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Highlights 

 

 The effect of AVP on affective and memory symptoms is due to its central role 

 DDAVP treatment compensated the peripheral effects of congenital AVP absence 

 DDAVP did not significantly alter the behavior of KO animals in the paradigms tested 

 AVP signaling in the medial amygdala contributes to the behavioral effect measured in FS 

 

 

Abstract  

 

Beside its hormonal function in salt and water homeostasis, vasopressin – released into distinct 

brain areas – plays a crucial role in stress-related behavior resulting in the enhancement of an 

anxious/depressive-like state.  

We aimed to investigate whether correction of the peripheral symptoms of congenital absence of 

AVP also corrects the behavioral alterations in AVP-deficient Brattleboro rats. Wild type (WT) and 

vasopressin-deficient (KO) male Brattleboro rats were tested.  

Half of the KO animals were treated by desmopressin (V2-receptor agonist) via osmotic minipump 

(subcutaneous) to eliminate the peripheral symptoms of vasopressin-deficiency. Anxiety was studied 

by elevated plus maze (EPM), defensive withdrawal (DW) and marble burying (MB) tests, while 

depressive-like changes were monitored in forced swimming (FS) and anhedonia by sucrose 

preference test. Cell activity was examined in septum and amygdala by c-Fos immunohistochemistry 

after 10min FS. 

KO rats spent more time in the open arm of the EPM, spent less time at the periphery of DW and 

showed less burying behavior in MB suggesting a reduced anxiety state. KO animals showed less 

floating behavior during FS revealing a less depressive phenotype. Desmopressin treatment 
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compensated the peripheral effects of vasopressin-deficiency without a significant influence on the 

behavior. The FS-induced c-Fos immunoreactivity in the medial amygdala was different in WT and 

KO rats, with almost identical levels in KO and desmopressin treated animals. There were no 

differences in central and basolateral amygdala as well as in lateral septum.  

Our data confirmed the role of vasopressin in the development of affective disorders through central 

mechanisms. The involvement of the medial amygdala in the behavioral alterations of vasopressin 

deficient animals deserves further attention. 

Keywords: DDAVP, anxiety, depression, recognition memory, amygdala, lateral septum 
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1. Introduction 

 

Stress is defined as an adaptive reaction to disturbed homeostasis due to internal or external 

hazards (Holsboer and Ising, 2010). Prolonged and repeated exposures to unavoidable, aversive 

stimuli may lead to a dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis, the 

major endocrine component of the stress response. A maladaptive stress response is thought to be 

causally linked to a variety of human disorders including mood disorders (Chrousos and Gold, 1992, 

Chrousos, 1998, Holsboer, 2000, McEwen, 2000, Engelmann et al., 2004). The physiological 

foundation of the HPA axis is constituted by parvocellular neurons of the hypothalamic 

paraventricular nucleus (PVN). These neurons secrete the corticotropin-releasing hormone (CRH) 

into the portal blood vessels to trigger adrenocorticotropin (ACTH) release from the anterior 

pituitary (Antoni, 1993). ACTH reaches the adrenal gland through the systemic circulation to 

stimulate the synthesis and release of glucocorticoids. In addition to CRH, parvocellular cells can also 

synthesize and release arginine-vasopressin (AVP). AVP is also capable of triggering ACTH release 

after interaction with V1b receptors in the anterior pituitary, potentiating the effect of CRH (Antoni, 

1993, Holmes et al., 2003). 

Originally, the endocrine function of AVP was primarily linked to the salt and water 

homeostasis in mammals. The hypothalamic-neurohypophyseal system (HNS) (Cunningham and 

Sawchenko, 1991, Johnson et al., 1993, Kato et al., 1995) is constituted by magnocellular neurons 

located in the PVN and hypothalamic supraoptic nucleus (SON) sending their axons to the posterior 

pituitary, where AVP is released into the general circulation to control antidiuresis and 

vasoconstriction/glycogen metabolism. There is growing evidence that the HNS provides as a second 

neuronal-humoral system that is activated during stress (Hatton, 1990, Engelmann et al., 1998). 

