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Abstract. In the present paper a distance concept of databases is in-
vestigated. Two database instances are of distance 0, if they have the
same number of attributes and satisfy exactly the same set of functional
dependencies. This naturally leads to the poset of closures as a model of
changing database. The distance of two databases (closures) is defined
to be the distance of the two closures in the Hasse diagram of that poset.
We determine the diameter of the poset and show that the distance of
two closures is equal to the natural lower bound, that is to the size of the
symmetric difference of the collections of closed sets. We also investigate
the diameter of the set of databases with a given system of keys. Sharp
upper_bounds are given in the case when the minimal keys are 2 (or
r)-element sets.
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1 Introduction

We are trying to investigate questions like ”"when two databases are the same?”
or "are two databases similar?”. For instance if we add or delete a row of the
database we say that it changes only the instance of the given database. But
in a strict sense this change may change the dependency structure, so we might
say that a new database has been obtained. Another example is when a new
attribute is added to the database, all rows are completed with the value of the
new attribute. Is this another database?

If two databases should be considered different, how different they are? One
needs a notion of distance between databases. If such a notion is introduced
one can ask interesting questions like the following one. Knowing the distance
between two databases what will be the distance between the merged database
and one of the original ones?

Papers of Miiller et.al. [9,10] treat this question from the point of view of con-
flicting copies of scientific databases. Today, many scientific databases overlap in



their sets of represented objects due to redundant data generation or data repli-
cation. For instance, in life science research it is common practice to distribute
the same set of samples, such as clones, proteins, or patient’s blood, to different
laboratories to enhance the reliability of analysis results. Whenever overlapping
data is generated or administered at different sites, there is a high probabil-
ity of differences in results. These differences do not need to be accidental, but
could be the result of different data production and processing workflows. For
example, the three protein structure databases OpenMMS [2], MSD [3], and
Columba [11] are all copies of the Protein Data Bank PDB [1]. However, due to
different cleansing strategies, these copies vary substantially. Thus, a biologist
is often faced with conflicting copies of the same set of real world objects and
with the problem of solving these conflicts to produce a consistent view of the
data. Thus, Miiller et.al propose a distance concept that is similar to the edit
distance of strings. They study the problem of efficiently computing the update
distance for a pair of relational databases. In analogy to the edit distance of
strings, the update distance of two databases is defined as the minimal number
of set-oriented insert, delete and modification operations necessary to transform
one database into the other.

In the present paper we take a data-mining oriented approach. We are mostly
interested in the apparent dependency structure of a database, that is all func-
tional dependencies that are satisfied by the given instance. We answer the ques-
tions posed above only for a very modest special case. It will be supposed that
two database are the same if they have the same number of attributes and the
system of functional dependencies are identical. The distance is introduced only
between two databases having the same number of attributes.

Functional dependencies lead naturally to closure operations on the set of
attributes R. A subset A C R is closed if A — B implies B C A. Thus we
take the approach of Burosch et.al. [4] by considering the poset of closures as
a model of changing database. We will define the distance of two instances as
the distance of the closures they generate, in that poset. We will see that this
distance of two database instances is equal to the minimum number of tuples
that are needed to be added to or removed from one instance to obtain the other
instance of the database schema. In Section 2 we show that the largest distance
possible is attained between the minimal and maximal elements of this poset.
It will turn out that the distance of two closures is in fact equal to the obvious
lower bound, that is to the size of the symmetric difference of the sets of closed
sets. In Section 3 we consider the question that if something is known about the
database instance, what is the diameter of the space database instances, that is
the set of closures that satisfies the given information. This could be interpreted
as a datamining question, we have some information given, and we wonder what
1s the size of the search space of databases based on that information. Our
particular interest is in the case when the number of minimal keys is given. We
give an upper bound in the general case. It is also interesting if the minimal keys
all have the same cardinality r. We give a sharp upper bound for the diameter



in the case r = 2. Finally, Section 4 contains conclusions and future research
directions.

Some combinatorics notation we use that may not be well known for database
people are as follows. [n] denotes the set of first n positive integers, that is
n] = {1,2,...,n}. If Z is a set, then 2% denotes the collection of all subsets of
Z, while (17 ) denotes the set of all r-element subsets of Z. These latter notations
are mostly used in case of Z = [n].

2 Poset of Closures

In what follows a schema R is considered fixed and every instance r is considered
together with all functional dependencies A — B such thatr = A — B. For a set
of attributes A C R the closure of A is given by {(r)(A) ={a e R:r = A — a}.
It is well known that the function £(r): 2% — 2% is a closure that is it satisfies
the properties

AC (A
A C B=¢(A) C {(B) (1)
L(L(A)) =L(A).

Since constant columns are not really interesting, we assume that £(()) = 0.

