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1. Introduction

Armstrong [1] and Codd [2] introduced closures as models of databases. Let
X be the (finite) set of types of data. That is, the elements of X are words like
‘name’, ‘date of birth’, ‘age’, etc. Some of the data determine some other data
uniquely. For instance, the date of birth determines the age (in a given moment).
Let Ac X, ae X, a¢ A. We say that A4 determines a and write 4 — a iff the set
of data in A determines the data in a, more precisely, there are no two indi-
viduals having the same data in 4 and different in a. The function .~z 2V — 2%
is defined by

Z(A)={a:4-a}.

This function obviously possesses the following properties:
AcZ(A), (D)
A c B implies #(A4) c #(B), (2)

* The research of these authors was supported by the Hungarian National Foundation for Scientific
Research, grant numbers 1812 and 700021.



128 G. BUROSCH ET AL.
FHENA)) = A, (3)

Such a function is known as a closure. Therefore a closure is a possible model
of a database bringing some of its important features into relief.

Z(P)=¢ (4)

is a rather natural assumption for closures formed from databases. In the present
paper we will use the name closure for the closures satisfying (4).

A database is constantly changing during its life. It also changes the corre-
sponding closure. A typical change is to delete the data of some individuals. If
A — a is true then it remains true after the change. This implies

Z(A)c A (A) (forall Ac X) (5)

if #| and %, denote the closures before and after the change. We say that ~, is
richer than or equal to %, (£, = ) if they satisfy (5). It is easy to see that
this property is transitive, consequently the closures of a fixed n-element sct
X form a partially ordered set (poset) for the ordering given in (5).

The aim of the present paper is to study this poset P. We emphasize the term
poset, because the properties investigated here arise typically at posets. The
investigation of these properties is motivated below. We do not know. how-
ever, any database motivation for the usual questions interesting from a lattice
theoretical point of view (distributive elements, semimodularity, etc.).

Section 2 contains some preliminary results. Most of them (the Lemmas
and the Propositions) belong to the folklore. We collected them here to make the
paper selfcontained. We found no proper reference. As the referee kindly in-
formed us, a lecture note was prepared and circulated by R.P. Dilworth in
1942, which was the most complete treatment of general closure operators.
Unfortunately, it was never published. These results give a more clear picture
of P by terms of closed sets (Z(4) = A). It also follows that P has a rank-func-
tion.

It should be mentioned that P is defined and studied in a paper of Dilworth
and McLaughlin [4]. In that paper, however, #, <%, iff (5) holds. We chose,
after some hesitation, the present ‘unnatural’ opposite way because it ensured
that richer closures had ‘more’ closed sets (Proposition 1).

The main results of the paper are in Section 4. Consider the closures of a
fixed rank in P and try to find the minimum (maximum) number of neighbouring
closures from above (from below). That is, lower and upper estimates of the
degrees (from above and from below) in a fixed level of the Hasse diagram of
P are sought.

The database motivation for this question is the following. A temporary state
of the database corresponds to an element of P. A change in the database corre-
sponds to a move along an edge of this Hasse diagram. The life of the database
therefore corresponds to a random walk along the Hasse diagram of P. As a first



A MODEL OF CHANGING DATABASES 129

model, we might suppose that all the edges at a given element are chosen with
equal probabilities. To obtain any (probabilistic) statement in this model we
obviously need information about the degrees.

The other motivation for the questions of Section 4 comes from the theory
of posets. What is the maximum number of incomparable elements in P?
(Maximum size of an antichain.) A well-known method giving good estimates
for this number uses the number of chains (total number of chains and the
number of chains passing through a given element). To obtain estimates on
these numbers, we again need information about the degrees.

The results of Section 3 are not along the main line of the paper. Kc X is
said to be a minimal key of & iff Z(K)= X but #(A4) # X for any proper sub-
set of K. The minimal keys play an important role in the theory of databases.
The data of a minimal key determine all other data. It is natural to ask what is
the relationship between the closure and its system of minimal keys. We give a
necessary and sufficient condition, under which the system of minimal keys
determine the closure # uniquely.

2. The Poset of Closures

The set A4 is called closed in the closure % iff #(A4) = A. The family of closed
sets is denoted by ¥ = 7 (). We use the following well-known facts (Lemmas
1-3) about 7 without proof.

LEMMA 1.

A Bes implies ANBe ¥, ¢ 7 Xe7.
If a family satisfies (6), we say that & is closed under intersection.
LEMMA 2. #(A) is equal to the smallest closed set containing A.