Hyperactivity of the HNS may lead to a sustained somato-dendritic release of AVP into the 

extracellular fluid of both the PVN and SON (Engelmann et al., 1998). Under prolonged and repeated 
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stressor exposure, the locally high neuropeptide concentrations may partially “leak out of the 

nuclei” and reach remote limbic brain areas in neurophysiologically relevant concentrations (e.g. 

septum from the PVN or amygdala from the SON) (Engelmann et al., 2004, Landgraf, 2006). To 

differentiate between the roles of AVP signaling originating in the PVN versus SON, repeated forced 

swimming (FS) was chosen as stressful stimulus. Previous studies showed that in response to 

repeated FS, AVP is increasingly released into the extracellular fluid of PVN, but not SON (Engelmann 

et al., 1998). In more remote brain areas AVP acts as neuromodulator and neurotransmitter via local 

V1 receptors (Johnson et al., 1993, Lolait et al., 1995, Vaccari et al., 1998, Hernando et al., 2001, 

Stemmelin et al., 2005). Different lines of investigations confirmed that AVP acting in these brain 

areas regulates behavior including anxiety, social learning and memory processes (Stemmelin et al., 

2005, Engelmann, 2008).  

The literature is rich in articles describing the role of AVP in anxiety and depression (e.g. 

(Landgraf and Wigger, 2002, Scott and Dinan, 2002, Griebel et al., 2003, Keck, 2006, Landgraf, 2006, 

Frank and Landgraf, 2008, Simon et al., 2008, Surget and Belzung, 2008, Ryckmans, 2010). As both 

psychiatric disorders are considered to be stress related and AVP has a regulatory role in the HPA 

axis (Engelmann et al., 2004, Makara et al., 2004, Murgatroyd and Spengler, 2011), this connection is 

reasonable to propose. In particular, the strong connection between chronic stress and depression 

(see e.g. chronic mild stress as a model of depression (Duman, 2010, Yan et al., 2010, Overstreet, 

2012)) and the observed upregulation of AVP synthesis in parvocellular PVN neurons and V1b 

receptors at the anterior pituitary during chronic stress (Dallman, 1993, Aguilera et al., 1994) 

suggested the involvement of altered AVP signaling within the HPA axis in pathophysiological 

processes. Clinical studies found an increased AVP concentration in the cerebrospinal fluid (De Bellis 

et al., 1993, Heuser et al., 1998) and in the plasma (van Londen et al., 1997, van Londen et al., 1998, 

de Kloet et al., 2008) of depressive subjects, especially in suicide victims (Inder et al., 1997, Brunner 

et al., 2002). Postmortem studies have found an elevated number of AVP-expressing neurons, 

increased AVP level in the PVN (Purba et al., 1996, Merali et al., 2006) and an enhanced AVP mRNA 
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in the SON (Meynen et al., 2006). Additionally, a single nucleotide polymorphism of the AVP V1b 

receptor has been found to protect against major depression (van West et al., 2004). Preclinical 

studies using the first orally active non-peptide V1b antagonist (SSR 149415) resulted in a reduction 

of floating in the FS test (Griebel et al., 2002). However, a clinical study using SSR 149415 was unable 

to proof an effect on anxiety; and there was only a mild, not always reproducible, effect on 

depressive symptoms (Griebel et al., 2012). Therefore the question arose about the role central V1 

receptors may play in anxiety and depression. The fact that genetically AVP-deficient patients with 

diabetes insipidus show less anxious phenotype together with memory impairment (Bruins et al., 

2006), and that diabetes insipidus is often accompanied by memory impairment in other patients as 

well (Nabe et al., 2007), suggests the possible involvement of vasopressin signaling via peripheral V2 

receptors in behavioral processes. 

Rats of the AVP-deficient Brattleboro strain provide an interesting tool to study the role of AVP in 

neurophysiological processes. This strain was derived naturally from Long Evans rats in the early 

1960s (Sokol and Valtin, 1965, Sokol and Zimmerman, 1982). A spontaneous point mutation resulted 

in an altered AVP precursor which was unable to enter the secretory pathway (Evans et al., 2000, 

Surget and Belzung, 2008). As a result, homozygous AVP-deficient Brattleboro rats (KO) show 

diminished HPA axis responses to different acute stressors (Wiley et al., 1974, Conte-Devolx et al., 

1982, Fink et al., 1992), accompanied by reduced depressive- and anxiety-like behavioral profile 

(Mlynarik et al., 2007). More specifically, AVP-deficient rats showed higher preference for a sweet 

solution, spent considerably shorter time immobile in the FS test and less time self-grooming on the 

elevated plus maze (EPM) accompanied by a higher level of dexamethasone-induced suppression of 

corticosterone response to restraint stress. However, the lack of centrally produced AVP results in a 

variety of peripheral effects including diabetes insipidus that also affects motor behavior (Zelena et 

al., 2009). All emotional and cognitive tests in laboratory rodents measure motor behavior, and the 

outcome is interpreted in terms of emotionality and learning and memory. This bears the risk that 
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behavioral changes triggered by the physiological consequences of the absence of peripherally 

circulating AVP may be mis-interpreted as central actions of the neuropeptide.  

