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ABSTRACT 10 

The paper describes a macroporous RP-HPLC method for separation and isolation/enrichment of 11 

proteins from complex mixtures. The method is robust and efficient; using 2.1 or 4.6 mm 12 

diameter columns provides sufficient material for subsequent proteomic analysis. The main 13 

advantage of the method is that most protein variants are isolated in the same fraction, as 14 

separation is not based on differences in isoelectric point. This is highly advantageous for 15 

studying complex mixtures and post-translational modifications. Examples related to 16 

glycosylation analysis are discussed in detail. 17 
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1 Introduction 33 

The structural and functional diversity of proteins is, in a large part, due to post-translational 34 

modifications (PTM, like glycosylation, phosphorylation, ubiquitination). One of the most 35 

common PTM of proteins is glycosylation, which is implicated in various biological functions 36 

like transport of proteins, immune response and cell-cell communication. Relation between 37 

glycosylation of human plasma proteins and various diseases has also been shown [1, 2]. 38 

Blood plasma and other biological samples are very complex mixtures; often containing a wide 39 

range of proteins. Due to this complexity, characterization of the glycosylation pattern of plasma 40 

proteins typically requires the use of a range of sample preparation and/or isolation methods, like 41 

immunoaffinity isolation, plasma fractionation, glycoprotein enrichment etc. 42 

Glycoprotein/glycopeptide enrichment is often performed using various lectins. This is an 43 

excellent choice for enriching glycoproteins. However, selective binding of diverse glycoforms 44 

influences enrichment, and may cause significant bias in the glycosylation pattern determined 45 

[3]. 46 

Probably the most efficient way to isolate a single protein component of a complex mixture (e.g. 47 

in order to determine its glycosylation pattern) is based on immunoaffinity binding. However, 48 

antibodies are often not available, they may have non-specific binding properties, and are 49 

variable among different producers [4, 5]. When analysis of glycosylation pattern (or other 50 

PTMs) of several glycoproteins is required, immunoaffinity may not be a feasible choice for 51 

protein isolation. 52 
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Enrichment and/or fractionation of the complex protein mixture is also a common alternative. 53 

For analysis of large number of diverse proteins the best choice is often reducing the complexity 54 

of the biological mixture by fractionation. There are many possibilities, each with advantages 55 

and disadvantages. Multidimensional separation techniques (like 2D gel electrophoresis) are 56 

more efficient, but are time consuming, and often not feasible for high throughput analysis [6, 7]. 57 

Fractionation can be performed either on the intact protein mixture, or following the digestion of 58 

the proteins [8]. The latter case typically involves proteolytic enzymes (like trypsin). 59 

Fractionation at the peptide level has the advantage that there are a wide variety of well-60 

established analytical methodologies for separation of small and medium size molecules. The 61 

disadvantages are, that the protein digest is even more complex than the original mixture; and 62 

different components of the same protein are collected in different fractions.  63 

Fractionation at the protein level is also feasible [7, 9], although the analytical methodologies are 64 

not so well defined. Most frequently ion exchange, size exclusion, hydrophobic interaction, 65 

partition, affinity chromatography, dye-ligand chromatography and electrophoretic methods are 66 

applied [10, 11]. These techniques are efficient, and often separate not only the proteins, but also 67 

various protein variants: sequence variants (e.g. genetic variants); diverse PTMs; and among the 68 

latter various glycoforms. 69 

When the intention is the study of different PTMs of the same protein (like the glycosylation 70 

pattern) collecting all variants of a given protein in one fraction is often considered highly 71 

advantageous. This typically precludes the use of ion-exchange chromatography or 72 

electrophoretic methods; as these separate proteins based on the number of charges (and 73 

therefore glyco- or phosphoproteins with the different number of charged groups) [12]. On the 74 

other hand, the use of reversed-phase HPLC is most likely advantageous from this point of view, 75 
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as it separates proteins with high efficiency, but the different protein variants are expected to 76 

elute together. In the present paper we focus on this approach, and apply it to the study of site-77 

specific glycosylation patterns and genetic variants. 78 

In order to enhance performance of HPLC, first we deplete human plasma of the most abundant 79 

proteins. In the present case only human serum albumin (HSA) and immunoglobulin G (IgG) are 80 

depleted, because we would like to study the glycosylation of some high abundance proteins, as 81 

well. Note that, depletion of other high abundance proteins further increases the ability to 82 

analyze glycosylation of low abundance components. Note also that while immunoaffinity 83 

binding has its limitations, for the purpose of plasma depletion this is an excellent choice; as the 84 

objective is only to remove the bulk of the most abundant plasma proteins. Reversed phase 85 

