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Abstract

Three intersection theorems are proved. First, we determine the size of the largest set system,

where the system of the pairwise unions is l-intersecting. Then we investigate set systems where

the union of any s sets intersect the union of any t sets. The maximal size of such a set system is

determined exactly if s + t ≤ 4, and asymptotically if s + t ≥ 5. Finally, we exactly determine the

maximal size of a k-uniform set system that has the above described (s, t)-union-intersecting property,

for large enough n.
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1 Introduction

In the present paper we prove three intersection theorems, inspired by the following question.

Question 1. (J. Körner, personal communication) Let F be a set system whose elements are subsets of
[n] = {1, 2, . . . n}. Assume that there are no four different sets F1, F2, G1, G2 ∈ F such that (F1 ∪ F2) ∩
(G1 ∪G2) = ∅. What is the maximal possible size of F ?

We will solve this problem as a special case of Theorem 6. (See Remark 1.)

The paper is organized as follows. In the rest of this section we review some theorems that will be
used later. In Section 2, the size of the largest set system will be determined, where the system of the
pairwise unions is l-intersecting. In Section 3, we investigate set systems where the union of any s sets
intersect the union of any t sets. The maximal size of such a set system is determined exactly if s+ t ≤ 4,
and asymptotically if s + t ≥ 5. In Section 4, we exactly determine the maximal size of a k-uniform set
system that has the above described (s, t)-union-intersecting property, for large enough n.

The following intersection theorems will be used in the proof of Theorem 6.

Definition 1. Let
(
[n]
k

)
denote the set of all k-element subsets of [n]. A set system F is called l-

intersecting, if |A∩B| ≥ l holds for all A,B ∈ F (l > 0). The following set systems (containing k-element
subsets of [n]) are obviously l-intersecting systems.

Fi =

{
F ∈

(
[n]

k

) ∣∣∣ |F ∩ [l + 2i]| ≥ l + i

}
0 ≤ i ≤ n− l

2
(1)
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For 1 ≤ l ≤ k ≤ n let
AK(n, k, l) = max

0≤i≤n−l
2

|Fi|. (2)

It was conjectured by Frankl [6] that this is the maximum size of a k-uniform l-intersecting family.
(See also [8].)

Theorem 1. (Ahlswede-Khachatrian, [1]) Let F be a k-uniform l-intersecting set system whose elements
are subsets of [n]. (1 ≤ l ≤ k ≤ n) Then

|F| ≤ AK(n, k, l). (3)

Definition 2. Let F be a set system and k ∈ N. Then Fk denotes the set of the k-element sets in F .

Theorem 2. (Katona, [9], formula (12)) Let F be a t-intersecting system of subsets of [n]. Then

|F i|+ |Fn+t−1−i| ≤
(

n

n + t− 1− i

)
.

(
0 ≤ i <

n + t− 1

2

)
(4)

The following results are about set systems not containing certain subposets. We will use them to
prove Theorem 7.

Definition 3. Let P be a finite poset with the relation ≺, and F be a family of subsets of [n]. We say
that P is contained in F if there is an injective mapping f : P → F satisfying a ≺ b ⇒ f(a) ⊂ f(b) for
all a, b ∈ P . F is called P -free if P is not contained in it.

Definition 4. Let Kxy denote the poset with elements {a1, a2, . . . ax, b1, . . . by}, where ai < bj for all
(i, j) and there is no other relation.

Theorem 3. (Katona-Tarján, [10]) Assume that G is a family of subsets of [n] that is K12-free and
K21-free. Then

|G| ≤ 2

(
n− 1

bn−12 c

)
. (5)

Theorem 4. (De Bonis-Katona, [2]) Assume that G is a K1y-free family of subsets of [n]. Then

|G| ≤
(

n

bn/2c

)(
1 +

2(y − 1)

n
+ O(n−2)

)
. (6)

Theorem 5. (De Bonis-Katona, [2]) Assume that G is a Kxy-free family of subsets of [n]. Then

|G| ≤
(

n

bn/2c

)(
2 +

2(x + y − 3)

n
+ O(n−2)

)
. (7)

2 Union-l-Intersecting Systems

Definition 5. A set system F is called union-l-intersecting, if it satisfies |(F1 ∪ F2) ∩ (G1 ∪G2)| ≥ l for
all sets F1, F2, G1, G2 ∈ F , F1 6= F2, G1 6= G2.