LEMMA 3. For any family  c 2% satisfying (6) there is a unique closure &
such that & = F (¥).

The main statement of this section is the following

PROPOSITION 1. 2, <%, i (&) c F(&).

Proof. Suppose that #; <.#, and 4 is closed in .#,. By definition, %, (4) = A
holds. Formula (5) implies 4 5.%,(A) and, by (1), we obtain A4 =_%(A). That is,
A€ 7 (&) and the first part is proved.

Conversely, suppose now ¥ (%) c #(%,). By Lemma 2, Z1(A) and #(A)
are the smallest closed sets with respect to %, and %, containing A, resp.
F (1)) c F (&), implies #,(4) c #(A) and this is the definition of ¥, <.#,.
The proof is complete. O

We say that &, covers &, and write %, >%, iff &, >.%, and there is no %,
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satisfying %, > %3 >.%,. The function r associating nonnegative integers with
the elements of a given poset satisfying the following two conditions is called
a rank function:

r is zero for some element. (7)
if &, covers #, then r(%;) =r(#)) + 1. (8)
PROPOSITION 2.

AL WFA)cF (&) and |F(&#)-F (&)= 1.

Proof. If <., then (%)) c F(%,) follows by Proposition 1. We have
to prove |.F (%) — F(#)| =1, only.

Suppose indirectly that | F(#,) — # ()| = 2. Choose any member 4 € 7 () -
F(&)). Consider a minimal C= AN B¢ F(%)), where Be 7(¥,). Then (&)U
{C} is closed under intersection.

The rest of the proof is a trivial consequence of Proposition 1 and Lemma 3.

O

PROPOSITION 3. r(%)=|F(#)|— 2 is a rank-function on P.

Proof. #(X)=X and Z(¢)=¢ follow by (1) and (4), resp. This implies
|7 ()| =2 for any element of P. Condition (7) is fulfilled. Proposition 2 implies
(8). The proof is complete. O

The rank r(P) of P is the maximum value of the rank function. It is easy to
see that it is

r(P)=2"-2

where | X| = n.

Let ¥ be a family closed under intersection. Then let .# (%) denote the family
of such members 4 € & which are not intersections of two other members of
&, different from A. .#(F (%)) is shortly denoted by .#(%).

LEMMA 4. If ¥ is closed under intersection then any member of 7 is an inter-
section of some members of #(7) — {X}.

Proof. We use induction on the size of the member 4Ae.7. X is the void
intersection. If | 4| is maximum in & — {X}, then Ae #(¥) and 4 is a one-
term intersection. Suppose that | A| is smaller than the maximum and the state-
ment is proved for larger sizes. If 4 € .#(%) were are done. If A4 i A(F), Ais
an intersection B, N B, of members different from 4. Their size is larger than
that of 4, consequently we may use the inductional hypothesis for them and this
gives an intersection of the members of .#(%). The proof is complete. O

PROPOSITION 4. Let & be a family closed under intersection and Ae 7.
F — {A} is closed under intersection ifAe.#(F)- {9, X}.
Proof. Suppose first that A€ .#(F)— {¢, X}. B, Ce.7 — {4} implies BN Ce
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7, but BNC can be equal to 4 only when one of them is equal to 4. This
contradiction shows that ¥ — {4} is closed under intersection.

The other implication will be proved in an indirect way. Suppose that
AeF — #(F). Then there are B and C satisfying B# A# C, A=BNC and
B, Ce &. Hence, we obtain B, Ce ¥ — {4} and BNnCe¢ 5 — {A4}. ¥ — {A} is not
closed under intersection. If 4 = ¢ or X, this holds by (6). This contradiction
completes the proof. a

Lemma 4 and Proposition 4 can be summarized in the following way. If
Z 1s a family closed under intersection, then exactly the members of .#(F) —
{¢, X} can be omitted from % without violating this property. On the other
hand, ¥ and #(%)— {¢, X} determine each other uniquely. This is almost
true with the family of sets which can be added to % preserving the property
that it is closed under intersection. We will explain it more in detail.

Let Hc X, H¢ 5 and suppose that both & and U {H} are closed under
intersection. Consider the sets A satisfying 4 €.#, Hc A. The intersection of
all these sets is in .7, therefore it is different from H. Denote it by L(H). Hg
L(H) is obvious. Let #(5) denote the set of all pairs (H, L(H)) where H c X,
Hgs but FU{H} is closed under intersection. We will prove that #(¥)
uniquely determines % and then we characterize the set of #(¥)’s for all &
closed under intersection.

