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Abstract: This paper proposes a logical system in which reversible and 

irreversible processes could be uniformly handled. This attempt originates in the 

observation that the question of reversibility not essentially emerges in logic, nor 

yet in temporal logic in spite of the fact that, in principle, it should be an eminent 

question as regards any action (where time is the vehiculum and presupposition of 

change).  The situation is quite similar with communication theories, where the 

expression ’communication’ usually refers to an individual process or action in 

spite of the fact that any process presupposes a given, timeless type for this 

process. This timless or time-indifferent types are the prototypes of pure 

communication. 
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Philosophical Propedeutics as regards the Idea of Separate Change  

 

 

The early Wittgenstein wrote in his Tractatus that ‹Eines kann der Fall sein oder nicht der 

Fall sein und alles übrige gleich bleiben›
1
 (Wittgenstein 1921; 1.21.) and, I think, the 

consequence of this statement is a real philosophical mess-up.  Let’s call this view the Idea of 

Separate Change (ISC). In this paper I try to show that ISC is an idea as regards our models 

of the world, but there can be no separate changes in the world itself.  

                                                 
1
 Translated by D. F. Pears and B. F. McGuinness as „Each item can be the case or not the case while everything 

else remains the same” (Wittgenstein 2001) 

 

 

 

KOME − An International Journal of Pure 

Communication Inquiry 

Volume 2 Issue 1  p.  37-68 

© The Author(s) 2014 

Reprints and Permission: 

kome@komejournal.com 

Published by the Hungarian Communication 

Studies Assoiciation  

Remarks on the Logic of 

Irreversible Actions 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42931763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M. Demeter                                                                                                                              38                                                

KOME − An International Journal of Pure Communication Inquiry Volume 2 Issue 1  p. 37-68 

Let’s suppose, for example, that there is an ISC event, namely, A‹aTb›, which is an event 

member of the world W1, where a and b are individual states of affairs and a transforms to b 

while no other transformations happens in W1. Similarly, an event B‹bTa› W2 could be 

postulated. Now suppose the conjunction of transformations in A and B as (1) shows: 

 

(1)  W1‹A‹aTb››T W2‹B‹bTa›› 

 

Now we obtain from (1) by condensation that 

 

(2) W1‹aTb›T W2‹bTa› 

 

and then 

 

(3) ‹W1a›T‹W2a› 

 

But from the definition of ISC it follows that no distinction could be made between W1 and 

W2: the succession of the transformations A and B results in no transformation, which is 

absurd. The plain fact that W1 and W2 could be indexed as different worlds entails the 

presupposition that there are at least one difference between them apart from a. Moreover, its 

counterintuitive enough to say that succesive transformations could be identical with no 

transformations. Therefore I think that ISC applies to notations, and not to the events of the 

world. 

 

To buttres up this argumentation many examples could be cited; if the window is open and I 

close it, and then I open the window again, who could say that I did nothing? Of course I 

used energy, wasted time and so on. But if a model of the possible states of the window 

describes the opened-window-state as A, the closed-window-state as B, it could be said that 

A could be transformed to B and then it could be transformed to A: then this is a reductive 

notation of the actual processes with identical input and output notation.  Similarly, a pure 

dialogue (with the possibility of any discussion) is the type for every possible (individual) 

dialogues.   

 

Handlig events and notations 

 

The relation between events and notations is not self-evident so it has to be analyzed itself. 

It’s trivial that notations are notations of something, say events, states, processes and others, 

so it seems plausible to say that the relation between events and notations is simply that 

notations are representations of events.  The fact that notations are events themselves is far 

less evident and this recognition leeds to infinite regress unless the well known restrictions 

for object language sentences (notations). Suppose that A is an event and B is the notation of 

A; but since notations are events, too, B should be represented as C, and than C as D and so 

on. We can say, of course, that B could be represent both the event B and the notation of this 

event but in this case events and notations became indistinguishable. Escaping from this 

situation, logicians started to demarcate object language sentences from meta language 

sentences, but this effort proved to be unaccomplishable without the aim of further notations, 

as in the case of (3). 

 

(3) It’s raining. 

 

(3b) ’It’s raining.’ 
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It could be seen that, as (3b) shows, single quotes notate the notation of the event (3). 

Notating (3b) requires additional quotation marks and so on, and the problem of infinite 

regress remains. Obviating this situation logicians started to use the expression ’notation’ for 

its result only, which, at least at first sight, did not seems to be an event.  But as a matter of 

fact, not just the noting, but the reading of a notation is also an event per se, since both noting 

and writing happens in time, and none of them are irreversible. Note, that any communication 

presupposes a notation, so what holds for ’notation’ also holds for ’communication’.  

 

Basal considerations as regards ISC 

 

Based on the above discussed questions we should ascertain some basal considerations as 

regards time, change and notations.  

