 4 (C C Bg). We assert that for G* the condition (C) of the
marriage principle is satisfied, that is,

141 <|C

Suppose that m and » are even, n >> 4ab. Let d, and d, denote the
number of a-defective (or b-defective) rows of R. We can assume that
d, <d,.If d, > d, then a similar argument proves the theorem. We use
the following simple

LEMMA 12. If «, B, y are positive integers, (x, B) = 1, and
y>of —a—B,
then the Diophantine equation
y =xx+yB
has non-negative solution x, , y, with the property

Yo < a—1.
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Proof. Let x and y be an arbitrary solution, and / an integer such that
0<y+/lo <o —1. The desired solution: xo =x —IB, y, =y + lo.
We have to verify only x, = 0. However, y,8 < (x — 1)8 = «f — B and

Xere =y —ypB =y —af —B> —a
results in

X > —1.

Let now y =n/2, « =a, 8 =b. We divide the rows into x, + ¥,
classes. First we define x, classes. Each of them contains 2a rows so that
the i-th class (0 < i < x, — 1) contains the rows

i~2a,i-2a—+1,i2a + 2,...,i2a + 2a — 1.

In each of these classes we pair two rows if the difference of their marks
is equal to a. Similarly each of the y, classes contains 26 rows; the j-th
class (0 <j < y, — 1) contains the rows

x - 2a +j2b, xy2a + j2b + 1,..., x52a + (j + 1) 2b — 1.

In each of these classes we pair two rows if the difference of their marks
is b. Let the set R, contain the rows that belong to one of the x, classes
and R, contain the other rows.

The pairs define a one-to-one transformation of the set of the rows
onto itself.

If d, = 0, then obviously | 4| << | C|. If d, > 0, then we cannot assert
that the knights of a row attack at least the same number of fields in the
pair of the corresponding row, but we can estimate the number of the
attacked fields.

In R, we have y¢2b rows. From Lemma 9 and Lemma 8 we obtain
that the loss of one row of R, (i.e., the difference of the number of the
(white) fields attacked by the elements of the row in the pair of the
corresponding row) is at most a/2, so the total loss of rows of R, is not
more than

yOZbg- < (a — 1) ba < a?b.

We can suppose that R, contains at least one b-defective row because,
if it did not, then we could reflect R so that the r-th row should go over
to the (n — 1 — r)-th row, and for this rectangular our assumption will
already be valid, using the fact that, for the number of rows of R,,
Yo2b < 2ab < n/2 holds.
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Let us denote by d,* the number of b-defective rows of R, (d,* = 1).
From Lemma 11 it follows that the excess of a b-defective row of R,
is at least

2a

For the number d,* of a-defective rows in R, we have
d* <d, <d, <dpy* + y2b < dy* + 2ab.
Thus, their loss is at most (d,* + 2ab)(b/2); so, if

m b 5 b
db* (ﬁ—i—a)ZGb—{*(db* +20b)§

is valid, then the condition (C) is satisfied. But, if m = my(a, b), then
this inequality is true. A rough estimate for my(a, b) is given by

(33) my(a, b) = 2(a + b)(ab + 1) max(a, b).

Applying the marriage principle we have that G* can be decomposed
for factors of degree 1. But this decomposition of G* does not give
directly a covering of Az, because, if a and b are odd numbers, then
A = By

Now we keep only the edges that are factors in the decomposition,
guaranteed by marriage principle, and join the vertices of G* that corre-
spond to the same field of Az. So we obtain a graph of degree 2, and
it is easy to see that this graph is the union of disjoint circles, each of
them consisting of an even number of edges because G, is a bipartite
graph. Leaving each second edge in all circles, we have really a decom-
position of Gy for factors of degree 1, and the theorem is proved.

THEOREM 11. If (a,b) =1 and a == b (mod 2), then a rectangular
with large enough sizes (m = my(a, b), n = ny(a, b)) is coverable with
knight figures of type a X b if and only if one of its sizes is even.

Proof. The necessity of the conditions follows from the fact that
each knight figure covers two fields. So, if R is coverable, then it must
contain an even number of fields.

If 4 is an arbitrary subset of 4z and C is the set of fields, attacked by
elements of A(C C By), then it is now completely sufficient to prove that

(34) 141 <IC|

582b/10/1-6
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because in this case a knight figure covers differently colored fields,
and the application of the marriage problem gives the theorem.

If m and n are even, then the idea used in the proof of Theorem 10
can be applied without change. In what follows, we get rid of the assump-
tion that » is even, so let n be odd. Without any loss of generality
we can suppose that g is even. Let a > 2 and n > ny(a, b) = 10ab,
m = my(a, b), where my(a, b) is equal to (33). R will be decomposed into
four parts. The rectangular R, consists of the rows

0,1,2,..,4ab — 1;
the rectangular R, consists of the rows
4ab, 4ab + 1,..., 6ab — 1;

R, consists only of the row of mark 6ab; and R, contains the remaining
rows of R.
If for a row of R, with an even mark r we have

(35) 47| < |Cr,

where 47 = A" N 4, C* = B* N C, then decomposing R for three parts
R *, R*, Ry*, so that R * consists of the rows

o,1,.,r—1,

R.* of the row r, and R,* of the remaining rows of R, the condition (C)
is trivially satisfied because R,* and R;* have even (and large enough)
sizes, so we can apply the results, proved above.

