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Sums of Vectors and Turdn’s Problem for 3-graphs

G. O. H. KAaTONA

Let X be a Hilbert space, 0=sm=n integers. If ay,...,a,€X,|laf|=1(1<i<n) then
Ns(ay, ..., a,) denotes the number of sums ||a;, +a;+ a,||=1. The asymptotic behaviour of
N;(X, n)=min Ns(a,, ..., a,) is studied.

1. INTRODUCTION

Let X be a Hilbert space, 0 <m <n integers. If a4, ..., a, € X, then Ny(a,,...,a,)
denotes the number of sets A ={iy, ..., i.}, |A| = g such that

g
> al=1. (1)
i=1
The main aim of the paper is to give lower estimates on the minimum
N3(X, n,m)zmiani(al’---’an); (2)
where the minimum is taken over all the sequences as, . . ., a, where |a;||=1 (1=<i<m),

laill<1(m<i<n), n and m are fixed.

More precisely, we will only consider the asymptotic behaviour of N3(X, n, m), when
n, m - o and m/n tends to a constant p. Most of the work deals with the special case m = n.

The corresponding questions for g =2 are solved in [3] (see also [1, 2]).

The problem suggested might be interesting in itself, but its real significance is given by
the following obvious connection with probability theory. If &3, & and &; are independent
and uniformly distributed on the values ay,...,a, (P(&=a;))=1/n(1si<3,1=<j=<n)),
then 6Ns(ay, ..., a,)/n’ is “almost” equal to the probability P(|¢, + & + &)= 1). Thus,
the solution of the minimization problem (2) gives the ‘‘best’’ lower estimate on this
probability. These consequences will be briefly described in Section 4. Results of this type
for g =2 are obtained in [1, 2, 3].

Let us illustrate the method of the paper by the simplest result. Though it is a special case
of Lemma 5 in [2], we present its trivial proof.

LEMMA 1.1. Ifai,...,asc X and |lai|=1 (1<i<4), then, for somei#j#k #i,
||a,-+a,-+ak||21.

ProOOF
(ay+as+ asy -+ (aq +astag) tlarray Hat +las ot a4)2
=2(a,+az+as+as)’+(ai+ai+as+al)=0+4
and hence one of the terms in the first row is =1. The proof is completed.
Let T'(m, 4, 3) denote the minimum number of edges of a 3-graph (no loops, no multiple

edges) on m vertices satisfying the condition that

any four-set of vertices contain at least one edge. 3)
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Suppose ay, . .., a,, € X and define a 3-graph G = ({1, . .., m}, E), where {i, j, k} € E iff
i#j#k+#iand|a;+a;+ac]|=1. Lemma 1.1.expresses that G satisfies condition (3), that
is,

N3(a1’ s ey a")B T(ms 45 3)5

consequently
Ni(X, n,m)=T(m, 4, 3). (4)

There are two problems with this inequality. The first one is that it is not sharp, since the
right-hand side does not even depend on #. In addition to this, the value of T'(m, 4, 3) is not
known. There are only conjectures and estimates concerning it.

The famous conjecture of Turdn says that the following graph has T'(m, 4, 3) edges: Let
A,, Az, Aj; be disjoint sets with equal or almost equal sizes, where |A | +|A,|+|As|=m.
Take all the 3-edges being in one A, or containing two vertices from A; and one from A,
(1=i=<3,A,;=A,). This conjecture would imply

lim T(m, 4, 3)/(':) =g.

N3(X, n,
2 1) g’ (5)

Thus the inequality
lim =
m/n-p ()

follows from (4) and the Turdn conjecture. A (probably the best published) estimation ([4])
is T'(m, 4, 3) =13. Hence follows

N‘.”(X’n’m)}i 3

lim o =p. (6)

m/n—->p

In what follows we will improve inequality (6). The tools will be geometrical lemmas

(like Lemma 1.1) and extremal problems for 3-graphs (like the problem of T'(m, 4, 3)).
They are treated in Sections 2 and 3.