 

(I)  Let the fact that ISC applies to notations an not to the events of the world be our first 

consideration.  

 

But since noting or reading (so: communicating) a notation is an event too, and notations are 

in the world, we have to say that, strictly speaking, ISC applies only to the idea of notations, 

and not to the notations themselves.  

 

(II)  Let the fact that ISC applies only to transcendental objects be our second 

 consideration.  

 

But it’s hard to say that logic is evidently transcendental. We should skip the ontological 

questions of mathematics and logics here, and we could still say that whether logic is 

transcendental or ISC not hold for logic itself.  

 

 

Remarks on the concept of notations as events 

 

Of course not Wittgenstein nor later logicians thought that logical representations of any 

structures refer to events, so the distinction between notations as events and notations 

referring to events should be made. For example, noting or reading a tautology is always an 

event, but no tautology refers to any event. In spite of the fact that the ordinary language 

transcriptions of logical connectives may contain event-words like ’if’, ’and’ or ’then’, there 

is nothing event-characteristic in their logical equivalents. The above mentioned 

characteristic of tautologies could be easily apprehended by examining the following 

formulas.  

 

(4) A  B 

 

The literal translation of  (4) is that A is identical with B.  

 

(4a) A  B  B  A  

 

The literal translation of  (4a) is that if A is identical with B than B is identical with A.  

 

(4b)  A  B  ‹A  B›  ‹B  A› 
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The literal translation of (4b) is that if A is identical with B than if A then B and if B then A.  

 

(4c) ‹‹A  B›  ‹B  C ››  ‹A  C› 

 

The literal translation of (4c) is that if A then B and if B then C then A then C.  

 

But, unlike ordinary language sentences, logical formulas could be conceived as diagrams.  

When a formula is concieved like this, the reading of the formulae could be undirected. The 

following examples are diagrammatic interpretations of  (4) – (4c). 

 

(4) A  B 

 

The undirected diagrammatic interpretations of (4) could be either  

 

 that A is identical with B.  

 or  

 that B is identical with A. 

 

(4a) A  B  B  A  

 

The undirected diagrammatic interpretations of (4a) could be either  

 

 that if A is identical with B than B is identical with A. 

 or 

 that if B is identical with A than A is identical with B. 

 or 

 that if A is identical with B than A is identical with B. 

 or 

 that if B is identical with A than B is identical with A. 

 

 (4b)  A  B  ‹A  B›  ‹B  A› 

 

The undirected diagrammatic interpretations of (4b) could be either  

 

 that if A is identical with B than if A then B and if B then A.  

 or 

 that if B is identical with A than if A then B and if B then A. 

 or 

 that if A is identical with B than if B then A and if A then B. 

 etc. 

 

(4c) ‹‹A  B›  ‹B  C ››  ‹A  C› 

 

The undirected diagrammatic interpretations of (4c) could be either  

 

 that if A then B and if B then C then if A then C.  

 or 

 that if B the C and if A than B then if A then C 

 or 

 that if A then C then it is impossible that  if A then B then if C then not-B 
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Construing undirected diagrammatic interpretations, of course, presupposes precursory 

knowledge on logical languages, but the situation is the very same with ordinary and 

conventionally interpreted logical languages, and, as it could be seen by (5) –(5b), with 

arithmetic itself.  

 

(5) 1 = 1 

(5a) 1 + 1 = 2 

(5b) 1 + 1 + 1 + 1 = 2 + 2 = 4 

 

Interpreters have to know that addition and equality are reversible and they have to be adept 

in, at least, some naive number theory (NNT
2
).  Then undirected diagrammatic interpretations  

of the above run as follows. 

 

(5) 1 = 1 

 

The undirected diagrammatic interpretations of (5) could be either 

 

 that 1 equals 1 

 or 

 that equal-sign connects equals 

 

so (5) could be interpreted as the definition of 1 and the definition of equal-sign alike.  

 

(5a) 1 + 1 = 2 

 

The undirected diagrammatic interpretations of (5a) could be either 

 

 that 1 plus 1 equals 2 

 or 

 that 2 equals 2 

 or 

 that 1 plus 1 equals 1 plus 1 

 or 

 that 2 minus 1 equals 1  

 

(5b) 1 + 1 + 1 + 1 = 2 + 2 = 4 

 

The undirected diagrammatic interpretations of (5b) could be either 

 

 that 1 plus 1 plus 1 plus 1 equals 2 plus 2 equals 4 

 or 

 that 4 equals 4 equals 4 

 or 

 that that 1 plus 1 plus 1 plus 1 equals that 1 plus 1 plus 1 plus 1 equals that 1 plus 1 

 plus 1 plus 1 

 etc. 