THEOREM 1.
F={A:Ac X, Hc A= L(H)c A for all (H, L(H)) € #(F)).
Proof. By definition, any member A4 of ¥ has to satisfy the condition
Hc A= L(H)c A forall(H, L(H))e #(¥). 9)

We have to prove only that all sets satisfying (9) belong to .#. We prove this by
inductionon k =k, =|{H:Hc 4, (H, L(H)) e #(5)}.

Consider first the sets 4 with k4 =0, that is, the sets 4 containing no H((H,
L(H))e #(¥)) as a subset. Choose the one not being in % and minimizing
|4]. Then the intersection of 4 with any member of .# is either 4 or a member
of 7, therefore # U {A4} is closed under intersection. A = H must hold for some
(H, L(H))e #(¥), contradicting k,=0. This contradiction proves 4% if
kqs=0.

Suppose now that k> | and that the statement is proved for all sets A4 satis-
fying (9) with k4 < k. Further suppose that k, = k and A satisfies (9),

Ao Hysomdlis AB Hipifums (10)
and
Ag F. (11)

If there are more such sets A4, take the one minimizing | A].
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We will verify that #U {4} is closed under intersection. Let Be.7. We have
to prove that M = 4N B is either A or a member of #. If M = A then we are done.
M & A can be supposed. We distinguish two cases:

() BoH,, ..., H. This condition combined with Be.7 imply B> L(H,).
s L(Hy). A> L(H)), ..., L(H}) follows by (9) and (10). Hence, we have M o
L(H)),...,L(Hy). M Hy,,,... is obvious. Hence. we see that A satisfies 9),
(10) and | M| < (A4), therefore M €  must hold.

(i1) B H; for some 1<, <k. As before, it can be seen that M=ANRB
satisfies (9), and M » Hj, Hy,y,.... Hence, kjy; <k and by the inductional
hypothesis we have M e 7.

FU{A4} is really closed under intersection. However, 4 cannot be equal to
any H because of (10), (9) and H;g L(H,). This contradiction proves 4 € .7 and
the theorem. (a

THEOREM 2. The set {(A,—, :B,)},’":l is equal to #(7) for some 7 closed under
intersection on X if and only if the following conditions are satisfied

¢?EA,‘$B,'CX, (12)
Aic A;implies either B, A; or B; > A,, (13)
A,‘CBJ,' tmp[zes B,‘CB', “4)

Jorany i and C c X satisfying A; & C& B, there is a j such that either
C‘:AjOrAjCC, BJ'CZC, Bjﬁca”hOId (IS)

Proof. First we prove that the conditions are necessary. Suppose that
#(F)={(4;, B)}", for some F closed under intersection. First prove (12).
Aje 7 and g€ F prove ¢ # A;. As B;= L(A4,), it is the intersection of all mem-
bers of .# containing A4;. Therefore, 4, c B, holds, but we cannot have equality
since B; = L(A4;) e # (¥ is closed under intersection) and A4; ¢ 7.

Suppose 4;c4;. As FU{4;} is closed under intersection, B, = L(4,)e.7
implies that A;N B is either 4; or is an element of . In the second case, A; C A,
and 4;c B; imply 4; c A;N B;e #. By the definition of L(A;) we obtain L(A4,)c
A;N By, that is, the desired relation B, ¢ A;. Condition (13) is proved.

Condition (14) is a consequence of B,e .7 and of the definition of (B, =)/1(4,).

To prove (15) suppose Aig Cg B,. (It can happen only when |B, — Al =
2)) If C= A, for some j we are done. Otherwise .7 U {C} is not closed under
intersection. There must exist a De.% such that DN C is neither C nor an
element of #. By Theorem 1 there is an Aj such that 4,c DNC but B, = L(4,) ¢
DNC. 4;,cDNC implies A4jc D and 4, C. Hence, we have B;=L(4,)c D,
by De #. Biz DNC yields Bj¢ C. The last relation we have to prove is
C¢ B;. This is a consequence of DNC » C and B;c D. This proves that our
conditions are necessary.
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Conversely, we have to prove that if (12)-(15) are fulfilled for the set
{(4;, B,-)};';], then there is a family & closed under intersection and #(¥) =
{(4;, BH)}™ | . We determine 7 by

F={E:Ec X, Ajc E= B,cEforall i(l <i<m)} (16)

(see Theorem 1).