The goal of the present study was to investigate whether behavioral changes observed in 

Brattleboro rats are due to the lack of AVP signaling in the central nervous system versus its 

peripheral effects. As V2 receptors are expressed predominantly at the periphery e.g. in the renal 

collecting duct, we used a chronic subcutaneous treatment with a V2-receptor agonist, 

desmopressin (DDAVP; 1-deamino-8-D-arginine vasopressin) to compensate the peripheral lack of 

AVP (Robinson, 1976, Bankir, 2001, Makaryus and McFarlane, 2006). To analyse behavioral 

consequences of this treatment we used a battery of different tests primarily aimed at investigating 

emotional behavior and learning and memory that have not previously been applied in similar 

studies using Brattleboro rats and DDAVP treatment (Zelena et al., 2006, Feifel et al., 2007). Anxiety-

related behavior was studied by EPM, marble burying test (MB), defensive withdrawal (DW) and 

anhedonia was detected by sucrose preference (Misslin and Cigrand, 1986). The FS test is routinely 

used to investigate the efficacy of antidepressant treatment to modulate the behavior in lab rodents 

(Porsolt et al., 1977, Porsolt et al., 1978). For examination of recognition memory we used the object 

discrimination test (OD) (Ennaceur and Delacour, 1988, Varga et al., 2014). We hypothesized that 

the AVP deficit in KO rats would lead to attenuated anxiety- and depressive-like behavior. If this 

effect is not causally linked to the symptoms of the diabetes insipidus then DDAVP treatment should 

not significantly alter this behavioral profile. We extended our study by analyzing the impact of FS on 

c-Fos synthesis in the lateral septum and amygdala as AVP signaling in both brain areas is known to 

modulate the behavioral response during the test in an opposite manner. 

 

2. Material and Methods 

 

2. 1. Animals 
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Adult male Brattleboro rats were obtained from the local breeding colony of the Institute of 

Experimental Medicine, Budapest, Hungary. The animals were kept under controlled laboratory 

conditions with food and water ad libitum. KO animals originated from heterozygous mothers and 

KO fathers (Zelena et al., 2003). The heterozygous and KO offspring were separated based on the 

measurement of their water consumption at 5 week of age, and only the KO animals were used in 

the present study. A separate wild-type (WT) line was bred out from the Brattleboro line because 

Long Evans rats could not be used as a proper control, having already been separated for more than 

50 year (Bohus and de Wied, 1998). After mating heterozygous males and females and separating 

the homozygous KO animals from the offspring, the remaining WT or heterozygous animals were 

bred with KO males and females. For the selection of parent stocks the genotype of their offspring 

was determined by measuring their hypophyseal AVP content and those having no KO offspring 

were considered to be WT. The parents used for the WT and heterozygous line are closely related to 

each other (heterozygous mothers are the daughters of WT mothers), keeping the genetic 

background of the two lines as close as possible (Zelena et al., 2009).  

In the third examined group (DDAVP) KO rats were implanted subcutaneously with an osmotic 

minipump (Alzet osmotic minipump, 2002, 0.5μl/h/14 days) containing desmopressin (DDAVP, 

10ng/h, V2 receptor agonist, Ferring Lieciva, Czech Republic) under short ether anesthesia (~3 min 

intervention). Concomitant WT and KO animals underwent sham operation. The KO, WT and DDAVP 

groups were paired according to their age (9-12-week-old at the beginning of experimentation), 

rather than according to body weight (body weights: WT: 379.9 ± 12.1 g, KO: 265 ± 6.6 g, DDAVP: 

287.5 ± 6.5 g).   

All manipulations of the animals were approved by the local committee for animal health and care 

and performed according to the European Communities Council Directive recommendations for the 

care and use of laboratory animals (2010/63/EU). 

 

2. 2. Experiments 
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2. 2. 1. Series 1 

These experiments were performed with 30 animals (10 in each of the groups WT, KO and DDAVP). 

Within the first 24-48 h after implantation of the osmotic minipump water intake normalized (Fig. 

1A). Therefore, on day 4, after recovery, behavioral testing started. Three sessions in the defensive 

withdrawal (DW) apparatus (on day 4 morning, on day 5 morning and afternoon) were followed by 

two forced swimming (FS, one on each of day 6 and 7). On the following day (day 8) was another DW 

session combined with an airpuff as an aversive stimulus. Three days later (day 11), anhedonia was 

examined by sucrose/alcohol preference test for 24h. Finally, two days later (day 14) animals were 

tested on the elevated plus-maze (EPM). 