2. GEOMETRICAL LEMMAS
The first of these lemmas shows that the presence of small vectors increases the number
of large sums.
LEMMA 2.1. Suppose ai, az, as, by, bre X |la;|=1 (1 <i=<3). Then either there exist
indices 1<i<j<3 and 1<k <2 such that
la; + a; + by[| =1 (7)
or
lla: + b1+ bof|=1
holds for some i (1<i<3).
ProOF. Suppose that, contrary to the assertion a,, a,, as, b1, b€ X are such that
laill=1 1=<i<3),
llai+a; +b.]<1 (Isi<j=3,1sk<2) (8)
and

la:+b:1+bal <1 (1<I<3). 9)
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Let us sum the two inequalities (8) at fixed i and j. The triangle inequality yields
I2a; +2a;+ b+ bof| <2 (1=si<j=3). (10)
From (9) and (10), again by the triangle inequality, we have
I2a;+2a;—a/||<3 =si<j<i=<3). (11)
Hence, by squaring it,
4a? -+~4a,2 +ai+ 8aia; —4aa,—4a;a; <9.
Let us sum these inequalities for the triples
(i,7,. D=, 2,:3); (1,:3, 2), (2, 3,.1):
9(ai+ai+a3)<27.
As this inequality contradicts the assumptions a1, a3, a3 = 1, the proof is complete.

The following two lemmas show that there is no system of vectors for which the triples
with length =1 are exactly the ones in the Turan conjecture. If X is one-dimensional, then
it is true in a stronger sense.

LEMMA 2.2. Suppose a, ..., as are real numbers with |a,~| =1 (1=<i=<5). Then
|a:-+a,-+ak|21 (12)

for at least one of the triples 1 <i<j<k <35 different from (1, 2,3), (1,2, 4) and (3,4, 5).

Proor. If four of the a; are positive (negative), then there is obviously a triple
satisfying (12). Thus, by symmetry, we may suppose that three of the a; are positive and
two of them are negative. If the set of the three positive ones is different from {a, a», as},
{ai, as, as} and {as, a4, as}, then we are done. Consequently, it is sufficient to consider
three cases.

(i) a1, az, as=1, as, as<-—1. Here |as| =|as| implies |a;+a>+as|=1 and |a,|<|as|
implies |a; + a4+ as| =1 in accordance with the statement of the lemma.
(ii) a, aiz, as=1, a3, as<—1. By symmetry, this case is like the previous one.
(iii) a3, as, as=1, ay, a,<-1. Here |a,|=|as| implies |a; +a,+as|=1 and |a,|<|as|
implies |a; + a4+ as| =1 in accordance with the statement of the lemma. The proof
is completed.

LEMMA 2.3. Suppose a, az, by, b, ¢1, c2 are vectors in a Hilbert space X and fori=1
and 2 we have

la\+a,+bi||=1, (13)
||b1+b2+c5|121, _’(14)
"C] +C2+a,'||21. (15)

Then at least one of the following six inequalities fails:
lai+az+cil<1, i=1,2, (16)
lbr+b2+all<l, i=1,2, (17)
lci+ea+bill<1, i=1,2. (18)
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PROOF. Suppose that all the inequalities (13)-(18) hold. The squares of (13) and (17)
are

a1 ¥as+bt a5 2a: b+ 2ab =1,
a3+bi+bi+2adbi+2abs+2b1bs<1,

respectively. Take the sum of the first inequality for i = 1, 2 and subtract from it the second
inequality, again, for i =1, 2:

a%+a§*bf—b§+4a1az—4b1b2>0,

that is,
ai+az+4a,a;>bi+b3+4bb,. (19)
The inequalities
bi+b3+4biby>ci+c3+4cico (20)
and
cf+c§+4c1c2>af+a§+4a1a2 (21)

can be proved in the same way. However (19), (20) and (21) obviously form a contradic-
tion. The proof is complete.

As we shall see, the condition guaranteed by Lemma 2.2 for 3-graphs is not strong
enough for our purposes. The next lemma gives an additional condition.

LEMMA 2.4. Ifa,, as, as, by, b, are real numbers |a;, |b|=1 (1<i<3,1<;<2) then
all the inequalities

la1+a2+a3|<1, (22)
lai+a;+b|=1 (I<i<j<3,1<sk<2), (23)
la;+b1+by|<1 (1=<i=<3) (24)

cannot hold simultaneously.

Proor. If four of the vectors are positive (negative) then one of (22) and (24) is
violated. Hence we may suppose, by symmetry, that three of them are positive and two are
negative. (22) implies that a,, a,, a3 = 1 is impossible. Similarly, (24) implies that by, b, =1
is impossible too. Thus, again by symmetry, a,, a,, b1 =1, as, b, <—1 can be supposed. If
|b1] = |bs| then |by + by + as| =1, if |by| <|ba| then |b, + b + a3| = 1 gives a contradiction. The
proof is completed.