HPLC of intact proteins was made feasible by the introduction of large pore size (macroporous) 86 

columns. While this is not novel technology, nevertheless requires extensive optimization to 87 

obtain good performance [13-15]. After optimizing HPLC performance, fractions were collected, 88 

containing a few, highly enriched proteins. Site-specific glycosylation patterns were determined 89 

for the individual components, using tryptic digestion and nano-HPLC-MS(/MS) analysis. Due 90 

to the high specificity of MS/MS, determination of the site-specific glycosylation pattern of even 91 

several plasma proteins is feasible. 92 

 93 
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2 Material and methods 94 

2.1 Samples and chemicals 95 

Human serotransferrin standard and human alpha-1-acid glycoprotein standard were purchased 96 

from Sigma-Aldrich
®
 (St. Louis, MO, USA). Haptoglobin standard was purchased from Fluka 97 

Chemie GmbH (Sigma-Aldrich
®
, Zwijndrecht, Netherlands). Human blood plasma sample was 98 

obtained from a healthy volunteer, it was divided into aliquots and stored at -20 °C. 99 

1,4-dithio-L,D-threitol (DTT) and 2-iodoacetamide (IAA) were purchased from Fluka Chemie 100 

GmbH (Sigma-Aldrich
®

, Zwijndrecht, Netherlands). RapiGest SF (lyophilized sodium-3-[(2-101 

methyl-2-undecyl-1,3-dioxolan-4-yl)-methoxyl]-1-propane-sulfonate) was obtained from Waters 102 

(Milford, MA, USA). Mass spectrometry grade trypsin (Promega Corporation, Madison, WI, 103 

USA) and proteomics grade PNGase F from Elizabethkingia meningoseptica (Sigma-Aldrich
®
, 104 

St. Louis, MO, USA) were used. 105 

All other reagents were purchased from Sigma-Aldrich
®
 (St. Louis, MO, USA). 106 

 107 

2.2 Removal of albumin and IgG 108 

To reduce sample complexity, two high abundance proteins: albumin and IgG were removed 109 

from human plasma with Agilent Multiple Affinity Removal Spin Cartridge HSA/IgG (Agilent 110 

Technologies, Santa Clara, CA, USA). 111 

According the manufacturer’s standard protocol 50 µL plasma sample was loaded onto the 112 

cartridge and instructions were followed. In addition, at the end of the depletion steps K2HPO4 113 
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and citric acid were added to the diluted samples to prevent aggregation (30-30 mM 114 

concentration in the samples), and samples were concentrated with 10 kDa centrifuge filters. 115 

After filtration, volume of the depleted plasma sample was 25 µL (i.e. half of the original plasma 116 

sample volume). We have checked by MS based standard proteomics experiments that (1) 66% 117 

of the total protein amount was removed from the sample; (2) 80% of the total albumin amount 118 

is removed from the sample. 119 

 120 

2.3 RP-HPLC fractionation of depleted plasma samples 121 

Proteins were isolated from depleted plasma samples using HPLC: Acquity UPLC
® 

System 122 

(Waters, Milford, MA, USA) with Binary Solvent Manager, Sample Manager, Column Heater 123 

and TUV-detector. 124 

The following macroporous HPLC columns were tested: Agilent mRP-C18 High-Recovery 125 

Protein Column (4.6 × 50 mm, Agilent Technologies, Santa Clara, CA, USA); Poros R2 126 

(Poly(Styrene-Divinylbenzene), 10 μm, 2.1 × 100 mm, Applied Biosystems, Foster City, CA, 127 

USA); BioSuite pC18 Column 500 (7 μm, 2.0 × 150 mm, Waters, Milford, MA, USA), Acquity 128 

