Extensions of the Erdés-Ko-Rado Theorem*

By C. Greene, G. O. H. Katona and D. J. Kleitman

An antichain of subsets of 1,2,...,n has the Erdgs-Ko-Rado property if |4;| <
n/2 and A;N A;# #& (i=j). This paper contains a number of results concerning
the distribution of sizes of sets in such a family, and also in families where
the restriction |4;| < n/2 is removed.

One of the most useful extremal properties on collections of subsets of a set is
the following result of Erdos, Ko and Rado [1].

THEOREM 1. Given a collection F ={A,,..., Ay} of subsets of an n element set
S satisfying A,N A, #0, A, B A; (i#)), |4, <k<n/2, then

< "‘1).
S

A short proof of this theorem was obtained by one of the authors [2].

In this paper we extend the ideas of [2] to obtain a proof of a stronger
theorem.

THEOREM 2. Under the hypotheses A,NA,#8, A, ZA; (i#)), |4;|<n/2, of

Theorem 1,
N

> <1 (1)
=i

We also describe several ways in which the hypothesis of the theorem can be
weakened without disturbing the conclusion, along with a second extremely
short proof of Theorem 2 from the “LYM theorem” based on a theorem of
Kruskal, which also proves a slightly stronger statement.

First proof of Theorem 2. Let A be the set of all possible arrangements of the
elements around a circle. For each arrangement a and each member A, of ¥, let
f(a,4,)=1/|4,| if A, contains consecutive elements for that arrangement, and
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let f(a, 4;) be zero otherwise. Then by summing f (a,4;) over both arguments in
the two possible orders, we obtain
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since A4; will by symmetry be consecutive in a proportion n/ (| r |) of the

orderings A. The result will therefore follow if in each a the sum 31/|A4,| on the
left hand side of (2) is < 1. This in turn follows from the following lemma:

LEMMA. If A, is consecutive in an arrangement a, then the total number of A]’s
consecutive in a cannot exceed |A,|.

Proof of lemma: Every consecutive A; must intersect 4,. The intersection
cannot be A4, or A, Thus the mtersectlon A, nAj is a set of the first some
elements or the last some elements of A,. For j#//, 4, NA;#A;N A; holds.

We have 2(|4,| — 1) possibilities. However A;NA; and A nA (jstj) cannot
give a partition of 4; (using |4;],|4;| < n/2). Thus only |4, |—1 of the 214, =1)
possibilities can be s1multaneously reahzed which proves the lemma.

For each a the number of terms in the sum 21/|4,| on the left hand side of
(2) is therefore no greater than the smallest |4,|. Each sum is therefore < 1, and
the entire sum is < |A|, which proves the theorem.

Second proof of Theorem 2. Let ¥ be fixed, and let p; denote the number of
cyclic arrangements a in which an A €F of size i (1<i<n /2) has consecutive
clements and there is no smaller A €% with this property. Denote by u, the
number of A’s with 4 € F, |4|=i. We prove now the inequality

Euz'(n—z)'gzp, (1<w<[g}). (3)

i=1 i=1

Here, on the left hand side we count the number of pairs (4,a) where 4 € %,
1< [A[ <w, a is a cyclic arrangement, and the elements of 4 are consecutive in
a. It is easy to see that the number of cyclic arrangements permuting a given 4
into consecutive members is i! (n—i)!, where |4|=i. Let us count the same
thmg in a different way. If we fix an arrangement a which has an i-element
AEF of consecutive members but not smaller, then there are at most i 4 € F
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with consecutive members, by the lemma. This gives an upper bound on the
number of pairs above, and it is the right hand side of (3).
Let

_Ln2)-i [n/2]—i-1 _ [n/2]

/ i i+1 C(i+])

if 1<i<[n/2]and a;,,,=1. Take the linear combinations of the inequalities (3)
with the coefficients a, (1 < w<[n/2]). The resulting inequality is

[n/2] [n/2]
2 u(i=Di(n=n1< X pa G

i=1 i=1

where X p;=(n—1)!, and this is equivalent to the statement of the theorem. The
proof is completed.

The preceding theorem shows that the E.K.R. bound will not be exact if the
A;’s are not all of size k. If we are only interested in attaining the E.K.R. bound,
we can relax some of the constraints in the theorem. In particular, it is not
necessary to require that the A4’s be an antichain (that is, unordered by
inclusion). We give several examples of weakenings of the theorem, among a
wide spectrum of possibilities. Further weakening possibilities are described in
[5].