Attribute set A is closed if A = ¢(A). It is known that the family of closed
attribute sets forms an intersection-semilattice. It was observed in [4], and is
also well known consequence of the fact that functional dependencies can be
expressed in First Order Logic by universal sentences, that if r = A — B, then
r' = A — B holds for any v’ C r. That is a valid functional dependency stays
valid if a record is removed from the database. This suggested the investigation
of the poset of closures as a model of changing databases. Closure #; is said to be
richer than or equal to f2, £1 > ¢4 in notation, iff ¢,(A) C ¢3(A) for all attribute

sets. Let F () denote the collection of closed attribute sets for closure £. It was
proved in [4] that

Proposition 2.1. ¢; < /5 iff F({1) C F(ls).

If ry and rp are two instances of schema R, then f(r3) is richer than ¢(ry)
can be interpreted as follows. In rg there are more subsets of attributes that
only determine attributes inside them, that is in ro we need more attributes to
determine some attribute, so ro conveys 'more information” in the sense that
the values of tuples are more abitrary.

The covering relation was also characterized. 5 covers ¢y, if ¢; < ¢5 and for
all ¢/ such that ¢; < ¢ < ¢y either ¢/ = ¢4 or ¢! = {s.

Proposition 2.2 ([4]). la covers €y iff F(¢1) C F(l2) and |F(l2)\ F(¢1)| = 1.

Proposition 2.2 shows that the poset of all closures over a given schema R, P(R),
1s ranked: its elements are distributed in levels and if ¢5 covers ¢4, then {5 is in
the next level above ¢1’s one. Let |R| = n. Since ) and R are both closed for
any closure considered, we obtain [4] that the height of P(R) is 2" — 2.



Let £(r) denote the closure obtained from using all functional dependencies
satisfied by instance r. Since removing a record or adding a record to an instance

changes the rank (level) of ¢(r) by at most one, the distance of two instances are
defined as follows.

Definition 2.1. Let r and v’ be two instances of schema R. Their distance
d(r.1’) is defined to be the graph theoretic distance of £(r) and ¢(r") in the Hasse
diagram of P(R). That is, the length of the shortest path between points {(r) and
((r") using only covering edges.

[t is easy to check that d(r,r’) satisfies the triangle condition. The following
proposition shows that the height of P(R) is an upper bound of the largest
possible distance between two instances of the schema R. Since the distance of
instances is defined using the distance of closures, we allow the ambiguity of
speaking of distance of an instance and a closure, as well.

Proposition 2.3. Let |R| =n. Then d(r,x") < 2" —2 for any two instances of
the schema R.

Proof. Let ¢, be the minimum element of P(R) furthermore let (M be the
maximum element. Then

d(r,x") < d(r,ly) + d(lm,t") (2)

and
d(r,r’) < d(r, M) +d(eM, ) (3)
Thus,

2d(r,x’) < dir, b)) + dx, ) + H{le, x) + (@Y, 1') = 27 —2 42" —2. (4)

O
For any instance r the rank of ¢(r) in P(R) is d({y,,r) = |F(¢(r))| — 2.
The following is the main result of this section.
Theorem 2.1. For any two instances v and v’ of the schema R we have
d(r,x") = | F(e(r)) AF ("), (5)

where A A B denotes the symmetric difference of the two sets, i.e., AAB =
A\BUB\A.

In order to prove Theorem 2.1 we need to recall the following result.

Theorem 2.2 ([5]). A collection F of subsets of R is the collection of closed
sets of some closure £(r) for an appropriate instance v of R iff 0, R € F and F
is closed under intersection.

Proof (of Theorem 2.1). According to Proposition 2.2 the size of F({(r)) changes
by one when we traverse along a covering edge in the Hasse diagram of P(R).



This immediately gives that the left hand side of (5) is at least as large as the
right hand side, that is the distance of two instances is lower bounded by the
size of the symmetric difference of the respective families of closed sets.

In order to prove the inequality in the other direction we have to find a
way to move from £(r) to £(r") using |[F(L(r)) AF({(r'))| covering edges. That
i3, according to Theorem 2.2 we have to move from F({(r)) to F(£(r')) by
successively removing a set of F({(r)) \ F(¢(r")) or adding a set of F(¢(r")) \
F(£(r)) so that the property of being closed under intersection is preserved
in each step. Note, that ), R are members of both closed sets system and the
operations done do not change this.

First, we “peel off” sets of F((r)) \ F(£(x")) one by one. Let F' € F({(r)) \
F(£(r")) such that F' # R, but there is no F' € F(¢(r)) \ F(¢(r")) such that
F S F'S R, F can be removed from F(¢(r)) if it is not an intersection of
two closed sets both different from F. However, if F = F' N F”, then by the
maximality property of F', both F', F"" € F(£(xr")) yielding the contradiction
that F' € F(£(r')), as well.