Theorem 6. Let F be a union-l-intersecting set system whose elements are subsets of [n]. (n ≥ 3) Then
we have the the following upper bounds for |F|.
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a) If n + l is even, then

|F| ≤
n∑

i=n+l
2 −1

(
n

i

)
. (8)

b) If n + l is odd, then

|F| ≤ AK

(
n,

n + l − 3

2
, l

)
+

n∑
i=n+l−1

2

(
n

i

)
. (9)

These are the best possible bounds.

Proof. We can assume that F is an upset, that is A ∈ F , A ⊂ B imply B ∈ F . (If there are sets A ⊂ B,
A ∈ F , B 6∈ F then we can replace F by (F\{A})∪{B}. After finitely many steps we arrive at an upset
of the same size that is still union-l-intersecting.)

First, assume that l ∈ {1, 2}. Note that if A,B ∈ F , A ∩ B = ∅, and |A ∪ B| = n + l − 3 < n, then
both A and B can not be in F at the same time. A,B ∈ F and F being an upset would imply that
there are two sets C,D ∈ F such that A ⊂ C, B ⊂ D and |(A ∪ C) ∩ (B ∪D)| = |C ∩D| = l − 1, with
contradiction.

For all 0 ≤ i < n+l−3
2 define the bipartite graph Gi(Si, Ti, Ei) as follows. Let Si be the set of all the

i-element subsets of [n], let Ti be the set of subsets of size n+ l− 3− i, and connect two sets A ∈ Si and
B ∈ Ti if they are disjoint. Then both vertex classes contain vertices of the same degree, so it follows
by Hall’s theorem that there is a matching that covers the smaller vertex class, that is Si. Since at most
one of two matched subsets can be in F , it follows that

|F i|+ |Fn+l−3−i| ≤
(

n

n + l − 3− i

) (
0 ≤ i <

n + l − 3

2

)
. (10)

Now let l ≥ 3. We will show that (10) holds for all n. Assume that there are A,B ∈ F , A,B 6= [n]

such that |A ∩B| ≤ l − 3. Take x 6∈ A and y 6∈ B. Then A ∪ {x}, B ∪ {y} ∈ F , since F is an upset and

|(A ∪ (A ∪ {x})) ∩ (B ∪ (B ∪ {y}))| = |(A ∪ {x}) ∩ (B ∪ {y})| ≤ |(A ∩B) ∪ {x, y}| = l − 3 + 2 < l.

So F − {[n]} is an (l− 2)-intersecting system, so F is one too. Now use Theorem 2 with t = l− 2. (l− 2

is positive since l ≥ 3.) It gives us that (10) holds for all n and l.

Assume that l is a positive integer n+ l is odd. Then the sets in F n+l−3
2 form an l-intersecting family.

A,B ∈ F n+l−3
2 , |A∩B| ≤ l− 1 and F being an upset would imply that there are two sets C,D ∈ F such

that A ⊂ C, B ⊂ D and |(A∪C)∩ (B ∪D)| = |C ∩D| = l− 1. So Theorem 1 provides an upper bound:

|F
n+l−3

2 | ≤ AK

(
n,

n + l − 3

2
, l

)
. (11)