It is obvious that .7 is closed under intersection and 4, ¢ # (1 <i< m). Prove
first that #U{4;} is closed under intersection. Let De.¥ and suppose that
A;c DN A;. We have to prove that DN 4; is either A4; or it contains B;. 4,c De
# implies B;c D by (16). A;c 4, implies either B,c A; or B;> A, by (13).
In the first case we obtain B;c DN A;, while in the second case 4,c B;c D
results in DN A; = A;.

We also have to prove that B; is the intersection of the members of & contain-
ing A;. Indeed, if 4, c D € ¥ then by (16) B; = D follows. On the other hand, we
have to see that B; e &. This is a consequence of (16) and (14).

It remained to prove only that no other sets can be added to ., only the 4;.
Suppose that C ¢ .#, # U {C} is closed under intersection and C # A4, (1 < i< m).
By (16) there is an i (1 <i< m) such that 4;& C but B;¢ C. The intersection
CN B, is either C or is a member of &. The latter case contradicts (16): 4;c
CNB;¢ B;. This shows C& B;. We obtained 4, Cg B;. By (15) there is a j
such that either C=4; or 4;c C, Bjc C, B; » C all hold. The first case contra-
dicts the assumption that C is different from the sets 4,. In the second case let
us investigate B;N C. It is neither equal to C (since B;>C) nor is in (4, c
B;,nC but B;c B;nC). Therefore, FU{C} is not closed under intersection.
This contradiction proves # (%) = {(4;, B,-)};" ; and the theorem. O

COROLLARY L. If |#(F)|=1 then |L(H)— H|= 1, otherwise |L(H)— H|<
|.#| holds for all He #.

Proof. If #(7)x {(H, L(H))}, then condition (15) cannot be fulfilled for a
C satisfying H ¢ C & L(H). Therefore, L(H) — H must be a one-element set.

Suppose | #(#)|> 2 and prove that the set A; in condition (15) cannot be a
subset of 4;. This is obviously true if 4, satisfies 4; & C = A;. In the other case
Ajc A; implies either B;c A; or B;> A;. In the first subcase B;c 4,c C con-
tradicts B¢ C, while in the second subcase B; > 4; implies B;> B; by (14) and
the contradiction is between B; > B; > C and B, » C.

Fix an element (H, L(H))e #(%). Take the sets H(a)= HU {a} for all ae
L(H)— H. Apply (15) for them. There must exist an H(a), (H(a), L(H(a))) e
#(5 ), playing the role of 4;. By the above section H(a) ¢ H, therefore a € H(a).
Hence, the sets H(a) are all different. This implies the desired inequality
|L(H)- H|<|#|. 0

In the present section we described the poset qualitatively. In the last section
we come back to the quantitative part of this problem. Before this, we in-
vestigate a question of somewhat another nature.
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3. When do the Keys Determine the Closure?

Let # () denote the family of minimum keys in the closure .7, By the mini-
mality, it follows that 4, Be # (%), A # B imply 4 ¢ B. The families having
this property are called Sperner families. A Sperner family .~ is saturated if
{4} U is not a Sperner family for any 4 ¢ ..

In this section we ask the converse question. Given a Sperner family .~ , does
there exist a closure satisfying .7 = .7(%). If yes, is it unique? It seems to be
evident that there is always such a closure. We will prove it later. If . contains
only a few members then .% is obviously nonunique. One can, however, think
that any saturated . determines the closure uniquely. This is true (Corollary 2)
however, not only the saturated ones have this property. We show later a
counterexample. The situation is more complex.

Some necessary definitions. If & is an arbitrary family of subsets of X, then
& and o are used in the following ways:

& ={A:3B such that 4 c Be v},
# ={A:3B such that A > Be w}.

Moreover, if & is a Sperner family then let .%! denote the family of maximal
subsets not in &

THEOREM 3. Let . be a nonempty Sperner family. A closure » satisfies
S = (&) iff

{Xtus'co@) c (xtus! (17)

Proof. Suppose that .% = .#(%) and prove (17). X is always closed, we need not
consider it. Let us first verify that ' < .#(%). Take an arbitrary member
Ae5 . Property (1) implies 4 c #(A). Suppose that 4 % _(A). The defini-
tion of &' yields #(4)¢.#", therefore #(A)e ¥ and there is a Ke./ such
that Kc#(4). (3), (2) and & =#(¥) imply #(A) = 2(A(A) > (K)= X
contradicting 4 ¢ & = #(&). This proves the left-hand side of (17). The right-
hand side is trivial: If 4€ (%) - then there is a Ke.#(#) such that
KcA.(2)and 4 € (&) imply A = #(4) > #(K) = X, consequently 4 = X,