3. LEMMAsS AND CONJECTURES ON 3-GRAPHS
LEMMA 3.1. Let G=(V, E) be a 3-graph (no loops no multiple edges), where V =
Viu Vo, Vin Vo=@, |Vi|=ny, |Va|=na<2n,—1 and E contains an edge either of the

form {x;, xj, v} (1<i<j=3, 1<k <2)orof the form {x;, y1, y2}(1 <i <3) for any choice of
X1, X2, X3€ V5 and yq, y2€ V. Then

|E|2%n1(’;2), (25)

PrRoOF. E; < E will denote the set of the edges whose intersection with V;is i and ¢; is
the size of E;. Clearly

|E|=e;1+e,. (26)
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Let us count the number of pairs (A, B), where the sets A and B satisfy A o B, |A| =5,
BeE,|AnVy=3,|[AnVi|=2and 1<|Bn Vy|=<2.

For B € E, there are (n, — 1)(n, —2) sets A satisfying the conditions. On the other hand,
if B € E; then this number is ("% '). The exact number of the above pairs is

-1
exm=D(m-2+eo( ).

On the other hand, for any fixed one of the possible (3')(?) sets A, there is at least one
A>BeE;uE,. Hence

n na—1
(”2‘)( 32)Sel(n1—1)(n2~2)+e2( 22 ) @27)
Since the condition n, <2n,;—1 implies
-1
(")) =tu-D0ma-2),
2
the inequality

(%)) = ter+eartm— 1) -2) (28)

follows from (27). Finally, (25) is an easy consequence of (28) and (26).

THEOREM 3.1. Ifp <3 then

Ns(X, n, m)

lim e wp (=gl (29)
m/n=p (3)
Proor. Choose arbitrary vectors ay, ..., a, € X with ||a]|=1 (1<i<m). Put Vo=

{1,...,m}, Vi={m+1,...,n} and let G =(V,u Vy, E) be the 3-graph in which E
consists of the triples {i, j, k} (1 <i <j < k < n) satisfying ||a; + a; + ax]|= 1. By Lemma 2.1,
the conditions of Lemma 3.1 are satisfied. Hence

|E|=&n —m)(’;) (30)

follows from (25). As E can be chosen to satisfy |E|= N3(X, n, m), inequality (29) is a
consequence of (30). The proof is completed.

Theorem 3.1 improves even the order of magnitude of (5) or (6). In fact, this order of
magnitude is already correct. If a1, ..., am=1and an.1=""*=a,=—jthen

m

Ns(as, . .., am)=(’;’) +(2)(n 2
that is,

N3(X, n,
tim KoM g pyap,
minen (%)
however, this is not the best upper bound.

Let us remark that in low dimensions the constant in (29) can be improved. E.g. in two
dimensions, Lemma 2.1 holds with one b, consequently 3 can be changed to 3.
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To determine the exact value of the limit seems to be very hard. Therefore, in the rest of
this section we will consider only the number

NS(Xs n) =N3(Xa n, n)
and the limit

. Ni(X,n)
lim

new (3)

We will try to improve (4), (5) (which is a consequence of a conjecture, only) and (6) (here
p=1).

Let us repeat the proof of (4). There we had only one condition on the 3-graph: any 4-set
contains at least one edge. However from Lemma 2.2 we have an additional condition:

no five vertices can induce the graph having just the
edges {x1, x2, xa}, {x1, x2, xa} and {x3, x4, x5} (31)
(see Figure 1).

| X2

X3 X4

A5

FIGURE 1.

We will now consider the problem of minimizing the number of edges of a 3-graph with n
vertices and satisfying the conditions (3) and (31). This minimum will be denoted by A (n).
It is obvious from the proof of (4) that if X is the real line, then

Ni(X, n)=h(n). (32)

If, as we hope, Lemma 2.2 can be proved for any Hilbert space X then (32) also holds for
any Hilbert space. Before stating our first conjecture, we construct a graph G (vy, ..., v,)
with vertexset V = VU + - U V,, where the sets V; are disjointand | V;| = v.. For v € V let
f(v) denote the index / satisfying v € V.. A triple (a, b, ¢) (a # b # ¢ # a) is an edge of our
graph G(vy, ..., v,) iff either f(a) = f(b) = f(c) or there is a unique smallest one among
f(a), f(b) and f(c). It is easy to see that G(vy,..., v,) satisfies (3) and (31) for any
1=<wy,..., v. On the other hand, if v, <2 then no edge can be omitted without violating
the conditions. Denote by k1(n) the minimal number of edges in a graph G(vy, ..., v,),
0;20,Y; o;=n.
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CoNJECTURE 3.1. hi(n)=h(n). Moreover,