The upper bounds of the theorem follow after some calculations. When l ≤ 2, the inequalities of (10)
imply

|F| =
n∑

i=0

|F i| = |F
n+l−3

2 |+
bn+l

2 −2c∑
i=0

(|F i|+ |Fn+l−3−i|) +

n∑
i=n+l−2

|F i| ≤ |F
n+l−3

2 |+
n∑

i=dn+l
2 −1e

(
n

i

)
. (12)
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Let l ≥ 3. Since F is (l − 2)-intersecting, |F i| = 0 for all i < l − 2. Using (10), we get

|F| =
n∑

i=l−3

|F i| = |F
n+l−3

2 |+
bn+l

2 −2c∑
i=l−3

(|F i|+ |Fn+l−3−i|) ≤ |F
n+l−3

2 |+
n∑

i=dn+l
2 −1e

(
n

i

)
. (13)

We got the same inequality in the two cases. The upper bounds of the theorem follow immediately,
since F n+l−3

2 = ∅, if n + l is even, and |F n+l−3
2 | ≤ AK

(
n, n+l−3

2 , l
)
, if n + l is odd (see (11)).

To verify that the given bounds are best possible, consider the following union-l-intersecting set
systems. When n+ l is even, take all the subsets of size at least n+l

2 − 1. When n+ l is odd, take all the
subsets of size at least n+l−1

2 and an n+l−3
2 -uniform l-intersecting set system of size AK

(
n, n+l−3

2 , l
)
.

Remark 1. Let us formulate the special case l = 1 what was originally asked by Körner. The Erdős-
Ko-Rado theorem [3] states that the size of the largest k-uniform intersecting system of subsets of [n] is(
n−1
k−1
)
, when n ≥ 2k. It means that AK(n, n

2 − 1, 1) =
(
n−1
n
2−2
)
, so the best upper bound for |F| when l = 1

is

|F| ≤



n∑
i=(n−1)/2

(
n

i

)
if n is odd,

(
n−1
n
2−2
)

+

n∑
i=n

2

(
n

i

)
if n is even.

(14)

3 Considering the Union of More Subsets

In this section we investigate a variation of the problem where we take the union of s and t subsets instead
of 2 and 2.

Definition 6. A set system F is called (s, t)-union-intersecting if it has the property that for all s + t

pairwise different sets F1, F2, . . . Fs, G1, . . . Gt ∈ F(
s⋃

i=1

Fi

)
∩

 t⋃
j=1

Gj

 6= ∅. (15)

The size of the largest (s, t)-union-intersecting system whose elements are subsets of [n] is denoted by
f(n, s, t).

In this section we determine the value of f(n, s, t) exactly when s + t ≤ 4 and asymptotically in the
other cases. Since f(n, s, t) = f(n, t, s), we can assume that s ≤ t.

Theorem 7. Let n ≥ 3.

a)
f(n, 1, 1) = 2n−1. (16)

b)

f(n, 1, 2) =



n∑
i=n/2

(
n

i

)
if n is even,

(n−1
n−3
2

)
+

n∑
i=(n+1)/2

(
n

i

)
if n is odd.

(17)
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c)

f(n, 2, 2) =



n∑
i=(n−1)/2

(
n

i

)
if n is odd,

(
n−1
n
2−2
)

+

n∑
i=n/2

(
n

i

)
if n is even.

(18)

d)

f(n, 1, 3) =



n∑
i=n/2

(
n

i

)
if n is even,

(n−1
n−1
2

)
+

n∑
i=(n+1)/2

(
n

i

)
if n is odd.

(19)

e) If t ≥ 4, then

2n−1 +
1

2

(
n

bn/2c

)
≤ f(n, 1, t) ≤ 2n−1 +

(
n

bn/2c

)(
1

2
+

t− 2

n
+ O(n−2)

)
. (20)

f) If s ≥ 2 and t ≥ 3, then

2n−1 +

(
n

bn/2c

)
n

n + 2
≤ f(n, s, t) ≤ 2n−1 +

(
n

bn/2c

)(
1 +

t + s− 3

n
+ O(n−2)

)
. (21)

