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Abstract. We will investigate the following question: what can be the
maximum number of independent functional dependencies in a data-
base of n attributes, that is the maximum cardinality of a system of
dependencies which which do not follow from the Armstrong axioms
and none of them can be derived from the remaining ones using the
Armstrong axioms. An easy and for long time believed to be the best
construction is the following: take the maximum possible number of sub-
sets of the attributes such that none of them contains the other one
(by the wellknown theorem of Sperner [8] their number is (n%)) and
let them all determine all the further values. However, we will show
by a specific construction that it is possible to give more than (n%)

independent dependencies (the construction will give (1 + ;};)(;;2) of

them) and — on the other hand — the upper bound is 2" — 1, which is
roughly \/ﬁ(n’;z)

1 Introduction

Results obtained during database design and development are evaluated on
two main criteria: completeness of and unambiguity of specification. Complete-
ness requires that all constraints that must be specified are found. Unambi-
guity is necessary in order to provide a reasoning system. Both criteria have
found their theoretical and pragmatical solution for most of the known classes
of constraints. Completeness is, however, restricted by the human ability to

survey large constraint sets and to understand all possible interactions among
constraints.

* The work was supported by the Hungarian National Foundation for Scientific Re-
search grant numbers T037846 and AT048826.



Many database theory and application problems (e.g., data search optimiza-
tion, database design) are substantially defined by the complezity of a data-
base, i.e., the size of key, functional dependency, and minimal key systems.
Most of the known algorithms, e.g., for normalization, use the set of all min-
imal keys or non-redundant sets of dependencies. Therefore, they are dependent
on the cardinality of these sets. The maintenance complexity of a database de-
pends on how many integrity constraints are under consideration. Therefore,
if the cardinality of constraint sets is large, then maintenance becomes infeasi-
ble. (Two-tuple constraints such as functional dependencies require O(m?) two-
tuple comparisons for relations with m elements.) Furthermore, they indicate
whether algorithms are of interest for practical purposes, since the complex-
ity of most known algorithms is measured by the input length. For instance,
algorithms for constructing a minimal key are bound by the maximal num-
ber of minimal keys. The problem of deciding whether there is a minimal key
with at most k attributes is NP-complete. The problem of deciding whether two
sets of functional dependencies are equivalent is polynomial in the size of the
two sets.

Therefore, the database design process may only be complete if all integrity
constraints that cannot be derived by those that have already been specified
have been specified. Such completeness is not harmful as long as constraint
sets are small. The number of constraints may however be exponential in the
number of attributes [2]. Therefore, specification of the complete set of functional
dependencies may be a task that is infeasible. This problem is closely related
to another well-known combinatoric problem presented by Janos Demetrovics
during MEDBS’87 [9] and that is still only partially solved:

Problem 1. How big the number of independent functional dependencies of an
n-ary relation schema can be?

Let R be a relational database model, and X denote the set of attributes. We
say that (for two subsets of attributes A and B) A — B, that is, B functionally
depends on A, if in the database R the values of the attributes in A uniquely
determine the values of the attributes in B. In case a some functional dependen-
cies F given, the closure of F, usually denoted by F7, is the set of all functional
dependencies that may be logically derived from F. E.g., F may be considered
the obvious and important functional dependencies (like mother’s name and ad-
dress uniquely determine the name of a person) and then the closure, F* is the
set of all dependencies that can be deduced from F.

The set of rules that are used to derive all functional dependencies implied by
F were determined by Armstrong in 1974 and are called the Armstrong azioms.

These rules are easily seen to be necessary and all other natural rules can be
derived from them. They are the following:

— reflezivity rule if A is a set of attributes and B a subset of it, then A — B.

— augmentation rule If A — B holds and C' is an arbitrary set of attributes,
then AU C — B U C holds as well.

— transitivity rule If A — B and B — C hold, then 4 — C holds as well.



Let us mention here, that though there are further natural rules of the de-
pendencies, the above set is complete, that is 71 can always be derived from F
using only the above three axioms. For example, union rule, that is, the natural
fact that A — B and A — C imply A — B U C can be derived by augmenting
A—Cby A(A— AUC(C), augmenting A - Bby C (AUC — BUC) and
using transitivity for the resulting rules: A - AUC — BUC.

In this paper we will investigate the maximum possible number of inde-
pendent functional dependencies of a database of n attributes. That is, the
maximum of F, where it is a system of independent, non-trivial dependen-
cies (A — B where B C A are not in F) and no element of 7 can be log-
ically derived from the other elements of F. In this case we will call F
independent.

Introduce the following useful notations: [n] = {1,2,...,n}. The family of all
k-element subsets of [n] is

(%)
% )

For the sake of simplicity we will denote the i*" attribute by 4.