Conversely, suppose that (17) holds and prove . =.7(%). Let 4.5 and
show 4 e #(¥). Z(A) is a closed set by (3). Condition (17) implies that either
Z(A)=X or ¥(A)e.#" holds. The latter one contradicts Ae.”, we may
conclude #(4) = X. However, a proper subset B of A4 is in 27" and there is a
C such that Bc Cc A and X % Ce %', Property (2) implies #(B) c #(C) <
Z(A). C is a closed set by (17), therefore Z(B)cZ(C)=C # X implies that
A is a minimal key: 4 € #(¥).

Suppose now that Ke #(¥). #(K)= X follows. By Lemma 1, K cannot
be a subset of a closed set other than X. (17) implies that it cannot be a sub-
set of a member of .#~!. Hence, K€ .5 follows. There is an 4.7 with A — K.
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Z(A) is a closed set € &, therefore the right-hand side of (17) leads to #(A4) = X.
If A+ K, this contradicts Ke #(%). We may conclude Ke.>. This proves
& =Z (&) and the theorem. O

In an application of the theorem we have to take into account that & (&) is
closed under intersection. So the smallest and largest F (&) are the ones formed
from all the possible intersections of {X}U.5~! and {X} U, resp. The corre-
sponding closures are denoted by Z,,;,(.%) and Zmax (), resp.

A consequence of the above theorem is the next one.

THEOREM 4. Let . be a nonempty Sperner Jamily. = %(%) determines
Z uniquely iff any member of 7 is an intersection of members of ¥,

This theorem was independently discovered by Z. Fiiredi [5], too.
The next condition is uglier than Theorem 3 but sometimes it is algorith-
mically better. We do not bother the reader with its proof.

THEOREM 5. Let ¥ be a nonempty Sperner Jamily. & = % (%) determines
% uniquely iff there are A — X and a € X such that

ag A,

3Be . such that Bc X — {a},

ABe ¥ such that Bc A,

Jor any C satisfying ae Ce. and AUC# X there is a De.& such that
Dc AUB —{a}.

COROLLARY 2. If % is a saturated Sperner Jamily then % = #(Z) uniquely
determines &.

Proof. It can be deduced from both Theorems 4 and 5 but it has a simpler
proof.

If Ae.% then the condition & =%(5) ensures £(A)=X. We will prove
that for the sets 4€.%~! the closure is also uniquely determined, namely
Z(A)=A.

& is saturated, either B> .#(4), B+#.%(A4) or Bc #(A) holds for some
Be.#. In the latter case (3) and {2) imply #(A) =Z(£(A)) > Z(B)= X contra-
dicting A€ 7. If B 2 #(4) > A then (1), (2) and (3) imply

B=(B—-Z(A)UZL(A)c Z(B—-L(A)UZL(A) c
CZ((B-Z(ANUA)=L(B—(Z(A)— A)).

Hence X = #(B)=_%(B — (#(A) — A)) follows. Be.& = Z(&) is a minimal
key, therefore #(4) = A as we wanted to show. The proof is complete. O

Finally, we show an example of a nonsaturated Sperner family uniquely
determining its #. Put | X|=n=5and = {{1,2}, {2, 3}, {3, 4}}, {4, 5}, {1, 5}}.
It is easy to see that all three-element sets are in .2, So .5~ consists of the
remaining two-element sets. Their intersections give us all the one-element
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and zero-element sets. Theorem 4 can be applied to show that .~ is unique.
One could also use Theorem 5.

4. The Number of Neighbours of an Element in P

Let deg,(#) and deg,(#) denote the number of elements of P covering .~ and
covered by ., respectively. We define the following functions:

Si(n, k)= max{deg,(¥): r(&) = k},
fa(n, k) = min{deg,(&): r(#) = k},
f3(n, k) = max{deg,(2): r(&) = k},
Ja(n, k) = max{degy(¥): r(¥) = k},
(1<n,0<k<g2"-2).

THEOREM 6. f(n, k)=2"— k- 2.