UPLC BEH300 (C18, 1.7 μm, 2.1 × 100 mm, Waters, Milford, MA, USA) and Aeris
TM

 129 

WidePore XB-C18 (3.6 µm, 2.1 × 150 mm, Phenomenex, Torrance, CA, USA). We have 130 

selected the Poros R2 column for detailed optimization based on the preliminary tests. 131 

Tests were performed using standard proteins (alpha-1-acid glycoprotein, serotransferrin, 132 

haptoglobin), deglycosylated standard proteins and depleted plasma sample. Deglycosylated 133 

alpha-1-acid glycoprotein and deglycosylated serotransferrin were prepared the following way: 134 
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to 11 µL sample, containing 300 pmol protein standard, 2 µL NH4HCO3 (200 mM) and 10 μL 135 

PNGase F (500 U/mL) were added and digested at 37 °C overnight. 136 

Standard and deglycosylated standard proteins were injected in the 30 pmol – 5 nmol range, 137 

depleted plasma samples were injected in 0.5-15 μL volume. 138 

Optimized gradient for depleted plasma samples (Poros R2 column): The column temperature 139 

was 65 °C, the flow rate was 1 mL/min. The gradient started with 20% B, kept here for 0.7 min, 140 

after this followed a 15 min long gradient from 20% to 70% solvent B. The next step was 141 

increasing to 95% solvent B in 0.1 min, kept there for 1.5 min (washing). Finally returning to 142 

20% B in 0.1 min, and kept there for 6 min (equilibration). Solvent A was water containing 0.07 143 

v/v% trifluoroacetic acid and solvent B was acetonitrile containing 0.07% v/v trifluoroacetic 144 

acid. 145 

Samples of 500 μL fractions were collected manually using the timer of the MassLynx software 146 

and UV-detection (280 nm). To each fraction 1.3 μL NH3 solution (25 w/w%) to neutralize TFA, 147 

and 1.8 μL K2HPO4 (500 mM) to prevent aggregation was added and fractions were concentrated 148 

to 30 μL with SpeedVac (miVac Duo Concentrator, Genevac Ltd., Ipswich, Suffolk, UK). 149 

 150 

2.4 In-solution digestion 151 

Samples of 30 μL volume (collected/concentrated as described above) were digested by the 152 

protocol optimized for small sample volume and described before [16]. The main steps were the 153 

following: 5 μL NH4HCO3 (200 mM) was added to the sample, proteins were unfolded and 154 

reduced with 3 μL RapiGest SF (0.5 w/v%) and 1.5 μL DTT (100 mM) for 30 min at 60 °C. 155 
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Alkylation was performed adding 4 μL NH4HCO3 (200 mM) and 2 μL IAA (200 mM) for 30 156 

min at room temperature in dark. Fractions were digested with 0.5–1.5 μL trypsin (40 μM) for 157 

180 min at 37 °C. The digestion was stopped by adding 1.5 μL formic acid, followed by 30 min 158 

incubation time at 37 °C. The samples were centrifuged at 13500 rpm (corresponding to 17000 159 

g) for 10 min. 160 

 161 

2.5 nano LC-MS(/MS) measurements 162 

The samples prepared as described above were subjected to several nano-HPLC-MS(/MS) 163 

experiments. The first objective is to determine the protein composition of the plasma fraction 164 

collected; the second to identify glycoforms of the major glycoproteins in the given fraction; the 165 

third is to determine the glycosylation pattern, i.e. the relative proportion of various glycoforms 166 

of the same protein.  167 

The digested fractions were analyzed using nanoAcquity UPLC (Waters, Milford, MA, USA) 168 

coupled to a high resolution QTOF Premier mass spectrometer (Waters, Milford, MA, USA). 169 

The chromatographic conditions were during all MS(/MS) measurements the following: the 170 

peptides were separated on a reversed-phase analytical column (C18, 1.7 µm BEH particles, 75 171 

µm i.d. × 200 mm, Waters, Milford, MA, USA). The column temperature was 55 °C. Before the 172 

analytical column a Symmetry C18 trap column (180 µm i.d. × 20 mm, Waters Milford, MA, 173 