It is clear that A — C and B — C can not be in F for a pair of sub-
sets A C B since then B — C would be logically obtained by another given
dependency (A — C), reflexivity (A C B implies B — A) and transitivity
(B — A — C implies B — (). On the other hand, it is easy to see if we
have a system of independent subsets of the attributes (that is, none of them
containing the other one) and assume that all of them imply the whole set of
attributes, this system of dependencies will be independent. This leads to the
natural construction of a large set of independent dependencies by taking the
maximum number of incomparable subsets of attributes, which is by Sperner’s
theorem [8] equal to (Ln% J) and let the whole set of attributes depend on all
of them. This would give a set of dependencies of cardinality (LnT;Q J). On the
other hand, it is easy to see that if F only consists of dependencies A — B with
|A| = k for a given constant k£ and for every such an A C X there is at most one
element of F of the form A — B, then F is independent (a more detailed ver-
sion of this argument will be given in the proof of Lemma 4). That is, the above
construction will give an independent set of dependencies and a lower bound
of ([n"}ﬂ)

However, as it will be shown by the construction of the next section, this is
not the best possible bound, we can enlarge it. Still the best known lower bound
is of the magnitude of (Ln’}z J) (smaller than C(an;z J) for any constant ¢ > 1,
while the best upper bound proven in the following section is 2™ — 1, which is
roughly \/ﬁ(n%) Finally, the last section of the paper will contain concluding
remarks, including the answer to the following question:

Problem 2. Is the mazimum number of functional dependencies the same as
the mazimum number of minimal keys?

More complexity results are discussed and proven in [5,7,10] or in [1,2, 3,6].



2 Lower Estimate: A Construction

Theorem 1. Ifn is an odd prime number then one can construct

(e i+e(m)) ()

independent functional dependencies on an n-element set of attributes.

The proof will consist of a sequence of lemmas. We will also use the following
proposition:

Proposition 1. (see [11]) Assign to a functional dependency A — B the set of
2" — QlBI Boolean vectors a= (a1, ...,ayn) of the form:

1, if icA
a; =< 0orl,if i€ (B\A) but not all entries =0
0 or 1, otherwise.

Then, a set of functional dependencies implies another functional dependency if
and only if the Boolean vectors of the implied functional dependency are con-

tained in the union of the sets of Boolean vectors of the given functional depen-
dencies.

Lemma 2. Ifn is an odd prime number, one can find -7%-5 (n’ia) subsets V1, Va, ...
2
n+3

of size 3 in the set [n] = {1,2,...n} in such a way that |V;NV;| < 25+ holds.
Proof. The method of the paper [4] is used. Consider the subsets
{:cl,mg,...,anJra} of integers satisfying 1 < z; % z; < n for ¢ # j and the
equations

1+ To+ -+ xnts =a (mod n), (1)

1LY wvam Tnts = b (mod TL) (2)

for some fixed integers a and b.

Suppose that two of them, say V; and V5 have an intersection of size —”—5—1- We
may assume, without loss of generality, that the first two elements are different,
that is V.= {Il,QIQ,...,SL’_@_—ztg} and Vo = {:c’l,:cf?,...,anu}. (1) and (2) imply
Ty + 2 =z} + 24 and 2122 = xizf, (mod n). Since the set {1,2,...n} consti-
tutes a field modn if n is prime, this system of equations has a unique solution,
that is 1 = ], 2 = x4; the two sets are the same: V; = V5. This contradiction
proves that our sets cannot have 1‘—-2‘—1 common elements.

The total number of subsets of size n;%:é is

n
n+3d |
2



Each of these sets give some a and b in (1) and (2), respectively. That is, the
family of all —@%—Q’-—element sets can be divided into n? classes. One of these has a

size at least
1 n -
TL2 n-2{-3 ?

We will need the notion of the shadow of a family A C (Q ). It will be den-
oted by :
i 1
2
A pair {U;,Uz} U; € (ég*-]l-) is called good if |Uy NU;| = 25+ holds. The family

e (ﬂ}l) is a chain if P = P; U ... U P; where the P;’s are good pairs and
2
o(P;)Na(Pj) =0 for i # j. The weight w(P) of this chain is I.

glid) =18 |B]l= , JA€e A: B C A}.