Proof. If r(&)=k, then |F(¥) =k +2 by Proposition 3. Proposition 2
implies that the closures %’ covering .# satisfy |7 (#") = k + 3, 7 (") .7 ().
The number of possible choices of the member # (/") —.7(~) is at most
2" — k — 2. We construct now a .7 (%) allowing all these choices. Suppose that

k+2:(”)+(”)+---+(")+a. where0£a<( & )

0 1 r r+1

Then let #(¥) consist of the empty set, all one-element, two-element, ...,
r-element subsets any a pieces of the r+ l-element subsets and X. It is easy
to see that this family is closed under intersection. Moreover 7 (- )uU{A}
(4 € ¥ (<)) also has this property. We can choose A4 in 2" — k — 2 different ways
and all these choices lead to closures covering .#. The proofis complete. O

We are not able to determine />(n. k) in general, but we show that it can take
small values for many k’s. On the other hand, we give good upper estimates
for the upper half of k’s. Before, we state a useful lemma.

LEMMAS. Let r=2% 4 ... 4 2% > 1, [21, a;>--->a;=0 be integers. One
can find nonempty subsets A, ..., A; in the (a, + 1)-element set A so that
A; & A;(i#))and

[{B:3i(1<i<!),BcA}|l=r.

Proof. We use induction on /. If /= 1, the statement is obvious. | 4, should
be a;.

Suppose that the lemma is proved for / — 1, that is, there are subsets B, ....
B, in an (a, + 1)-element set B so, that the total number of subsets is 2%2 + ... +
2%, The (a;+ 1)-element set 4 is chosen satisfying Bc A. Since a; > a>,
there is an element ae A — B. Then let A, =4 — {a}, 4, =B,U{a},.... 4=
B,U {a}. The number of subsets of A, is 271, We have to count only such subsets
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of A,, ..., A; which are not in A,, that is, the ones containing a. The number
of such subsets of B,,..., B;:2% 4 ... 4 2% The total number of subsets is
271 ...+ 2% as desired. The proof is complete. O
THEOREM 7.
Sn, k)=0if k=2"-2, (18)
Sn k)=1iffk=2"—-2""9"1_2 for some 0 < a < n, (19)

San, k) =2 iff k is equal to one of the following expressions but it is not of the
Jorm (19):

2n—2n-ast_an=b-1_2(0<a<bh<n), (20)
on_pn-a- (. zn—h—l +2n—afh+(‘~2_2
O<c<a<b,a+b-c<n-2), 21)

2n_2n—afl _2n—h-l +2n—a—b+c‘-| 9
O<c<a<b,a+b-c<n-1). (22)

Proof. fy(n, 2" —2)=0 is obvious. If k <2"—2, then let % be any closure
of rank k and take a minimal set M not being in F(&). It is clear that 7 (¥)U
{M} is closed under intersection, therefore it is (%) for some &’ covering 7.
This proves (18).

To determine the values k giving f5(n, k)= 1 we have to find the closures
< with # = # (7 (2)) satisfying |.# | = 1. Corollary 1 states that | L(H) — H| = I
holds in this case. Suppose |H|=a (0 < a < n). Using Theorem 1, the number
of members of & is 2" — 2"~4-! Therefore, the rank is k= 2" — 27-4-1 _2
is obvious, however, that for such ks there is a % with |#(F) = 1.

To determine the #'s with [.#(#)|=2 we use Corollary | again. # = {H,,
L(H\)), (Ha, L(H,))} implies |L(H|)— H,|=|L(H;)— Hyl=1. In this case
(15) automatically holds, therefore one should find the pairs satisfying (12),
(13) and (14). It is easy to see that for the possible constructions, the number of
members of # based on Theorem 1 is either (20) or (21) or (22). In the con-
structions a =|H,|, b=|H,|, c=|H,nH,|. When H, ¢ H,, Hy¢ H,, L(H,)
H; (20) can be obtained. If

L(H\)- H\# L(H))— Hy, L(H\)— H,, L(Hy)—H,¢ H,UH,, H,¢ H,,
H, 2 H,

then the rank is given by (21). Finally, if
L(H\)-H,=L(H))-Hy,¢ HUH,,H ¢ H,, H,  H,
then we obtain (22). The proof is complete. a

THEOREM 8. Suppose k>2""'42. Then fy(n, k)< number of bits | in the
binary expansion of 2" — k — 2. What is at most n — 1.
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Proof. Suppose that k satisfies the conditions of the theorem. Then
2" —k=2=2%142%4...42% (n=1l>a;>a,>--->a;=0).