USA) was used. Solvent A was water containing 0.1 v/v% formic acid and solvent B was 174 

acetonitrile containing 0.1 v/v% formic acid. The gradient was the following: using 250 nL/min 175 

flow rate starting with a 4 min gradient from 3% to 8% B, then a 65 min long gradient going to 176 
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40% solvent B. Washing was done using 450 nL/min flow rate and a 2 min long gradient from 177 

40 to 75% solvent B, and kept there for 18 min. After that returning to 3% B in 2 min, and 178 

equilibration was done for 18 min. 179 

To determine the protein composition of the collected macroporous HPLC fractions, the 180 

fractions were digested as described above and the resulted peptides were identified by data 181 

dependent analysis with the most intense 3 peaks selected. The mass spectrometer operated in 182 

positive electrospray ionization mode. The capillary voltage was 2.3 kV, nanoflow 1 bar, source 183 

temperature 90 °C, cone voltage 35 V. The parent ion was selected in the 400–1800 m/z range, 184 

MS/MS spectra were acquired in the 50-2000 m/z range. Collision gas was argon, at 4.05 × 10
-3

 185 

mbar. Collision energy was varied in the 7-70 eV range. Genetic variants of alpha-1-acid 186 

glycoprotein were identified using these conditions, as well. 187 

Glycosylation sites and major site-specific glycoforms were identified with tandem mass 188 

spectrometry. The parent ion was selected in the 780-2000 m/z range, MS/MS spectra were 189 

acquired in the 150-3000 m/z range. Collision energy was varied in the 5-55 eV range. Minor 190 

glycoforms and relative quantitation were measured with single stage mass spectrometry in 191 

extended dynamic range mode. Scans were acquired in the 500-2000 m/z range. Other 192 

instrumental parameters were same as described above.  193 

Site-specific glycosylation pattern of components of the fractions has been analyzed and 194 

characterized by the method described earlier in detail [17]. 195 

 196 
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2.6 Data evaluation 197 

Proteins in each fraction and genetic variants of alpha-1-acid glycoprotein were identified from 198 

MS/MS measurements using ProteinLynx Global Server v.2.3 (Waters, Milford, MA, USA) and 199 

searched against v.2011_10 of SwissProt sequence database with human taxonomy using Mascot 200 

Server v.2.2 (Matrix Science, London, UK). One missed cleavage was allowed, 201 

carbamidomethyl cysteine was set as fixed modification. 202 

MS/MS spectra corresponding to major glycopeptides were automatically evaluated by our 203 

computer software GlycoMiner v.1.13 Beta [18]. For each glycosylation site, the tryptic peptides 204 

with possible glycan structures were identified. Minor glycopeptide identification and relative 205 

glycopeptide quantitation were performed from MS measurements using the in-house developed 206 

computer software GlycoPattern v.2.0 [17]. The software calculates the retention time windows 207 

of minor glycoforms based on the known retention time of the major glycoforms. Minor 208 

glycoforms are identified based on retention time and exact mass. Internally, GlycoPattern uses 209 

an isotope model to increase the confidence of the identification. For each glycoforms the 210 

extracted ion chromatograms are generated and the chromatographic peaks are integrated. 211 

 212 

3 Results and discussion 213 

In the current work we have optimized a workflow for RP-HPLC fractionation of complex 214 

protein mixtures, in particular human blood plasma. The primary aim was to collect the different 215 

variants of a given protein in one fraction. Fractionation significantly simplifies sample 216 

complexity, and is particularly advantageous for analyzing protein variants, like various PTMs. 217 
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Still, even after fractionation, each collected fraction is a complex mixture, containing more than 218 

one co-eluting protein and their variants. When all variants of a given protein are collected in one 219 

fraction, this makes subsequent identification, qualitative and quantitative analysis of PTMs 220 

more reliable, more robust and more sensitive. Chromatographic behavior of proteins under RP 221 

conditions are expected to depend mainly on their hydrophobicity; and in most cases on their 222 

peptide backbone; single point mutations or changes in the PTMs should only have a minor, 223 

often negligible effect. This expectation will be studied in detail below. Note that RP-HPLC 224 

fractionation is only the first step, PTM characterization typically requires several further stages 225 

for sample preparation and analysis. This may be based on procedures which separate various 226 

