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Abstract. We will consider the following problem in this paper:
Assume there are n numeric data {z1,z2,...,z,} (like salaries of n indi-
viduals) stored in a database and some subsums of these numbers are dis-
closed by making public or just available for persons not eligible to learn
the original data. Our motivating question is: at most how many of these
subsums may be disclosed such that none of the numbers 1, z2,...,z,
can be uniquely determined from these sums. These types of problems
arise-in the cases when certain tasks concerning a database are done by
subcontractors who are not eligible to learn the elements of the database,
but naturally should be given some data to fulfill there task. In database
theory such examples are called statistical databases as they are used for
statistical purposes and no individual data are supposed to be obtained
using a restricted list of SUM queries. This problem was originally in-
troduced by Chin and Ozsoyoglu [1], originally solved by Miller et al. (5]
and revisited by Griggs [4].

It turned out [5] that the problem is equivalent to the following question:
If there are n real, non-zero numbers X = {x,z2, . .. ,Tn} given, what is
the maximum number of 0 subsums of it, that is, what is the maximum
number of the subsets of X whose elements sum up to 0. This approach,
together with the Sperner theorem shows that no more than (nng) sub-
sums of a given set of secure data may be disclosed without disclosing
at least one of the data, which upper bound is sharp as well.

However, it is natural to assume that the disclosed subsums of the orig-
inal elements of the database will contain only a limited number of el-
ements, say at most k (in the applications databases are usually huge,
while the number of operations is in most of the cases limited). We have
now the same question: at most how many of these subsums of at most &
members may be given such that none of the numbers z1, z2, ..., 2, can
be uniquely determined from these sums. The main result of this paper
gives an upper bound on this number, which turns out to be sharp if we
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allow subsums of only k or £ — 1 members and asymptotically sharp
case of subsums of at most k& members.

1 Introduction

The security of statistical databases has been studied for a long time. In this
case the database is only used to obtain statistical information and therefore no
individual data is supposed to be obtained as a result of the performed queries.
Of course, the user is not allowed to query individual records, still, using only
statistical types of queries, it might be possible to make inferences about the
individual records. Several authors investigated earlier the possibility of intro-
ducing restriction for the prevention of database compromise, which include data
and response perturbation, data swapping, random response queries, etc. One of
the natural restrictions is to allow only SUM queries, that is queries which return
the sum of the attributes corresponding to a set of individuals characterized by
characteristic formula. For more detailed explanation of these terms see Denning
[2,3]. In all of these cases it was assumed and will be assumed throughout of this
paper as well that outside user or attacker do not have any further information
about the database, only the answers to the SUM queries (e.g. they don’t know
about any functional dependencies).

Chin and Ozsoyoglu [1] introduced an Audit Expert mechanism for the pre-
vention of database compromise with SUM queries. Later Miller et al. [5] de-
termined the maximum number of SUM queries for this mechanism, which is
(Ln% J)' For example, in the database below one can ask the sum of the salaries
of the individuals chosen the same number (¢ = 0,1,2,3) of them from both
of the sets {Bush, Carter, Clinton} and {Johnson, Kennedy, Nixon, Reagan}.
In such a way one will chose (g) X (é) " (?) b (?) + (;) 54 (g) s (g) X (3) =
14+3%x443x64+1x4=235= (;) queries. Clearly, the given database and the
one obtained from this one by lowering the salaries of {Bush, Carter, Clinton} by
1000 and increasing the salaries of {Johnson, Kennedy, Nixon, Reagan} by 1000
will give exactly the same answer to these queries and therefore no individual
salary can be exactly calculated from this set of questions.

Table 1. Sample Database

Name Salary
Bush 250000
Carter 180000
Clinton 220000
Johnson | 120000
Kennedy | 100000
Nixon 140000
Reagan | 160000




A natural restriction of the above question is the restriction of the size of the
SUM queries, that is assuming that the sums may involve at most or exactly &
members. E.g., if in the above database we only consider SUM queries summing
up 3 data, a possible scheme of them without compromising the database is to ask
the some of the salaries of 3 gentlemen, two chosen from the set {Bush, Carter,
Clinton, Johnson, Kennedy} and one from the set {Nixon, Reagan}. Therefore
altogether G) X (f) = 20 queries are made, and, again, by increasing the salaries
of {Bush, Carter, Clinton, Johnson, Kennedy} and decreasing the salaries of
{Nixon, Reagan} with the double of that amount shows that no individual data
can be gained from this set of statistical queries.