If for each row of R, with even mark (35) is not true, then we decompose
R, into b blocks, each of them containing 2a consecutive rows. This can
be done because R, contains 2ab rows. In a block we pair two rows if
their marks differ with a. The marks of a pair are congruent modulo 2,
so we can speak about even and odd pairs. If the r-th and r + a-th rows
form an even pair and no one of them is a-defective, then

| C"r,r-#aj B {Afl
and
| C"r+a.rl > 114”“ l.
If, for example, | A7 | < | A7+ |, then

[Cr = | Crear| = | Arve| = | A7

so for the r-th row (35) is valid, and we can apply the idea used there.
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In R, we have b - a/2 even pairs, and if each of them contains a-defective
row, then R, contains at least b - /2 a-defective rows. Now we decompose
R, into a blocks, each of them containing 2b consecutive rows. In a block
we pair two rows, if their marks differ with 5. We assert that R, gives an
excess more than m/2. Really the excess of the g-defective rows is at least

b5 (3 -5-9)

while the loss of the remaining rows of R, is at most

= . ab.

(2 —53)5=3

So R, gives at least an excess of

3529 dun

and if

a’h + ab?

(36) m =>4 7

then this is more than m/2. (From m = my(a, b), (36) already follows).
The loss of R, is at most m/2 and for R, and R, we can apply the results,
already proved, because their sizes are even, and greater than the given
lower bounds. So for R we have

14| <|C|

and so, in the case a > 2, the theorem is proved.

If @ = 2, then R, gives an excess greater than m/2 only if it contains
8b rows and not only 4b rows. Thus in this case we must suppose that
n = ny(2, b) = 24b, and the proof can be obtained in the same way as
above. Q.E.D.

Now we are able to state the main theorem of this section, which
contains Theorems 10 and 11 as a special case:

THEOREM 12. Let (a, b) = d.
1. If
(mod 2),

aln
[l
o
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then a rectangular with large enough sizes (m > my(a, b), n > ny(a, b) is
coverable with knight figures of type a x b if and only if both m and n
are divisible by 2d.

2. If

o

2= (mod 2),

8
d’ d
then a rectangular with large enough sizes (m = my(a, b), n > ny(a, b) is
coverable with knight figures of type a x b if and only if either m or n is
divisible by 2d.

Proof. We take the coordinates of the fields of R modulo d, and we
represent every residual class by its least non-negative element. We mark
each row (column) by the common second (first) coordinates of its
elements. It is obvious that two fields, covered by an arbitrary knight
figure of type @ x b, have the same coordinates modulo d.

We consider only those fields of R which have the same coordinates
(#,7) modulo d (0 < i,j <<d — 1). We denote the set of these fields by
R(i,j). From these fields we can form a new rectangular R*(i, ), if we
transform the field (kd + i, Id + j) into the field (k, /). The covering of
R(i,j) with knight figures of type a X b is equivalent to the covering of
R*(i,j) with knight figures of type (a/d) x (b/d). A necessary condition
for the coverability of R is that each R*(i,j) should contain an even
number of fields.

If m is not divisible by 2d, then necessarily there exists a residue is
such that it is the mark of an odd number of columns, and similarly,
if n is not divisible by 2d, then there exists a residue j, such that it is the
mark of an odd number of rows. If neither m or n is divisible by 24,
then R*(i , j,) contains an odd number of fields, and this is a contradiction.

So generally at least one size of R must be divisible by 2d. If

a

b
Fhal

4 (mod 2),

then this condition is also sufficient, because in this case the rectangulars
R*(i,j) have an even number of fields for every 7 and j, and we can apply
Theorem 11.

(ml(a, b) = dm, (3” g), ny(a, b) = dn, (g, ?1))

So 2 is proved.
Turn to assertion 1. If, for example, m was not divisible by 2d, then
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R*(iy , j) would not have even sizes, in contradiction with Theorem 10.

From Theorem 10 the sufficiency of the condition follows too. (The

bounds for the sizes can be chosen in the same way as in Part 2.)
Q.E.D.

The two simplest knight figures are those of types @ x 0 and a X a.
Their n-dimensional generalizations are the knight figures of type
ax0x - x0(or axax - xa) For these cases we can prove
the following theorems:

THEOREM 13. An n-dimensional parallelepiped R can be covered with
knight figures of type a X 0 X -+ X 0 if and only if one of its sizes is
divisible by 2a.