PTMs from each other (like in 2D gel electrophoresis); or on procedures (like mass 227 

spectrometry), which are capable of dealing with a mixture of various PTMs. 228 

Important parameters and properties of the fractionation method were tested and optimized. The 229 

main steps of fractionation and analysis are the following: affinity depletion of high abundance 230 

proteins; RP-HPLC fractionation of the remaining proteins; proteolysis (tryptic digestion) of the 231 

collected fractions; nano-HPLC-MS(/MS) measurements; and complex data analysis to 232 

determine site-specific glycosylation pattern. The complete workflow is presented in Fig. A. 233 

The first issue to consider is the amount of proteins needed to be isolated/enriched. This, in turn, 234 

depends on the objective and methodology of further analysis or utilization. In the present case 235 

the objective is analytical characterization based on mass spectrometry. This methodology is 236 

sufficiently sensitive, that using 4.6 or 2.1 mm diameter analytical HPLC (or UHPLC) columns 237 

for sample preparation is adequate – although the loading capacity should be tested and 238 

optimized. When larger sample amounts are needed for subsequent analysis (e.g. for most 2D gel 239 
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electrophoresis studies), multiple HPLC runs or the use of larger diameter column may be 240 

required.  241 

The whole analytical procedure starts with depletion of the blood plasma sample (removal of the 242 

most abundant protein components). This is a commonly used method to simplify subsequent 243 

analysis. Typically the most abundant 2, 7, 14 or 20 proteins may be removed by affinity 244 

binding, using various kits. In the present study we use the simplest variant, removing albumin 245 

and IgG. It is often recommended that blood plasma should be reduced and alkylated before 246 

depletion and HPLC analysis. This somewhat improves chromatographic behavior (resolution 247 

and shape of peaks). However, we found that following reduction and alkylation new peaks 248 

appear in the chromatogram (most likely due to changes of the chromatographic contact area); 249 

and a significant amount of the reduced protein precipitates from the solution. (This may partly 250 

be avoided by the addition of K2HPO4 and citric acid to the solution; and depends significantly 251 

on the individual plasma sample). To avoid these problems, we have used (and recommend) 252 

depletion and subsequent RP-HPLC fractionation on the native plasma, i.e. without reduction 253 

and alkylation.  254 

The range of macroporous columns is relatively limited, nevertheless there are several types 255 

available. We have made a tentative comparison of five different columns, mainly with respect to 256 

semi-preparative applications (Agilent mRP-C18, BioSuite pC18, Poros R2, Acquity UPLC 257 

BEH300, Aeris
TM

 WidePore XB-C18). Our primary concern was their loading capacity and 258 

avoiding cross-contamination of samples (i.e. a blank injected after a plasma sample should not 259 

contain any proteins). Based on preliminary tests we have selected the Poros R2 column for 260 

detailed optimization – but detailed comparison of these columns is outside the scope of the 261 

present paper. 262 
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Length and slope of the gradient, trifluoroacetic acid content of solvents and flow rate have been 263 

optimized for the best achievable resolution, while keeping the peak/fraction volume manageable 264 

[19]. Trifluoroacetic acid content of solvents should be low; best results were obtained in the 265 

0.05-0.1% range; the optimum depends on column type. Without trifluoroacetic acid the proteins 266 

remain bound to the column, but higher concentration of trifluoroacetic acid decreases the pH 267 

extremely, which results the precipitation of proteins and hydrolization of sugar bonds. In order 268 

to avoid unnecessary dilution of the sample the flow rate was limited to 1 mL/min, and elution 269 

time was 20 min. Using these parameters reasonable selectivity was obtained, even injecting as 270 

much as 15 μL sample (Fig. B). 271 

Using the conditions described above proteins were collected in 20, 0.5 min wide, 500 µL 272 

volume fractions; from 4 to 14 min retention time based on the chromatogram shown in Fig. B. 273 