 

                                                 
2
 Let NNT refer here to adequate knowledge on relational properties of basal arithmetical operations and 

ordinary knowledge on natural numbers.  
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Interpreting arithmetical formulas in this diagrammatic way presupposes the following 

assumptions only: 

 

(III) Let the fact that the interpreters of arithmetical formulas have to be acquainted with 

 NNT be our third consideration.    

 

(IV)  Let the fact that any formula includes itself, and any concept A includes the concept 

 of A be our forth consideration.  

 

(V) Let the fact that the concept of natural numbers includes the concept of any natural 

 number with all the operations on them be our fifth consideration.  

 

Based on the considerations (III) – (V) it has to be said, that any natural number and any 

valid operation on them asserts the concept of natural numbers. In the same way, any valid 

strucure of logical symbols assert the concept of the corresponding logical system.  

 

(VI) Let the fact that any valid logical formulae is a tautology which asserts the concept of 

 the corresponding logical system be our sixth consideration.   

 

Diagrammatic representations of logical concepts 

 

At this point we could represent the above mentioned tautological structures 

diagrammatically. The most perspicuous, contemporary way of representing logical 

structures is the Venn-II system of Sun-Joo Shin (Sun-Joo Shin, 1994, 2006). The following 

representations harmonize with her system but a few differences will be introduced and 

elucidated.  
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We should interpose some axioms as regards the representations stand above.  

 

Axiom 1.  Each closed curve represents a set. 

Axiom 2.  Any closed intersection of sets is a set.  

Axiom 3.  When a set C is an intersection of sets A and B, then A and B are the parent 

sets of C. 

Axiom 4.  Each set should be labelled.  

Axiom 5.  Labels should be written outside the set. 

Axiom 6.  Intersections inherit all the labels of their parent sets.    

Axiom 7.  The label of a set is its name. 

Axiom 8.  When a set has multiple names, then multiple names signify the same set.  

Axiom 9.  Any set includes all its members, so a closed curve without any symbol 

signifies all its members. 

Axiom 10.  A closed curve with the symbol ’0’ signifies the empty set.  

Axiom 11.  Empty sets signifies the same set without respect to their names.  

Axiom 12. Empty sets could be deleted without changing the reference of the 

corresponding representation scheme.  

 

As it could be seen, this representational method can handle the problem of extensional 

identity that could be stated in spite of intensional differences. Its opposite, viz. the 

intensional identity despite extensional differences should not be occurred in formal 

languages.  

 

Some additional remarks on ISC 

 

As we could now delineate, diagrammatic representation systems show that logical 

expressions need not, and could not refer reversible or irreversible processes or actions, 

because they do not refer to actions at all. Instead, logical expressions refer to states, which 

are the preconditions of processes and actions. As against physical and mental phenomena, 

where the observer encounters with processes alone, the logical sphere consists of states.  

 

(VI)  Let the fact that logical expressions (tautologies) are the types of processes be our 

sixth consideration.  

 

That being the case, we have to differentiate logical types from physical or mental exemplars: 

the first refer to states, and the second, being temporal derivatives of the first,  refer to 

processes. For example, opening or closing a window is always a physical process; similarly, 

the intention to close or open a window is always a mental process. But the logical 

precondition of all the above mentioned processes is a state, i.e.that the core definition of 

being a window includes that it could be opened or closed. None but this differentiation can 

lead us to the correct questions as regards reversibility: we should consider that the questions 

pertain to the exemplars of logical states, namely, physical and mental processes and not to 

logical expressions themselves.  
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Representing types and exemplars: states become processes 

 

In the recent paper we will represent types as hypergraphs, and exemplars will be represented 

as directed graphs derived from the corresponding type.
3
 Note that   hypergraph-based 

representational systems describe concrete (non-discrete or analogue) tense logic, while  

representation systems operating on directed graphs describe  discrete tense logic. This 

remark should be considered later, when non-logical expressions like ’next’, ’until’ or ’now’ 

will be analyzed.  Since there are no temporal expressions apart from ’always’ and ’at least 

once’ that could be handled as logical expressions
4
, the above mentioned terms belong to 

physical and mental languages: consequently, they will be represented as directed graphs.
5
  

 

Before constructing a graph system based on the above mentioned considerations it should be 

mentioned that, contrary to the usual graph constructions which derive hypergraphs from 

normal graphs, the basis of our recent system will be the hypergraphs themselves, and normal 

graphs will be the derivatives. This sequentiality corresponds to the consideration that 

exemplars (processes and actions) always derive from possible states i.e., from types. Let’s 

call this type-exemplar graph system TEGS hereunder. As it could be conjectured, a TEGS 

consists of types and examplars where types are the basal entities. A simple representative of 

TEGS could be constructed as follows.  

 

Definition 1.   A G = (V,E) graph consists of the sets V and E; the elements of V are the vV 

verticles, the elements of E are the eE edges.  