Repeating the step above as long as F(£(r))\F (¢(xr')) is nonempty we arrive at
F(l(r))NF(£(x")). Now, we have to add the sets of F(£(x"))\ F(¢(r)) one-by-one.
In order to do so, let G' be a minimal element of F(¢(r")) \ F(£(r)) with respect
to set containment. If ' € F(¢(r)) N F(¢(r')) then F'NG is a proper subset of
G, or G itself. Since F(£(r")) closed under intersection, F' NG € F(€(x')). If it
is a proper subset of Z, then by the minimality of G, F NG € F(#(r)), holds as

well. In either case, adding G to F(£(r)) NF(¢(xr")), the collection remains closed
under intersection. O

3 Diameter of Collection of Databases with the Same Set
of Minimal Keys

It was investigated in [4] when does the system of keys determine uniquely the
closure, that is the system of functional dependencies. A subset K C R is a
key if K — R, and it is minimal if no proper subset of K has this property.
In other words, K is a minimal key for instance r if there are no two rows of
r that agree on K, but K is minimal with respect to this property. Let K(r)
denote the system of minimal keys of instance r. It is clear that £(r) uniquely
determines K(r), since A — B holds iff B C £(A). On the other hand, K(r) does
not determine £(r). A simple example is the following. Let R = {a, b, ¢, d}, and
let the family of keys be K = {{a, ¢}, {a,d}, {b,c},{b,d}}. Then closure ¢; has
K as system of keys, where {;-closed sets are (J, {a, b}, {c,d}, {a,b,c,d}. On the
other hand, ¢ > £ has the same key system, where additionally the one-element
subsets are f5-closed, too.

In order to determine the space of closures with a given minimal key system
we need to introduce the concept of marimal antikeys. A subset A C R is a
maximal antikey if it does not contain any key, and maximal with respect to
this property. The collection of antikeys for a minimal key system K is usually
denoted by K~'. This is justified by the fact that minimal keys and maximal



autikeys determine each other, respectively [5]. In fact maximal antikeys are
maximal sets that do not contain any key and keys are minimal sets that are
not contained in any antikey. Clearly, both minimal key systems and maximal
antikey systems form inclusion-free families of subsets of R, that is no minimal
key/antikey can contain another minimal key /antikey. For a set system A of
subsets of R let A= {B C R: A € A with B € A} U {R}. Furthermore, let
Aq = {B CR:= = 1,A,As,... A; € A with B = A; N Ag ﬂ...ﬁAi}U{R}.
That is, A| is the down-set generated by A appended with R and A" is the set
system closed under intersection generated by \A.

Theorem 3.1. Let K be an inclusion-free family of subsets of R. Then the
closures whose minimal key system is IC form an interval in the poset of closures
P(R) whose smallest element is the closure with closed sets Ko' and largest
element is the closure with closed sets K.

Proof. Let us suppose that r is an Armstrong-instance of K and let A be an
antikey. For any b € R\ A, AU {b} is a key, thus AU {b} — R holds. IF
A — b held, then by the transitivity rule A — R would hold, contradicting
to the antikey property of A. Thus £(r)(A) = A for every antikey A € e L
Since F(4(r)) is closed under intersection, KAt € F((r)) follows. On the other
hand, if £(r)(X) = X holds for some X & R, then X cannot contain any key.
Thus, there exists a containment-wise maximal set A D X, that still does not
contain any key. This implies that A is an antikey, hence X € K—1]. It is easy to

check, that both 5! and K~!] are closed under intersection and contain both,
0 and R. O

Corollary 3.1. The diameter, that is the largest distance between any

two elements of the collection of closures with given key system I is K=t
|- KR O

Corollary 3.1 determined the diameter if S was the set of databases (closures)
with a given set of minimal keys. But the result, in this generality cannot be
more than algorithmic.

In what follows we try to give a more precise, numerical answer in several
special cases.

3.1 Unique Minimal Key

In this subsection we treat the case when the database has a unique minimal
key. This is indeed very frequent case in practice.

Theorem 3.2. The diameter of the set of closures having exactly one minimal
key A where 0 < |A|=r <nis 2" —2" —2""".

Proof. Let A C B % R. Then A — R implies B — R, therefore B cannot be
a closed set. The members F' of a family of closed sets F with unique minimal
key A satisfy either A Z F or F' = R.



Let a € A be an attribute and B = R — {a}. If B is not a closed set, then
B — R, that is, B is a key, which does not contain A, hence there should exist
another minimal key. This contradiction gives that B = R \ {a} is a closed set,
B = R\ {a} € F. Since F is closed under intersection, every set satisfying
F O R\ A must be closed.

We can conclude that the family of closed sets F satisfies the following
conditions.

If FOR\ Athen F' e F, (6)
it DA F+# R then ¢ F, (7)
heF. (8)

F is also closed under intersection, but it is not needed for the proof of the upper
estimation. On the other hand it is easy to see that if F satisfies these conditions
then there is a closure in which the family of closed sets is F and A is the only
minimal key.