The main results of the recent paper, presented is Section 3, Theorems 3.1 and
3.2 answer the questions about the maximal possible SUM queries when either
only a given number of data can be summed any time or when the number of
the data involved in any SUM queries is bounded above. The first question is
solved completely — that is a construction of the possible sequence of queries,
the number of them equal to the obtained upper bound, is given — assuming
(what can be quite natural in the real use of databases) that the number of
records is much larger then the allowed number of them in the SUM queries.
The second case is answered asymptotically.

In Section 2 we will carry on a sequence of transformations of the original
questions, most of the repeated (or simply referred to) the transformations done
by Chin and Ozsoyoglu [1] and Miller et al. [5,6] to formulate the exact math-
ematical questions to be solved in Section 3. In Section 4, we will draw the
conclusions to answer the original statistical database questions.

2 Deriving the Mathematical Problems

Let us be given n real numbers {z;,z,, ... ,ZTp, b (like salaries of n individuals
in the sample database) stored in a database. A possible SUM query is to ask
D iea i for some A C X = {1,2,3,... ,n} and we would like to maximize the

number of these queries (maybe with some other side constraints) such that
they will not determine any of the original data z;’s. That is we would like to
give a sequence of subsets of X, 4 = {A1, A9, ..., Ay}, maximize m, such that
the sums {Z%EAJ_ #ilLdg m} do not determine any of the z;’s. We will
only consider restricted type of attacks, that is methods to calculate the values
of ;’s from the known sums, namely linear combinations. However, the upper
bound proven for this restricted type of attacks will turn out to be sharp for
the general case as well. In Section 4 we will give constructions of databases
together with the sequence of SUM queries such that their number will be equal
to the obtained maximum (if we only assume linear combination attacks) and
the different databases (all individual data will be pairwise different) will both
give the same answer to these SUM queries.

To formulate the problem in another, for our investigation more suitable way,
consider the n dimensional vector space over the real numbers; R", and the unit
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of the subsets A; by v;, that is v; = (vi1,Vi2, .-, Vij, - - Vin), where v;; = 1 iff
z; € A;, 0 otherwise. With this setfing, we are looking for the maximum number
of v;'s such that none of the unit vectors e;’s are in (v1,Va,...,Vm), the subspace
spanned by the m characteristic vectors of the subsets determining the members
of the subsums. This can easily be seen with the following straightforward lemma.

Lemma 2.1 Let x denote the vector {z1,Z2,...,Zn} and for given sequence
of SUM queries with characteristic vectors vi,Va,...,Vm consider the wvectors
v where the value vx, the scalar product of the two vectors v and X, can be
caleulated from the values v;x, that 1s, VX 18 uniquely determined by the two
vectors v and x. Then these vectors will form a subspace of the original vector
space equal to (Vi,Va,...,Vm). O

From now on, instead of the sequence of the SUM queries we will consider
the subspace spanned by the characteristic vectors. Any question regarding the
maximum number of queries with certain property is equivalent to the ques-
tion of the maximum number of the (0, 1)-vectors (with the additional required
properties) of the subspace not containing any of the unit vectors.

The following further reduction steps of the problem are originally due to
Chin and Ozsoyoglu [1].

Lemma 2.2 (Chin and Ozsoyoglu [1]) I[fV C R", e; ¢ V 1 =1 = 1,
dimV < (n — 1), then there is a W D V such that dimW =n —1, €, ¢ W
L& & 0

Since any n (full) dimensional space would contain all unit vectors e;, and —
by the lemma above — all at most n— 1 dimensional spaces will be contained by
an exactly n— 1 dimensional space having the required property, we may assume
that the subspace giving the maximum possible number of allowed queries isn—1

dimensional. Take the matrix of a basis of this subspace and bring it to it normal
form

10---0 a4
01---0 ao
00---1ap—1

where none of the a;’s are equal to 0 due to the fact that the unit vectors are
not in the subspace.

The subspace spanned by the characteristic vectors of the allowed SUM
queries is also spanned by the rows of this matrix. Therefore all of these charac-
teristic vectors are in the subspace spanned by the rows of the matrix. On the
other hand, all the 0,1 vectors being in the subspace spanned by the rows of the
matrix do determine a SUM query and (if they satisfy the further assumptions,
like the number of 1’s is k or at most k) they are allowed, that is the set of them
will not compromise the database.