h(n)

h =lim 5 =4-2v3=0-5358984. ... (33)
3
Note that the inequality
-
il e [M] (34)
n—3

is trivial ([x] denotes the smallest integer =x). For small n the function k(n) can be
determined by (34). h(4) = 1 is trivial, the optimal graph is G(3, 1) . #(5) = 3 follows from
(34), but with a little effort £(5) =4 can be shown. The graphs G (4, 1) and G (3, 2) show
h(5)=4. From (34) and G (4, 2), h(6) = 8 can be obtained, but it should be remarked that
there are two more optimal graphs non-isometric to each other and to G (4, 2). (34) gives
only 4(7) = 14, but a tedious analysis of the cases implies #(7) = 15. Then the graph G (5, 2)
shows that 4(7)=15. In fact, for n =7 there are at least seven, non-isomorphic optimal
graphs. For n =8, (34) gives h(8)=24 and G(5, 2, 1) shows that #(8)<25. (It is worth
mentioning, that, as shown in [4], T'(8, 4, 3) =20.)
Inequality (34) implies

h(n—=1) h(n)
=
("3) (3)
Putting h(7) =15 and h(8) =24 into (35) we find the same lower estimate for k:
24

22 _-3-0.428571---<h. (36)

-<h. (35)

Inequality (36) already improves our best result, since 13 <37. However, we shall obtain
some further improvements. It would be good to prove A(8) =25 since this would give
h =%(>3%), a better estimate than the one resulting from the Turdn conjecture. (Let us
remark that T'(8, 4, 3) = 20 gives 13 in the same way [4].)

However, if [ ] is not omitted from (34), it gives a stronger estimate than (35):

(1?)['.'”h(n):i;]:ii.ln'MA{3]$h’ (37)

whenever M = n. The theory of diophantine approximation might give a way to determine
the limit of the left-hand side of (37). We simply calculated the left-hand side of (37) for
large M with a hand-calculator. Starting with n = 7 we obtained 0-44444 < h. It seems to
be very likely that the limit for M - o0 is 3, but we were not able to prove this. However,
even in this case we almost have reached the estimate that would follow from the Turan
conjecture (by (32)):

THEOREM 3.2. If X is the real line, then

lim 51%930-44444. (38)
n-=>00 3

Of course, (38) holds for any X satisfying Lemma 2.2. For a general Hilbert space X, we
have only Lemma 2.3. Even this fact could improve the earlier results for any X. However,
it does not seem to be wise to spend too much time on this, since it is likely that Lemma 2.2
holds for any Hilbert space.

LEMMA 3.2
h<4-23.
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PrROOF. Puta = (~/§— 1)/2 and take the graph
G([(1-a)nl,[(1-a)an],[(1-a)a’n],...,[(1—a)a'n)), (39)

where r is determined by the inequalities (1—a)a’n <1 and (1—a)"'n>1.[ ] denotes
either | ] or [ T, chosen in such a way that the sum of the quantities is equal to #. It is easy
to see that this can be done, since the sum without the symbols [ ] differs from n by less than
1. The number of edges missing from the graph (39) is

([(1 —2a)n]) é} [ —a)a‘n]+([(1 —;)an])

[(1-a)a" 'n]
2

{1-an)® T A—a)an+({(1—a)an? T (1—a)a'n
i=1 i=2

x 3 [(1=a)ain]+- -+ ) x[1=a)an]

4o+ ((1—a)a" 'm)*(1—a)a'n+o(n

=1 EO (1-a)a'n)* §1(1—a)ain)+o(n3)
i= i=j+

_n3 (1-a)a 3 ﬂn3 (1—a)a 5

“2 I I et )

This shows that the ratio of the missing edges to the total number (3) of edges tends to

1- =
=l VN 3
l+a+a

The proof is complete.
LEMMA 3.3.  The first part of Conjecture 3.1 implies (33).

PrROOF. Let us first prove

h(n)= min (h(n—u)+(;)+(n2u)u). (40)
Choose an optimal graph G(u, . . .) with n vertices. Here, the first class V; has u elements.
G(u, . ..) contains all the triples completely in V;. Their number is (5). The number of
triples having exactly one vertex from V; is (") u. As these numbers do not depend on the
structure of the graph induced by V — V/, the number of edges in G(u, . . .) is minimal if
this induced subgraph has the minimal number of edges. By the first part of the conjecture,
this can be chosen to be A(n —u). This proves (40).