 

2. 2. 2. Series 2 

These experiments involved a separate group of 15 animals (five in each of the groups WT, KO and 

DDAVP). First (day 5) an OD test was conducted followed by MB two days later (day 7). One week 

later (day 13), rats were exposed to FS and two hours later deeply anesthetized and perfused for 

subsequent immunohistochemical analysis of the brain tissue (see below). 

 

2. 3. Behavioral tests 

All tests (except MB and anhedonia, for details see below) were videotaped and analyzed later by an 

experimenter blind to the treatments by means of a computer-based event recorder (H77, 

Budapest, Hungary). 

 

2. 3. 1. Defensive withdrawal 

The DW test (Takahashi et al., 1989) used a modified setup of the open field activity box. This open 

field (100 x 100 cm with 50 cm side walls) contained a dark grey PVC tube (diameter 10 × 21 cm), 

dividing the total area into two compartments: an illuminated area and a dark area. The open end of 

the tube was faced one corner at a distance of 10 cm (Engelmann et al., 1996). The box and the tube 
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were cleaned with tap water between the exposures. We analyzed the latency to leave the tube and 

the percentage of time spent in tube and in the open area (which is divided into center and 

periphery). A reduced time spent in open area and the elevation of the latency can be interpreted as 

anxiety-like behavior. 

Before the 4th session in the DW apparatus we used an airpuff for a second to the rat’s nose and 

eyes (VMD31 compressed air, Italy) (Engelmann et al., 1996). 

 

2. 3. 2. Forced swimming 

Rats were individually placed in a glass cylindrical tank (45 cm tall and 14 cm in diameter) filled with 

tap water (at 20 ± 1 °C) at a height of 30 cm. The animals were forced to swim for 10 min and then 

removed, gently dried with paper towels and returned to their home cages. We measured the 

percentage of time spent by the animal in a typical immobile posture (floating) during the swimming 

session (rated as depression-like behavior). Floating was defined as immobility of the animal with 

movements that keep its head above the water only (Porsolt et al., 1977). Climbing/struggling was 

defined as vigorous movements of the four limbs, with the fore paws breaking through the water’s 

surface, along the wall of the tank (Wongwitdecha et al., 2006). Swimming differs from climbing that 

the rats make coordinated and sustained movements with all four limbs, usually traveling around 

the interior of the cylinder, but did not break the surface of the water (Bravo and Maswood, 2006). 

During diving the rats submerged entire head and body beneath the water surface (Arunrut et al., 

2009, Pinter et al., 2011). 

 

2. 3. 3. Anhedonia 

Sucrose preference, alcohol preference, and total fluid consumption were measured using a two-

bottle, free-choice test over a single 24 h period in the home cage (Fodor et al., 2012). One bottle 

contained 2.5% sucrose in water, whereas the other bottle contained 8% ethanol (ETOH) in a 2.5% 

sucrose-water solution.  
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2. 3. 4. Elevated plus maze 

The EPM apparatus was made of metal and painted dark grey (elevated 70 cm above the floor, arm 

length: 50 cm; arm width: 15 cm; central platform: 15 × 15 cm; closed arm walls height: 40 cm). Each 

rat was transferred in the homecage from the housing room to the brightly lit (~ 50 Lux) test room. 

Immediately after arrival in the test room, the animal was placed on the central arena of the 

elevated plus maze, with the head facing a closed arm. EPM exposure lasted 5 min. The percentage 

of time spent in open arms and open/total (open plus closed) arm entries ratio (an entry was 

defined as having three paws of animal in a defined compartment) were calculated and used as 

measures of anxiety-like behavior. The number of closed arm entries was used to estimate the 

general locomotor activity of the animal. 

 

2. 3. 5. Marble burying 

The MB test was performed as a modified version (Li et al., 2006) of the test originally described for 

testing mice (Broekkamp et al., 1986, Njung'e and Handley, 1991, Borsini et al., 2002, Nicolas et al., 

2006, Egashira et al., 2007). The rats were placed individually in a plexiglass cage (41.3cm x 26 cm x 

29.8 cm high, Ferplast, Geo Maxi, Italy) with a 5 cm deep layer of bedding holding 15 marbles on its 

surface (25 mm diameter; arranged in a 3 x 5 pattern; space between two marbles ~ 4.5 cm). A 

session in the MB test lasted 30 min. A trained observer counted and noted every fifth minute the 

number of buried and half-buried marbles. 