Proof. a) (See [3].) f(n, 1, 1) is the size of the largest intersecting system among the subsets of [n]. It
is at most 2n−1, since a subset and its complement cannot be in the intersecting system at the same
time. By choosing all the subsets containing a fixed element, we get an intersecting system of size
2n−1.

b) Let F be a (1, 2)-union-intersecting system. We can assume that F is an upset. Note that if A,B ∈ F ,
A ∩ B = ∅, and |A ∪ B| = n − 1, then A and B can not be in F at the same time. To see this, let
{x} = [n]− (A ∪B). Then A ∩ (B ∪ (B ∪ {x})) = A ∩ (B ∪ {x}) = ∅.

For all 0 ≤ i < n−1
2 define the bipartite graph Gi(Si, Ti, Ei) as follows. Let Si be the set of all the

i-element subsets of [n], let Ti be the set of subsets of size n− 1− i, and connect two sets A ∈ Si and
B ∈ Ti if they are disjoint. Then both vertex classes contain vertices of the same degree, so it follows
by Hall’s theorem that there is a matching that covers the smaller vertex class, that is Si. Since at
most one of two matched subsets can be in F , it follows that

|F i|+ |Fn−1−i| ≤
(

n

n− 1− i

) (
0 ≤ i <

n− 1

2

)
. (22)

When n is even, these inequalities together imply

|F| ≤
n∑

i=n/2

(
n

i

)
. (23)

Assume that n is odd. Then F n−1
2 is an intersecting family. A,B ∈ F n−1

2 , A∩B = ∅ and F being an
upset would imply that there is a set C ∈ F such that B ⊂ C and |A ∩ (B ∪ C)| = |A ∩ C| = ∅. So
the Erdős-Ko-Rado theorem provides an upper bound:

|F
n−1
2 | ≤

(
n− 1
n−3
2

)
. (24)
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This, together with the inequalities of (22) implies

|F| ≤
(
n− 1
n−3
2

)
+

n∑
i=(n+1)/2

(
n

i

)
. (25)

To verify that the given bounds are best possible, consider the following (1,2)-union-intersecting set
systems. When n is even, take all the subsets of size at least n

2 . When n is odd, take all the subsets
of size at least n+1

2 and the subsets of size n−1
2 containing a fixed element.

c) We already solved this problem as the case l = 1 in Theorem 6. (See Remark 1.)

d) Let F be a (1, 3)-union-intersecting system of subsets of [n]. Let F ′ = {[n] − F
∣∣ F ∈ F}, and let

G = F ∩ F ′. Now we prove that G is K1,2-free and K2,1-free. (See Section 1 for the definitions.)
Since G is invariant to taking complements, it is enough to show that G is K12-free. Assume that
there are three pairwise different sets A,B,C ∈ G, such that A ⊂ B and A ⊂ C. Then the sets
A, [n]−A, [n]−B, [n]− C ∈ F would satisfy

A ∩ (([n]−A) ∪ ([n]−B) ∪ ([n]− C)) = A ∩ ([n]−A) = ∅. (26)

Theorem 3 gives us the following upper bound for a set system that is K12-free and K21-free:

|G| ≤ 2

(
n− 1

bn−12 c

)
. (27)

Since 2|F| = |F|+ |F ′| = |F ∪ F ′|+ |F ∩ F ′| ≤ 2n + |G|, we have

|F| ≤ 2n−1 +

(
n− 1

bn−12 c

)
=



n∑
i=n/2

(
n

i

)
if n is even,

(n−1
n−1
2

)
+

n∑
i=(n+1)/2

(
n

i

)
if n is odd.