We have to find the maximum size of the symmetric difference of two families
F1 and Fy satisfying (6)—(8). The symmetric difference does not contain the sets
under (6) (7) and (8). The number of subsets of R satisfying (6) is 2" (they are
in one-to-one correspondance with subsets of A). The number of subsets of R
satisfying (7) is 27" — 1 (they are in one-to-one correspondance with subsets of
R\ A except R \ A itself). Therefore we have

AR B P ] ] P T, (9)

Choose F7 containing all sets satisfying (6) (7) and (8), while let 75 have all the
sets satisfying (6) and (8). It is easy to see that these families are closed under
intersection and satisfy (9) with equality. O

Remark 3.1. The diameter will be the smallest if » = 1, then it becomes about
half of the diameter of the space without restriction given by Proposition 2.3.
This coincides with our expectation: the "smaller” key is ”stronger” in the sense

that it determines more, the diameter of the space of possible databases becomes
the smallest.

Remark 3.2. 1t is interesting to compare this result with the case when it is only
known that A is a minimal key, but we do not know if there are other keys or

not. That means we only have (7) and (8) as restrictions. Then the diameter is,
of course, larger: 2" — 2"~ " + 1,

3.2 Upper Bound for Non-uniform Minimal Key System

In this subsection we assume that R = {1,2,...n} = [n], for the sake of conve-

nience. Let ([_’f,]) denote the collection of r-subsets of [n]. Let M be a non-empty,
inclusion-free family. Define

DM) ={H : 3M € M such that H C M}, (10)



UM)={H: IM € M such that H D M}. (11)

The characteristic vector v(A) of the set A C [n] is a 0,1 vector in which the
i-th coordinate is 1 iff i1 € A. If A € ([’:}) then v(A) contains exactly r 1’s. b(A)
is the integer obtained by reading v(A) as a binary number. Now an ordering
" <" is introduced among the elements of ([:]). Let A, B € ([7:]) then A < B iff
b(A) < b(B). This ordering is called lexicographic.

Define the (7, £)-shadow of a family of r-element sets A C ([:‘]) for ¢ < r:

ore(A)={H: |H|=¢3A € Asuch that H C A}. (12)

Proposition 3.1 ([7,8]). If A consists of some lexicographically first members
of ([’ﬁ]),ﬁ < r then o.¢(A) is a family of some lexicographically first members

of ().

Theorem 3.3 (Shadow Theorem, [7,8]). If A C ("), |A] = m then |0, o(A)]
is at least as large as the (r,()-shadow of the family of the lexicographically first
m members of ([:’1), that is, the size of the (r,€)-shadow attains its minimum for
the lexicographically first r-element sets.

If A C 2" is a family then A, denotes the subfamily consisting of all r-element
members:

A= AN (“:U (13)
The profile vector of the family A C 2 is p = (po,p1,...pn) where p, =
pr(A) = | A,

Lemma 3.1. Let M be a non-empty inclusion-free family of subsets of [n| with
fized |M| > n. Then |D(M)| attains its minimum for a family satisfying the
following conditions with some 2 < r < n.

pn:...:prﬂzp?«_gz...:pl:pozo, (14)

M, consists of the lexicographically first r — element subsets, (15)

Moy = (" ) Vo). (16)

We do not claim that this is the only optimal solution. On the other hand, if
|IM| < n then the best construction consists of | M| pieces of 1-element sets.

Proof. Suppose that p, = ... = pry1 = 0,p, > 0. Consider D(M),_1. Its size is
at least |0, —1(M,)| what is minimum, by the Shadow Theorem, if M, consists
of the lexicographically first r-element subsets. By the proposition, a,.,.—1(M,.)
is a family of some first r — 1-element subsets. M, _ is disjoint from ;. .1 (M),



since M is inclusion-free. |[D(M),_»| is at least |0, —1 —2(Tprr—1 (M) UM, 1)
by the Shadow Theorem with equality if o 1 (M, )JUM,._; is "lexicographically
first”, that is, if M,._; is the " continuation” of o, ,_1(M,.) in the lexicographic
ordering. Continuing in this way, we can see that D(M), will be minimum for a
fixed profile for the following construction. Choose the lexicographically first p,. r-
element sets, the lexicographically first r — 1-element sets following o —1 (M),
the lexicographically first » — 2-element sets following o,—1 ;—2(opp—1(M;) U
M.,._1), and so on. Since this construction does not depend on ¢, this construction
minimizes also |D(M)|. Now, that we know what structure minimizes [D(M)|

for a fixed profile of M, we need to show that the best profile is when only two
set, sizes occure.

Suppose that

P < (1)t = (")) onl = (1) P =1

(17)
holds for some integer 1 < s < r.

If s = r, we are done, M has only r and r — 1-element sets, ordered according
to the statement of the Lemma. Otherwise suppose that |D(M)| is minimum
for the given size | M| and r — s is the smallest possible. Let A and B be the
lexicographically last member of M,. and the lexicographically first non-member
of M,. Replace A with B. All proper subsets of B are in D(M), therefore this
operation cannot increase |D(M)|. Repeat this step until either M, becomes
empty, or M, "full”: [D(M),| = (7). In both cases, the difference r — s becomes
smaller.- This contradiction finishes the proof. O

Theorem 3.4. Let K be a non-empty inclusion-free family of subsets of [n],
where |[K| > n is fized. Furthermore, let S(K) denote the set of all closures in
which the family of minimal keys is exactly K. Then

diam(S(K)) < 2" — U(K™)], (18)

where K* consists of some lexicographically last sets of size s and all the s 4 1-
element sets not containing the selected s-element ones, for some 0 < s <n —2

and |K*| = |K|.

