Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2011-02. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Monochromatic components in edge-colored complete uniform hypergraphs

Zoltán Király

March 31, 2011

Monochromatic components in edge-colored complete uniform hypergraphs

Zoltán Király*

Abstract

Let K_{n}^{r} denote the complete r-uniform hypergraph on vertex set $V=[n]$. An f-coloring is a coloring of the edges with colors $\{1,2, \ldots, f\}$, it defines monochromatic r-uniform hypergraphs $H_{i}=\left(V, E_{i}\right)$ for $i=1, \ldots, f$, where E_{i} contains the r-tuples colored by i. The connected components of hypergraphs H_{i} are called monochromatic components. For $n>r k$ let $f(n, r, k)$ denote the maximum number of colors, such that in any f-coloring of K_{n}^{r}, there exist k monochromatic components covering V. Moreover let $f(r, k)=$ $\min _{n>r k} f(n, r, k)$. A reformulation (see [5]) of an important special case of Ryser's conjecture states that $f(2, k)=k+1$ for all k. This conjecture is proved to be true only for $k \leq 4$, so the value of $f(2,5)$ is not known. On the contrary, in this paper we show that for $r>2$ we can determine $f(r, k)$ exactly, and its value is $r k$.

Keywords: Hypergraphs, edge coloring, Ryser's conjecture.

1 Introduction

An r-uniform hypergraph $H=(V, E)$ is called r-partite, if the vertex set is partitioned into r classes: $V=V_{1} \cup \ldots \cup V_{r}$, such that for each edge $e \in E$ and for each $1 \leq i \leq r$ we have $\left|e \cap V_{i}\right|=1$. Let $\nu(H)$ denote the size of the maximum matching in H, i.e., the maximum number of pairwise disjoint edges, and let $\tau(H)$ denote the size of the minimum cover of H, i.e., the size of the smallest subset $T \subseteq V$, such that T intersects every edge.

A hyperwalk in H is a sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t-1}, e_{t-1}, v_{t}$, where for all $i<t$ we have $v_{i} \in e_{i}$ and $v_{i+1} \in e_{i}$. We say that $v \sim w$, if there is a hyperwalk from v to w. The relation \sim is an equivalence relation, its classes are called the connected components of the hypergraph H.

Let K_{n}^{r} denote the complete r-uniform hypergraph on vertex set $V=[n]$. An f coloring is a coloring of the edges with colors $\{1,2, \ldots, f\}$, it defines monochromatic r-uniform hypergraphs $H_{i}=\left(V, E_{i}\right)$ for $i=1, \ldots, f$, where E_{i} contains the r-tuples

[^0]colored by i. The connected components of a hypergraph H_{i} are called monochromatic components having color i. By monochromatic components we mean all monochromatic components having any color.

For $n>r k$ let $f(n, r, k)$ denote the maximum number of colors, such that in any f-coloring of K_{n}^{r} there exist k monochromatic components covering V. Moreover let $f(r, k)=\min _{n>r k} f(n, r, k)$.

A famous conjecture (usually called Ryser's conjecture), appeared in the Thesis of his student, J. R. Henderson [7], states that for an r-uniform r-partite hypergraph H the inequality $\tau(H) \leq(r-1) \cdot \nu(H)$ always holds.

This conjecture is widely open, except for the case $r=2$, when it is equivalent to Kőnig's theorem [8, and for the case $r=3$, which was proved by Aharoni [1], using topological results from [2]. We mention also some related results. Henderson [7] showed that the conjecture cannot be improved, if $r-1$ is a prime power. Füredi [4] proved that the fractional covering number is always at most $(r-1) \cdot \nu(H)$, and Lovász [9] proved that the fractional matching number is always at least $\frac{2}{r} \cdot \tau(H)$.

Here we concentrate on the special case of $\nu=1$, i.e., when H is intersecting. Even for this special case, not too much is known. Gyárfás in [5] showed that this special case of the conjecture is equivalent to saying that $f(2, k)=k+1$, and he also proved this conjecture for $k=2,3$ (for $k=1$ this is an easy observation of Erdős and Rado), and later Tuza [11] announced a proof for $k=4$. For $k>4$ this conjecture is also widely open. Some recent papers study this special case, e.g., see [3, 10].

In this paper we concentrate the hypergraph generalization of this reformulation. Gyárfás [6] asked how sharp lower and upper bounds can be given for $f(r, k)$. For $r=2$ it is clear that $k \leq f(2, k) \leq k+1$. For bigger values of r it seems that no bounds were published, Gyárfás [6] showed that $5 \leq f(3,2) \leq 8$.

Surprisingly enough, we show that for any $r \geq 3$ and $k \geq 1$, the value of $f(r, k)$ is exactly $r k$. Both the proof of $f(r, k) \geq r k$ and the construction showing $f(r, k) \leq r k$ are simple.