Let xe X be a fixed element. According to Lemma 5, we can find sets A4,, ...,
A;in the (n — 1)-element set X — {x} so that

[{B:Bc A, forsomei(l <i<N}=2"—k—2. (23)

Obviously, none of 4; is equal to X — {x}. Choose H,= X — A, — {x} (1 <i<)
and L(H;) = H,;U {x}. It is easy to see that the set {(H,, L(H,))} satisfies the con-
ditions of Theorem 2. Therefore, there is a .# closed under intersection with
#(F)=1{(H,, L(H,;))}. By Theorem 1

|#1=1{4: Hic Ac X implies L(H,)c A (1 <i<}|.
This is equal to
HA:HicAc Ximpliesxe A}=2"—|{4:Hc Ac X - {x}

for some i(1 <i</)}. Using the complements with respect to X — {x} and
(23) we obtain

2" {4 :4 c H, for some i(1 <i< N}
=2"_|{B:BcA;,forsomei(l1<i<HH=2"-(Q2"-k-2)=k +2.

This proves that the rank of ¥ is k. As |.#(#)|= [ is the number of sets which
can be added to .7, this proves f>(n, k) </ and the theorem. O

We know practically nothing about f3(n, k). Let
F={p, {1}, {2}, ....{n}, (1,2}, {1,2,3}, ... {1, 2, ... n}}.

It is obvious that ¥ is closed under intersection and omitting any member
(# ¢, X) of it, this property is preserved. This proves f(n,2n —2)=2n—-2. The
subfamilies of & prove f(n, k) =k for 0 < k<2n— 2. On the other hand. it is
easy to see that all members (except ¢ and X) can be omitted only then when
any two members of & are either in inclusion or are disjoint. Lynch [6] proved
that there are, at most, 2n — 2 sets in an n-element X satisfying this property.
This proves f(n, k) < k for k> 2n — 2.

Finally, we study fi(n, k). f4(n, k) is the minimum number of members 4
of a family . = (%) closed under intersection, satisfying (i) | 7|=k + 2 and
(i) & — {4} is closed under intersection. Proposition 4 answers the question
about which members can be omitted from .#. Hence, we have

Sa(n, k)= minl.#(5) - {g}| - 1. (24)

Since X e .#(¥) always while ¢ € #(F) not necessarily holds. Lemma 4 says
that any member of .# is an intersection of some members of .#(7) - {X}.
This implies
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k+2=|-7|€ zl.l(i)lwl (25)
If ¢ ¢ .#(F), then (24) and (25) result in
[oga(k + 2)1 < fa(n, k). (26)

If ¢ #(5), then all the intersections containing ¢ are empty, therefore we
have

k+2=|F1< 1 4 2@l-2
in place of (25). This leads to
log(k + 1) < fy(n, k). 27

First we show that (27) is sharp if n is large enough relative to k. This is easy
in the case k+ 1 is a power of 2, say k+ 1 =2". Suppose that n>v + 1 and
fix an element x of the n-element X, and choose a (v + 1)-element subset N of
X containing x. Let # consist of ¢, X and of all proper subsets of N containing
x. Then | #] is obviously equal to 1 + 2¥ = k + 2 while

|.# ()| =1{g, X} U {v-element subsets of N containing x}|=2 + v.

We have f4(n, k) =v by (24). Formula (27) is sharp in this case.
To prove the sharpness of (27) in the rest of the cases we need a lemma.

LEMMA 6. If 2"+ 1< m<2" (r= 1) then there is a family S(r, m) of r sub-
sets of a 2" '-element set X(r, m) such that (1) the number of all different inter-
sections is exactly m, (ii) the intersection of all members of the family is empty,
(i11) X(r, m) itselfis not in the family.

Proof. We construct the family recursively. If r= 1, then m = 2. (1, 2) = {4}
in a l-element X(1, 2). It is easy to see that it satisfies the conditions. Suppose
now that r > 1 and that the statement is proved for smaller r and any m.

First assume that m is even. By the induction hypothesis, there is a family
S(r—1,m/2). Let xe X(r — 1, m/2) a completely new element and define

X(rrm)=X(r—1,m2)u{x}
and
S(r,m)={FU{x}:FeS(r—1,m/2)}u{X(r—1, m/2)}.

The number |F(r, m)| is obviously r. The intersections are either equal to the
intersections generated by F(r— 1, m/2) (except the empty intersection, which
is changed) or such sets completed by x. Therefore the number of intersection
is exactly m. It is easy to see that the other conditions are also fulfilled.