Proof. Tt is obvious that the members of U(K) \ {[n]} are not closed sets in a
closure belonging to S(KC).

Define X = (¢ K and let 2 be an element of X. If [n]\ {x} is not closed then
it is a key. It must contain a minimal key as a subset. This contradiction shows
that [n] \ {#} is closed. The intersection of closed sets is closed [5], therefore all
sets containing [n]\ X are closed. Denote the family of these sets by 2 +([n]\ X).
(This notation may sound peculiar, but reflects the idea, that any set containing
[n] \ X consists of the union of a subset of X and the set [n] \ X.)

Concluding, if F is a family of closed sets in a closure from S(K), then the
followings are true.

FUE)I A} =0, (19)



B ([n] \ X). (20)

Therefore, if F; and Fo are two families of closed sets of two closures _from S(K),
then F1 A Fy cannot contain @, [n] and members of U(K)\{[n]} and 2X +([n]\X):

FiAF, 2N UE)\ 2% + (In]\ X))\ {0} (21)

Hence we have, considering that the only common element of U(K) and oX 4
([n] \ X) is [n], that

|F1 AR < 27 — (k)| — 2% (22)

By Theorem 2.1 the left hand side is the distance of the two closures, (22) gives

an upper bound on the diameter. Thus, to find a valid estimate, we need to
minimize

U(K)| + 21 (23)
for fixed [K]. B
Let K~ = {K : K € K}, where K denotes the complement of K. It is easy

to see that U(K)~ =D(K7) and X = [n] \ Upexc- M. Therefore the minimum
of (23) can be found minimizing

|D(M))] 4+ 9" U nren M| (24)

for fixed |M|. If Upjerq M # [n] then replace a member of M that is covered
by the union of the other members,by a 1-element set in [n] \ Uprepq M- I
no member of M is covered by other members, then each one has an “own”
clement that is not contained in any other member of M. Since |[M| > n, that
is impossible, so a covered member must exist. This operation obviously does
not increase (24). Repeated application of this step shows that Untem M = [n]
can be supposed. Lemma3.1 determines the minimum of D(M), the substitution
M~ = K gives the construction showing the desired upper bound. O

Remark 8.3. 1f |K| = (") then (18) becomes

diam(S(K)) < 2" — ‘;: (:”) = i (7;) (25)

1=8 =0

Indeed, () = |K| = |K*| by Theorem 3.4. There is only one possibility to have
K* of the structure given by Theorem 3.4 of this size, namely if £* = ().

3.3 Uniform Minimal Key Systems

If all keys are one-element sets, then K ' consists of a single set A, thus K=t
consists of all subsets of A and R, while K L consists of two sets, A and R, i.e.

the diameter is 2141 — 1. Hence, we start with the special case when the minimal
keys have size 2.



Let D be a closure whose minimal keys have exactly two elements. G = ([n], F)
be the graph where [n] = {1,2,...,n} stands for the set of attributes of D and
{i,j} € E(i # 7) is an edge of the graph iff {4, 7} is not a minimal key in D. That
is, KC is equal to (1)) — E. Let |E| = e. The set of closures having (") — E as the
set of minimal keys will be denoted by S2(G). We want to give an upper estimate
on diamS5(G) depending only on e, that is, actually we give upper bound for

sa(e) max diamSs (). (26)

{G=([n].E): |E|=e}
First we consider the case when G has one non-trivial connected component.

Theorem 3.5. Ife = (;) + r, where 0 < r < t, then

: % Lo 4 ifr<t
diamSy(G) < {2t+1 g (27)

for a graph G whose connected components are isolated vertices except for one
component. Furthermore, this bound is sharp.

Proof. Let D € S3(G) where G = ([n], E) is a graph with |FE| = e edges. Since
the family of minimal keys is K = ([g]) — E, the family of maximal antikeys C~*
consists of sets containing no key (that is, no edge in ([g’]) — F and maximal for
this property). Then the members of X! are maximal complete subgraphs in
G. These are called the cliques of G. K1 | consists of all complete subgraphs

of G, while 5! consists of those complete subgraphs that are intersections of
cliques. We will show that

KU |22 +2" +n—2t—1. (28)
We apply the following theorem of Erdds [6].

Theorem 3.6 (Erdds, 1962). Let G = (V, E) be a connected graph of e edges.