Lemma 3. There is a chain P C (m]l) chain with weight at least

2

1 n
PI= i as)

Proof. Start with the family V = {V1, V5, ...} ensured by Lemma 2. In each V;
choose two different ﬂ%‘—Lelelrnent subsets U;; and Uj;s. It is easy to see that this
pair of subsets is good. Also, these pairs form a chain. The number of the pairs
in the chain can be obtained from Lemma 2. O

Lemma 4. If P C (EA) ts a chain then the following set of functional depen-
2
dencies is independent:

A— B, where |A|=”;1, |B|=”J2rl, ACBeP, (3)
; R

A— A", where |A|l= i Ado(P)
and A’ is arbitrarily chosen so that A C A, |A'|= n—2}—1' (4)

(Note that in (8) we have all dependencies A — B given by the conditions, while

in (4) for every remaining A we choose only one (exactly one) A’ satisfying the
conditions. )

Proof. We will use Proposition 1 for the proof. According to rules (3) and (4),
for every A C X with |A| = 25+ there are either one (B) or two (B; and By)
subsets of X of size ”—3—“—1 with A — B or A — B;, always A C B, B;. In the first
case consider one of the Boolean vector a corresponding to A — B:

1,if ie A
gg=4 0 H 4 (B\4)
0, otherwise.



This vector has exactly 3—5—1 1 entries, and from the definition in Proposition 1 it
is also clear that all Boolean vectors corresponding to all functional dependencies
given by (3) and (4) have at least %51 1 entries. Therefore, the Boolean vector
a may correspond to any other dependency A" — B’ only with A’ = A, which is
not the case now, the dependency A — B may not be deduced from the others.

If we have both A — B; and A — Bs, consider one of the Boolean vector a
corresponding to A — Ba:

1,if ie A

0,if i€ (B2\ A)
e 3 lE(Bl\A)
0 , otherwise.

a;

In this case a has “erl 1 entries and still all Boolean vectors corresponding to all
other given functional dependencies have at least ”T_l 0 entries. Therefore, if a
Boolean vector corresponding to a given functional dependency A’ — B’ is equal
a, the obligatory 251 1 entries must form a subset of the 2L 0 entries of a, or,

in other words, A’ must be a subset of Bj, an ”H element set However, by the
construction according to (3), for all subsets C' of B of size 221 we have C' — Bj.

Since Bj is larger than C' only by one element, all the corresponding Boolean
vectors must have entries 1 at the positions corresponding to C' and entry 0
at the only position corresponding to By \ C (this entry could be literally 0 or
1, but not all of them 1, but since it is alone, it means it should be 0). This,
by Proposition 1, implies that A — B may not be deduced from the set of
remaining given Boolean vectors. 0

Alternative proof. One can prove Lemma 4 without the use of Proposition 1,
simply from the Amstrong axioms, as it follows.

Again, we will show that none of the dependencies given in the lemma can be
deduced from the other ones.

Now we start with the case when the dependency A — B; has a pair A —
Bs(B; # Bs) in our system. This can happen only in case of (3): A — B; where
P = {B1,By},B1 = AU{b1},By = AU {ba}. We want to verify that A — B,
cannot be deduced from the other ones.

Observe that none of the other ones, X — Y satisfy both X C ByandY & Bs.
In other words

either X & By or Y C By (5)

holds for every dependency given by (3) and (4), different from A — B;. Let us
see that this property is preserved by the Armstrong axioms.

It is trivial in the case of the reflexivity rule, since it gives X — Y only when
Y C X therefore X C By implies Y C Bs.

Consider the augmentation rule. Suppose that X — Y satisfies (5) and U is an
arbitrary set. If X € By then the same holds for X UU, that is XUU € Bj. On
the other hand, if X C By then Y C By, If U C B; also holds then YUU C B,
if however U € Bs then X UU & Bs. The dependency X UU — Y UU obtained
by the augmentation rule also satisfies (5) in all of these cases.



Finally, suppose that X — Y and Y — Z both satisfy (5). We have to show
the same for X — Z. If X € By then we are done. Suppose X C By and Y C Bs.
Then Z C By, must hold, as desired.

Since A — B; does not have property (5), it cannot be deduced from the
other dependencies.

Consider now the case when the distinguished dependency A — B; has no
pair A — By(B; # Bp) in our system. This can happen both for (3) and (4).
The the proof is similar to the case above. No other dependency X — Y satisfies
X CAY ¢ A, that is (5) holds for them if By is replaced by A. O

Remark. One may think that a better construction can be made if we allow
three sets By, By, B3 of size P—ﬂ with pairwise intersections |B; N Ba| = |Ba N
Bs| = 251 where no other 1ntersect10ns (of these three and other sets B;(3 < i) of
this size) are that big, and A — B, holds for every subset A of B;. Unfortunately
we found a counter-example for n > 5
Let By = {1,..., 2}, By = {2,. n+3} By = {3,..., 22} By = {1,.

n=3 nid nddy, ¥ s easy to see thigk lBl N Bs| = |BaN Bg} = 2=1 but lBl A
B3} \Bl N B4| | B2 N Byl, |Bs N By| are all smaller.