It is easy to see that the only linear combinations of the rows of this matrix
yielding (0,1)-vectors are those with coefficients 0,1. Any such linear combi-
nation will be a 0,1 vector if and only if the sum > a; over all i where the
corresponding coefficient is 1 is either 0 or 1. Therefore, we have to maxi-
mize the number of sums 2 ien® = 0 or 1 where the A’s are subsets of
In—1] = {1,2,...,n — 1}. Let us introduce a, = —1 and now consider the
sums ) .. pa; = 0 where the B’s are subsets of [n] = {1,2,...,n}. Naturally,

there is a one-to-one correspondence between these two sets of sums. Therefore,
our original question

Problem 2.3 Determine the mazrimum, possible number of SUM queries over a
set of n records without compromasing the database.

is now reduced to the following one:

Problem 2.4 Given a set of n real numbers {a1,a0,...,a,}, none of them being
equal to 0, determine the mazimum number of sums icep @ = 0 where the B's
are subsets of [n] = {1,2,...,n}.

Further, if we assume that the number of elements in the SUM queries are
restricted by a size constraint (like at most or exactly k element subsets are only
considered), the same restriction will apply to the sums in Problem 2.4.

In Problem 2.4 we omitted the assumption that a, = —1 since any set of n
non-zero real numbers {y;,vs,. .. ,Un} can be normalized (simply each of them
multiplied by the same non-zero number) such that for the resulting vector
{z1,22,...,2,} we will have x,, = —1 and the set (and therefore the number)
of zero sums naturally will not change.

Now consider the set of real numbers {a1,a2,...,a,} and the system of
subsets of the indices X — {1:2y..5,m}, B = {By, Bs,. .., B} such that the
suIms Ziij a; are all 0. Let X; be the set of indices of the positive a;’s and
Xy be the set of the indices of the negative a;’s. Since none of the a,’s are zZero,
X = X; U X, is a partition of the set X If we consider two sets B; and B
from the set B, then since 2 sty B = 2 iem, @ = 0, we have 2 ieB—B, % =
- ZiEBlﬁBz Oy = Zz‘ng~Bl a; and therefore the sums at the two ends of this
system of equations are equal and so have the same sign. Therefore, it is not
possible that By — By € X and By — B; C X5 at the same time.

Definition 2.5 Let X = X1 U X5 be a partition of the finite set X and F' and
G two subsets of X. We say that F' and G are separated by the partition if
F-GcX,andG—F c Xs does not happen at the same time.

We also know that all of the sets B; have the property B, N X 1 # 0 and

B;n Xy # 0, since sum of only negative or only positive numbers may not be
equal to zero.

Definition 2.6 We say that the family F of subsets of the finite set X = X;UX,
(XinX, =0, X, £ 0, Xo # 0) is difference separated (with respect to the
partition X, U X5) if F — G and G — F are separated by the partition for every

pair F, G of distinct members of F and F' N X1 #0,FnN Xy # 0 holds for each
member,



We know by now that for any set of SUM queries not compromising the
database we can find a set of a set of n real non-zero numbers {a1,aq,...,a,},
such that the subsets of indices indices X = {1,2,...,n}, B={B;1,Bs,..., B}
for which the sums Zz‘ij a; are 0 do correspond to the SUM queries, on one
side, and form a difference separated family of subsets on the other side. That
is, any upper bound on the size of difference separated families (in our case of
subsets of given sizes) will give an upper bound on the possible number of SUM
queries not compromising the database. In the next section we will derive such
upper bounds, while in the last section — Conclusions — with giving specific
examples we will also show that this bounds are sharp not only for the size of
the difference separated families but for the number of SUM queries as well.

3 The Main Mathematical Theorems

Theorem 3.1 Let 0 < k,n be fized even integers, ng(k) < n, that is n is large
relative to k. Let further X be an n-element set with partition X = X; U Xy

where X1, Xo # 0. Suppose that F is a difference separated family (with respect
to X1 U Xs) of subsets of size k and k — 1. Then

(n+1)(k—1)

‘j_—|<M(n7k):(L—k—i¢jl—J)(n{(n+1)k(k—1)J). "

Theorem 3.2 Let 0 < k,n be fixed even integers, no(k) < n, that is n is large
relative to k. Let further X be an n-element set with partition X = X; U X

where X, Xo # 0. Suppose that F is a difference separated family (with respect
to X1 U Xo) of subsets of size at most k. Then

|F| < M(n, k) + M(n,k—2)+M(n,k—4)+....

