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Henneberg moves on mechanisms

Bill Jackson?, Tibor Jordán??, Brigitte Servatius? ? ?, and

Herman Servatius‡

Abstract

A bar-and-joint framework in the plane with degree of freedom 1 is called a
mechanism. It is well-known that the operations of 0-extension and 1-extension,
the so called Henneberg moves, can always be performed on a framework so
that its degree of freedom is preserved. It was conjectured by the first and
second author in 2012 that for a mechanism in generic position these operations
can be performed without restricting its motion. In this note we provide a
counterexample.

1 Introduction

A 2-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V,E) is a
graph and p is a map from V to R2. We consider the framework to be a straight
line realization of G in R2. A flexing of the framework (G, p) is a continuous function
π : [0, 1] × V → R2 such that π0 = p, and such that the corresponding edge lengths
in frameworks (G, p) and (G, πt) are the same for all t ∈ [0, 1], where πt : V → R2

is defined by πt(v) = π(t, v) for all v ∈ V . The flexing π is trivial if the frameworks
(G, p) and (G, πt) are congruent for all t ∈ [0, 1]. A framework is said to be rigid if
it has no non-trivial flexings. It is called a mechanism if it has degree of freedom 1,
that is, if it is not rigid but can be made rigid by inserting one additional bar.

A realization of a graph is generic if there are no algebraic dependencies between
the coordinates of the vertices. It is known, see [7], that the rigidity of frameworks
(and their degree of freedom) in R2 is a generic property, that is, the rigidity of (G, p)
depends only on the graph G and not the particular realization p, if (G, p) is generic.
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We say that the graph G is rigid in R2 if every (or equivalently, if some) generic
realization of G in R2 is rigid. See [1, 7] for more details.

The 0-extension operation on vertices x, y in a graph H adds a new vertex z and
new edges xz, yz to H. The 1-extension operation [2] (on edge xy and vertex w)
deletes an edge xy from a graph H and adds a new vertex z and new edges zx, zy, zw
for some vertex w ∈ V (H) − {x, y}. See Figure 1. It is known that these extension
operations, the so-called Henneberg moves, preserve rigidity [6]. A graph G = (V,E)
is minimally rigid if G is rigid, but G− e is not rigid for all e ∈ E. We say that graph
H is a mechanism if H = G− e for some minimally rigid graph G.

It is well-known that a graph is minimally rigid if and only if it can be constructed
from an edge by a sequence of 0-extensions and 1-extensions. Similarly, if K,G are
mechanisms with K ⊂ G and such that K is contained in no rigid subgraph of G,
then G can be obtained from K by a sequence of 0-extensions and 1-extensions.

Let G = (V,E) be a graph. We shall consider realisations (G, p) of G in R2 which
are in standard position with respect to two given vertices v1, v2 i.e. p(v1) = (0, 0) and
p(v2) lies on the ‘y-axis’. We will suppress the coordinates of v1, v2 which are fixed
at zero and take p ∈ R2|V |−3. We say that such a realisation (G, p) is generic if the
2|V | − 3 coordinates of p are algebraically independent over Q.

Given a realisation (G, p) of a mechanism G we refer to the set of all frame-
works (G, q) which are in standard position with respect to (v1, v2) and can be
reached by a flexing of (G, p) as the flex of (G, p). Let Θ(G, p) = {q ∈ R2|V |−3 :
(G, q) is in the flex of (G, p)}. It is known that Θ(G, p) is diffeomorphic to a circle
when (G, p) is generic.

Suppose K,G are mechanisms with K ⊂ G and v1, v2 ∈ V (K). Put Θ(K,G, p) =
{q|K : q ∈ Θ(G, p)}. Then Θ(K,G, p) ⊆ Θ(K, p|K) but we may have Θ(K,G, p) 6=
Θ(K, p|K) since the edges of G which do not belong to K may place additional con-
straints on how (K, p|K) flexes inside of (G, p). When Θ(K,G, p) 6= Θ(K, p|K),
Θ(K,G, p) will be a closed 1-manifold with boundary i.e. will be diffeomorphic to
a closed line segment. This can occur, for example, when K is contained in a rigid
subgraph of G, in which case Θ(K,G, p) will contain the single point p|K .

Motivated by a problem concerning globally linked pairs of vertices in graphs, it was
conjectured in a recent paper [4] that if K,G are mechanisms with K ⊆ G and such
that K is contained in no rigid subgraph of G then there exists a generic realisation
(G, p) of G such that Θ(K,G, p) = Θ(K, p|K). This conjecture is still open.

The inductive construction of mechanisms from submechanisms mentioned above
leads to the idea of proving this conjecture recursively. It can be seen that if G is
obtained from H by a 0-extension, and Θ(K,H, p) = Θ(K, p|K) for some generic
realisation (H, p) of H, then p can be extended to a generic realisation (G, p̃) of G
such that Θ(K,G, p̃) = Θ(K, p̃|K) = Θ(K, p|K). This led the first and second author
of this note to conjecture an analogous result for 1-extensions. The conjecture was
posed at a workshop on rigidity held at BIRS (Banff, Canada) in 2012. A similar idea
was outlined previously by Owen and Power [5, Problem 2].

This conjecture was subsequently disproved by the third and fourth author. The
goal of this note is to present a small (in fact, the smallest possible) counterexample
together with a simple analysis. We shall prove the following:
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Figure 1: Let K be the subgraph of G and H with V (K) = {a, y, c} and E(K) =
{ay, yc}. The graph G is obtained from H by a 1-extension which deletes the edge ab
and adds the vertex d and the edges da, db, dc.