THEOREM 3. Let the elements of S be colored in two colors and suppose that the
A’s be such that |A|<k<n/2, A,NA;#0 and either A,z A; or A;—A; is
multicolored (i j). Then

=
N )
g(k—l

Proof: If one partitions the subsets of S into symmetric rectangles, one
direction representing the elements of each color, the number of A’s in a
rectangle is bounded by the number of rank k subsets B in it that contain them,
since k is a bound on their rank, and no two can be in a row or column.

The B’s are pairwise nondisjoint; thus, having size k, by Theorem 1 they
satisfy the E.K.R. bound. The number of A’s is less than or equal to the number
of B’s, from which the theorem follows.

We call a 2-coloring of a set balanced if the excess of elements of either class
over the other is < 1.

THEOREM 4. Suppose the elements of S are 2-colored twice; and that S, and S,
are the sets colored in the two colors in the first coloring, while the second coloring
is balanced in S, and S,. Then, if the A’s are such that |A,|< k<n/2, AN A;#8,
and either A,z A; or A;—A; is multicolored in the first color or A;—A; is
unbalanced in the second color for each (i,j) (i#})), then

n—1
v<(ioh)
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Proof: The result follows directly from the form of an explicit partition of 2%
into symmetrical rectangles. For details and further similar results see [5].

The value of the extension of the E.K.R. theorem to Theorem 2 can be seen
from the following consequence.

THEOREM 5. Let f(k) be an arbitrary real function. Then under the hypotheses
of Theorem 2,

! n—1
S s4ah<, Max 706)(17 1) 5)

i=1 0< F—1

Proof: Let g be a value for which f(g)( ’;:ll ) is maximal. Then obviously

N
1(4;
S g S -

- (Ifb_—ll) N "="f(|Af|)(|Z,-_—]1) i f(g)(';:ll)

holds. Hence (5) follows by (1). The proof is completed.

We conclude with a third independent proof of Theorem 1. This method in
fact proves a stronger statement, since one can use it to completely characterize
the numbers of sets of a given size which can occur in an E.K.R. family. The
technique is based on a theorem (see [3] and [4]) which solves a similar problem
for simplicial complexes.

Assume that the elements of our set S are the integers 1, 2,...,n. This induces
a natural ordering on subsets of S, obtainined by associating sets with sequences
of zeros and ones and ordering these sequences lexicographically. For any
antichain % C25 we define the compression of % to be the antichain C (%)
obtained in the following way: Suppose that & = %, U F,, U - U ¥;, where
%, denotes the sets in & of size i (k < j). Begin by taking the last | %, | k-subsets
of S in the lexicographic ordering just obtained. Then take the last |%,, |
k + 1-sets which do not contain sets already chosen. Continue in this way until
the procedure has been applied to all levels. The resulting family of sets
(obviously an antichain) is defined to be C(%). Clearly & and C (%) have the
same number of sets at each level. The abovementioned theorem states that
“compressed” antichains have the smallest “shadows”™ at higher levels. For any
antichain ¥ in 25, let NP(‘.’?) denote the number of p-sets which contain at least
one member of F.

THEOREM 6 [3,4]. If F is any antichain in 25, then N,(%)> N,(C(%)).

The original version of Theorem 6 was proved for sets of uniform size, but the
extension to arbitrary antichains is immediate. For an arbitrary antichain, it is
nontrivial to show that the compression C (%) actually exists—i.e., that there are
always enough sets to choose at each level. We refer the reader to [6] for further
discussion of these ideas.

The third proof of Theorem 1 consists of verifying the following statement:
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THEOREM 7. If an antichain % C25 has the Erdos-Ko-Rado property (i.e.,
|4| < n/2 for all A€ F, and no two members of & are disjoint), then so does its
compression C (). In fact, every member of C (%) contains the element 1.

From this result it follows that the numbers |%,;| have exactly the same
properties as those corresponding to arbitrary Sperner families on a set of n—1
elements. Theorem 1 follows immediately.

To prove Theorem 7, first consider the case where all of the members of &
have the same size. Then proving that every member of C (%) contains 1 is

equivalent to showing that | | <( Z_ ; ) Hence the theorem is true in this case,

by the original E.K.R. theorem.'
If F has sets of more than one size, let k denote the maximum of those sizes. By
Theorem 6, the operation of compressing ¥ can only decrease the number of
k-sets which contain members of ¥ as subsets. Prior to compression, these sets
form an E.K.R. family; hence after compression they must all contain the
element 1, by the remark in the preceding paragraph. It follows easily that C (%)
also has this property, and the proof is complete.

Using Theorem 7, it is possible to completely characterize the numbers |, |.
To do so, we use the following notation. If m is a positive integer, then for each

k we can write
A -1 4
= + S 8
" (k) (k—l) (z)

with
q>a_; > >a2i>0,

and this expression is unique.