If m is odd, take another copy X’(r— 1), (m + 1)/2) of X(r—1, (m+ 1)/2).
If Fe X(r—1, (m+ 1)/2) then let F’ denote the set of copies of the elements
of F. Define
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X(rm)=X(r—1,(m+ 1)2)uX’(r=1,(m+ 1)/2)

F(r.m)={FUF":FeS(r—-1,(m+ 1)/2)}
U{X(r—1,(m+1)2)}

where §’ is a copy of § in X’(r—1, (m+ 1)). |F(r, m)| is obviously r. The
empty set is an intersection in two different ways, therefore the number of
intersections is m. The other properties trivially hold. The lemma is proved.

Let us formulate our results on f4(n, k) as Theorem 9.

THEOREM 9.
Sa(n, k) =T[log>(k + 1]

and
Sa(n, k) =Tlogs(k+ )] ifn=k+2.

Proof. The inequality is proved in (27). The equality is constructed when
k + 1 is a power of 2. The condition for the construction was n > loga(k + 1) + 1.
We have to show a construction for the rest of the cases. [log,(k + 1)] can be
replaced by flogz(k +2). Let m=k+2and r= rlogz(k 4= 2%, Apply Lemma 6
for these parameters. This can be done if | X|>2""', however the latter in-
equality certainly holds if n > k + 2. The proof is complete. a

We know some upper estimates on f3(n, k) for smaller values of . as well:

THEOREM 10.

Sa(n, k)< lloga(k+2)) — 1 + (number of bits 1 in the binary expansion of
(k +2)) < 2[log,(k + 2)].

We will use two lemmas, one of them (Lemma 5) has been stated earlier.

LEMMA 7. Using the notations of Lemma 5, one can find nonempty subscts
Ca, ...y Ciiq, in the (a) + 1)-element subset C so, that the total number of
intersections formed from C,, ..., Cita, is exactly r.

Proof. Using Lemma 5, choose an (a5, + 1)-element set 4 with the subsets
Ay, ..., A; so that the number of all of their subsets is 272 + ... + 2%/ Let |C| =
a1+ 1, C> A4 and choose an element ae C — 4. This can be done since a; >
ay. Let 4,y ..., Aj, 4, beall (&, — 1)-element subsets of C — {a} and define

Ci=4;, 2<ig),
Ci=A,u{al (U+1<i<l+a)).
It is easy to see that any set containing a is an intersection of some of C,, .
e C1+a.- The number of these subsets is 2*!. From the sets not containing a

exactly those sets are intersections which are subsets of one of 4, ..., . 4;. Their
number is 2%2 + ... 4 2% by the construction. The total number of intersections
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isr=2%42%4...4 2% asdesired. The proof is complete. O

Proof of Theorem 10. Consider the binary expansion of k+2=2% 4+ ... 4
2%, Lemma 7 constructs a; +/— 1 nonempty sets in a set X of size =2 a, + |
with k + 2 possible intersections. Let .#(5) consist of these sets and X, while
# is the family of all intersections. Here |#|=k+2 and |.#(F) - 1 =a, + /1.
Since ¢ ¢ .#(F) this proves

San K)<a,+1-1

by (24). Here a, =[log,(k + 2)] and the first inequality of the theorem is
proved.

It is easy to prove that the number of bits 1 in the binary expansion of
k+2 is at most [log,(k + 2)] + 1. This proves the second inequality and the
theorem.

We saw earlier that
Ja(n, 2" — 1) =log,2" =v (28)

independently of n. We need, of course, the condition 2">2"4+ 1, that is,
n=[logy(k+2)]=v+ 1. However, (28) holds for any such n. Theorems 9
and 10 give

Ja(n, 2" + 2% — 2) =[log, (2" + 2#)] (29)

if v>u > 0. (29) holds, supposing n > logy(2" + 2#) =v + 1, independently of n.

One might think that (28) and (29) can be generalized. However, it is not
true when the number of bits | in the binary expansion of k + 2 is more than
2. More exactly, choosing the smallest possible n, namely n =[log,(k + 2)], the
value of fy(n, k) is larger than [log,(k + 2)]if /> 2. The inequality

Salloga(k +2)1, k) > [Noga(k +2)] (I>2)
can be formulated in terms of sets:

If Ay,..., A, are subsets of an n-element set and the number of all intersec-
tions formed from A,, ..., A, is more than 2"~ then it has the SJorm 271 42w,
wheren—1=2u>0.

This statement is proved in [3].
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