Theorem 1.1. There exist mechanisms K,H,G with K ⊂ H and such that K is
contained in no rigid subgraph of G and G is obtained from H by a 1-extension, for
which Θ(K,H, p) = Θ(K, p|K) for some generic realisation (H, p) of H and for which
p cannot be extended to a generic realisation (G, p̃) of G for which Θ(K,G, p̃) =
Θ(K, p̃|K) = Θ(K, p|K).

We shall prove that the graph in Figure 1 is a counterexample. Based on this fact
it is not hard to construct an infinite family of counterexamples. We need some new
notation and two lemmas. The first lemma is a special case of [3, Lemma 3.3].

Lemma 1.2. [3] Let (G, p) be a generic realization of a mechanism G in standard
position. Then the set of edge lengths of (G, p) are algebraically independent over the
rationals.

Given a framework (G, p) and an edge uv of G let `p(uv) denote the length of uv
in (G, p). We suppress the subscript p when it is obvious which realisation we are
referring to.

Lemma 1.3. Let (C4, p) be a realisation of the 4-cycle C4 = aybda. Suppose that
`(ay) > 2`(by). Consider the flex Θ(C4, p) with a pinned at the origin and y pinned
on the y-axis and suppose that d transcribes a circle around a in this flex. Then
`(ad) ≤ 2`(by)

Proof. Note that since ay is an edge, y must also remain fixed throughout the flex.
Applying the triangle inequality when d is at the point furthest away from y in the
flex, we deduce that

`(db)− `(by) ≤ `(ad) + `(ay) ≤ `(db) + `(by). (1)

Consider the case when `(ad) ≥ `(ay). Applying the triangle inequality when d is
at the point nearest to y in the flex, we deduce that

`(db)− `(by) ≤ `(ad)− `(ay) ≤ `(db) + `(by). (2)
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Adding (1) and (2) gives

`(db)− `(by) ≤ `(ad) ≤ `(db) + `(by)

and hence `(db)− `(by) + `(ay) ≤ `(ad) + `(ay). Inequality (1), now gives

`(db)− `(by) + `(ay) ≤ `(ad) + `(ay) ≤ `(db) + `(by).

This gives `(ay) ≤ 2`(by) and contradicts the hypothesis that `(ay) > 2`(by).
Hence `(ad) < `(ay). Applying the triangle inequality when d is at the point nearest

to y in the flex, we deduce that

`(db)− `(by) ≤ −`(ad) + `(ay) ≤ `(db) + `(by). (3)

Adding (1) and (3) gives `(db) − `(by) ≤ `(ay) ≤ `(db) + `(by) and hence `(db) −
`(by) + `(ad) ≤ `(ad) + `(ay). Inequality (1), now gives

`(db)− `(by) + `(ad) ≤ `(ad) + `(ay) ≤ `(db) + `(by)

and hence `(ad) ≤ 2`(by) as required. •

Proof of Theorem 1.1. Consider the graphs in Figure 1. Choose a generic realisa-
tion (H, p) in which `(cy) > `(ay) > 4`(by). Extend this to a realisation (G, p) of G by
placing d at some point in the plane. Consider the flexes of (G, p) and (H, p|H) which
keep a fixed at the origin and y on the ‘y-axis’. Note that since ay is an edge this im-
plies that y also remains fixed throughout each flex. It is easy to see that c transcribes
a circle about y during the flex of (H, p|H) and hence that Θ(K,H, p|H) = Θ(K, p|K).

Assume that c transcribes a circle around y in Θ(G, p). Let (G, pt) be the position of
G at time t in Θ(G, p). The triangle inequality gives |`(da)−`(dc)| ≤ ‖pt(c)−pt(a)‖ ≤
`(da) + `(dc) for all t ∈ [0, 1]. Since a is pinned at the origin this gives

|`(da)− `(dc)| ≤ min
t
{‖pt(c)‖} = `(cy)− `(ay) (4)

and
`(da) + `(dc) ≥ max

t
{‖pt(c)‖} = `(cy) + `(ay). (5)

We first consider the case when d transcribes a circle around a in Θ(G, p). Lemma
1.3 applied to the 4-cycle aybda implies that `(ad) ≤ 2`(by). This gives 2`(ad) ≤
4`(by) < `(ay). Since c transcribes a circle around y, we may now apply Lemma
1.3 to the 4-cycle adcya (with the roles of a and y reversed) to deduce that `(yc) ≤
2`(ad) ≤ 4`(by). This contradicts the fact that `(cy) > 4`(by).

Hence d cannot transcribe a circle around a in Θ(G, p). Since the flex of G is
continuous and p(a) is inside the circle transcribed by c, the points pt0(c), pt0(d), pt0(a)
must be collinear for some t0 ∈ [0, 1]. Hence we have |`(da) − `(dc)| = ‖pt0(c)‖
or `(da) + `(dc) = ‖pt0(c)‖. Thus equality must hold in either (4) or (5). Either
alternative implies that pt0(d), pt0(c), p(a), p(y) are collinear. Hence all four points lie
on the y-axis and the edge lengths of the four-cycle of (G, p) on vertex set {d, c, y, a}
are algebraically dependent over the rationals. Lemma 1.2 now implies that (G, p)
cannot be generic.
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