Assume, that e = (3) + r, where 0 < r < t. Then the number of complete
k-subgraphs Cy(G) of G is at most

Ch(@) < (;) + (k . 1). (29)

Note that Theorem 3.6 is valid for all k, since if k > max(f,r + 1), then both
binomial coefficients are 0, and no complete subgraph of that size could exist.
Since K~ 1| consists of all complete subgraphs of G, so we just have to sum up

(29) for all k& in the non-trivial component of G, and add the number of isolated
vertices. That is

This estimate is sharp.

|1C*]~H:Z(Z:)+Z<krl>+nt1, (30)

k>0 k>0



that results in (28). The optimum construction takes a complete graph on ¢
vertices and add an extra vertex connected to r vertices of the complete graph.
If r < t, then the nontrivial component of G cannot be a complete graph, so there
are at least two maximal cliques. Then (), the two maximal cliques, and their
intersection is in K5'. Furthermore, the isolated vertices are maximal cliques
therselves, so they are contained in 7', that is [K5'| > 4+n—t—1. Applying
(28) and Corollary3.1 the upper bound in (27) follows. m|

If we have more than one non-trivial component of (7, then Erdos’ theorem does
not apply. In fact, for small e, we can have better construction. For example, if
¢ = 2, then the best graph consists of two independent edges. In the Appendix
we give a proof of a general upper bound. With the notations of Theorem 3.5 it
says that so(e) < 201 — 2,

We can have some upper bound in the case of r-uniform minimal key sys-
tem. Let D be a closure whose minimal keys have exactly (> 2) elements.
H = ([n],€) be the hypergraph where [n] = {1,2,...,n} stands for the set of
attributes of D and the r-element set R € ([:f]) is a hyperedge of the hypergraph
H, that is a member of the family £ iff R is not a minimal key in D. That is,
K is equal to (["T‘]) \ €. We also suppose that |E| = e. The set of closures having
([':_’f]) \ € as the set of minimal keys will be denoted by S,(H). We want to give

an upper estimate on diamsS,.(H) depending only on e, that is, actually we will
give an upper estimate on

max diamS,.(H). 31
{H=([n],&): |€|=e} r( ) ( )

Theorem 3.7. I[fe < () then diam(S,(H)) < 2% + €2".

Proof. Let D € S,.(H) where H = ([n],£) is a graph with || = e hyperedges.
Since the family of minimal keys is IC = ([:f]) \ &, the family of antikeys K—!
consists of sets containing no key (that is, no edge in ([’;]) \ £ and maximal for
this property). Then the members of KX~! are vertex sets of maximal complete
subhypergraphs in H. That is sets B C [n] such that (’f ) CEbutforal B DB

(B')\ € # 0. These are called the (hyper)cliques of H.

We have to prove that the number of sets of the vertices of H which are
subsets of at least one hyperclique and are not intersections of those is at most
2¢ +e2". That is, |71 | — |KR1| < 2% + €2". We will actually prove something
stronger, namely we will show that [K™1] | < 2% + e2".

Suppose first 0 < 7 < r and consider the number of i-element subsets of the
hypercliques. Such a set must be a subset of an r-element set which is either € £
or is a subset of a larger maximal non-key. Therefore, in the worst case their
number is at most e(}).

Suppose now r < i. Let Aq,..., A, be the family of i-element subsets, whose
all r-element subsets are in € (They are not necessarily cliques!) If m > () then
by the Shadow Theorem the mumber of r-element subsets (hyperedges) is > (%) >
e. Indeed, the we are considering here (i, r)-shadows, whixh is minimalized by



the lexicographically first m i-sets. If m > (‘,Z) then these lexicographically first
sets contain all i-subsets of {1,2,...,a}, so their (i,7)-shadows contain all
subsets of {1,2,...,a}. By the strict inequality m > (‘;), some i-sets containing
a + 1 are also in the lexicographically first m, so some r-sets containing a + 1
are in the shados. This contradiction shows that m < (‘Z)

Add up these maximums:

e;l C) 3 Za: (f) <29 42" (32)

=41

4 Conclusions, Further Research

In the present paper we have introduced a distance concept of databases. It is
data-mining based, that is we start with the collection of functional dependencies
that a given instance r of schema R satisfies. Two databases are considered to
be the same, if their numbers of attributes agree and they satisty exactly the
same collection of functional dependencies. It has turned out that this concept
fits nicely with the poset of closures as a model of changing databases, which
was introduced sometimes ago.

Our research concentrates on how much different two databases are. On the
other hand, Miiller et. al. discussed distance of databases from the point of view
how much work one needs to do in order to synchronize them. Their approach
is algorithmic, our approach is more theoretical.

We have done the first steps by determining the largest possible distance
between two databases of the same number of attributes. Next, we determined
the distance of any two databases by showing that it is the size of the symmetric
difference of the collections of closed sets. Then we investigated the diameter of
the set of databases with a given system of (minimal) keys. This led to interesting
discrete mathematics problems. Namely, given a hypergraph H = (V, &), what
is the number of complete subhypergraphs that are not intersections of maximal
subhypergraphs? We have given good upper bounds in the case of ordinary graphs
and k-uniform hypergraphs, when the number of hyperedges is fixed. Further
research topic is to improve these bounds and find those key systems that achieve
the extremal values. We in fact conjecture that if minimal keys are 2-element
sets, and the number of keys is of form (g) — (;), then the maximum diameter
is 2¢ — 2 and it is attained when the two-element sets that are non-keys form a
complete graph on a vertices.