2 Construction

Theorem 2.1. If $r>2$ then $f(r, k) \leq r k$, i.e., for $n=\binom{r k+1}{k}$ we can color the edges of the r-uniform complete hypergraph K_{n}^{r} by $r k+1$ colors, such that no k monochromatic components can cover the vertex set.

Proof. Let $X=\{1,2, \ldots, r k+1\}$ be a set, and let V consist of all the k-element subsets of X, and $n:=|V|=\binom{r k+1}{k}$. Let $K_{n}^{r}=(V, E)$ be the complete r-uniform hypergraph on V. Each edge $e \in E$ consists of $r k$-tuples, so it avoids at least one element of X, color e by the smallest $i \in X$, such that e avoids i. This colors all edges of K_{n}^{r} by $r k+1$ colors.

We claim that V cannot be covered by k monochromatic components. For suppose that the edges colored by $1,2, \ldots, k$ cover the whole V. However in this case $v^{*}=$ $\{1,2, \ldots, k\} \in V$ is clearly an uncovered element.

3 Main Theorem

Theorem 3.1. If $r>2$ then $f(r, k)=r k$.
Proof. It remained to prove that for any $n>r k$, if we color all the r-tuples of V (i.e., the edges of K_{n}^{r}) by at most $r k$ colors, then V can be covered by k monochromatic components. We will prove more, namely, that we can cover V by at most k monochromatic components, with the additional property, that no two of them have the same color.

A coloring is wasteful, if there is a color i, such that for any r-tuple colored by i is contained in a component of H_{j} for some $j \neq i$. In this case each r-tuple R colored by i can be recolored by the appropriate color $j \neq i$, where R is contained in a component of H_{j}. For each $j \neq i$ the components of H_{j} remain the same, and finally color i is unused. If we can cover V by at most k monochromatic components now, then we can cover V by the same k monochromatic components in the original colored hypergraph.

Therefore we may assume that the coloring we are dealing with is not wasteful, so we have an r-tuple R colored by 1 , such that R is not contained in any monochromatic component having color $j>1$. For a subset $R^{\prime} \subseteq R$ let $\operatorname{col}\left(R^{\prime}\right)$ denote the set of colors of all those r-tuples that contain R^{\prime}. Suppose $R_{1}, R_{2} \subseteq R$ having size $\left|R_{1}\right|=\left|R_{2}\right|=r-1$, and $R_{1} \neq R_{2}$. As $r \geq 3$, using the assumption above, we have $\operatorname{col}\left(R_{1}\right) \cap \operatorname{col}\left(R_{2}\right)=\{1\}$. As we have at most $r k$ colors, by the pigeonhole principle there is a subset $R^{\prime} \subseteq R$ with size $\left|R^{\prime}\right|=r-1$, such that $\left|\operatorname{col}\left(R^{\prime}\right)\right| \leq k$. In this case the $\left|\operatorname{col}\left(R^{\prime}\right)\right| \leq k$ monochromatic components containing R^{\prime} covers the whole V.

4 Acknowledgment

The author is grateful to András Gyárfás for his valuable advices, and also for sharing this interesting problem.

References

[1] R. Aharoni Ryser's conjecture for tripartite 3-graphs, Combinatorica 21 (2001), pp. 1-4.
[2] R. Aharoni, P. Haxell Hall's theorem for hypergraphs, J. Graph Theory $\mathbf{3 5}$ (2000), pp. 83-88.
[3] D. S. Altner, J. P. Brooks Coverings and matchings in r-partite hypergraphs Optimization online (2010) www.optimization-online.org/DB_HTML/2010/06/2666.html
[4] Z. Füredi Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981), pp. 155-162.
[5] A. GyÁrfás Partition coverings and blocking sets in hypergraphs, Commun. Comput. Autom. Inst. Hungar. Acad. Sci. 71 (1977)
[6] A. GyÁrfás Talk at Rényi Institute, (November 11, 2010)
[7] J. R. Henderson Permutation Decompositions of (0,1)-matrices and decomposition transversals, Thesis, Caltech (1971) thesis.library.caltech.edu/5726/1/Henderson_jr_1971.pdf
[8] D. Kőnig Theorie der endlichen und unendlichen Graphen, Leipzig (1936)
[9] L. LovÁsz On minimax theorems of combinatorics, Matematikai Lapok 26 (1975), pp. 209-264.
[10] T. Mansour, C. Song, R. Yuster A comment on Ryser's conjecture for intersecting hypergraphs Graphs and Combinatorics 25 (2009), pp. 101-109.
[11] Zs. Tuza On special cases of Ryser's conjecture, manuscript.

[^0]: *Department of Computer Science and Communication Networks Laboratory, Eötvös University, Pázmány Péter sétány $1 / \mathrm{C}$, Budapest, Hungary. Research supported by EGRES group (MTAELTE), OTKA grants CNK 77780, CK 80124 and TÁMOP grant 4.2.1./B-09/1/KMR-2010-0003.