Definition 2.  For every edge e, there is a set C contains c verticles which are the end 

verticles of e.  

Definition 3.  If v is the end verticle of e, then v suits v and e suits v.  

Definition 4.  Let’s call the n number of edges between verticles multiplicity. 

Definition 5.  Let’s call the c number of verticles suits e the cardinality of e.  

Definition 6.  Let’s call the k number of edges suits v the degree of v [((v)].  

Definition 7.  If e suits n verticles and n = 1, then e is a knot; if e > 1 then e is a proper edge.  

Definition 8.  The set of minimum 2 proper edges or knots suit the same end verticles is a 

multiedge. 

Definition 9.  A graph wherein c, k and n are unspecified is a hypergraph. 

Definition 10.  A simple graph could be derived from a hypergraph, wherein c  2 and k, n are 

unspecified.  

Definition 11.  The alternate sequence of edges and verticles in a G graph is the W walk.  

  W = {v0,e1,v1,e2,…,en,vn} 

Definition 12.  If there is a walk between v1 and v2 then v1 and v2 are accessible verticles.  

Definition 13.  A graph is connected when all its verticles are accessible from each other.  

Definition 14. Both edges and verticles could be labeled. Labels are represented with colours. 

Edges and verticles with the same colour belong to the same label class (LC).  

 

 

                                                 
3
 In this paper we treat types and exemplars from a basal logical point of view. In the case of our diagrammatic 

system, types are labelled with capital letters (A), and exemplars are labelled with lower cases (a). We will later 

specify the logical properties of types and exemplars, but for the sake of an anticipatory understanding one 

could correspond them with the sentential calculus; then exemplars correspond to individual propositions (p,q), 

and types correspond to general propositions (,,).  
4
 Where ’always’ is the temporal equivalent of the universal, and ’at least once’ is the temproal equivalent of the 

existential quantifier.  
5
 According to Tarski, no logical expressions may refer to temporality (future, past) at all. 
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Consider a representative of TEGS on Fig1. 

 

 
Fig 1. A representative of TEGS . Different colours represent different LCs. 

 

The TEGS represented by Fig 1. is a connected simple graph with hypergraphs as its 

verticles. All its edges and verticles are labelled.  Nevertheless this paper will be concerned 

with graphs with only one LC, because it focuses on tense logical problems where different 

LCs are not needed. 

 

Definition 15.  The verticles and edges belong to the same LC are the fragments of that LC 

(
f
LC) 

Definition 16.  If fragments x,y have an edge that e: (x,y) and x,y  LC, than x and y are 

accessible from each other simply.  

Definition 17.  If fragments x,y aren’t accessible from each other simply, but they have an 

edge that e: (x,y) and x  LC   y  LC or y  LC   x  LC than e is a 

bilateral edge, and x,y are accessible from each other synthetically.  

 

By definition 17. it follows that fragments of the same LC are accessible from each other 

simply, fragments of different Lcs are accessible from each other synthetically. Different LCs 

are represented by different colours on TEGS and they could be indexed as LC1, LC2 and so 

on. Any representative of TEGS could be constructed as a complex of LC(s) so a TEGS is a 

recursively constructed class of hypergraphs, which are the basis graphs of TEGS. 

 

To represent exemplars, types need to be dissolved as follows. 
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Definition 18.  The P2 structure of an H: (V,E) hypergraph induces a 2-verticles walk on H; 

now P2H shows the vV verticles induces the fitting eE edge.  

Defintition 19.  Dissolving an H: (V,E) hypergraph results in the P2H  H. 

Definition 20.  The R:{V=( …,v0, v1, v2,…), E=( …,v0v1, v1v2, v2v3,…)} subgraph of the H: 

(V,E) hypergraph is its radius.  

 

Now states and processes could be represented by TEGS as follows. The first relation is the 

most simple as it represent that any part of the LC could be access from its basal LC (fig2). 

Note that, as Definition 20. states, R is a subgraph of the dissolved hypergraph labelled with 

the corresponding LC. In our undermentioned examples LCs will be represented with colours 

(black, red etc.).  

 

 
Fig 2. Any part of an LC could be simply access from the LC. 

 

The relation that Fig 2. shows is the diagrammatic equivalent of inclusion. For a conceptual 

example, suppose that an LC carries the label ’Number’. Now any part of that LC, say, 

’rational number’ carries the label ’Number’ at the same time. Without direction, Fig 2. could 

represent the state that, for example, A and B are the parts of the R‹LC›. For an everyday 

language example that had been formerly quoted, suppose that the LC represented with black 

on Fig 2. carries the label „Window”. Then Fig 2. could represent the state of being an 

opened window and the state of being a closed window are parts of being a window. It 

means, conceptually, that the concept of window includes the possibilities of being opened 

and being closed: these possibilities are determined by the basal concept.  