Of course, our distance concept is restricted in the sense that it takes into
account only the system of functional dependencies. This model can basically
be extended in two directions. On the one hand it could be refined in the way
distinguishing two databases when their system of functional dependencies are
identical, but they are different in some other sense, for instance some other
dependencies are satisfied in one of them while they are not satisfied in the other



one. The other direction of extension is the ”generalization”. Then the distance
is introduced for databases with different numbers of attributes, as well.

This can be imagined in the following way. The "space” of all possible
databases is given with a hypothetical distance in this space. In our model we
forgot about the distance between two databases with the same system of func-
tional dependencies (and, of course the same number of attributes) considering
them the same and setting their distance 0, that is they are considered to be one
“point” in the space. We introduce the distance between the databases within
the set of the databases with the same number of attributes. We do not define
here the distance between databases with different numbers of attributes, that is
databases in distinct sets. Then the "real” or "hypothetical” distance could be a
combination of the distance between databases in different sets and the distance
between "refined elements” within one "point”.

On the other hand, one may try to find a distance concept that takes into
account that a database can have several different statuses during its lifetime.
A first and very strict identity definition could be to declare instances r and
' of schemata R and R’, respectively, being the same if there exist one-to-one
mappings @: Attr — Attr and ¥: Dom — Dom such that

DH(R) =R and ¥(r) =r'. (33)

However, this does not allow adding or deleting records, or modifying the schema.
These latter two could be incorporated by saying that r and r’ of schemata R
and R’ are instances of the same database if instead of (33), only

P(R) CR and ¥(r) C 1’ (34)

or
P(R) CR and ¥(r) D1 (35)

is required. However, while (33) is overly restrictive, (34) and (35) are too loose.
They would allow the empty database to be the same with any other database.

Thus, another future research topic is finding the proper balance between (33),
and (34) and (35).
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A Appendix

Here we give a general upper bound for ss(e), through a series of lemmata. We
suppose that G = ([n], F') is a graph with e edges, where e < (‘21) The number of

subsets of [n] which span a complete graph, not equal to () and a clique is ¢(G).
Our final aim is to prove ¢(G) < 2% — 2.

Theorem A.1. If9 < a and the number of edges e in G is at most () then
the number-of subsets spanning a complete graph in G, not counting the empty
set and the cliques is at most 2* — 2, that is so(e) < 2% — 2.

Remark A.1. If e = (‘2”) then the complete graph shows that our estimate is
sharp. The statement of the theorem is also true when a < 9. This can be shown
with ugly case analysis.

Remark A.2. With the notations of Theorem 3.5, a =1+ 1.

)

Lemma A.1. If G contains a K,—; then ¢(G) < 2% — 2,

Proof. K,_, contains (”‘51) edges, at most a — 1 are left. Denote the vertex set
of K,—1 by A.

Suppose first that the graph M determined by the edges not in the K, is
connected and is not a tree. Then the number of vertices covered by them, that is,
the number of vertices of M is at most a—1. The number of subsets of the vertices
of M is at most 291, Since a the vertex set of a complete subgraph in G is either a
subset of A or of the vertex set of M, we obtained ¢(G) < 2971 -242071 =2¢_9

If M is connected, but is a tree, the previous consideration does not work
only when the number of edges of M is @ — 1. Denote the set of vertices of M
not in A by B, the subgraph of M spanned by B will be denoted by Mp. If
|B| = 1 then G is a complete graph on a vertices, the statement is obvious.
Suppose that Mp is connected and |B| = b > 2. Denote the set of vertices in



A adjacent to i € B by A;. These sets A;(1 < i < b) are disjoint, because M
is a tree. The number of edges of Mp is b — 1. The sum of the sizes of A; is
a—1—(b—1) =a—b. The complete subgraphs not in A are either 2-element
subsets of B (edges of Mp) or a vertex ¢ € B plus a subset of A;. Their total
number is Y .| oMl 1 h—1 <298 4+ h—14b— 1. The maximum of the right
hand side in the interval 1 < b < a — 1 is 2971, this case is also settled.
Suppose now that Mpg consists of k£ > 2 components: Ny, ..., Ng. The number
of edges of N; is denoted by f;. On the other hand, let the number of edges
having at least one end in NV; be a; — 1. Here Zle(ai —1) = a — 1. Every new
complete graph must contain one vertex from B but cannot contain vertices from
distinct components N;. Consider those new complete graphs containing at least
one vertex from N;. The statement of the previous paragraph can be repeated
replacing @ — 1 by a; — 1 and b by f;. Therefore the number of these complete
graphs is at most 27!, The total number of complete graphs is at most

k

3 (36)

i=1

Here a; = 1 is impossible because then N; would be an isolated point. Then 2¢ !
is an upper estimate on (36), like in the previous cases.

