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The paper gives asymptotic bounds for the maximum number N, of non-trivial maximal
elements in a data base relation of given order. The result shows that there exist relations which
are very rich in maximal elements.

1. Introduction

Maximal elements [2] are important characteristics of the dependency structure
in a data base relation [1]. They determine, as shown by Armstrong [2], all
functional dependencies in a full family. Moreover, the left-hand sets of attributes
in maximal elements of type A — B are keys for the set B. Parallel with the
enumeration of the maximal number of keys in a relation of fixed number of
attributes [4], it was obvious to inquire after the maximal possible number of
non-trivial maximal elements, as well. But, while the first problem was easy to
answer—the answer was, in fact, implicitly given by Sperner’s theorem [3] and
Armstrong’s theorem [2}—this second one turned out hard and no exact figure in
terms of the order n has yet been found; some asymptotic lower and upper
bounds are our results.

2. Definitions

Let 2 = {a,, a,,...,a,} be aset of n elements (“attributes”) and 2 its power

set. The function f:2? — 2 is called a closure function or closure iff for every
A, Be2”

(@ Acf(A),
(b)  f(f(A)=f(A), (1)
(c) AcB=f(A)<f(B).

*The work of this author was partially supported by the National Science Foundation under grant
number MCS77-22985.
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If B< f(A) we say that B is functionally dependent on A} this binary relation will
be denoted by A — B and called a functional dependency.

It can be seen that the lattice of functional dependencies defined in this way
satisfy Armstrong’s axioms [2], and conversely that there is a unique closure to
any lattice satisfying these axioms hence, by Armstrong’s theorem 5, there exists a
relation of Codd’s type to any closure.

A functional dependency A — f(A) is called maximal if C— f(A) and Cc A
implies C= A for all C’s. If A — f(A) is maximal and A# f(A) then it is called
non-trivial, all other maximal dependencies, i.e. those of the form A — A are
trivial. With other words the non-trivial maximal dependencies are the pairs
A — f(A) where A satisfies the following two conditions:

(a) There is no C< 2 such that C< A and f(C) = f(A);
(b)  A#f(A).

)

Call these A’s basic.

Let the number of non-trivial maximal elements in the set of all functional
dependencies generated by a closure be denoted by N(f). Now let us consider all
closures over {2 and the number

N, = m}dx N(f) (3)

i.e. the maximum possible number of non-trivial maximal elements in a relation of
Codd’s type of fixed order n. This number is equal to the number of basic sets in a
certain closure.

Observe that 2" '<N,. Indeed, if xe€Q is any fixed attribute and f(A)=
A U{x} then all pairs A — A U{x} where x¢ A form non-trivial maximal depen-
dencies and their number is 2"~'. For a long time we thought this estimation exact
since N, =2""" for n=1,2,3 and 4. However, as we shall see, N;>16.

Similarly there is a trivial upper estimation of N,, namely N, <2".

3. Theorems

Theorem 1
. : 1
J:[l(2%—1)—}:[1(2"-—qi—1)anszﬂ(1—m) (4)
where q1, qs, - - . , g, are positive integers and Yr_, g, = n.

Proof. (a) Lower estimation. Let us consider a partition of 2: (2., Q,, ..., ),
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(2N =9 for i#j) where [{]|=q; (i,j=1,2,..., k). Define a closure f as
flA)=AUU & (5)
i

where j runs over the indices 1,2, ...,k for which |A N&;|=|£]—1 holds.

Let us first check if f of (5) is a closure function. Property (1a) holds trivially.
Since [f(A)N 4] #[2]—1 for all indices j, (1b) is satisfied, as well. Turning to
(1c), it is easy to see that

AcB=f(A)NQL cf(B)N LY

consequently f(A)< f(B) holds.
Now we are going to determine the basic A’s i.e. the sets satisfying (2a, b).
Ac( is basic iff

min (|2 -|ANQ)=1 (6)

Were the left hand side of (6) greater than 1, then f(A)=A (i.e. A—f(A)
would be trivial) while if it were equal to 0 then take the set A*= A\x where
xell, ||=|ANL/. Then f(A*)=f(A) by (5) contradicting (2a). If, however,
(6) holds then A is obviously basic.

So N(f) is equal to the number of A’s satisfying (6). But this number can be
expressed as a difference between the number of sets satisfying

min (2]-1ANnQ)h=1
and the number of those satisfying
min (£ -lANQ)=2;
the first number is []i_, (2% — 1) while the other [[‘., (2% —q,—1).

As a special case let us take the case n=5, q;=3, g,=2. Then the lower
estimation gives 17 = N;. This is the first example where 2" ' <N,.