The second relation on Fig 3. shows that any fragment of an LC could be simply access from 

the LC.  

 

 
Fig 3. Any fragment of an LC could be simply access from that LC. 

 

As it could be seen, on Fig 3. the fragments of the LC are named (as A and B), so the graph 

shows the relations between LC : A : B. But naming fragments is not necessary: without 

additional marks, a blank closed curve means ’a fragment of that LC inclose it’. Some 

logicians use the symbol ’O’ representing the empty set, viz. types without fragments but this 
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representational tradition could not be harmonized with our conception of graphical logic 

from causes we could only touch here.  

In the case of diagrammatic logic, iconicity is a very important factor, so the so-called 

negative fact should not be represented, if it is possible. For example, to represent the fact 

that A is an empty set, we have better ignore the representation of the set A  instead of 

labeling a set with A, and then mark it with  a ’O’. This could be considered az the 

extensional criteria for TEGS. An intensional criteria should be formulated as well, because 

one could state that even if a set hasn’t got any elements, we should represent the set itself as 

it could be labelled lucidly. For example, the set of round squares are empty, but the label 

’round squares’ could be considered intelligible (even if I think that it is not the case). As 

regards diagrammatic representation, the situation is very simple here because only that fact 

has to be represented that the set of round things and the set of squares are disjuncts. A 

slightly more difficult problem may emerge with labels like ’centaur’ in spite of the fact that 

many logicians thought that they should be analysed in the same way that round squares: 

centaurs should be represented as an empty intersection of the sets ’man’ and ’horse’. I think 

that an analysis of that kind may violate our conception of normal language usage, becuase 

’centaur’ does not seem like a complex expression at all. So I propose that empty sets, which 

are not to be represented as intersections could be represented as types without exemplars. In 

this case, the representation refers to the existence of a label, for example, it could show that 

we have the conception of centaurs (but we don’t actually know exemplars falling into this 

category). The issues of the above mentioned considerations are shown at Fig 4.  

 

 
Fig 4. 
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In addition, Fig 5. shows the relations of universality, uniqueness and definite uniqueness in 

TEGS. 

 

 

 
Fig 5. 
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Now the well known logical relations could be represented by TEGS as Fig 6. shows. 

 

 
Fig 6. 
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For a better understanding consider the following examples. 

 

Example 1. 

Let R be the part of the LC with the label ’Man’; let „A” represent the type ’Male’,  let „B” 

represent the type ’Female’ and let „a” represent ’Adam’. Now consider Fig 7. 

 
Fig 7. 

 

Example 2.  

Let R be the part of the LC with the label ’Window’; let „A” represent the type ’Opened 

thing’,  let „B” represent the type ’Closed thing’ and let „a” represent a definite description 

of an individual window at a given time. Now consider Fig 7. again.  

 

Of course there can be logical states where we have to operate on different LCs. Then, as it 

had been mentioned earlier (see Definition 17.) the accessibility of the constituents is 

synthetical. But in this paper we won’t need the representations of synthetical accessibilities 

because we will focus on the problem of time and change, and this could be considered as a 

one-dimensional problem as regards LCs. Of course there are philosophical problems that 

could not been handled without differet LCs, and the most obvious of them are presumably 

the so-called body-mind problems, or the problem of propositional attitudes, where physical 

and mental states have to be differentiated by different LCs. It stands to reason that the above 

mentioned problems could not be discussed in this paper.  

 

As regard our original problem, we earlier said that the questions of states and processes  

could be handled by representing only one LC, because we only consider here physical 

changes in time. Now we have the representations of logical relations and we said that they 

representing logical states, so they could not, and should not represent processes at all, but 

they are the presuppositions of any process. So hereunder we should deal with processes as 

they are derivated from states.  

 

It seems obvious, that types are not subjects to change, because they are the bases to any 

change could be concieved. For example, if A is the type of a closed window and B is the 

type of an opened window, A could not became B, but an individual window could fall under 

A in t1, and fall under B in t2.  
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Definition 21.  An e: (v1,v2) edge is directed, when its end verticles are ordered  as v1v2. 

Here v1 is the initial verticle of e, and v2 is the terminal verticle of e.  

Definition 22.  An edge with ordered verticles is the a: (v1v2) arc. 

Definition 23. The W = {v0,e1,v1,e1,…,en,vn} walk is a directed walk when it has an arc in its 

set of edges. Then v0 is the initial verticle, vn is the terminal verticle, and any 

other verticles in W are internal verticles.  

 

Now directed TEGSs could be drawn with initial, internal and terminal vertices. The most 

basal interpretation of  is undeniably the temporal interpretation: then  means temporal 

succession, so v1v2 should be interpreted as ’v1 precedes v2’ or ’v2 follows v1’. A more 

problematic interpretation of v1v2 could be that ’if v1 then v2’. Since the latter interpretation 

suggests implication, some remarks should have been taken here as regards inclusion and 

implication.  