Suppose now that M consists of & > 2 components: My, ..., M. The number
of edges of M; is denoted by m;. Here Z?:I m; < a—1. The result of the previous
sections can be used: the number of new complete graphs in the ith component
is at most 2. Altogether: Zle 2™, Since every m; is at least 1, therefore they
cannot exceed a — k. This case can be finished exactly like the previous one. O

The difference of two complete graphs is the |V; — V5| where V; and V5 are the
two vertex sets.

Lemma A.2. Suppose that G contains no K,—1 but it contains (at least) two

Ko with the vertex sets Vi and Vs, respectively. Then one of the followings
holds:

V1 =W =1, (37)
V1 = Va| =2, (38)
|V1 — Vzl >3 and a < 9. (39)

Proof. Let |Vi — V5| be denoted by i. Then the total number of edges in the two

K, o is .
€T w

BEasy algebra leads to the inequality

0<i®—i(2a —5) + 4a — 6. (41)



This holds iff 7 is not in the interval determined by the solutions of the quadratic
equation:

20 —5++/(2a—5)2—16a+24 22— 5+ v/4a% — 36a + 49
2 B 2 '

Here 2a — 11 < v/4a? — 36a + 49 holds when 9 < a. Using this inequality we

obtain strict upper and a lower estimate on the "smaller” and the ”larger” roots,
respectively:

(42)

2a =5 — (24 — 11 2a — b5 2a —
5_ 20 5 2(0, 1), 9 — 8= 20 +2(a 11)_ (43)

This proves that 9 < a implies i < 3. (The other estimate becomes a + 1 < i
when 9 < a what is impossible.) O

Lemma A.3. Suppose that 5 < a and G contains no copy of K,_1, but contains
a pair of Ko_2’s with difference 2. Then ¢(G) < 2% — 2.

Proof. 1t is easy to see that there might be at most 4 extra edges which can be
added to the two K, 2's. The number of subsets spanning complete graphs in
them, not counting themselves and the empty set, is 2072 — 3 4 3204,

First suppose that there is no edge between Vi — V4 and Vo — V4, where V; and
V5 are the vertex sets of the K,_»’s. Then all of the 4 new edges have one vertex
not in V3 U Vs, It is easy to see by case analysis, that the maximum number of
sets spanning a complete graph is 16, using the extra 4 edges. The total number
of sets in question is at most 2972 — 3 + 32974 4 16 < 2% — 2 when, say 5 < a.

Suppose now that there is exactly one edge between V; — V4 and Vi — V1. This
addition creates a new K,_o. It also adds 2%~% — 1 new complete graphs. the
remaining 3 edges may add at most 8. Altogether: 2072 -34320-4420-4_ 148 =
20=1 1 4 what cannot be more than 2% — 2 when 4 < B

If there are two adjacent edges between V) — V5 and Vi — V; then they form a
K- contradicting our assumptions. Therefore if we suppose that there are at
least two edges between Vi — V5 and Vi — V4 then it is possible only when there
are exactly two of them and they have no common vertex. The so obtained graph
contains 27! +297% — 5 proper complete graphs. The remaining two edges may
add 4 more complete graphs: 2471 4294 _ 1 < 20 _ 2, O

Lemma A.4. Suppose that 4 < a, G contains no copy of K._1, contains no
pair of Kq—os with difference 2, but contains 3 copies of K,_o with pairwise
difference 1. Then ¢(G) < 2% — 2,

Proof. Take two of the complete graphs. Let K denote the intersection of their
vertex sets. (|K| = a—3 > 2.) The vertex sets have the respective forms K Uu and
KUv(u # v). It is easy to see that the vertex set of the third K,_» cannot contain
either of w and v, therefore it also has the form K Uw where (w # u), (w # v).
Denote the graph obtained as their union by K (3).

The number of edges of K(3) is (”’;3) +3(a — 3) = (5) — 3, that is, only 3
edges remained.



The number of proper complete subgraphs is 2073 + 32473 — 4 = 2071 — 4,
The addition of 3 edges may create at most 8 complete graphs. 2144 <29 -2
holds. O

Proof (of Theorem A.1). Start like in the proof of Theorem 3.5 The number of
l-element sets in question is at most 2e, the number of 2-element subsets is e.
The number of i-element subsets (> 3) is at most (). The only novelty here is
the treatment of the large sets. We saw in Lemmata A.1-A .4 that the statement
of the theorem holds when there is a K,_q or at least three K, in G. If we
suppose the contrary then the number of a — 2 and a — 1-element sets in question
is 0, the number of such a — 3-element subsets is at most 2(a — 2) (subsets of the
two possible K, o). The total number of sets is at most

3e+§:<j> g B = Be 88 — 1 = g — (;) - (aig>+2(a—2)_
B (@iQ)ﬁ (ail) -
=296+ (%—2(3)) + (e—— (g)) (44)

Here e < () by definition, e < () is an easy consequence when 5 < a. (44) can
be upper estimated by 2¢ — 6. |



