Egerváry Research Group on Combinatorial Optimization

TECHNICAL REPORTS

TR-2011-02. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Monochromatic components in edge-colored complete uniform hypergraphs

Zoltán Király

March 31, 2011

Monochromatic components in edge-colored complete uniform hypergraphs

Zoltán Király*

Abstract

Let K_n^r denote the complete r-uniform hypergraph on vertex set V = [n]. An f-coloring is a coloring of the edges with colors $\{1, 2, \ldots, f\}$, it defines monochromatic r-uniform hypergraphs $H_i = (V, E_i)$ for $i = 1, \ldots, f$, where E_i contains the r-tuples colored by i. The connected components of hypergraphs H_i are called monochromatic components. For n > rk let f(n, r, k)denote the maximum number of colors, such that in any f-coloring of K_n^r , there exist k monochromatic components covering V. Moreover let f(r, k) = $\min_{n>rk} f(n, r, k)$. A reformulation (see [5]) of an important special case of Ryser's conjecture states that f(2, k) = k + 1 for all k. This conjecture is proved to be true only for $k \leq 4$, so the value of f(2, 5) is not known. On the contrary, in this paper we show that for r > 2 we can determine f(r, k) exactly, and its value is rk.

Keywords: Hypergraphs, edge coloring, Ryser's conjecture.

1 Introduction

An r-uniform hypergraph H = (V, E) is called r-partite, if the vertex set is partitioned into r classes: $V = V_1 \cup \ldots \cup V_r$, such that for each edge $e \in E$ and for each $1 \leq i \leq r$ we have $|e \cap V_i| = 1$. Let $\nu(H)$ denote the size of the maximum matching in H, i.e., the maximum number of pairwise disjoint edges, and let $\tau(H)$ denote the size of the minimum cover of H, i.e., the size of the smallest subset $T \subseteq V$, such that T intersects every edge.

A hyperwalk in H is a sequence $v_1, e_1, v_2, e_2, \ldots, v_{t-1}, e_{t-1}, v_t$, where for all i < t we have $v_i \in e_i$ and $v_{i+1} \in e_i$. We say that $v \sim w$, if there is a hyperwalk from v to w. The relation \sim is an equivalence relation, its classes are called the connected components of the hypergraph H.

Let K_n^r denote the complete *r*-uniform hypergraph on vertex set V = [n]. An *f*-coloring is a coloring of the edges with colors $\{1, 2, \ldots, f\}$, it defines monochromatic *r*-uniform hypergraphs $H_i = (V, E_i)$ for $i = 1, \ldots, f$, where E_i contains the *r*-tuples

^{*}Department of Computer Science and Communication Networks Laboratory, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary. Research supported by EGRES group (MTA-ELTE), OTKA grants CNK 77780, CK 80124 and TÁMOP grant 4.2.1./B-09/1/KMR-2010-0003.

colored by *i*. The connected components of a hypergraph H_i are called monochromatic components having color *i*. By *monochromatic components* we mean all monochromatic components having any color.

For n > rk let f(n, r, k) denote the maximum number of colors, such that in any f-coloring of K_n^r there exist k monochromatic components covering V. Moreover let $f(r, k) = \min_{n > rk} f(n, r, k)$.

A famous conjecture (usually called Ryser's conjecture), appeared in the Thesis of his student, J. R. Henderson [7], states that for an *r*-uniform *r*-partite hypergraph Hthe inequality $\tau(H) \leq (r-1) \cdot \nu(H)$ always holds.

This conjecture is widely open, except for the case r = 2, when it is equivalent to Kőnig's theorem [8], and for the case r = 3, which was proved by Aharoni [1], using topological results from [2]. We mention also some related results. Henderson [7] showed that the conjecture cannot be improved, if r - 1 is a prime power. Füredi [4] proved that the fractional covering number is always at most $(r - 1) \cdot \nu(H)$, and Lovász [9] proved that the fractional matching number is always at least $\frac{2}{r} \cdot \tau(H)$.

Here we concentrate on the special case of $\nu = 1$, i.e., when H is intersecting. Even for this special case, not too much is known. Gyárfás in [5] showed that this special case of the conjecture is equivalent to saying that f(2, k) = k + 1, and he also proved this conjecture for k = 2, 3 (for k = 1 this is an easy observation of Erdős and Rado), and later Tuza [11] announced a proof for k = 4. For k > 4 this conjecture is also widely open. Some recent papers study this special case, e.g., see [3, 10].

In this paper we concentrate the hypergraph generalization of this reformulation. Gyárfás [6] asked how sharp lower and upper bounds can be given for f(r,k). For r = 2 it is clear that $k \leq f(2,k) \leq k+1$. For bigger values of r it seems that no bounds were published, Gyárfás [6] showed that $5 \leq f(3,2) \leq 8$.

Surprisingly enough, we show that for any $r \ge 3$ and $k \ge 1$, the value of f(r, k) is exactly rk. Both the proof of $f(r, k) \ge rk$ and the construction showing $f(r, k) \le rk$ are simple.

2 Construction

Theorem 2.1. If r > 2 then $f(r, k) \le rk$, i.e., for $n = \binom{rk+1}{k}$ we can color the edges of the r-uniform complete hypergraph K_n^r by rk+1 colors, such that no k monochromatic components can cover the vertex set.

Proof. Let $X = \{1, 2, ..., rk + 1\}$ be a set, and let V consist of all the k-element subsets of X, and $n := |V| = \binom{rk+1}{k}$. Let $K_n^r = (V, E)$ be the complete r-uniform hypergraph on V. Each edge $e \in E$ consists of r k-tuples, so it avoids at least one element of X, color e by the smallest $i \in X$, such that e avoids i. This colors all edges of K_n^r by rk + 1 colors.

We claim that V cannot be covered by k monochromatic components. For suppose that the edges colored by $1, 2, \ldots, k$ cover the whole V. However in this case $v^* = \{1, 2, \ldots, k\} \in V$ is clearly an uncovered element.

3 Main Theorem

Theorem 3.1. If r > 2 then f(r, k) = rk.

Proof. It remained to prove that for any n > rk, if we color all the *r*-tuples of V (i.e., the edges of K_n^r) by at most rk colors, then V can be covered by k monochromatic components. We will prove more, namely, that we can cover V by at most k monochromatic components, with the additional property, that no two of them have the same color.

A coloring is *wasteful*, if there is a color i, such that for any r-tuple colored by i is contained in a component of H_j for some $j \neq i$. In this case each r-tuple R colored by i can be recolored by the appropriate color $j \neq i$, where R is contained in a component of H_j . For each $j \neq i$ the components of H_j remain the same, and finally color i is unused. If we can cover V by at most k monochromatic components now, then we can cover V by the same k monochromatic components in the original colored hypergraph.

Therefore we may assume that the coloring we are dealing with is not wasteful, so we have an r-tuple R colored by 1, such that R is not contained in any monochromatic component having color j > 1. For a subset $R' \subseteq R$ let col(R') denote the set of colors of all those r-tuples that contain R'. Suppose $R_1, R_2 \subseteq R$ having size $|R_1| = |R_2| = r - 1$, and $R_1 \neq R_2$. As $r \geq 3$, using the assumption above, we have $col(R_1) \cap col(R_2) = \{1\}$. As we have at most rk colors, by the pigeonhole principle there is a subset $R' \subseteq R$ with size |R'| = r - 1, such that $|col(R')| \leq k$. In this case the $|col(R')| \leq k$ monochromatic components containing R' covers the whole V. \Box

4 Acknowledgment

The author is grateful to András Gyárfás for his valuable advices, and also for sharing this interesting problem.

References

- R. AHARONI Ryser's conjecture for tripartite 3-graphs, Combinatorica 21 (2001), pp. 1–4.
- [2] R. AHARONI, P. HAXELL Hall's theorem for hypergraphs, J. Graph Theory 35 (2000), pp. 83–88.
- [3] D. S. ALTNER, J. P. BROOKS Coverings and matchings in r-partite hypergraphs *Optimization online* (2010) www.optimization-online.org/DB_HTML/2010/06/2666.html
- [4] Z. FÜREDI Maximum degree and fractional matchings in uniform hypergraphs, *Combinatorica* 1 (1981), pp. 155–162.

- [5] A. GYÁRFÁS Partition coverings and blocking sets in hypergraphs, Commun. Comput. Autom. Inst. Hungar. Acad. Sci. 71 (1977)
- [6] A. GYÁRFÁS Talk at Rényi Institute, (November 11, 2010)
- J. R. HENDERSON Permutation Decompositions of (0, 1)-matrices and decomposition transversals, *Thesis*, *Caltech* (1971) thesis.library.caltech.edu/5726/1/Henderson_jr_1971.pdf
- [8] D. KŐNIG Theorie der endlichen und unendlichen Graphen, Leipzig (1936)
- [9] L. LOVÁSZ On minimax theorems of combinatorics, Matematikai Lapok 26 (1975), pp. 209–264.
- [10] T. MANSOUR, C. SONG, R. YUSTER A comment on Ryser's conjecture for intersecting hypergraphs *Graphs and Combinatorics* 25 (2009), pp. 101–109.
- [11] Zs. TUZA On special cases of Ryser's conjecture, manuscript.