Remark. Theorem 3.1 is sharp, since choosing X4 to have (”il)?c@_—l) elements

and taking all k¥ — 1-element subsets of X; combining them with all possible 1-
element sets in X3, the number of sets will be exactly M(n,k). On the other
hand this construction obviously satisfies the conditions. Theorem 3.2, however is
not necessarily sharp, since the obvious generalization of the construction above
does not always work. It is, however, asymptotically sharp, since M(n,k — 2) +
M(n,k —4) 4+ ... = O(n*=3) while M(n,k) is of order k — 1.

The proof will be given by a sequence of lemmas.

Assume that a cyclic ordering is fixed both in X; and X,. We say that the
pair (A, B) of subsets A € X;,B C X, is an (a,b)-interval-pair if A and B
are intervals in the respective X and |A| = a,|B| = b. The middle pair of the
(a, b)-interval-pair (A, B) is (z,y) where x is the | 2! |th element of 4 and y is
the Lbizljth element of B.

Lemma 3.3 Suppose that (A, B) and (C, D) are (a,b) and (c, d)-interval-pairs,
respectively, where a +b = c+d (a,b,c,d are positive integers). If their middle



pairs comncide then either AUB — CUD C X; and C U‘ B—AUB C X5 or
AUB-CUDC Xy and CUB~ AUB ¢ X5 hold.

Proof. 1t is easy to see that if ¢ < ¢ then C ¢ A. The inequality d > b is a
consequence, this implies B € D. Hence we have AUB — C U D X1 and
CUb - AUB C X,. The case ¢ > a is analogous. 0

Lemma 3.4 Suppose that (A, B) and (C, D) are (a,b) and (c, d)-interval-pairs,
respectively, where a+b = c+d+1 (a,b, c,d are positive integers). If their middle
pairs coincide then either AUB —CUD C Xy and CUB— AUB C X5 or
AUB-CUDC Xy and CUB — AUB C X hold.

Proof. The previous proof can be repeated. O

Lemma 3.5 Let G be a family of difference separated intervals with respect to
X1 U Xy with members of size j — 1 and 5 (2 < j). Then |G| < niny holds.

Proof. The members of G must have different middle pairs by Lemmas 3.2 and
3.3. The number of possible middle pairs is nyns. 0

Introduce the following definition:

vosrsn-nn(()()

where the maximum is taken for all 0 < ¢ < ny,0 < j < ng,i+j = k.

Lemma 3.6 Let X = Xl UXQ, Xl ﬂXz = @, IX1| =N, ngl = MN9. If.? 8 a
family of difference separated sets of sizes ¢ and £ — 1 then

lf.* ¥ M(nlanZ;E) (3)
holds.

Proof. The number of four-tuples (Cy,Cs, A, B) will be counted in two different
ways, where C; is a cyclic permutation of X; (i = 1, 2, A=FnX;and B =
F'n Xy holds for some F' € F and they form an interval-pair for these cyclic
permutations.

Let first fix A and B and count the number of cyclic permutations where they

are intervals. Cy can be chosen in |A[!(n; — |A|)! many ways, the same applies
for B, therefore the number of four-tuples is

> Al (n = JAD! B|!(ny — |B])! (4)

where the summation is taken for all A= Fn X, B =Fn Xo, F e F.

Fix now the cyclic permutations. The subfamily of F consisting of the
interval-pairs for these permutations will be denoted by G. It is a family of differ-
€uce separated intervals. The application of Lemma 3.4 gives that the numbers
of pairs A, B for any given pair of cyclic permutations is at most N1Ng. Since



the number of permutations is (ny — 1)!(ny — 1)!, the number of four-tuples in
question is at most nylny!. Compare it with (4):

> A|(ny ~ [ADYB|!(na — |B])! < nylng!.
Elementary operations lead to

ZTllT <1 (5)
() (5)
where A = FNX1, B=FnNX,,0<|A| <nq,0 <|B| < ny,|A|+|B|=£forb—1.