Let u(n) be one of the optimal values u in (40). If n — u(n) does not tend to infinity then
n—u(n)<K for infinitely many n. Consequently,

(“3)/ ()~

follows for these n. In turn this implies

h(n)
=1
(3)

lim

and this is impossible by Lemma 3.2.
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By the definition of & we have
hn) = (3) (h=e () (41)

where e(n)— 0. Furthermore, e(n —u)—-0 by the remark above. Let us examine the
quantity minimized in (40):

("3 ) metnmun+(5)+(" ;)

=eu(d—h)+eu’n(3h —2)+3un* (1 —h)+in’
+el—uwle(n—u)—u3ne(n—u)+ul3ne(n —u)
—3u(h—e(n—u))—3un+2u+6un(h—e(n—u))
—2u(h—e(n—u))—3n>+2n).

The quantity in the square bracketsis o(n’). On the other hand, the minimum of the rest of
the right-hand side is

n’ h>—2hvh—2h+8
6 (4—h)* ’

Hence the right-hand side of (40) differs from (42) by o(n°). By (41) the left-hand side of
(40) is (n*/6)h + o(n>). Hence

(42)

h_hz—thE—2h+8
(4—h)*
On the right-hand side (2 — \/E)z can be cancelled, since & < 1. That s, (43) is equivalent to
h*+ahVh+3h—2Vh—-2=0.
The roots of this equation (for x/ﬁ) are —1, —1,v4—-2v3 and —v4—2+v3. The condition
0=<h implies h =v4—2+v3. The proof is complete.
However, we are still not able to construct a system of vectors following the construction

of the optimal graphs. For instance, G(2, 2, 1) can not be copied in one dimension. This is
exactly the statement of Lemma 2.4,

(43)

CONJECTURE 3.2. Ifa 3-graph on n vertices satisfies conditions (3) and (31) and does
not contain an induced subgraph isomorphic to G(2, 2, 1) then the graph cannot have fewer

edges than the graph
2n] | n
o315

This conjecture has not been studied extensively, so we should call it a *“‘Hope” rather
than a conjecture. However, if it is not true then the aim is to find further additional
conditions until they ensure that the number of edges cannot be smaller than in
G([2n/3], [n/3]). Why is this graph so magic? Because it can be represented by vectors:
ai=1(1<i<{[2n/3])anda;=-2([2n/3]<i<n).|la;+a;+a.|=1ift{i, j, k}isanedge in
G([2n/3], |n/3]). This proves one half of the next conjecture.

CoNJECTURE 3.3. For any Hilbert space X
N3(X, n) _ 5

lim = ==,
aso (3) 9
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The inequality < follows by the above construction for any Hilbert space. The inequality
= follows from Conjecture 3.2 for any space for which Lemmas 2.2 and 2.4 can be proved.

4. CONCLUSIONS FOR PROBABILITY THEORY
We give here the results only. The proofs are trivial using the method of papers [2, 3].
First a consequence of Theorem 3.1:

THEOREM 4.1. If &, &, & are independent, identically distributed random variables in
a Hilbert space and P(||&1]|= x) <} then

P(lé1+ &+ &l = x) =3P (|6 = x)(1 - P& = x).

A consequence of Theorem 3.2:

THEOREM 4.2. If &, &, & are independent, identically distributed real random vari-
ables then

P&+ &+ &= |6l &, 65| = x) = 0-44444  PP(&1| = x).
The above theorem is true for any space X satisfying Lemma 2.2. From the Turan
conjecture we obtain § (in place of 0-44444) for any X. A proof of Conjecture 3.3 would
imply 5. (As we remarked earlier, this constant cannot be improved.)

A. Sidorenko [6] has found similar results by other combinatorial methods.

5. OPEN PROBLEMS

As the paper contains more open problems than solutions, it seems to be useful to make
a list of the open problems posed in the paper.

(i) Prove or disprove Conjecture 3.1-3.3.

(ii) For what spaces are Lemmas 2.2 and 2.4 true? It is obvious that it is sufficient to
prove the lemmas up to five dimensions. (For two dimensions they are probably
easy but the proof may be time consuming.)

(iii) Determine the limit of (37) as M > 00. When n =7 (h(7) = 15) is this limit 5?2

Note added in proof. G. Bereznai and A. Varecza recently proved that (37) tends to s in a
paper submitted to Elem. Math.
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