THEOREM 14. An n-dimensional parallelepiped R can be covered with
knight figures of type a X a X -+ X a if and only if its sizes are divisible
by 2a.

Proof of Theorem 13. Necessity. Suppose that R consists of the lattice
fields of coordinates (k, , k, ,..., k,,), where 1 < k; << m;. Now we take
the coordinates modulo a. Every knight figure consists of fields having
identical coordinates modulo @, so R must contain an even number of
fields of any fixed coordinates. If m; is not divisible by 2a, then there
exists a residue r; such that [(m; —r;)/a] is an odd number. If no size of R
is divisible by 24, then it is easy to see that R contains

fields with coordinates (ry , r; ,..., ), so the covering is impossible.
The sufficiency of the condition is obvious.

Proof of Theorem I4. Necessity. Suppose that R consists of the lattice
fields of coordinates (k,, ks ,..., k,) where 0 < k; < m;. Now we say
that a field (k, , k3 ,..., k,) of R is white (black), if [k,/a] is even (odd).
It is obvious that every knight figure covers differently colored fields.
Therefore the numbers of white and black fields must be identical. This
is possible if and only if m is divisible by 2a. The same must be valid
for the other sizes of R, so the necessity is proved. The sufficiency follows
from the fact that a parallelepiped 2a X 2a X '+ X 2a can be covered
trivially in a unique manner.
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CONSTRUCTIONS

The conditions of Theorem 12 guarantee the existence of a covering.
For knight figures of type 1 x b we can also give constructions for the
covering.

oo B E R SN R
4~%u/i%l% /;%@ JE
E N EENE RN K
3 mm %l{l/l% 3
gt O E O E S NN N K
wﬂ%ﬂ/%é%yy%?éyiy/-%l/]
- [ %I/’% B_o /éz%/‘/n
i)

a0 O B -% i m
2t=1 ///u/ ‘ / / é/// v =§//"//
/i /i/ﬁ

///4 o //./E'l//
D //.// // K //%/. . 0 A
gk @// -4 . l%ﬂi///. //.// ﬁ//
) K‘//,, %. "? ////.//
BN /// ?/é” 0]///

//

1. 2 3 4 5 8§ et 22“32f 4¥5%.6 4:141 24143414

FIGURE 1

Case b =2t + 1. Figure 1 shows schematically the covering of a
rectangular 47 x (4t + 4). We covered only the white fields. The covering
of black fields is symmetrical. Identically marked fields belong to the same
knight figure. The covering of columns 1, 2, 2¢ + 2, 2t + 3, 41 + 3, 41 + 4
is clear. Columns 3 and 2t + 4, 4 and 2¢ + 5,...,2¢t + 1 and 4¢ + 2 can
be covered almost pairwise as it is shown by the figure for columns 3 and
2t + 4.

For a rectangular 2 x (4¢ 4 2) we have a trivial covering. Theorem 3
asserts that a rectangular 2m x 2n, where m = M, n == N, can be covered
with rectangulars of type 2 x (4t 4+ 2) and 4t x (4¢ + 4). However,
in this special case the proof is very similar and we can reach smaller
boundaries M = (2t — 1) 2t and N = 2t(2t + 1).

This is the reason for repeating the proof for this case.
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The rectangular 41 x (4¢ + 2) is obviously coverable (using rectangulars
2 X (4 + 2)) and, if

n>(21+l)(2t+2)—-(2t+l)——(2t+2)=2t(2t+1)—1,

then a rectangular 47 x 2n can be obtained as a union of rectangulars of
types 41 X (4¢ + 2) and 4t x (4t + 4) dividing the side of length 2 into
parts of length 4t + 2, 4¢ + 4 on the basis of Lemma 12. Similarly, if

m>202t +1) —2t — Q2+ 1) =2t —1)2r — 1,

then a rectangular 2m x 2n can be obtained as a union of rectangulars
of types 4t X 2n and (4¢ + 2) X 2n where the latter rectangular coverable
with rectangulars of type 2 x (4t + 2).

CAse b = 2t. Figure 2 shows the covering of the rectangular
(2t + 1) x 4¢. The covering of columns 1, 2, 2¢ -+ 1, 2¢ + 2 is marked on
the figure and the other columns can be covered in the same manner.

2t+1 r@ N TT
2l | 7T A
2l \/
1OL LA
1 2 2r+12“2 4t
FIGURE 2

Figure 3 shows the covering of a rectangular (47 — 1) X (4t + 2). The
striped rectangular is a (2 — 2) x 4¢, which is trivially coverable, because
a rectangular 2 X 47 has a trivial covering. The covering of columns
3,4, 2t + 3, 2t + 4is shown on the figure; the covering of the non-marked
columns can be obtained in the same way.

Apply the same method as before. We have that, if

m > 414t — 3) + 1 and n>2t—1)2t+1,

then any rectangular m x 2n is the union of disjoint rectangulars of types
2 X4, (2t + 1) x 41, (4t — 1) x (4 + 2).
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