Since M (n1,n9;€—1) < M(ny,ng;£) holds, by the definition of M(ni,no; ) (5)
implies

7 <1
M(ni,n25€) ~
proving (3). 0
Lemma 3.7 Suppose 1 <1</ <n,{—1i<n—ny. Then
o™ Pt 72 L(ntl)iJ " L(n-{;l)iJ
: ; | & ‘
7 £—i ) — i £—1
Proof. Compare two consecutive expressions:
ni\ /n—n 2 ni+1\/n—-ny—1
1 {—1i )~ 7 £ —1 '
After carrying out the possible cancellations
7 — 1 z ni +1
n—ny—£+71 np—i+1
is obtained what is equivalent to
1
(5} + 1 = (n + )Z
¢

Hence

ni\ [n —ng

) l—1q
takes on its maximum (with fixed ¢ and £) at

(n+ 1)
/ :
0J

Lemma 3.8 Suppose 0 < % <1 <{l-1. Ifne(€) <n then

)l MG e awr)

¢ —i—1



Proof. After carrying out the possible cancellations,

(”*‘[ﬁqng)-"(”“{gﬁﬂ%itQJ+1) )
EIET®
e (e

(i+1) (n— L&L&HJ ——é’+7ﬁ+1)

is obtained what is equivalent to

oo [E).. (o es)
e ([ )
o[-
(i+1) (n— | SO gy 4 1)

Counsider the left hand side as a product of quotients: the quotient of the first
factors, the second factors, etc., in the numerator and the denominator, respec-
tively. The first of these quotients is the largest one, it is less than 1, their number
is at least 231, Therefore the left hand side in (6) can be replaced by

pebd
(n4+1)7 £
s i

[(n+1)(i+l)J
T

%

(6)

A further increase is
n+1

L (ndlél)i N3 B 0 ntl
SHIGHD - Ni41 '

Here £ —i < i + 1 by the assumption of the lemma, therefore the left hand side

of (6) tends exponentially to 0 when n tends to infinity. On the other hand, the
right hand side of (6) tends to

(£ —1)i
+1D)(l—i-1)
proving the inequality. O

Remark. This lemma seems to be true for small values of n, too, we have
technical difficulties to prove it.

Proof of Theorem 3.1. By Lemma 3.6 | F| cannot exceed the largest prod-
uct (") (nk__”;]) where 1 <nq <n,1<i<n;,1 <k—i<n-ng By symmetry
3 < 1 can be supposed. Lemma 3.7 gives the best n;. This upper estimate in
Lemma 3.7 can be increased by Lemma 3.8 until we arrive to the largest possible
value of 4: £ — 1. This is the desired upper estimate. O

Proof of Theorem 3.2. Apply Theorem 3.1 with k,k—2, k—4, ... and sum
the obtained upper estimates. 0




4 Conclusion

By the argument of Section 2 and the results of Section 3, if ng(k) < n, at
most M (n, k) (see (1) for exact value) SUM queries of size k can be asked about
a set of data x1,x9,...xz, without disclosing at least one of the values z;. On
the other hand, this bound is not only sharp for the mathematical questions
asked in the previous section, but also for the original problem. Assume n equal

real numbers divided into two parts: By of size LM%C(—IC_—UJ and By of size

(n — Viﬂ)}&:l—)J) Take all subsums of this numbers of & elements such that

k—1 are chosen from set B; and 1 from set By. Now increase all of the elements
of By by 1 and decrease all of the elements of Bs by k—1 (assume that originally
the common value was not —1 neither k — 1) and take exactly the same subsums.
The answers to these queries are the same in both of cases, that is these answers
do not disclose any of the values z;s.

It is also interesting to mention that the bound M (n, k) is only constant time
smaller than the absolute upper bound (%) for the number of SUM queries of size

2
k, and much bigger than the somewhat more general solution of (:?g) , which is

VE time smaller than (:) One can get a construction yielding the (2’;‘2{2)2 bound
simply using the above method but dividing the set of the values into two equal
size subsets and picking always the same number of elements from both sides.
For example, if n = 20 and k = 10, then (2) = 184756, M (n,k) = 97240 and
(712)" = 63504.

The bound for the case when the SUM queries may have any number of el-
ements less than or equal to k is most probably not sharp. At the same time,
similar to the case in the mathematical theorem, an asymptotically good con-
struction can be given simply taking the above construction for the case when
all sums have exactly k elements (see Remark after Theorem 3.2.)
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