 

According to the philosophy of this paper, inclusion (or entailment) is a logical relation 

between types, and it evokes logical necessity. For example, the type ’Number’ includes the 

type ’Rational number’ so it is logically impossible to be a rational number and not to be a 

number. When a is a rational number then it must be a number by logical necessity. On the 

other hand, implication evokes factual necessity, like in the case of physical laws. The fact 

that if I lose hold of an apple then it will fall down is governed by physical, but not logical 

laws, so it  cannot be represented by inclusion. Finally, the weakest sense of implication 

could be called hypothetical implication, like in the case of the statement ’If you don’t go I’ll 

call the police’.  

 

With regard to the above mentioned differences we denote inclusion (logical consequences) 

with closed curves as before. Now let’s introduce the sign  for factual implication, so 

v1v2 means that ’v1 causes v2’. Finally, let’s maintain the sign  for termporal succession.  

 

Now basal temporal questions could be represented starting with the most simple one viz. 

when a process is a simple change of states without any agent (see fig 8.) 
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Fig 8. 

 

Fig 8. shows a simple change of states without the indication of an agent and it also shows 

the reverse process. Figures in the line I. show that the presupposition of both processes is the 

condition that there are examplars of type A and type B and they are accessible from each 

other. Symbolically it could be expressed as accessibility relations between possible worlds 

wA and WB. Figures in the line II. show the position of individual a az t1. Finally, figures in 

the line III. show the process that Aa becomes Ba, and its reversal, when Ba becomes Aa.  
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Processes become actions 

 

Actions are processes with agent(s), who cause(s) change(s) in time. A typical action could 

be represented by TEGS as figure 9. shows. 

 

 
Fig 9. Two ways of representing actions in TEGS 

 

As it could be seen by Fig 9. even elementary actions can lead to alternative explanations. 

First, as I. shows, ‹the change of b from A to B by a› could be conceived as a causes the 

process that Ab becomes Bb. Second, as II. shows, it could be interpreted as a causes the 

state Ab, and if Ab, then Bb. In any way soever, diagramatization could clarify the situation. 

Note that some logicians suggest constructing separate diagrams for every state (we will refer 

to this idea as ’separate-diagrams-tradition’ or SDT), so we have to defend our position that 

we use only one diagram for representing processes and actions. For this reason we should 

mention one another consideration. 

 

(VII)  Let the fact that any individual could take up only one (logical) place at a given time 

be our 7th consideration.  

 

Now it follows from (VII) that, normally, a given exemplar has to itinerate during change, so 

initial verticles has to be deleted as their contents (the individuals) become terminal verticles. 

Nevertheless, as Fig 10. shows, taking notice of (VII), our representational method TEGS  

(I.) and SDT (II.) are in correspondence. 
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Fig 10. The diagramatization of change with TEGS (I) and SDT (II). 

 

However, beside simple change of states, there are at least two typical processes, namely 

addition and abstraction. In the case of addition, an entity broadens and acquires new 

properties, while in the case of abstraction an entity narrows and loses properties. Now we 

can symbolize addition as Aa AaBa, and abstraction as AaBa  Aa, and Fig 11-12. 

show their diagrammatization by TEGS and SDT. 

Note that (VII) still applies on addition and abstraction because both the process ‹Aa 

AaBa› and ‹AaBa  Aa› change the logical position of a. The illustration of addition 

and abstraction by traditional Venn-methods (signed with III. on both Fig 11. and Fig 12.) 

make the situation apparent.  
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Fig 11. Addition, represented by TEGS (I) SDT (II) and Venn-diagramms (III). 
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Fig 12. Abstraction, represented by TEGS (I) SDT (II) and Venn-diagramms (III). 

 

 

 

Interpreting related systems of temporal logics in TEGS:  T-calculi 

 

The first system we would like to interpret in TEGS will be Von Wright’s T-calculi as it was 

presented in his Norm and Action (Wright 1963). Note that we could only mention the basal 

ideas and notation (Fig 13.) 
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Fig 13. Primary relations in T-calculi, TEGS and SDT. 

 

The first line expresses no change but time with a given content p. Note, that only types are 

constants; on the other hand, exemplars have to change at least inasmuch as they exist at 

different moments, while types exist timelessly. The second line expresses termination while 

the third line shows formation. Finally, the forth line (like the first one) expresses no change 

but time without any content. Note that without positive facts, tense-operator expresses only 

the change of time, viz. the pure container of any possible change.  