Introduce the notations A; = {2,..., 25} Ay = {3,..., 23} A3 = {2,3,

.., 252 ne3 04 The the following cham of functional dependenmes is obvi-

ous: Ay — By — Ay — B3 — By U B3 — Az — By — {1}. Hence we have
Ay — Bj without using it.

Proof of Theorem 1. Use Lemma 4 with the chain found in Lemma 3. It is
easy to see that there is at least one A — C for every | 2] = Z51-element subset
A and the weight of the chain gives the number of those A being the left-hand
side of exactly two dependencies. This gives the number of dependencies:

() + o) = (oo (@) () o

3 Upper Estimate

Theorem 5. For every n an upper bound for the mazximum number of indepen-
dent functional dependencies on an n-element set of attributes is 2™ — 1.

Proof. Let F be a set of independent functional dependencies on the set of
attributes X. First, replace each dependency A — B in F by A — AU B,
obtaining F’. We claim that F’ is independent as well. It simply comes from
the fact that by the reflexivity and augmentation axioms the two dependencies
A — B and A — AU B are equivalent. Also, |F| = |F’|, since the images
of dependencies in F will be different in F’. Assume, on the contrary, that
A— AUBisequal to A - AUC for A - B and A — C in F. But then
AUB = AUC, C ¢ AUB and therefore A — B implies A — AU B implies
A — C, a contradiction.

We may therefore consider only set of independent dependencies where for all
(A — B) € F we have A C B. Take now the following graph G: let the vertices



of the graph be all the 2™ subsets of the n attributes and for A, B C X the
edge (A, B) will be present in the G iff A toB or B — A is in 7. We claim that
this graph may not contain a cycle, therefore it is a forest, that is it has at most
2™ — 1 edges, or dependencies.

Assume, on the contrary, that A, As, As,..., A, = A; is a cycle in G, that
is for all ¢ = 1,...n — 1 the edge (A;, A;+1 is present in (G, meaning that either
A; — Ajpq or Ajpq1 — A; is in F. Note that for every i = 1,...n — 1 we have
A;11 — A; since either this dependency is in F or in case of (A4; — A;41) € F, we
have that A; C A;11, yielding A;1; — A; by reflexivity. Take now an ¢ such that
A; — Aiy1 (if we have no such a dependency, take the “reverse” of the cycle,
Ap,An_1,...,A1 = A,). This can be obtained from the other dependencies
present in F by the transitivity chain A; —» A;-1 — -+ A1 = A, — 4,1 —
vor— Ajro — A;qq, contradicting the independency of the rules in F. O

We have an alternative proof using Proposition 1 as well.

4 Remarks, Conclusions

The main contribution of the paper is the improvement of upper and lower

bounds for independent sets of functional dependencies and, thus, contributing
to the solution of Problem 1.

1. The lower and upper estimates seem to be very far from each other. However,
if the lower estimate is written in the form

2’!7.
c__.__
VN
(using the Stirling formula) then one can see that the “difference” is only a
factor v/n what is negligable in comparison to 2. The logarithms of the lower
and upper estimates are n — %logn and n.

However we strongly believe that truth is between

(”%“L”(%)) (Lgﬂ

(ﬁ+o(1))(tzj>,
2
where 0 < a and 4 < 2.

2. Theorem 1 is stated only for odd prime numbers. The assumption in Lemma 2
is only technical, we strongly believe that its statement is true for other integers,
too. (Perhaps with a constant less than 1 over the n2.) We did not really try to
prove this, since the truth in Theorem 1 is more, anyway. What do we obtain
from Lemma 2 if it is applied for the largest prime less than n? It is known from
number theory that there is a prime p satisfying n — n%% < p < n. This will
lead to an estimate where 517 is replaced by

1
n2on®/8’

and



This is much weaker than the result for primes, but it is still more than the
number of functional dependencies in the trivial construction.
3. One may have the feeling that keys are the real interesting objects in a

dependency system. That is, the solution of any extremal problem must be a set
of keys. Our theorems show that this is not the case.

More precisely, suppose that only keys are considered in our problem, that
is the maximum number of independent keys is to be determined. If this set of
keys is {A; — X} (1 <4 < m), then A; ¢ A; must be satisfied, and therefore
by Sperner’s theorem m < (I_'n?}Z J)' In this case the largest set of dependencies
(keys) is provided by the keys A — X, where A € (L[E]J)'

2

Theorem 1 shows that the restriction to consideration of key systems during

database design and development is an essential restriction. Systems of functional

dependencies must be considered in parallel. Therefore, we derived a negative
answer to Problem 2.
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