Define
= ak — a"‘
ak(m)_(k_})+ +(i_1).

THEOREM 8. Let a,, a,,,...,a, be a sequence of nonnegative integers, with
k< n/2. Then there exists an antichain % C2° with the E.K.R. property if and

only if
-1
a+ 0, (a4 1+ 04 1(Gaat o 0 p(@+ _y(ar)) - ))g(?—l )

This is essentially the statement that an E.K.R. family exists with parameters a;,
a, ... if and only if a Sperner family with the same parameters exists on a set
of n—1 elements. A characterization of these numbers using Theorem 6 was
obtained by Daykin [8] (see also [9] and [6]). This characterization yields the

"We could prove the E.K.R. theorem by these methods too: just consider the family & of
complements of members of . Then % U & is an antichain, and the inequality

|| <( Z__' : ) follows immediately from Theorem 6 (see Daykin [7]).
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above result.
Of course, Theorem 9 gives a better characterization of the numbers |%, | than
Theorem 2 does. In fact, it is not hard to deduce Theorem 2 from Theorem 9.
Our theorems do not give information about the situation if the subsets of
size > n/2 are also allowed. The next theorem gives an inequality for this case.
THEOREM 9. Given a collection F ={A,...,Ay)} of an n element set S satisfy-
ing AiNA;#8, A, Z A, (i#)), we have

1 1
2@ —u—( ! )+ b ——( . ) i, (6)
|A‘T<en/2 IA | i, |A[|1>Enj/2 |A|

Proof: The proof follows the first proof of Theorem 2. The weight function is

n—|A4|+1 ; ;
Al if A; contains consecutive elements
i .
ina, and |4,/ <n/2,
fle.dy)= , ; .
1 if A; contains consecutive elements
ina, and |4;|>n/2,
0 otherwise.

In this case the equations (2) have the following form.

2[ b f(a,Ai)}=2( 3 f(a,A,-))

a | A;cons. ina A,ETF ol

A,ETF A; cons. in a
n—|A4;|+1

= > T( b 1)+ > B i
A, EF i a A EeF a
|A,-|l< n/2 4; cons. in a |4;|>ny2 Aicons. in «

n—|A4,]+1 u %

- 2 Tt 3 e
A,€5 i (|A|) A,€F (|A|)
|4i|<n/2 i |4,|>n/2 i

1 |
= n|4| 2 —“—n_—+n|A| 2 . (7)
A,EF _ A,EF
|4l < n/2 (|A,-l 1) i3 (|A,.[)

Hence (6) follows, if we prove the inequality

—|A4.|+1
> fod)= 2 & + > 1< n, (8)

A; cons. in « A, cons. in & |A1| A; cons. in a
|4 <n/2 |41 >n/2
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and apply it to (7).
To prove (8) we use the ideas of the proof of the lemma.

1. Assume first that there is no A4, with consecutive members in a and with
|4,/ < n/2. In this case we have to prove, as the terms are 1, that the number of
consecutive subsets is < n. Consider the consecutive subsets beginning with a
fixed element; at most one A; can occur among them, since A,z A;. Thus, the
number of consecutive 4,’s is less than or equal to the number of elements (= n).

2. Assume there is an |4,|=r < n/2 with consecutive elements and there is no
smaller one. We can suppose without loss of generality that A4,={s,,...,s,}.
Consider the sets 4, consisting of consecutive elements and beginning with s, or
ending with s5,_, 2<u<r).

Every 4; belongs at least to one of these classes because of 4,24, A,z 4;
and 4,NA4; 70 . By 4,7 A, there is at most one subset beginning with s, and
there is at most one ending with 5,_,. On the other hand, one of the two sets
beginning with s, or ending with s5,_, must be of size >n/2, by A,;NA4,#0.
Thus, the sum of their weights is at most (n—r+1)/r)+ 1, and the entire sum
of all weights is maximally

+1

e ol BPE PR LY. S 1 PR gy
r r

This proves (8) and the theorem.

It is easy to see that this method gives a proof of the Lubell-Yamamoto-
Meshalkin inequality [10, 11, 12]. In this case f(a,4,) is simply 1 or 0, and the
proof of (8) consists of part 1 alone.

THEOREM 10. Under the conditions of Theorem 9,

N<([n/;]+1)'

This theorem is a trivial consequence of Theorem 9. It is a special case of a
theorem of Milner [13], and it was independently proved in [14], too. D. E.
Daykin kindly called our attention to the fact that Theorem 2 had been
published earlier by Béla Bollobas [15]. His proof is similar to our first proof;
however, our lemma is somewhat stronger. This difference enabled us to prove
Theorem 9.
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