Remark. The idea of this proof was, in fact, a more general consideration. Let
there be disjoint attribute sets 2. given; let an arbitrary closure f; defined over (),
(i=1,2,..., k); let the number of all maximal elements in the set of dependen-
cies #; be denoted by M(f;) and the number of trivial maximal elements by T(f,)
(i=1,2,...., k). Now

f(A)=U f(AnQ), (Acq)

is a closure over {2 = | J; 2 with the property M(f) =1, M(f,), T(H) =11, T(f)
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hence the non-trivial elements are of cardinality
k k
M= T =1 M(f)-TT 1(7).
i=1 i=1

In the proof above the choice

QO if |A|=|a-1,
ft(Ax) = X
A, otherwise

was made for all A, =, (i=1,2,...,k).

(b) Upper estimation. Let % be the set of all basic sets. Iff A € # then there is a
B such that [B|=|A[+1, A= B< f(A). Then f(A)< f(B)< f(f(A)) = f(A). Since
f(A)=f(B) and A = B the set B does not satisfy condition (2a). The set B can be
obtained from at most n different sets A only, consequently at least for |%|/n sets
Be ¥, implying

|3€|+@s2"
n

equivalent to the desired upper estimation in (4).

The proof of Theorem 1 is completed.

Note that the upper bound could be improved to 2"(1—2/n) about by consider-
ing that the majority among the 2" subsets of ) has about 3n elements so that one
B can be used about 3n times only. But we don’t go into details of the proof
because the gain is inconsiderable.

Next we want to have a lower bound of N, in terms of n. For this purpose the
numbers g; on the left side of (4) will be chosen in a special way. The result can be
written as

Theorem 2
4 loglog, n ) N, ( 1 )

1-—————=(1+ s—"=({1-—— 7

( log, e log, n (+o(1) 2n | n+1/ @
Proof. Define the integer number g as

q=q(n) = (log n—log w(n)) (8)
where

(n)= 1 (loglog n—logloglog n —loglog e — 1) 9)

w\n _loge oglogn gloglog g log

and log means the logarithm of base 2, [x] is the integral part of x. Divide n by g,
so let k(n), r(n) be defined by

n=gk(n)+r(n) (10)

where k(n) is a non-negative integer and 0<r(n)<q.
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Let the g;’s be chosen in the following way:

hi=p=rsi=gsgrl,
q.-+1=Qr+2="'=‘IkZQ-

(11)

Hence, making use of the inequalities of the elementary calculus
(I-x)=1-xy (0<|x|<1,y=0 or y=1)

and
(1-xP=e™ (0=|x|s1,y=0)

we have
1 £ ( 1 )'(") ( 1
— a—1)=|1-— 1—-—
2" ,znl @ =1 2a+l 24

(1- r(n))(1 k(n)— r(n))

)k(n)fr(n)

W

a1 24
=1 —7"(")2: ") (1 —o(1))

by taking account of

rin)  _ r(n)q
k(n)—r(n) n—r(n)—r(n)q

s—r—(i)—q—g=o(l) (for n — o).
n—q—4q

Also we have

k rin) k(n)—r(n)
q+2) ( q+1)
A Ay o 1= { T R ()
o L =aml) (1 ) \175
+ s =&
gexp{_n k(n) ;gn) zqr(n)}_

The expression k(n)—r(n)—3gr(n) is, by (10), certainly positive for sufficiently
large n thus

1 4 n
EE (2“'—qi—1)Sexp{—§}.

Therefore our intermediate result is, by Theorem 1,

k(n)—r(n) [ n}
= (o) —exp g <N, <1-——.
: - (1+0(1)) exp 5 =N, =1 e (12)
Further on,
n|_ =
eXP | ~5a [ TP |~ egem
2 loglogn
= exp{w(n) = 2L 0L
oge logn
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and
k(n)—r(n)<__n_<2m(n)
27 \q2q\ q
__ 2 loglogn(1+0(l))'
loge logn

These inequalities together with (12) imply Theorem 2.

We guess that neither estimation in Theorem 2 is exact, the true value of N,
lies somewhere between. The trivial corollary of Theorem 2 is N,/2" — 1, (n — )
which was our first result.

In the construction of the lower bound for N, the cardinalities of the basic sets
tend to infinity with n as can be seen from the proof of Theorem 2. In fact, it is
necessary, otherwise N(f) cannot grow as large as found:

Theorem 3. If f*(n) (n=ny, no+1,...; no=const.>0) is a sequence of closures
over 0Y={ay, a,,...,a,} having a fixed maximal dependency A — B
(|A|=s, |B|=t>s) common for all n, then

N({H/2"<ce<1

where ¢ does not depend on n.

Proof. Without loss of generality we can assume that A ={a,, a,,...,a,}, B=
AU{ayyy, - . -, a}. The possible maximal dependencies in f*(n) are all of the form

(a) AUX—>BUX', or
b) AUY—-Y

where (a): a;¢ X for i<t and (b): A'c A, a;2 Y for i=<s. Since |X|=n—t there
are 2" maximal elements of type (a) at most, and similarly, by |A’|<s—1 and
|Y|<n—s, the highest number of maximal elements of type (b) is (2°—1)2" *.
Hence

N(fﬁ)szn~t +2n _2n75 Sczn

as stated.
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