A more problematic application of T-calculi will be represented on Fig 14. with the original 

scheme of Von Wright. Note that, from a diagrammatical point of view, his sheme seem to be 

elliptic in the sense that they should be augmented with presuppositions. For example, his 

first sheme runs as pTq, but it can be conceived in many ways. Based on the complex 

formula, we could extricate two states (S1,S2) and the relation T. The complex formula 

contains information about two propositions (p,q) but elementary formulas (S1,S2) affirm 

only one of them: so the position of the suppressed proposition should be presupposed. Then 

pTq could be interpreted 4 ways (explicit information is marked with bold). 
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a. pqT pq 

b. pqT pq 

c. pqT pq 

d. pqT pq 

 

Now Fig 14. shows the interpretations of T-calculi with two propositions.  

 
Fig 14. T-calculi and TEGS with 2 propositions 
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IBT  

 

Our second system is based on the idea of branching time (IBT) as it has been interpreted by 

Prior and Kripke (Prior 1967, Ohrstrom – Hasle 1995). The main problem as regards IBT is 

indisputably the question of determinism, but we won’t be concerned with it as our interests 

are the structural properties of IBT here. But since in IBT the direction of time is structurally 

decisive, we should analyse its representative methods first.  

According to Galton (Galton 1987) there are at least four ways of representing the topology 

of time, namely the linear, the parallel, the branching and the circular representational 

systems. Note that the above mentioned four concept could be reduced to linear and nonlinear 

ones, since linear time could be considered as hapax linear (single linear), as bilinear 

(parallel) as multilinear and as branching time. But they are not distinct topological systems, 

because, as Fig 15 shows, the more complex topologies could include simpler ones. Let us 

represent the topology of the different time concepts as follows. 

 

[A] The topology of nonlinear time 

[B] The topology of hapax time 

[C] The topology of bilinear time 

[D] The topology of multilinear time 

[E] The topology of branching time 

 

Let the index TC signify the topological complexity of different topological structures. 

Topological complexity means that representations with more TC could include 

representations with less TC. Now Fig 15 shows that [A]TC < [B]TC < [C]TC < [D]TC < [E]TC 
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Fig 15. 

 

Fig 15. shows that [E] could include [A] or [B] or [C] or [D]; the diagram on the right shows 

that an [E] contains an [A] (see unit ’a’), a [B] (see, for example units ’ab’), a [C] (see units 

’i jop’) or a [D] (see units ’klmnqrst’). But it also shows that logical 

connections as regards parallel and branching time are different; in the case of the former the 

connection is ’AND’, while in the case of the latter it is „XOR”. Parallel time concepts could 

be interpreted at least two ways. The first is the simpler one because it only suggests that 

different propositions could be true at the same time (as in the case of [C] on Fig 15. It simply 

means that parallel states could be exist simultaneously. But the second interpretation could 

suggest a more problematic situation that could be represented as Fig 16 shows. 

 
Fig 16. 

 

As opposed to the first interpretation Fig 16. shows a situation where a and not-a could be 

simultaneously true in parallel times. But this curiosity is not important for us here, so let us 

get on to our original subjects, namely types and exemplars.  
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The simpler challenge is apparently the question of exemplars: we plainly have to direct the 

edges of the appropriate graphs.  

 
Fig 17. 

 

Note that we need not direct all edges because the sequential order could be indicated by 

directing R only. Consider moreover that this way of representing temporal sequences shares 

problems with the T-calculi as it is elliptic too. For example, ’the change from a to b’ could 

be interpreted either as ’the change from ‹a› to ‹b and not-a›’ or as ’the change from ‹a› to ‹a 

and b›’. Even though this kind of ambiguity significantly increases in the case of IBT we 

won’t deal with it because the thickening here is basically simply combinatorical so it could 

be handled by means of the considerations as regards the interpretation of T-calculi.  

Representing types is far more interesting because we have to show that type-structures 

should not contain directed edges. For this end we will show that structural succession is not 

a question of time, but a question of encompassment.  
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Fig 18. 

 

Now Fig 18. shows that parallel and branching time-concepts could be represented without 

directed edges when we represent types instead of exemplars. Note that while IBT 

representations show temporal relations, TEGS interpretations show the logical structure 

itself. So representations on Fig 18. should be interpreted as follows.  
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(I) If A then B 

(II) If A and C then B and D 

(III) If A and C and E and G then B and D and F and G 

(IV) If A, then either B or C 

If B, then either D or E 

If C, then either F or G 

So If A, then either D or E or F or G 

 

Note, that in the case of IBT ’then’ should be conceived in a temporal sense while in the case 

of TEGS ’then’ signifies logical implication.  