Prior to subsequent sample analysis NH3 solution and K2HPO4 solution were added to neutralize 274 

trifluoroacetic acid and to prevent further precipitation. Then, the 500 µL fractions were 275 

concentrated to 30 µL volume using vacuum centrifugation. Protein recovery of the complete 276 

procedure has been tested with standards and optimized for the minimal sample loss. It was 277 

found that special tubing: ethylene tetrafluoroethylene (ETFE), needle: fluorinated ethylene 278 

propylene (FEP), and low protein affinity eppendorf tubes were needed to obtain over 90% 279 

protein recovery for major plasma proteins. 280 

Reproducibility of the chromatographic method has been tested with various protein standards 281 

and plasma samples using UV-detection. Reproducibility (standard deviation) of retention times 282 

is 0.15%; that of the peak areas is 1.4%. Reproducibility of the whole procedure (which includes 283 

plasma depletion as well); with respect to retention times is the same (0.15%); but that of peak 284 

areas is significantly worse, 9.3%. This shows that plasma depletion is less reproducible than 285 
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chromatographic analysis. The standard deviations shown are the averages measured for three 286 

protein standards (and the same protein components of plasma), and were calculated using 3 287 

replicates.  288 

As described above, using macroporous RP-HPLC one can reasonably expect that different 289 

variants of a given protein should elute in one chromatographic peak, i.e. the PTMs have only 290 

minor influence on the retention time. As this is of major importance in the present study, we 291 

have performed various tests on genetic variants and on glycoproteins to confirm this 292 

assumption. In case of glycosylation, glycosylated and deglycosylated proteins; and glycoforms 293 

containing acidic and neutral sugars were studied. 294 

In the case of standard (commercial) serotransferrin sample, the UV chromatogram in Fig. C 295 

shows a single peak (although with a well-defined shoulder). It is the well-known behavior of 296 

commercial serotransferrin standard, might be attributed to natural charge or oxidized variants 297 

[11]. We have fractionated this peak into 5 narrow (0.1 min, 100 µL) fractions; digested these 298 

with trypsin, and studied them in conventional nano-HPLC-MS and MS/MS experiments (details 299 

are described in the Material and methods part, 2.5). The results show, that all fractions contain 300 

serotransferrin; only one genetic variant was observed. We have also determined that the 301 

glycosylation pattern of serotransferrin does not show changes among the various fractions. 302 

Deglycosylated serotransferrin standard was injected onto the RP-HPLC column as well, and 303 

found to behave very similar to the glycosylated standard: peak shape and retention time were 304 

identical. We have also studied the effect of deglycosylation in the case of alpha-1-acid 305 

glycoprotein, in which case ~40% of the molecular mass is due to the sugar chains. In this case 306 

the retention time did change, but only by 0.5 min. This suggest, that even when most of the 307 

protein surface is covered by sugar units, the retention time is predominantly determined by the 308 
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peptide backbone. Note also that changes in the glycosylation pattern (in contrast to complete 309 

deglycosylation) of the protein has a negligible effect on retention, as described below with 310 

respect to glycoform analysis. 311 

We have performed an analogous study in the case of blood plasma. We have tried to follow 312 

elution of serotransferrin in the plasma sample, but due to the complexity of the electrospray 313 

signals the results were equivocal. To confirm the assumption that various glycoforms of 314 

serotransferrin in the plasma sample indeed elute in a single chromatographic peak the following 315 

test was performed. The RP-HPLC fractions were collected as described above. The fractions 316 

were digested using trypsin, and the intensity of the molecular ions of the three most abundant 317 

peptide fragments of serotransferrin were determined using a conventional nano-HPLC-MS 318 

experiment. The relative amount of serotransferrin in each fraction was determined using label-319 

free quantitation; using the average abundance of the three most abundant unique peptide signals. 320 

The result is shown in Fig. C (dots marked, scale at the right side). This clearly indicates that 321 

serotransferrin is collected predominantly in one fraction only; a minor amount (ca. 2%) in a 322 

neighboring fraction, while other fractions contain only traces of serotransferrin (either due to 323 

peak tailing or cross-contamination). 324 

Chromatographic behavior of proteins containing multiple amino acid modifications were 325 

studied in the case of alpha-1-acid glycoprotein. This protein has two different genetic variants 326 

(ORM1 and ORM2), and has 21 variable amino acid sites (out of 200 amino acids). After 327 

fractionation we have digested the protein mixtures, and identified peptide fragments 328 

characteristic for the two genetic variants. Two peptide pairs were selected for analysis, 329 

171
SDVVYTDWK

179
 and 

154
EQLGEFYEALDCLR

167
 for ORM1; and 

171
SDVMYTDWK

179
 and 330 

154
EQLGEFYEALDCLCIPR

170
 for ORM2. The peptides were identified in a conventional 331 
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proteomics experiment using nanoHPLC-MS/MS, as described in the Material and methods part. 332 

All of these peptides were found in the same protein fraction, indicating that the protein variants 333 

co-elute under the studied conditions. 334 

Reproducibility of fraction collection was also studied. This is illustrated the case of beta-2-335 

glycoprotein_1; shown in Fig. D. Fractions were collected in three separate experiments; and the 336 

relative amount of beta-2-glycoprotein_1 was determined in each fraction using label-free 337 

quantitation; as described above by serotransferrin. The results show that beta-2-glycoprotein_1 338 

is collected predominantly in one fraction only. Standard deviation of relative intensities in the 339 

various fractions is 0.8% SD, using 3 replicates. 340 

Combining the presently described fractionation method with glycoprotein analysis [17], we 341 

have successfully characterized the detailed, site-specific glycosylation pattern of several plasma 342 

proteins. The reproducibility of glycosylation patterns (relative abundance of various 343 

glycoforms) so determined in three replicates is, on average, 15% SD. This is identical to that 344 

described before for standard protein samples [17]. 345 

Most studied proteins gave results similar to those discussed above (one chromatographic peak). 346 

One notable difference is haptoglobin; which showed a single peak having a very (8 min) long 347 

tail (probably due to strong column binding; observed in the standard, using UV detection, Fig. 348 

E.1). We have collected the various fractions from plasma; after digestion and nano-HPLC-349 

MS(/MS) analysis we have determined the glycosylation pattern of haptoglobin in the various 350 

fractions; shown in Fig. E.2. This illustrates that, even if proteins show large tailing, this is 351 

predominantly not due to separation of glycoforms. This confirms that proteins collected in one 352 

fraction are suitable for determining representative glycosylation patterns. 353 
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We have performed a further experiment to show that RP-HPLC fractionation does not 354 

compromise determination of glycosylation patterns. In other words, the glycosylation pattern 355 

determined after fractionation is the same as that determined on the original sample. Due to 356 

limited sensitivity, this was checked on a standard protein (alpha-1-acid glycoprotein). The 357 

glycosylation pattern at site 
56

N (corresponding to the 
52

NEEYNK
57

 glycopeptide) was 358 

determined for the commercial standard protein without fractionation, and after fractionation 359 

using the methodology discussed above. The results are shown in Fig. F, and show that 360 

fractionation does not change the glycosylation pattern (e.g. due to selective binding or some 361 

other effects). Between the two samples 13% SD was calculated from all glycopeptides of alpha-362 

1-acid glycoprotein, using 3 replicates. 363 

As described above, loading capacity was a major issue optimizing the present methodology. 364 

This determines the amount of proteins isolated/fractionated by RP-HPLC for further studies. 365 

Determination of PTMs is often limited by sensitivity, even if high sensitivity mass spectrometry 366 

is used for analysis. In most proteomics experiments it is sufficient to identify a few (the most 367 

sensitive) peptide fragments of protein to give positive identification and relative (label-free) 368 

quantitation. Analyzing PTMs requires a far, 100-1000-10 000 fold larger sample amount than 369 

that required for protein identification for the two main reasons: (1) Peptides containing the PTM 370 

unit have often limited sensitivity. This is a particularly serious issue for glycopeptides. (2) Many 371 

PTMs are minor components, e.g. phosphorylation may be present in a few %; minor (but 372 

possibly biologically important) glycoforms have 1% or less relative abundance. 373 

Using the Poros R2 2.1 mm diameter column allowed us to inject ca. 15 µL depleted plasma onto 374 

the column, without significantly deteriorating column performance. The total protein amount in 375 

this is approximately 800 μg (~13 nmol). This calculation is based on the following: Total 376 
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protein content of plasma is ~80 g/L; from which ~66% is removed by depletion, so ~27 g/L 377 

remains in the sample. In the experiments 50 µL plasma is used, this means ~1300 μg protein in 378 

the 25 µL depleted fraction. Onto the column 15 µL of 25 µL is injected, which is ~800 μg. 379 

Assuming a 60 kDa average protein molecular mass, this converts to ~13 nmol total protein 380 

amount injected. This means that major plasma proteins can be collected in one fraction in 20–381 

1000 pmol amount. This is typically sufficient to obtain (after proteolytic digestion) high quality 382 

glycosylation patterns using nano-HPLC-MS(/MS) methodology. In order to perform 2D gel 383 

electrophoresis experiments using the common Coomassie Staining typically larger protein 384 

amounts are needed. This may require repeated sample fractionations, and pooling several 385 

fractions for subsequent analysis. 386 

 387 

4 Conclusions 388 

The paper demonstrates the usefulness of RP-HPLC methodology for sample preparation, 389 

enrichment and (in certain cases) isolation of proteins from complex mixtures. The use of 390 

macroporous stationary phases is the key to utilize HPLC for separation of macromolecules. This 391 

methodology is not new [9, 20], but the availability of efficient, commercially available columns 392 

is a relatively recent development. Most other protein separation methods (like capillary 393 

electrophoresis or 2D gel electrophoresis) rely on isoelectric focusing, which is a very efficient 394 

way for separating not only proteins, but protein variants as well. RP-HPLC separates protein 395 

variants in much less degree: on the one hand this restricts the separation power (or peak 396 

capacity); on the other hand this does not separate most protein variants. This was shown in case 397 

of genetic variants and glycoforms, and other PTMs (like phosphoproteins) are expected to 398 
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behave similarly. As protein variants are not resolved, this facilitates unbiased determination of 399 

the PTM distribution, which is very important in PTM studies. 400 

In the present paper we have shown that various glycoforms are collected in the same fraction 401 

and protein isolation in this way does not introduce bias. This was established comparing 402 

glycosylation patterns with and without fractionation, and these were (within experimental error) 403 

identical. Mass spectrometry (arguably the most common method for protein analysis) requires 404 

only small sample amounts. Therefore, one injection onto a 2.1 or 4.6 mm diameter (analytical, 405 

high efficiency) HPLC column usually provides a sufficient amount of sample for subsequent 406 

analysis. The suggested macroporous RP-HPLC method is robust; which facilitates widespread 407 

applications.  408 

 409 
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7 Appendices 470 

Fig. A: Workflow for characterization of site-specific glycosylation pattern of plasma 471 

proteins. 472 

Fig. B: Depleted plasma chromatogram obtained on Poros R2 column. As the chromatogram 473 

shows reasonable selectivity was obtained after the injection of 15 μL depleted plasma sample. 474 

Fig. C: UV chromatogram of standard serotransferrin and distribution of plasma 475 

serotransferrin among fractions collected at different retention times. In the latter case 476 

human blood plasma was fractionated; the individual fractions were digested and studied in 477 

separate nano-HPLC-MS experiments. Label-free quantitation (based on the sum of the three 478 

most abundant peptide signals of serotransferrin) was used to determine the relative amount of 479 

serotransferrin in the various fractions, indicated by diamond shapes in the Figure. The results 480 

show that serotransferrin was indeed successfully isolated in a single chromatographic fraction 481 

from blood plasma.  482 

Fig. D: Reproducibility of fraction collection. Protein distribution in the collected fractions is 483 

presented in case of beta-2-glycoprotein_1. 3 replicates are presented with different marker 484 

types. 485 

Fig. E.1 and Fig. E.2: 1) UV chromatogram of standard haptoglobin and 2) glycosylation 486 

pattern of plasma haptoglobin characterized from fractions collected at different retention 487 

time. The normalized distribution of glycoforms in case of 
184

N glycosylation site 488 

(
179

MVSHHNLTTGATLINEQWLLTTAK
202

 glycopeptide) is presented here. 489 
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Fig. F: Glycosylation pattern at the 
56

N site (
52

NEEYNK
57

 glycopeptide) of alpha-1-acid 490 

glycoprotein standard without fractionation and after fractionation. The same pattern was 491 

determined after the glycoprotein standard was “fractionated” by RP-HPLC; and the fraction 492 

collected was analyzed in the same way. 493 
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Fig. E.1 506 
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Fig. E.2 508 
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