IF THE INTERSECTION OF ANY r SETS HAS A SIZE $\neq r-1$

by P. FRANKL and G. O. H. KATONA

Working on problems connected with data base systems, suggested by J. Demet-ROVICS, we observed the following simple but interesting

THEOREM 1. Let $A_1, ..., A_m$ be a family of not necessarily distinct subsets of an n element set X. Suppose that

$$\left| \bigcap_{j=1}^{r} A_{ij} \right| \neq r - 1$$

holds for any r $(1 \le r \le m)$ and any distinct indices $i_1, ..., i_r$ $(1 \le i_j \le m)$. Then

$$(2) m \leq n.$$

PROOF. We use induction over n. d(x) is the degree of $x \in X$: $d(x) = |\{j: x \in A_j\}|$. 1. We prove first that $d(x) \le |A_i|$ follows from $x \in A_i$.

Fix an i and $x \in A_i$. Take the sets $A_i \cap A_j - \{x\}$ for all $j \neq i$ such that $x \in A_j$. If these sets do not satisfy (1), there are indices $j_1, ..., j_r$ such that $x \in A_{j_1}$ ($1 \le l \le r$) and

$$\left|\bigcap_{l=1}^{r} (A_i \cap A_{j_l} - \{x\})\right| = r - 1.$$

Hence $|A_i \cap \bigcap_{l=1}^r (A_i \cap A_{j_l})| = r$ would follow contradicting (1). The sets $A_i \cap A_j - \{x\}$ satisfy (1) on a set of size $|A_i| - 1 \le n - 1$: so we may use the inductional hypothesis: the number of sets $x \in A_i$, $j \ne i$ is $\le |A_i| - 1$. Thus the number of sets $x \in A_i$ is $\le |A_i|$.

2. It follows from the induction hypothesis that the union of any r of the sets A_i has a size at least r if $r \le n$. By Hall's theorem we obtain elements $x_i \in A_i$ $(1 \le i \le r)$, where $x_1, ..., x_n$ lists all the elements of X. The first section gives

$$d(x_i) \leq |A_i|.$$

Hence

$$\sum_{i=1}^{n} |A_i| \ge \sum_{i=1}^{n} d(x_i) = \sum_{i=1}^{m} |A_i|$$

and

$$\sum_{i=n+1}^{m} |A_i| = 0$$

follows. $|A_i| \neq 0$ by (1), consequently the sum must be empty. We have $m \leq n$, and the proof is complete.

The n different one-element sets give equality in (2).

COROLLARY. If $A_1, ..., A_m$ are non-empty subsets of a set of n elements, no two have an intersection equal to 1 and no three have an intersection >1 then $m \le n$.

PROOF. It is easy to see that the sets satisfy (1).

THEOREM 2. Let $A_1, ..., A_m$ be a family of not necessarily distinct subsets of an n element set X, and let t>0 be a fixed integer. Suppose that

$$\left|\bigcap_{j=1}^{r} A_{i_j}\right| \neq r - 1 - t$$

holds for any r $(1 \le r \le m)$ and any distinct indices $i_1, ..., i_r$ $(1 \le i_i \le m)$. Then

$$(4) m \leq n+t$$

moreover

$$(5) m \le n$$

with the additional conditions $A_i \neq A_j$ $(i \neq j)$ and $2^{t-1} \leq n$.

PROOF. Take the sets $\binom{t}{i-1}A_i\cap A_j$ $(t< j\leq m)$. The intersection of any r different ones cannot be of size r-1 by (3). Apply Theorem 1 for these sets: $m-t\leq n$. The choice $A_i=X$ $(1\leq i\leq n+t)$ gives equality in (4).

The proof of (5) proceeds in a similar way. The only difference is that we have to choose some distinct sets $A_{i_1}, ..., A_{i_t}$ with $\left| \bigcap_{j=1}^t A_{i_j} \right| \le n-t$. It can be proved by induction over t (with fixed n) that this can be done if $m \ge n+1$: By the inductional hypothesis we can find t-1 sets with an intersection Y satisfying $|Y| \le n-t+1$. If |Y| < n-t+1, we are done, thus we may suppose |Y| = n-t+1. If there is one among the sets A_i which does not contain Y, we are done, again. It means, as the sets are distinct, that their number m is at most 2^{t-1} . By the condition $2^{t-1} \le n$ this contradicts $m \ge n+1$. The proof is complete.

It is easy to see that the family of all (n-1)-element subsets of X give equality in (5) if n+t is even. But there are no 4 distinct subsets satisfying (3) if n=4, t=1.

While the condition of the corollary did not give stronger result than Theorem 1 gave, this is not the case here. Choose t=1 and take the stronger conditions $\begin{vmatrix} 2 \\ -1 \end{vmatrix} A_{ij} \neq 0$, $\begin{vmatrix} 3 \\ -1 \end{vmatrix} A_{ij} \leq 0$. Then the $\binom{m}{2}$ intersections $A_i \cap A_j$ are all disjoint. Consequently, $\binom{m}{2} \leq n$.

THEOREM 3. Let $A_1, ..., A_m$ be a family of distinct subsets of an n element set X, and let t>0 be a fixed integer. Suppose that

$$\left|\bigcap_{j=1}^{r} A_{i_j}\right| \neq r - 1 + t$$

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

holds for any r $(2 \le r \le m)$ and any distinct indices $i_1, ..., i_r$ $(1 \le i_j \le m)$. Then

(7)
$$m \leq \sum_{\nu=1}^{t+1} \binom{n}{\nu}.$$

PROOF. Let us count the number of pairs (A_i, G) $(1 \le i \le m, G \subset A_i, |G| = t)$ in two different ways

(8)
$$\sum_{i=1}^{m} {|A_i| \choose t} = \sum_{|G|=t} |\{A_i: 1 \le i \le m, G \subset A_i\}|.$$

Here $|\{A_i: 1 \le i \le m, G \subset A_i, G \ne A_i\}| \le n-t$ by Theorem 1. Consequently, the right-hand side of (8) is at most $\binom{n}{t}(n-t+1)$:

(9)
$$\sum_{i=1}^{m} {\binom{|A_i|}{t}} \leq {\binom{n}{t}} (n-t+1).$$

Suppose, that in contradiction to (7) $m > \sum_{v=1}^{t+1} {n \choose v}$. It is easy to see that $\sum_{i=1}^{m} {|A_i| \choose t} > \sum_{v=1}^{t+1} {v \choose t} {n \choose v}$ (fewer subsets with smaller sizes), and this contradicts (9). The proof is complete.

If we also assume (6) for r=1, then we obtain the bound $\sum_{v=1}^{t-1} {n \choose v} + {n \choose t+1}$.

(Received August 6, 1978)

MTA MATEMATIKAI KUTATÓ INTÉZETE REÁLTANODA U. 13—15 H—1053 BUDAPEST HUNGARY