
Algorithms 2014, 7, 1-14; doi:10.3390/a7010001
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

On Stable Matchings and Flows
Tamás Fleiner

Budapest University of Technology and Economics, Department of Computer Science and Information
Theory, Magyar tudósok körútja 2. H-1117, Budapest, Hungary and MTA-ELTE Egerváry Research
Group, Eötvös Loránd University, Pázmány Péter sétány 1/C H-1117, Budapest, Hungary

* Author to whom correspondence should be addressed; E-Mail: fleiner@cs.bme.hu.

Received: 1 August 2013; in revised form: 9 January 2014 / Accepted: 10 January 2014 /
Published: 22 January 2014

Abstract: We describe a flow model related to ordinary network flows the same way as
stable matchings are related to maximum matchings in bipartite graphs. We prove that there
always exists a stable flow and generalize the lattice structure of stable marriages to stable
flows. Our main tool is a straightforward reduction of the stable flow problem to stable
allocations. For the sake of completeness, we prove the results we need on stable allocations
as an application of Tarski’s fixed point theorem.

Keywords: stable marriages; stable allocations; network flows

1. Introduction

In the stable marriage problem of Gale and Shapley [1], there are n men and n women, and each
person ranks the members of the opposite gender arbitrarily according to an individual strict preference
order. A marriage scheme in this model is a set of marriages between different men and women. Such a
scheme is unstable if there exists a blocking pair, that is, a man m and a woman w, such that m is either
unmarried or m prefers w to his wife, and at the same time, w is either unmarried or prefers m to her
partner. A marriage scheme is stable if it is not unstable, that is, not blocked by any pair. It is a natural
problem to find a stable marriage scheme if it exists at all. Nowadays, it is already folklore that for any
preference rankings of the n men and n women, a stable marriage scheme does exist. This theorem was
proved first by Gale and Shapley in [1]. They constructed a special stable marriage scheme with the help
of a finite procedure, the so-called deferred acceptance algorithm. It also turned out that for the existence
of a stable scheme, it is not necessary that the number of men is the same as the number of women or that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42931803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Algorithms 2014, 7 2

for each person, all members of the opposite group are acceptable: the deferred acceptance algorithm is
so robust, that it works properly under these more general conditions.

Several interesting properties of the structure of stable marriage schemes are known. Donald Knuth [2]

attributes to John Conway the observation that stable marriages have a lattice structure: if each man
picks the better assignment out of two stable marriage schemes, then another stable marriage scheme is
created in which each woman receives the worst partner out of the two.

There are further known extensions of the stable marriage problem. Baı̈ou and Balinski proved in [3]

that if each edge of the underlying bipartite graph has a nonnegative capacity and each vertex has a
nonnegative quota, then the accordingly modified deferred acceptance algorithm always finds a so-called
stable allocation. An allocation is an assignment of nonnegative values to the edges that do not exceed
the corresponding capacities, such that the total allocation of no vertex exceeds its quota. In other
words, an allocation is a marriage scheme where a bipartite marriage can be formed with an “intensity”
different from zero and one, and each participant has an individual upper bound on his/her total “marriage
intensity”. An allocation is stable if any unsaturated edge, e, has a saturated end vertex, v, such that
each edge, e′, incident with v has an assigned value of zero whenever v prefers e to e′. That is, if the
intensity of a marriage is not maximum, then one of the spouses has maximum total marriage intensity,
and none of his/her marriages is worse than the particular marriage. Beyond proving the existence of
stable assignments, Baı̈ou and Balinski used flow-type arguments to speed up the deferred acceptance
algorithm in [3]. Later, Dean and Munshi came up with an even faster network flow based algorithm for
the same problem [4].

It is fairly well-known that the bipartite matching problem can be formulated in the more general
network flow model, and the alternating path algorithm for maximum bipartite matchings is a special
case of the augmenting path algorithm of Ford and Fulkerson for maximum flows. However, it seems
that the question of whether there exists a flow generalization of the stable marriage theorem has not
been addressed so far. This very problem is the focus of our present work. It turned out that our model
is closely related to so-called “supply chains” well known in the economics literature. Prior to our work,
Ostrovsky published a related result in [5]. The main difference between Ostrovsky’s and our model is
that Ostrovsky’s one is acyclic and discrete, whereas ours allows cycles and has a fractional formulation,
as well. There is however a feature of Ostrovsky’s model in which it is far more general than ours: instead
of the Kirchhoff’s law, it only requires a less restrictive property called “same-side substitutability” and
“cross-side complementarity”. Ostrovsky proved the existence of a “chain stable network” and justified
that “chain stable networks” form a lattice under a natural partial order. These results are very close
to ours and cry for a common generalization that is the subject of ongoing research. Later on, Hatfield
and Kominers proved a generalization of Ostrovsky’s result in [6], where the generalized model is still
discrete and acyclic. The authors prove that a stable allocation always exists in their model and that
acyclicity is necessary for stability. Our result is that there always exists a stable flow in any network,
so also in non-acyclic ones. The reason for this difference is that our stability concept differs from that
of Hatfield and Kominers: theirs corresponds to our complete stability notion. In this present work, we
show that this latter result of Hatfield and Kominers also holds in our more restricted setting by exhibiting
an instance in which no completely stable flow exists.



Algorithms 2014, 7 3

After the original versions of our present work ([7,8]), Hatfield et al. generalized the
Hatfield-Kominers result [6] in [9] to a “half-discrete” model (prices are arbitrary, but trading is done
with integral amounts of goods) that allows cycles. The authors claim that under full substitutable
preferences, there always exists a competitive equilibrium that corresponds to a stable outcome.

Note that Westerkamp has also proved some related results. In [10], he studied the relation between
the existence of solutions satisfying different stability criteria and the acyclicity and so-called bundling
property of the particular market structures.

This present work is organized as follows. In Section 2, we formulate the stable flow problem and give
an alternative fixed point proof of the result of [3] by Baı̈ou and Balinski on stable allocations. Section 3
contains the stable flow theorem, a generalization of the Gale–Shapley theorem to flows. Our reduction
of the stable flow problem to the stable allocation problem resembles the reduction of the maximum flow
problem to the maximum b-matching problem. Actually, our construction has to do also with the one that
Cechlárová and Fleiner used in [11] to extend the stable roommates model to a multiple partner model.
Section 4 is devoted to certain structural results on stable flows; in particular, we show the consequences
of the lattice structure of stable marriages. To achieve this, we lean on the construction we used for the
reduction. We conclude in the last section by describing some generalizations of stable flows that can be
handled with our method and by asking some open problems. In particular, we indicate that our results
can easily be extended from the flow model to one where instead of two terminals, we have several.

2. Preliminaries

Recall that by a network, we mean a quadruple (D, s, t, c), where D = (V,A) is a digraph, s and t

are different nodes of D, and c : A→ R+ is a function that determines the capacity, c(a), of each arc, a,
of A. (Sometimes it is assumed that no arc enters vertex s and no arc leaves vertex t. We do not require
this assumption for the reason that this way, we prove a more general result. Still, if the reader finds
it difficult to follow the argument, it might be convenient to consider the source-sink case and skip the
irrelevant parts.) Vertices s and t are called terminals; other vertices of G are nonterminals. A flow of
the network (D, s, t, c) is a function f : A → R, such that the capacity condition 0 ≤ f(a) ≤ c(a)

holds for each arc, a, of A and each nonterminal vertex, v, of D satisfies the Kirchhoff law:∑
u:uv∈A f(uv) =

∑
u:vu∈A f(vu), that is, the amount of the incoming flow equals the amount of the

outgoing flow for v. Note that there is no conceptual difference between terminals s and t: both are
ordinary vertices that are exempt from Kirchhoff’s law. (It seems that this fact is not completely clear for
many. Perhaps, the reason is that when network flows are taught, it is usually emphasized that the role of
s and t are different: the former is “the source”, and the latter one is “the sink”. To convince the skeptic,
it is illuminative to find a formula for the minimum value of an st-flow in a network. Surprisingly to
some, this minimum is not zero in general.)

A network with preferences is a network (D, s, t, c) along with a preference order,≤v, for each vertex,
v, such that ≤v is a linear order on the arcs that are incident to v, and we say that v prefers a to a′ if
a ≤v a′ holds. (Note that preference orders ≤s and ≤t of the terminals do not play a role in the notion
of stability, as we shall never compare an incoming and an outgoing arc of the same vertex. Therefore,
we may think that for each nonterminal vertex, v, there are two independent preference orders: one is on



Algorithms 2014, 7 4

the incoming arcs and the other one on the outgoing ones.) For a given network with preferences, it is
convenient to think that vertices of D are “players” that trade with a certain good. An arc uv of D from
player u to player v with capacity c(uv) represents the possibility that player u can supply at most c(uv)
units of goods to player v. A “trading scheme” is described by a flow, f , of the network, as for any two
players, u and v, flow f(uv) determines the amount of goods that u sells to v. Everybody in the market
would like to trade as much as possible, that is, each player v strives to maximize the amount of flow
through v. In particular, if flow f allows player v to receive some more flow (that is, there are goods
on the market offered to v and v is happy to buy them) and v can also send some more flow (i.e., some
other player would be happy to buy more goods from v), then flow f does not correspond to a stable
market situation.

Another instability occurs when vw ≤v vu (player v prefers to sell to w rather than to u), and flow f

is such that w would be happy to buy more goods from v (that is f(vw) < c(vw), and w has some extra
selling opportunity); moreover, f(vu) > 0 (v sells a positive amount of goods to u). In this situation,
v would send flow rather to w than to u; hence, this cannot occur in a stable market situation. A similar
instability can be described if we talk about entering arcs instead of outgoing ones, that is, if we exchange
the roles of buying and selling.

To formalize our concept of stability, we need a few definitions. For a network (D, s, t, c) and flow f ,
we say that arc a is f -unsaturated if f(a) < c(a), that is, if it is possible to send some extra flow through
a. A blocking walk of flow f is a directed walk P = (v1, a1, v2, a2, . . . , ak−1, vk), such that ai ∈ A and
vi ∈ V (∀i) and the following properties hold.

arc ai points from vi to vi+1 for i = 1, 2, . . . , k − 1 (i.e., P is a walk) and (1)

v2, v3, . . . , vk−1 are nonterminal vertices and (2)

each arc, ai, is f -unsaturated and (3)

v1 is terminal or there is an arc a′ = v1u, such thatf(a′) > 0 and a1 <v1 a
′ and (4)

vk is terminal or there is an arc a′′ = wvk, such thatf(a′′) > 0 and ak−1 <vk a′′ (5)

Therefore, directed walk P is blocking if each player that corresponds to an inner vertex of P is happy
and capable of increasing the flow along P . Moreover, v1 can send extra flow, either because v1 is
a terminal node or because v1 may decrease the flow toward some vertex, u, that v1 prefers less than
v2, and at last, vk can receive some extra flow, either because either vk is a terminal node or vk can
refuse flow from w, which vk ranks below vk−1. We say that a walk, P , is f -unsaturated if property
Equation (3) holds for each arc, ai, of P . An f -unsaturated walk P = (v1, v2, . . . , vk) is f -dominated at
v1 if Equation (4) does not hold, and P is f -dominated at vk if Equation (5) does not hold. A flow, f , of
a network with preferences is stable if no blocking walk of f exists. In the stable flow problem, we have
given a network with preferences, and our task is to find a stable flow if it exists.

A special case of the stable flow problem is the stable allocation problem of Baı̈ou and Balinski [3].
The stable allocation problem is defined by finite disjoint sets W and F of workers and firms, a map,
q : W ∪ F → R, a set, E, of edges between W and F , along with a map, p : E → R, and for each
worker or firm, v ∈ W ∪ F , a linear order, <v, on those pairs of E that contain v. We shall refer to
pairs of E as “edges”, and hopefully, it will not cause ambiguity. Quota q(v) denotes the maximum
of total assignment that worker or firm v can accept, and capacity p(wf) of edge e = wf means the



Algorithms 2014, 7 5

maximum allocation that worker w can be assigned to firm f along e. An allocation is a nonnegative
map, g : E → R, such that g(e) ≤ p(e) holds for each e ∈ E, and for any v ∈ W ∪ F , we have:

g(v) :=
∑

x:vx∈E

g(vx) ≤ q(v) (6)

that is, the total assignment, g(v), of player v cannot exceed quota q(v) of v. If Equation (6) holds with
equality, then we say that player v is g-saturated. An allocation is stable if for any edge, wf , of E, at
least one of the following properties hold:

either g(wf) = p(wf)

(the particular employment is realized with full capacity)
(7)

or
∑

wf ′≤wwf g(wf
′) = q(w), that is, worker w is g-saturated and w does not

prefer f to any of his employers (we say that wf is g-dominated at w)
(8)

or
∑

w′f≤fwf g(w
′f) = q(f), that is, firm f is g-saturated and f does not

prefer w to any of its employees (we say that wf is g-dominated at f )
(9)

Note that Equations (8) and (9) imply that if g is a stable allocation, then for each firm, f , and each
worker, w:

there is at most one edge, e, dominated at f with g(e) > 0 and (10)

there is at most one edge, e, dominated at w with g(e) > 0 (11)

If g1 and g2 are allocations and w ∈ W is a worker, then we say that allocation g1 dominates allocation
g2 for worker w (in notation, g1 ≤w g2) if one of the following properties is true:

either g1(wf) = g2(wf) for each f ∈ F or (12)∑
f ′∈F g1(wf

′) =
∑

f ′∈F g2(wf
′) = q(w), and

g1(wf) < g2(wf) and g1(wf
′) > 0 implies that wf ′ <w wf

(13)

That is, if w can freely choose his allocation from max(g1, g2), then w would choose g1, either because
g1 and g2 are identical for w or because w is saturated in both allocations and g1 represents w’s
choice out of max(g1, g2). By exchanging the roles of workers and firms, one can define domination
relation ≤f for any firm, f , as well.

For any stable allocation problem, one can design a network (D, s, t, c), such that V (D) = {s, t} ∪
W ∪ F , A(D) = {sw : w ∈ W} ∪ {ft : f ∈ F} ∪ {wf : wf ∈ E}, and c(sw) = q(w),
c(ft) = q(f) and c(wf) = p(wf) for any worker w and firm f . That is, we consider the underlying
bipartite graph, orient its edges from W to F , add new vertices, s and t, with an arc from s to each
worker-node and an arc from each firm-node to t, and capacities are given by the original edge-capacities
and the corresponding quotas. Preference orders <v on the arcs incident to v are induced by the
preference order on the corresponding edges incident to v, or, if there is no such edge, then it is a
trivial linear order. It is straightforward to see from the definitions that g is a stable allocation if and
only if there exists a stable flow f , such that g(e) = f(~e) holds for each edge, e ∈ E, where ~e is the



Algorithms 2014, 7 6

arc that corresponds to edge e. The stable allocation problem was introduced by Baı̈ou and Balinski as a
certain “continuous” version of the stable marriage problem in [3]. It turned out that a natural extension
of the deferred acceptance algorithm of Gale and Shapley [1] works for the stable allocation problem,
and the structure of stable allocations is similar to that of stable marriages. Below, we state the results of
Baı̈ou-Balinski.

Theorem 1 (See Baı̈ou and Balinski [3]). 1. In any stable allocation problem instance described by
W,F,E, p and q, there exists a stable allocation, g. Moreover, if p and q are integral, then there exists
an integral stable allocation, g.

2. If g1 and g2 are stable allocations and v ∈ W ∪ F , then g1 ≤v g2 or g2 ≤v g1 holds.
3. Stable allocations have a natural lattice structure. Namely, if g1 and g2 are stable allocations, then

g1 ∨ g2 and g1 ∧ g2 are stable allocations, where:

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≤w g2

g2(wf) if g2 ≤w g1
(14)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≤f g2

g2(wf) if g2 ≤f g1
(15)

In other words, if workers choose from two stable allocations, then we get another stable allocation, and
this is also true for the firms’ choices. Moreover, it is true that:

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≥f g2

g2(wf) if g2 ≥f g1
(16)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≥w g2

g2(wf) if g2 ≥w g1
(17)

That is, in stable allocation g1 ∨ g2, where each worker picks his better assignment, each firm receives
the worst out of the two. Similarly, in g1 ∧ g2, the choice of the firms means the less preferred situation
for the workers.

The interested reader may find an alternative proof of Theorem 1 in [7] that illustrates the use of two
powerful tools: the fixed-point approach and the application of graph theory.

3. Stable Flows

Our goal in this section is to prove a generalization of Theorem 1. The “natural” approach to achieve
this would be an appropriate generalization of the deferred acceptance algorithm of Gale and Shapley.
The difficulty is that though the Gale–Shapley algorithm can handle quota function q, somehow, it has
problems with ensuring Kirchhoff’s law.

Theorem 2. If network (D, s, t, c) and preference orders <v describe a stable flow problem, then there
always exists a stable flow, f . If capacity function c is integral, then there exists an integral stable flow.



Algorithms 2014, 7 7

Note that it is possible to prove Theorem 2 by a mixture of the deferred acceptance algorithm and the
augmenting path algorithm. That is, starting from some terminal vertex, we follow a “first choice walk”
until they arrive to some terminal vertex. We augment along this walk while observing the capacity
constraints and iterate. If a vertex has no more outgoing capacity, then some amount of flow is refused
by the receiving vertex, and we try to reroute the flow excess from the starting point of the refused arc
(that might be different from the last arc of the current path). We have a stable flow as soon as we cannot
find an augmenting path between terminals.

Our proof of Theorem 2 follows a different approach for two reasons. On the one hand, it seems that
in the area of stable matchings, neither the reduction of one problem to another nor the use of graph
terminology is routine. We demonstrate here that these methods may be fruitful. On the other hand, the
“deferred augmentation” algorithm we sketched above does not give much information about the rich
structure of stable flows that easily follows from the lattice property of stable allocations.

With the help of the given instance of the stable flow problem, we shall define a particular instance of
the stable allocation problem. For each vertex, v, of D, calculate:

M(v) := max

 ∑
x:xv∈A(D)

c(xv),
∑

x:vx∈A(D)

c(vx)


that is, M(v) is the maximum total capacity of those arcs of D that enter and leave v. Therefore, M(v)

is an upper bound on the amount of flow that can flow through vertex v. Choose q(v) := M(v) + 1.
Construct graph GD as follows. Split each vertex, v, of D into two distinct vertices, vin and vout, and for
each arc, uv, of D, add edge uoutvin to GD.

Figure 1. Node splitting to create GD.

v
c2

c5c1

c3

c4

c2

c5c1

c3

c4firstlast

lastfirst
voutvin

vinvout q(v)

q(v) voutvin

For each nonterminal vertex, v, of D, add two parallel edges between vin and vout; to distinguish
between them, we will refer to them as vinvout and voutvin. Let p(vinvout) = p(voutvin) := q(v),
p(uoutvin) := c(uv) and q(vin) = q(vout) := q(v). To finish the construction of the stable allocation
problem, we need to fix a linear preference order for each vertex of GD. For vertex vin, let vinvout

be the most preferred and voutvin be the least preferred edge (if these edges are present, that is, if v is
nonterminal), and the order of the other edges incident to vin are coming from the preference order of v
on the corresponding arcs. For vertex vout, the most preferred edge is voutvin and the least preferred one
is vinvout (if these edges are present), and the other preferences are coming from <v.



Algorithms 2014, 7 8

The proof of Theorem 2 is a consequence of Theorem 1 and the following Lemma that describes a
close relationship between stable flows and stable allocations.

Lemma 3. If network (D, s, t, c) and preference orders <v describe a stable flow problem, then
f : A(D) → R is a stable flow if and only if there is a stable allocation, g, of GD, such that
f(uv) = g(uoutvin) holds for each arc, uv, of D.

Proof. Assume first that g is a stable allocation in GD. This means that none of the vinvout edges are
blocking, so either g(vinvout) = p(vinvout) = q(v) or vinvout must be g-dominated at vout; hence, vout

is assigned to a q(vout) = q(v) amount of allocation. As q(v) is more than the total capacity of arcs
leaving v, g(vinvout) > 0 or g(voutvin) > 0 must hold. Therefore, vout must have exactly a q(v) amount
of allocation whenever vinvout is present. An exchange of “in” and “out” shows that the presence of
voutvin implies that vin has exactly q(vin) = q(v) allocation. These observations directly imply that
Kirchhoff’s law holds for f at each node different from s and t. The capacity condition is also trivial for
f ; hence, f is indeed a flow of D. Observe that by the choice of q, neither s nor t is g-saturated; hence,
no edge is g-dominated at s or at t.

Assume that walk P = (v1, v2, . . . , vk) blocks flow f . As P is f -unsaturated, each edge vouti vini+1 of
GD must be g-dominated at vouti or at vini+1. Walk P is blocking; hence, either v1 is terminal, and hence,
vout1 vin2 cannot be dominated at v1 or there is a v1u arc with a positive flow value, such that v1u >v1 v1v2.
In both cases, edge vout1 vin2 has to be g-dominated at vin2 . This means that g(vin2 vout2 ) > 0. As arc v2v3 is
f -unsaturated, it follows that edge vout2 vin3 must be g-dominated at vin3 . This yields that g(vin3 vout3 ) > 0.
Again, arc v3v4 is f -unsaturated; hence, edge vout3 vin4 has to be g-dominated at vin4 , and so on. At the
end, we get that voutk−1v

in
k is g-dominated at vink . As terminal vertices s and t are g-unsaturated, vk cannot

be a terminal vertex. Therefore, by the blocking property of P , there is an arc, wvk, with a positive flow
and vk−1vk <vk wvk; hence, again, voutk−1v

in
k cannot be g-dominated at vink . The contradiction shows that

no walk, P , can block f .
Assume now that f is a stable flow of D. We have to exhibit a stable allocation, g, of GD, such that

f is the “restriction” of g. Define g(uoutvin) := f(uv), so we only need to determine the g(vinvout) and
g(voutvin) values for all nonterminal vertices, v. Actually, the stable allocation that we look for might not
be unique. In what follows, we shall construct a particular one, the so-called canonical representation,
gf , of f .

Let S be the set of those vertices, u, of D, such that there exists an f -unsaturated directed walk
P = (v1, v2, . . . , vk = u) that is not f -dominated at v1. As no walk can block f , S is disjoint from
terminal vertices s, t. To determine gf , for each nonterminal vertex, v, allocate the remaining quota of v
to vinvout or to voutvin, depending on whether v ∈ S or v 6∈ S holds. More precisely, define:

gf (v
invout) =

{
q(v)−

∑
x∈V (D) f(vx) if v ∈ S

0 if v 6∈ S
and (18)

gf (v
outvin) =

{
q(v)−

∑
x∈V (D) f(xv) if v 6∈ S

0 if v ∈ S
(19)

By the definition of q, both gf (v
invout) and gf (v

outvin) are nonnegative. If v ∈ S, then the amount of
total allocation of vout is q(v) = q(vout) by Equation (18), and for v 6∈ S, the amount of total allocation



Algorithms 2014, 7 9

of vin is q(v) = q(vin) by Equation (19). Therefore, if v 6= s, t, then the total allocation of vin and
vout is q(v) by Kirchhoff’s law. The total allocations of sin, sout and tin, tout is less than q(s) and q(t),
respectively, by the choice of q. That is, gf is an allocation on GD.

To justify the stability of gf , we have to show that no blocking edge exists. To see that neither vinvout

nor voutvin is blocking, observe that both vin and vout are saturated in gf . Therefore, vinvout is dominated
at vout, and voutvin is dominated at vin. Assume now that gf (voutuin) < p(voutuin) = c(vu) holds. Our
goal is to prove that voutuin is not blocking.

If there is an f -unsaturated walk, P , ending with arc vu that is not f -dominated at its starting node,
then u ∈ S by the definition of S; hence, gf (uoutuin) = 0. Moreover, if some edge, woutuin, with
voutuin <uin woutuin would have a positive allocation, then walk P would block f , a contradiction. As
uin has a q(uin) amount of total allocation, edge voutuin is gf -dominated at uin.

The last case is when any f -unsaturated walk that ends with arc vu is f -dominated at its starting
vertex. In particular, v 6∈ S; so, gf (v

invout) = 0. Moreover, f -unsaturated walk (v, u) must be
f -dominated at v; hence, v 6∈ {s, t}, and voutuin is gf -dominated at vout as vout has a q(v) = q(vout)

amount of allocation. The conclusion is that g := gf is a stable allocation, just as we claimed.

At this point, we are ready to prove our main result.

Proof of Theorem 2. There is a stable allocation for GD by Theorem 1; hence there is a stable flow
for D, due to the first part of Lemma 3. If c is integral, then q(v) is an integer for each vertex, v,
of D; hence, p is integral for GD. The integrality property of stable allocations in the first part of
Theorem 1 shows that there is an integral stable allocation, g, of GD that describes an integral stable
flow, f , of D.

At the end of this section, let us point out a weakness of our stability concept. The motivation behind
the notion is that we look for a flow that corresponds to an equilibrium situation, where the players
represented by the vertices of the network act in a selfish way. This equilibrium situation occurs if no
coalition of the players can block the underlying flow, f , and this blocking is defined by an f -unsaturated
walk with a certain property. Along such a walk, the players are capable and prefer to increase the flow.
However, any closed f -unsaturated walk, C, per se causes some kind of instability, because the players
along C mutually agree to send some extra flow along C, even if properties Equations (4) and (5) do not
hold for vertex v1 = vk of C. This motivates us to define flow f of network (D, s, t, c) with preferences
to be completely stable if f is stable and there exists no f -unsaturated cycle in D whatsoever. If f is
a stable flow, then we can “augment” along f -unsaturated cycles, and hence, we can construct a flow,
f ′ ≥ f , such that there no longer exists an f ′-unsaturated cycle. However, unfortunately, flow f ′ might
not be stable any more, because we might have created a blocking walk by the cycle augmentations.

In fact, there exist networks with preferences that do not have a completely stable flow. One example
is in the figure: each arc has a unit capacity; preferences are indicated around the vertices (a lower rank
is preferred to the higher).

As no arc leaves subset U := {a, b, c} of the vertices, no flow can leave U ; hence, no flow enters
U . In particular, arc sa has zero flow. If we assume indirectly that f is a completely stable flow, then
cycle abc cannot block; hence, there must be a unit flow along it. However, then, walk sa is blocking,
a contradiction.



Algorithms 2014, 7 10

Figure 2. Stable flows have a blocking cycle.

s

t

b

ca

2

2

1

1 1
12

3

2

1

4. The Structure of Stable Flows

For the stable marriage problem, it is well known about the stable marriage problem that in each stable
marriage scheme, the same set of participants get married. That is, if someone does not get a marriage
partner in some stable scheme, then this very person remains single in all stable marriage schemes.
A generalization of this property is the rural hospital theorem by Roth [12] (see also Theorem 5.13
in [13]). It is about the college model, where instead of men, we work with colleges, women correspond
to students and each college has a quota on the maximum number of admissible students. In the college
admission problem, it is true that if a certain college, c, cannot fill up its quota in a stable admission
scheme, then c receives the same set of students in any stable admission scheme (the phenomenon is
named after the assignment problem of medical interns to hospitals).

It seems that the rural hospital theorem cannot be generalized to the stable flow problem. It may
happen in a network that a certain vertex transmits different amounts of flow in two stable flows. An
example is shown in the figure, where each arc has a unit capacity. There are two stable flows: one is
along path sact, and the other follows path sbct. Therefore, in one stable flow, vertex a transmits one
unit of flow, and no flow passes through a in the other one.

Figure 3. Network for a stable flow.

b

a

tcs

21
3

12

2

1

1

2

There is, however, a consequence of the rural hospital theorem that can be generalized; namely, that
the size of a stable matching is always the same. More generally, it can also be proven that in any
instance of the stable allocation problem, the size of any two stable allocations is the same. (The size
of an allocation is the total amount of assignments in it). If we consider a stable allocation instance as a
stable flow, then the size of the allocation corresponds to the value of the flow.

Theorem 4. If network (D, s, t, c) and preference orders <v describe a stable flow problem and f1 and
f2 are stable flows, then the value of f1 and f2 are the same. Moreover, f1(a) = f2(a) for any arc of D
that is incident to terminal vertex s or t.



Algorithms 2014, 7 11

Proof. As the value of a flow is the net amount that leaves s, one can calculate it in GD as the difference
of the total allocation of sout and sin. This means that the second part of the theorem directly implies the
first one. Therefore, below, we prove only the second part of Theorem 4.

Let g1 and g2 be the canonical representations of flows f1 and f2 defined in Lemma 3. As there is no
edge between sout and sin, the definition of q(s) implies that both sout and sin are g1-unsaturated. Hence,
property Equation (13) can hold neither for sin nor for sout. However, Theorem 1 implies that g1 and g2

are ≤sout and ≤sin-comparable. Therefore, property Equation (12) must be true for flows g1 and g2 for
both vertices v = sout and v = sin. In particular, g1(a) = g2(a) holds for each arc, a, incident to s. This
shows the second part of the Theorem for s. The argument for t is analogous to the above one.

As we have seen in Theorem 1, stable allocations have a lattice structure. Based on the connection of
stable allocations and stable flows described in Lemma 3, we can prove that stable flows of a network
with preferences also form a natural lattice. Therefore, assume that f is a stable flow in network
(D, s, t, c, ) with preferences, and let stable allocation gf of GD be the canonical representation of f ,
as in the proof of Lemma 3.

Observe that any nonterminal vertex, v, of D, exactly one of gf (vinvout) and gf (v
outvin) is positive

by the choice of q and gf . For stable flow f , we can classify the vertices of D different from s and t

as follows: v is an f -vendor if gf (vinvout) > 0, and v is an f -customer if gf (voutvin) > 0. If v is an
f -vendor, then no edge voutuin can be gf -dominated at vout (as gf (vinvout) > 0); hence, player v sends
as much flow to other vertices as they accept. Similarly, if v is an f -customer, then no edge uoutvin can
be gf -dominated at vout; that is, player v receives as much flow as the others can supply her.

To explore the promised lattice structure of stable flows, let f1 and f2 be two stable flows with
canonical representations gf1 and gf2 , respectively. From Theorem 1, we know that stable allocations
form a lattice; so, gf1 ∨gf2 and gf1 ∧gf2 are also stable allocations of GD, and by Theorem 2, these stable
allocations define stable flows f1 ∨ f2 and f1 ∧ f2, respectively. How can we determine these latter flows
directly, without the canonical representations? To answer this, we translate the lattice property of stable
allocations on GD to stable flows of D.

Theorem 4 shows that stable flows cannot differ on arcs incident to terminal vertex s or t, so on these
arcs, f1 ∨ f2 and f1 ∧ f2 are determined. However, vertices different from s and t may have completely
different situations in stable flows f1 and f2. The two color classes of graph GD are formed by the vin-
and vout-type vertices, respectively. Therefore, by Theorem 1, gf1 ∨ gf2 can be determined, such that
(say) each vertex, vout, selects the better allocation and each vertex, vin, receives the worst allocation
out of the ones that gf1 and gf2 provide them. Similarly, for stable allocation gf1 ∧ gf2 , the “in”-type
vertices choose according to their preferences, and the “out”-type ones are left with the less preferred
allocations. This means the following in the language of flows. If we want to construct f1 ∨ f2 and v is
a vertex different from s and t, then either all arcs entering v will have the same flow in f1 ∨ f2 as in f1

or for all arcs a entering v, equation (f1 ∨ f2)(a) = f2(a) holds. A similar statement is true for the arcs
leaving v. To determine which of the two alternatives is the right one, the following rules apply:

• If v is an f1-vendor and an f2-customer, then v chooses f2. If v is an f2-vendor and an f1-customer,
then v chooses f1. That is, each vertex strives to be a customer.



Algorithms 2014, 7 12

• If v is an f1-vendor and an f2-vendor and v transmits more flow in f1 than in f2 (i.e.,
0 < gf1(v

invout) < gf2(v
invout)) then v chooses f1. That is, vendors prefer to sell more.

• If v is an f1-customer and an f2-customer and v transmits more flow in f1 than in f2 (i.e.,
0 < gf1(v

outvin) < gf2(v
outvin)), then v chooses f2. That is, customers prefer to buy less.

• Otherwise, v is a customer in both f1 and f2 or v is a vendor in both flows, and v transmits the
same amount in both flows (i.e., gf1(v

outvin) = gf2(v
outvin) and gf1(v

invout) = gf2(v
invout)).

In this situation, v chooses the better “selling position” and gets the worse “buying position” out
of stable flows f1 and f2.

Clearly, for the construction of f1 ∧ f2, one always has to choose the “other” options rather than the
one that the above rules describe.

5. Conclusions

There are some well-known generalizations of network flows where stability is an interesting property.
Luckily, some of these can be handled with the help of the construction we used to prove Theorem 2.
If our “network” has unoriented edges, then the usual trick helps: one substitutes each edge by two
oppositely oriented arcs, each having the capacity of the corresponding edge. If some vertex, v, of the
network has a certain throughput capacity, c(v), then we can handle this by reducing the capacity of both
vertices, vout and vin, from q(v) to c(v). The third usual generalization is where the network has several
source and sink nodes. The usual trick with a supersource and supersink works in this case, as well,
but there is an alternative approach. Namely, the problem with several terminals can be regarded as a
problem where there exist more than two vertices that do not obey Kirchhoff’s law. As we have seen
in the proof of Theorem 2, such vertices, v, can be modeled in such a way that in the graph, GD, edges
voutvin and vinvout are not present. Any stable allocation of this sparser, GD, determines a stable flow
with more terminals. However, with this approach, it is possible that we have a flow from some “source”
node to another “source” node. This weirdness can actually happen in our basic flow model, as well: a
stable flow might go from t to s and have a negative value. Can we avoid this? The answer is yes (up to
some extent): one has to introduce an edge, sinsout, for each “source” node, s, and an edge, touttin, for
each “sink” node, t. By this, we can make sure that each source node sends more (or an equal amount
of) flow as the amount it receives and no target node receives less flow than the amount it sends.

Summarizing the last observations, we can say that if both edges, voutvin and vinvout, are present, then
vertex v obeys Kirchoff’s law; if no edge is present, then Kirchoff’s law is not required for v. If there is
exactly one of these edges belonging to GD, then depending on which edge is the one, v becomes a net
sender or a net receiver of flow.

Circulation is a well-known notion closely related to flows. Roughly speaking, it is a flow without
terminals; that is, beyond the capacity constraint, Kirchhoff’s law has to hold for each vertex. Obviously,
our approach can handle the stable circulation problem, if we have both parallel edges between vout and
vin for each vertex, v, of D. However, it turns out that zero is a stable circulation, and this is somehow
disturbing. It makes more sense to look for a completely stable circulation that has no blocking walk
and no blocking cycle. However, just like for flows, a completely stable circulation might not exist.



Algorithms 2014, 7 13

A natural problem is to find an efficient algorithm for constructing a completely stable circulation (or
flow) in a network.

Another direction of possible generalizations of stable flows is that we allow more complex
preferences, e.g., ties in the preference lists. As the stable flow model is a genuine generalization of
stable allocations that generalize stable matchings, each negative complexity result is valid for flows, as
well. However, it is interesting to observe that the special exchange economy of housing markets can be
formulated in our flow model by allowing indifferences. If each vertex of D represents a player, each
arc and each vertex has unit capacity, and arc uv means that player u prefers the house of player v to her
own one. Then, we have preferences only on the arcs leaving v, and v is indifferent to the arcs entering
v. With these settings, core allocations of the housing market correspond bijectively to completely stable
circulations. This indicates that the top trading cycles algorithm of Gale might be useful to handle some
stable flow problems where indifferences are present.

Acknowledgments

The author kindly acknowledges the support of the MTA-ELTEEgerváry Research Group and the
OTKAgrants, K69027 and K108838, and thanks the referees for their careful reading, especially for
pointing out related results in the literature.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gale, D.; Shapley, L. College admissions and stability of marriage. Am. Math. Mon. 1962,
69, 9–15.

2. Knuth, D.E. Stable Marriage and Its Relation to Other Combinatorial Problems; American
Mathematical Society: Providence, RI, USA, 1997; pp. xiv+74. An introduction to the
mathematical analysis of algorithms, Translated from the French by Martin Goldstein and revised
by the author.

3. Baı̈ou, M.; Balinski, M. The stable allocation (or ordinal transportation) problem. Math. Oper. Res.

2002, 27, 485–503.
4. Dean, B.C.; Munshi, S. Faster algorithms for stable allocation problems. In Proceedings of the

MATCH-UP (Matching Under Preferences) Workshop at ICALP 2008, Reykjavik, Iceland, 2008;
pp. 133–144.

5. Ostrovsky, M. Stability in supply chain networks. Am. Econ. Rev. 2006, 98, 897–923.
6. Hatfield, J.W.; Kominers, S.D. Matching in networks with bilateral contracts. Am. Econ.

J.: Microecon. 2012, 4, 176–208.
7. Fleiner, T. On Stable Matchings and Flows. Technical Report TR-2009-11, Egerváry Research

Group, Budapest, 2009. Available online: http//:www.cs.elte.hu/egres (accessed on 20 January
2014).



Algorithms 2014, 7 14

8. Fleiner, T. On Stable Matchings and Flows. In Graph-Theoretic Concepts in Computer Science;
Springer: Berlin, Germany, 2010; Volume 6410, pp. 51–62.

9. Hatfield, J.W.; Kominers, S.D.; Nichifor, A.; Ostrovsky, M.; Westkamp, A. Stability and
competitive equilibrium in trading networks. J. Political Econ. 2013, 121 No. 5, 966–1005.

10. Westkamp, A. Market structure and matching with contracts. J. Econ. Theory 2010, 145,
1724–1738.

11. Cechlárová, K.; Fleiner, T. On a generalization of the stable roommates problem. ACM Trans.
Algorithms 2005, 1, 143–156.

12. Roth, A.E. On the allocation of residents to rural hospitals: A general property of two-sided
matching markets. Econometrica 1986, 54, 425–427.

13. Roth, A.E.; Sotomayor, M.A.O. Two-Sided Matching; Cambridge University Press: Cambridge,
UK, 1990; pp. xiv+265.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Preliminaries
	Stable Flows
	The Structure of Stable Flows
	Conclusions
	Acknowledgments
	Conflicts of Interest