 

2. 3. 6. Object discrimination 

One hour before the test rats were put into a plexiglass box (Ferplast, Geo Maxi, Italy) with food and 

water ad libitum to freely explore the new environment. Then one of two objects (i.e. glass jar: 6.5 

cm diameter, 8.5 cm length and metal jar: 9.5 cm diameter, 4 cm length) was introduced in one of 

the corners of the box. The rat was allowed to explore this object (subsequently called ’familiar’) for 
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4 min; then the object was removed. After 30 min, the ’familiar’ object was placed together with the 

other (subsequently called ’non-familiar’) object into the box for another 4 minutes. The objects and 

their location in the box (left – right) were randomized to avoid place preference. The discrimination 

index (DI) was calculated from the time spent exploring/sniffing the objects: DI = (investigation 

duration non-familiar - investigation duration familiar)/(investigation duration non-familiar + 

investigation duration familiar) (Varga et al., 2014). 

 

2. 4. Immunohistochemistry 

Two hours after a single 10 min FS animals were anaesthetized with a ketamin-xylazin-pipolphen 

cocktail (50-10-5 mg/kg in 2ml/kg, intraperitoneal) and intracardially perfused with saline followed 

by 300 ml of 4 % paraformaldehyde (0 °C). The brains were removed and post-fixed in the same 

solution at 4 °C overnight. On the following day brains were washed with phosphate-buffered saline 

(PBS: 1.56 g NaH2PO4, 30.8 g NaHPO4×12H2O, 5 g NaCl and 0.2 g MgCl in 1 l distilled water) and 

transferred into 20 % sucrose in PBS. After two days brains were removed from PBS, shock-frozen (-

70 °C), packed in aluminium foil, and kept at -80°C until sectioning. Frozen sections (30 μm) were cut 

in coronal plane on a sliding microtome and were put into antifreeze liquid at -20 °C. 

The brain sections were processed for c-Fos immunoreactivity. Before the immunoreaction brain 

sections were washed 3 x 10 min with PBS, followed by 0.2 % Triton-X-100 and H2O2 solutions to 

inactivate the endogenous peroxidase. After that sections were washed again with PBS for 3 x 5 min, 

then incubated in 2 % normal Horse Serum for 20 min to block non-specific proteins activity, which 

followed by a new PBS washing for 3 x 10 min. Sections were incubated overnight in polyclonal 

rabbit primer antibody (Santa Cruz Biotechnology, USA, sc-52; 1:5000 dilution, 4C) followed by PBS 

washing for 3 x 10 min. The sections were then rinsed and exposed to an anti-rabbit secondary 

antibody (Jackson Immunoresearch Laboratories, 1:1000) for one hour, then washed with PBS for 2 x 

10 min. An avidin-biotin complex (Vectastain ABC kit, 1:1000) peroxidase procedure with nickel-
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diaminobenzidine as the chromogen was used to visualize the immunoreactivity. The sections were 

covered with DePeX. 

Quantification of the c-Fos immunoreactivity was done in defined septal and amygdaloid nuclei. 

Section planes were standardized according to the atlas of Paxinos and Watson (Paxinos and 

Watson, 1998) by an experimenter blind to the treatment groups using sections matching the same 

coordinates of the brain atlas for each animal. Microscopic images were digitized by an OLYMPUS 

BX51 camera using a magnification 10 x. The average of four sections taken at 80 μm intervals was 

used for the analysis of each structure, including both hemispheres; that is, eight measures per area 

and animal. To select c-Fos immunopositive nuclei as targets for quantification, a PC-based software 

(Image J, http://rsbweb.nih.gov/ij/) was used and targets were subsequently identified in the 

captured images by gray level thresholding. For each brain area, the threshold for the labeled signal 

was defined according to the background staining. Size criteria were applied to exclude structures 

other than c-Fos immunopositive nuclei from measurement, therefore only particles with a 

minimum area of 20 pixels were considered as a cell nucleus. The number of c-Fos positive nuclei 

was calculated as the average number obtained of all analyzed images per one rat. 

 

2. 5. Statistical analysis 

Data were analyzed by analysis of variance (ANOVA) using the ANOVA/MANOVA module of the 

STATISTICA 11.0 software package (Tulsa, OK, USA). One (factor ‘group’: WT, KO, DDAVP) or two way 

ANOVA (factors ‘group’ and ‘time’; with repeated measures on the second factor) were applied. In 

case the main effect of ANOVA was significant multiple pairwise comparisons were made by the 

Newman-Keuls method. The difference of the discrimination index from 0 (no discrimination value) 

was tested with one sample t test. Pearson correlations were calculated by multiple linear regression 

analysis. