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Experimental investigation of micro-chaos
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Summary. Micro-chaos is a phenomenon when small amplitude chaotic oscillations are inflicted by digital effects (sampling, round-
off and processing delay). In previous works, various digitally controlled unstable linear mechanical systems were analysed; the
corresponding micro-chaos maps were derived and the coexistence of several disconnected chaotic attractors was proven. The distance
of the farthest attractor from the desired state can be quite large, while the size of these attractors is usually negligible from practical
point of view. This is why the phenomenon could be the source of remarkable control error. In this paper, the micro-chaos map of the
PD-controlled inverted pendulum – with rounding applied to the calculated control effort, and considering dry friction – is examined
by modified Simple Cell Mapping methods and the possibility of constructing an experimental device showing the phenomenon of
micro-chaos is analysed. A device having variable control force resolution is presented, and experiments are carried out to verify the
theoretical and numerical results.

Introduction

While sampling and delay are commonly taken into account in control problems, rounding is usually neglected. It has
been shown [1], that rounding leads to small amplitude chaotic oscillations – referred to as micro-chaos – where several
disconnected attractors may co-exist. In some simple cases (inverted pendulum stabilized with D-control with and without
delay and PD-control without delay [2]), it has been proven, that the vibrations are indeed chaotic. The chaotic behaviour
highly depends on where the rounding is applied. In this paper the PD-controlled inverted pendulum – with rounding
applied to the measured position, angular velocity and control torque – is analysed, while the effect of dry friction is taken
into account.

PD-controlled inverted pendulum with damping and dry friction

The pendulum-on-a-cart is one of the simplest devices used for demonstrating control problems. Neglecting the cart part
of this device leads to a simple inverted pendulum with control. In this section, the equation of motion of the digitally
controlled inverted pendulum is presented and the formulation of the dimensionless map representing the solution is
shown.

Solution of the equation of motion
Consider an inverted pendulum with damping, friction, and digitally implemented PD-control with zero order hold (i.e.
the control torque is constant between two successive sampling instants) as shown in Figure 1. The equation of motion of
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Figure 1: The digitally controlled inverted pendulum and the control torque with respect to time.

this system is

J ϕ̈(t) = mgh sin(ϕ(t))− k ϕ̇(t)− pϕi − d ϕ̇i − sgn(ϕ̇(t))µM0, t ∈ [iτ, (i+ 1)τ), (1)

wherem is the mass of the pendulum, J is the mass moment of inertia about the axis of rotation, h is the distance between
the centre of mass and the axis of rotation, p and d are control parameters, k is the linear damping coefficient, µM0 is
the bearing friction and µ is the coefficient of kinetic friction (considered to be equal to the coefficient of static friction),
g is the gravitational acceleration, τ is the sampling time, while ϕi = ϕ(iτ) and ϕ̇i = ϕ̇(iτ) are sampled values of the
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angular position and angular velocity respectively (at the beginning of the i-th time interval). Rearranging, and linearizing
(1) yields

ϕ̈(t) + 2βϕ̇(t)− α2ϕ(t) = −P ϕi −D ϕ̇i − sgn(ϕ̇(t))µ0, (2)

where α2 = mgh
J , 2β = k

J , P = p
J , D = d

J , µ0 = µM0

J .
One can rewrite (2) as a system of first order differential equations:

ω̇(t) = α2ϕ(t)− 2βϕ̇(t)− P ϕi −Dωi − sgn(ϕ̇(t))µ0, t ∈ [iτ, (i+ 1)τ) , (3)
ϕ̇(t) = ω(t),

with initial conditions: ω(iτ) = ωi, ϕ(iτ) = ϕi. Without considering rounding, and using the notations α̂ = ατ , β̂ = βτ ,

γ̂ =

√
α̂2 + β̂2, p̂ = Pτ2, d̂ = Dτ , x = ϕ/ϕref ,v = ω/ωref , µ̂ = µ0 τ

2/ϕref , y =
[
x v

]T
the solution formulates a

dimensionless 2D map:
yi+1 = (U + B K) yi + sgn(yi,2) µ̂B, (4)

where

U =
e−β̂

γ̂

[
γ̂ cosh(γ̂) + β̂ sinh(γ̂) sinh(γ̂)

α̂2 sinh(γ̂) γ̂ cosh(γ̂)− β̂ sinh(γ̂)

]
,

B =
e−β̂

γ̂

[
γ̂ eβ̂−γ̂ cosh(γ̂)−β̂ sinh(γ̂)

α2

− sinh(γ̂)

]
,

K =
[
p̂ d̂

]
.

Map (4) yields the solution of the system at sampling instants (t ∈ k τ, k ∈ Z) as long as the sign of the velocity
(sgn(yi,2)) does not change within the sampling interval. However the change in the sign of the velocity usually happens
within sampling intervals therefore the formulation of the solution requires additional calculations.

Dealing with the friction force
The solution of (3) from a given initial condition yi with respect to the dimensionless time s ∈ [0, 1) can be written as:

y(s) = (Φ(s) + δ(s) K) yi + sgn(yi,2) µ̂ δ(s), (5)

where

Φ(s) =
e−β̂ s

γ̂

[
γ̂ cosh(γ̂ s) + β̂ sinh(γ̂ s) sinh(γ̂ s)

α̂2 sinh(γ̂ s) γ̂ cosh(γ̂ s)− β̂ sinh(γ̂ s)

]
,

δ(s) =
e−β̂ s

γ̂

[
γ̂ eβ̂ s−γ̂ cosh(γ̂ s)−β̂ sinh(γ̂ s)

α2

− sinh(γ̂ s)

]
.

To calculate the dimensionless time, when the solution reaches the switching line of the friction force (i.e. where the
velocity is equal to zero), the velocity expressed from (5) is examined:

e−β̂ s0

γ̂

(
γ̂ vi cosh(γ̂ s0)−

(
(β̂ + d̂) vi +

(
p̂− α̂2

)
xi + sgn(vi) µ̂

)
sinh(γ̂ s0)

)
= 0 (6)

From Eq. (6) the dimensionless time corresponding to zero velocity can be expressed:

s0 =
1

γ̂
log

(√
S − C
S + C

)
, (7)

where S and C are the coefficients of sinh(γ̂ s0) and cosh(γ̂ s0) respectively:

S = −
(

(β̂ + d̂) vi +
(
p̂− α̂2

)
xi + sgn(vi) µ̂

)
,

C = γ̂ vi.

The condition of crossing the switching line of the friction force within the same sampling interval:

0 < s0 < 1, (8)

and the condition of sticking:
abs(p̂ xi + d̂ vi − α̂2 x(s0)) < µ̂. (9)

Note that the calculated control force does not change within the sampling interval (due to the zero order hold). Upon
applying Map (4) one should calculate s0 (Eq. (7)) to check whether the resulting state can be accepted. If condition (8)
is true, then instead of applying Map (4), Map (5) should be applied with s = s0. Afterwards the condition of sticking
should be checked. If the condition evaluates to false, Map (5) should be applied again with s = 1 − s0 to calculate the
solution for the rest of the current sampling interval.
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The micro-chaos map

This section describes the formulation of the so-called micro-chaos map [3] as the combination of rounding and Map (4).

Rounding at the input
If the measured position has a resolution of rin[rad], and the resolution of the velocity (which is assumed to be calculated
from the position) is rin/τ , Map (4) with the rounding can be written as:

yi+1 = (U + B K) Int(yi) + sgn(Int(yi,2)) µ̂B, (10)

where the reference angle in yi is ϕref = rin and the reference angular velocity is ωref = rin/τ . Equation (10) is called
micro-chaos map or µ-chaos map. (Int(n) denotes rounding towards zero i.e., taking the integer part of n, or shortly
truncation.)

Rounding at the output
When rounding is applied to the calculated control effort (i.e. to the output of the control system), the following micro-
chaos map is obtained:

yi+1 = U yi + B (Int(K yi) + sgn(yi,2) µ̂) . (11)

Here the reference angle in y is ϕref = routτ
2, the reference angular velocity is ωref = routτ , while rout

[
rad
s2

]
is the

resolution of the actuated control effort.

Rounding at the input and output
In the combination of the previous two cases using ϕref = routτ

2 to scale the position and introducing the dimensionless
time T = t/τ , while using the notation �′ = d

dT�, Equation (2) takes the form

x′′(T ) + 2β̂x′(T )− α̂2x(T ) = −Int

(
p̂ ρ Int

(
xi
ρ

)
+ d̂ ρ Int

(
x′i
ρ

))
− sgn(x′(T )) µ̂ (12)

Here the following dimensionless multiplier appears

ρ =
rin

rout τ2
.

Using the above notations, the micro-chaos map can be written as:

yi+1 = U yi + B (Int(K ρ Int(yi/ρ)) + sgn(yi,2) µ̂) . (13)

Figure 2: Example attractors of Map (11). β̂ = 8.25049 × 10−3, p̂ = 0.2576, d̂ = 0.1256, µ̂ = 0.
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Simulations and Topological pattern

Consider the case, when rounding is applied to the output (Map (11)). The unstable fixed points of the map lie on the
x-axis:

Int(p̂ xu) = α̂2 xu → xu =
k

α̂2
, k ∈ Z. (14)

The equation of switching lines

Int(p̂ x+ d̂ v)→ v =
l − p̂ x
d̂

, l ∈ Z\{0}. (15)

The dynamics of the system between two switching lines is unstable, therefore stable equilibria (i.e. attractors) are
expected to be on the switching lines. The intersections between the switching lines and the x axis are:

xs =
l

p̂
, l ∈ Z\{0}. (16)

Based on topological assumptions, unstable fixed points and attractors should occur alternately. Restricting control pa-
rameters to the stable domain, (p̂ > α̂2), the index of the last fixed point (and also the index of the last attractor) can be
expressed as

lmax = Int

(
p̂

p̂− α̂2

)
. (17)

Therefore an estimation of upper limit of control error could be given for the case, when the eigenvalues of U are positive
and real. (Necessary conditions for this estimation are currently being elaborated.)

xmax =
1

p̂− α̂2
. (18)

Attractors can be small enough to maintain their own basin of attraction, however they could also behave as repellors,
when two or more of them make a larger attractor, reaching over several switching lines. This case is illustrated in Fig. 2.

Cell mapping results

Cell mapping (CM) methods are tools for the global investigation of the long term behaviour of nonlinear dynamical
systems [4]. Using CM methods, periodic and chaotic solutions of the equations of motion can be found, moreover the
basin of attraction can also be determined. Simple cell mapping (SCM) method was applied to (11), to determine whether
the chaotic attractors disappear due to the friction. Results show, that the chaotic behaviour remains, and the previously
unstable fixed points are becoming attractors. Consider Figure 3. showing the basin of attraction (coloured bands) of

Figure 3: SCM results for α̂ = 6.53 × 10−3, β̂ = 2.0 × 10−3, p̂ = 5.5 × 10−5, d̂ = 2.5 × 10−3, µ0 = 0.2

chaotic attractors (black dots), switching lines (white), stable and unstable manifolds of fixed points (white, dashed). Cell
mapping results encouraged us to carry out measurements on a real PD-controlled inverted pendulum.

Measurements

Measurement setup
Measurements were carried out using a simple inverted pendulum (made of an aluminium rod and a weight) attached to
a DC-motor (Maxon RE-max 32). The pendulum is attached directly to the shaft of the motor, it has a rotary encoder for
angular position measurement. The setup is controlled with a PIC microcontroller (PIC24FJ128GA010) which calculates
the angular velocity as the derivative of the position and calculates the control effort. The motor is driven through an
H-bridge which enables it to run in both directions. (See Figure 4.)
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Figure 4: The measurement setup. 1: inverted pendulum, 2: DC-motor, 3: H-bridge, 4: PIC microcontroller.

System parameters
The rotary encoder attached to the motor shaft counts 2000 per revolutions, therefore the resolution of the measured
position is:

rin =
2π

2000
= 0.00314159 [rad] (19)

The nominal voltage of the DC motor is U0 = 12 [V], the motor resistance is Rm = 2.5 [Ω] and the motor constant is
Km = 24.3 × 10−3 [Nm

A ] (See [6]). The microcontroller drives the motor by means of PWM and the full range of duty
cycle is divided into rPWM = 794 units (where 794 corresponds to 100% duty cycle). Therefore the resolution of the
control torque:

rout,min =
Km U0

Rm rPWM
= 0.000146902 [Nm] (20)

This resolution can be made more coarse by rounding rPWM on the microcontroller. Its maximum value for the device is:

rout,max =
Km U0

Rm 1
= 0.11664 [Nm] (21)

The logarithmic decrement was measured to find the damping ratio of the system. With δ = 0.762943 and T = 0.71 [s]
the damping ratio

ζ =
1√

1 + ( 2π
δ )2

= 0.120541 (22)

and the damped and undamped natural frequencies are

ωd =
2π

T
= 8.84956

[
rad

s

]
, α =

ωd√
1− δ2

= 13.6891

[
rad

s

]
. (23)

The sampling time of the controller is τ = 0.005 [s], consequently the dimensionless parameters are:

α̂ = ατ = 6.84457× 10−2, β̂ = ζατ = 8.25049× 10−3. (24)

Therefore, the value of the dimensionless multiplier is in the range:

ρ =
rin

rout τ2
= 1077 . . . 855425.

Results
Measurements were carried out with various control parameters at ρ = 3719 and µ̂ = 157. Time series analysis was
carried out on the results using the TISEAN package [5]. Unfortunately, the results of time series analysis did not verify
chaotic behaviour explicitly. The fitted line shows power law connection. (See Fig. 6)

Conclusions

An experimental device with variable control effort resolution (rout) and variable input resolution (rin) was used to
show the existence of micro-chaotic behaviour. Measurements generally agree with simulation results, however, time
series analysis could not prove the chaotic behaviour. This could be the result of non-negligible processing delay in the
measurement device. Further analysis of the measured data sets is in progress.
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Figure 5: Measured data sets with ρ = 3719, µ̂ = 157

Figure 6: Results of the time series analysis, s is the stretching factor, ∆n is the number of steps.
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