  

 

Some remarks on additional expressions of temporal logics 

 

As it is well known, temporal logics are usually considered as extensions of modal logics 

which operate on temporal expressions of the ordinary language: Prior’s system is an early 

example (Prior 1957). In our days, the main disciplines studying temporal questions are AI 

and Computer Science which have adopted the modal and linguistic conception of temporal 

logic (note that Prior’s original expression was ’tense logic’ which directly refers to a 

linguistic approach). In this paper I tried to show that some apparent temporal expressions of 

natural languages can be substituted with timeless (logical) expressions or, more precisely, 

temporal diagrammatizations could be substituted with atemporal ones. In spite of the fact 

that many so-called temporal expressions could have been analysed (for example: ’until’, 

’eventually’, ’unless’, ’at the next moment’, ’precedes’ see LAMPORT 1980, JOSKO 1987) 

we will concentrate here only two of them, namely ’always’ and ’never’.  

Note that, in the case of temporal logics, originally timeless expressions like ’always’ are 

usually analyzed as they occur in time. For example, expressions like ‹ p› that means ’p is 

true throughout every possible future’ or ’p was, is and will be true forever’ suggest a 

temporal interpretation of being always true. But I think these interpretations misunderstand 

the logical structure of originally atemporal expressions since the word ’always’ simply states 

logical inclusion between individuals, concepts, propositions or functors. Consider the 

following examples. 

 

a. Peter will always be a human. 

b. Romeo will always love Juliet.  

c. 2 will always be an even number.  

 

Its easy to see that none of these statements express temporality, since they could be 

transcribed as follows.  

 

      a’.   Being Peter entails being human.  

      b’.   Being Romeo entails loving Juliet.  

      c’.   The concept of ’2’ entails being an even number. 

 

The situation is slightly different when inclusion applies to functors as in the case of d. 

 

d. A bachelor will always be unmarried.  

 

      d’.  The functor ’x is a bachelor’ entails the functor ’x is unmarried’.   
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Inclusion is far more apparent in the case of functors since the sentence ’A bachelor will 

always be unmarried’ could be transcribed as ’All bachelors are unmarried’, and it is well 

known that this latter expression doesn’t express a statement on ‹all bachelors›, but it 

expresses that ‹if x is a bachelor than x is unmarried›. So ’always’ should be analyzed so 

much as ’all’. Then, for example, the sentence ’Romeo will always love Juliet’ does not 

express a temporal statement that Romeo will love Juliet tomorrow, the day after tomorrow 

etc. but it states that if someone is Romeo than he loves Juliet: ‹x› ‹Fx  Gx› 

In the same way, we don’t have to refer to temporality as regards expressions contains the 

word ‘never’ because the point is that, logically, ’never’ refers to disjunctive individuals, 

propositions, concepts or functors.  

 

a. Peter will never be a spider. 

b. Romeo will never love a dinosaur. 

c. 2 will never be an odd number. 

d. A bachelor will never be a bigamist. 

 

      a’   ’Being Peter’ and ’being a spider’ are disjuncts. 

      b’ ’Being Romeo’ and ’loving a dinosaur’ are disjuncts. 

      c’ The concept ’2’ and the concept of ’odd number’ are disjuncts. 

      d’ The functor ’x is a bachelor’ and the functor ’x is a bigamist’ are disjucts.  

 

Fig 19. shows some TEGS representations of ’always’ and ’never’.  

 

 
Fig 19. 

 

 

Concluding remarks 

 

At first sight, reversibility presupposes temporality, but I hope that I could show that logical 

types and their relations are atemporal. So reversibility and irreversibility are irrelevant 

categories as regards logical types. Nevertheless, exemplars and their relations are subject of 

change; but the possibility of these changes are preordained by the logical types they could be 
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occurred in. In a few words, the boundary conditions of any possible change are always 

atemporal type-relations. Pseudo-temporal expressions like ’always’ and ’never’ could be 

transcribed as expressions with atemporal structure.The idea of ’reversible process’ is not a 

temporal, but a logical idea which refers to symmetric structures. In other words: notations 

could be mirrored as long as they are symmetrical. Logically symmetrical structures are 

primarily conjunction, disjunction and exclusive disjunction (Fig 20.) 

 

 
Fig 20. 

 

As for communication, we could now express three considerations. First, communication (as 

an event, process or action) could not be reversed. Second, the type of a given 

communication could be structurally symmetric (which does not mean that it is reversible). 

And third, the possibility of a given communication is a priori to its individual occurance.  

Let Witgenstein’s Tractatus re-emerge:  ‹In der Logik ist nichts zufällig: Wenn das Ding im 

Sachverhalt vorkommen kann, son muß die Möglichkeit des Sachverhaltes im Ding bereits 

präjudiziert sein
6
.› (Wittgenstein 1921:2.012).  

                                                 
6
 Translated by D. F. Pears and B. F. McGuinness  as „In logic nothing is accidental: if a thing can occur in a 

state of affairs, the possibility of the state of affairs must be written into the thing itself” Wittgenstein 2001: 

2.012. 
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