(28)

To verify that the given bounds are best possible, consider the following (1,3)-union-intersecting set
systems. When n is even, take all the subsets of size at least n

2 . When n is odd, take all the subsets
of size at least n+1

2 and the subsets of size n−1
2 not containing a fixed element.

e) Let F be a (1, t)-union-intersecting system of subsets of [n]. Define G as above, and note that G is
K1,t−1-free. Theorem 4 implies

|G| ≤
(

n

bn/2c

)(
1 +

2(t− 2)

n
+ O(n−2)

)
. (29)

Since 2|F| ≤ 2n + |G|, we have

|F| ≤ 2n−1 +

(
n

bn/2c

)(
1

2
+

t− 2

n
+ O(n−2)

)
. (30)

The lower bound follows obviously from

f(n, 1, t) ≥ f(n, 1, 3) = 2n−1 +

(
n− 1

bn−12 c

)
≥ 2n−1 +

1

2

(
n

bn/2c

)
. (31)
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f) Let F be an (s, t)-union-intersecting system of subsets of [n]. Define G as above. Now we prove that
G is Ks,t-free. Assume that A1, A2, . . . As, B1, . . . Bt ∈ G are pairwise different subsets and Ai ⊂ Bj

for all (i, j). Then

(
s⋃

i=1

Ai

)
∩

 t⋃
j=1

([n]−Bj)

 = ∅. It is a contradiction, since [n]−Bj ∈ F for all j.

Theorem 5 implies

|G| ≤
(

n

bn/2c

)(
2 +

2(s + t− 3)

n
+ O(n−2)

)
. (32)

Since 2|F| ≤ 2n + |G|, we have

|F| ≤ 2n−1 +

(
n

bn/2c

)(
1 +

t + s− 3

n
+ O(n−2)

)
. (33)

The lower bound follows from

f(n, s, t) ≥ f(n, 2, 2) ≥ 2n−1 +

(
n

bn/2c

)
n

n + 2
. (34)

(The second inequality can be verified by elementary calculations since the exact value of f(n, 2, 2) is
known. Equality holds when n is even.)

4 The k-Uniform Case

In this section we determine the size of the largest k-uniform (s, t)-union-intersecting set system of subsets
of [n] for all large enough n.

Theorem 8. Assume that 1 ≤ s ≤ t and F ⊂
(
[n]
k

)
is an (s, t)-union-intersecting set system. Then

|F| ≤
(
n− 1

k − 1

)
+ s− 1 (35)

holds for all n > n(k, t).

Remark 2. There is k-uniform (s, t)-union-intersecting set system of size
(
n−1
k−1
)

+s−1. Take all k-element
sets containing a fixed element, then take s− 1 arbitrary sets of size k.

We need some preparation before we can start the proof of Theorem 8.

Definition 7. A sunflower (or ∆-system) with r petals and center M is a family {S1, S2, . . . Sr} where
Si ∩ Sj = M for all 1 ≤ i < j ≤ r.

Lemma 1. (Erdős-Rado [4]) Assume that A ⊂
(
[n]
k

)
and |A| > k!(r− 1)k. Then A contains a sunflower

with r petals as a subfamily.

Proof. We prove the lemma by induction on k. The statement of the lemma is obviously true when
k = 0. Let A ⊂

(
[n]
k

)
a set system not containing a sunflower with r petals. Let {A1, A2, . . . Am} be a

maximal family of pairwise disjoint sets in A. Since pairwise disjoint sets form a sunflower, m ≤ r − 1.
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For every x ∈
m⋃
i=1

Ai, let Ax = {S − {x}
∣∣ S ∈ A, x ∈ S}. Then each Ax is a k − 1-uniform set system

not containing sunflowers with r petals. By induction we have |Ax| ≤ (k − 1)!(r − 1)k−1. Then

|A| ≤ (k − 1)!(r − 1)k−1

∣∣∣∣∣
m⋃
i=1

Ai

∣∣∣∣∣ ≤ (k − 1)!(r − 1)k−1 · k(r − 1) = k!(r − 1)k. (36)

Lemma 2. Let c be a fixed positive integer. If A ⊂
(
[n]
k

)
, K ⊂ [n], |K| ≤ c and |A ∩K| ≥ 2 holds for

every A ∈ A, then |A| ≤ O(nk−2).

Proof. Choose a set K ⊂ K ′ with |K ′| = c. The conditions of the lemma are also satisfied with K ′.

|A| ≤
c∑

i=2

(
c

i

)(
n− c

k − i

)
. (37)

The right hand side is a polynomial of n with degree k − 2, so |A| ≤ O(nk−2).

Lemma 3. Let s, t be fixed positive integers. Let A,B ⊂
(
[n]
k

)
. Assume that |B| ≥ s, A ∪ B is (s, t)-

union-intersecting, and there is an element a such that a ∈ A holds for every A ∈ A, and a 6∈ B holds for
every B ∈ B. Then |A| ≤ O(nk−2).

Proof. Choose s different sets B1, B2, . . . Bs ∈ B. Let A′ = {A ∈ A
∣∣ A ∩ s⋃

i=1

Bi 6= ∅}. Since A ∪ B is

(s, t)-union-intersecting, |A − A′| ≤ t− 1.∣∣∣∣∣A ∩
(
{a} ∪

s⋃
i=1

Bi

)∣∣∣∣∣ ≥ 2 (38)

holds for all A ∈ A′. Use Lemma 2 with K = {a} ∪
s⋃

i=1

Bi and c = sk + 1, it implies |A′| ≤ O(nk−2).

Then |A| ≤ O(nk−2) + (t− 1) = O(nk−2).

Proof. (of Theorem 8) Use Lemma 1 with r = ks + t. If |F| > k!(ks + t)k, then F contains a sunflower
{S1, S2, . . . Sks+t} as a subfamily. (Note that

(
n−1
k−1
)
> k!(ks+t)k holds for large enough n.) Let M denote

the center of the sunflower and introduce the notations |M | = {a1, a2, . . . am} and Ci = Si−M (1 ≤ i ≤
ks + t). Let F0 = {F ∈ F

∣∣ F ∩M = ∅}, and Fi = {F ∈ F
∣∣ ai ∈ F} for 1 ≤ i ≤ m.

Assume that |F0| ≥ s. Let B1, B2, . . . Bs ∈ F0 be different sets. Since

∣∣∣∣∣
s⋃

i=1

Bi

∣∣∣∣∣ ≤ ks, and the sets

{C1, C2, . . . Cks+t} are pairwise disjoint, there some indices i1, i2, . . . it such that

∅ =

(
s⋃

i=1

Bi

)
∩

 t⋃
j=1

Cij

 =

(
s⋃

i=1

Bi

)
∩

 t⋃
j=1

Sij

 . (39)

It contradicts our assumption that F is (s, t)-union-intersecting, so |F0| ≤ s− 1.

Note that the obvious inequality |Fi| ≤
(
n−1
k−1
)
holds for all 1 ≤ i ≤ m, so the statement of the theorem

is true if |F − Fi| ≤ s− 1 holds for any i.
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Finally, assume that |F − Fi| ≥ s holds for all 1 ≤ i ≤ m. Using Lemma 3 with A = Fi and
B = F − Fi, we get that |Fi| = O(nk−2). Then

|F| ≤
m∑
i=0

|Fi| ≤ (s− 1) + m ·O(nk−2) = O(nk−2). (40)

Since
(
n−1
k−1
)

+ s − 1 is a polynomial of n with degree k − 1, |F| ≤
(
n−1
k−1
)

+ s − 1 holds for large enough
n.

Remark 3. Note that Theorem 8 generalizes the Erdős-Ko-Rado theorem [3] for large enough n, since
letting s = 1 and t ≥ 2, we get the same upper bound for |F| while having weaker conditions on F .

Remark 4. The method of the proof of Theorem 8 is the so called sunflower or delta method. See the
papers of Frankl [5] and Frankl and Füredi [7].

Question 2. Let F be a set system satisfying the conditions of Theorem 8. What is the best upper bound
for |F|, when n is small?
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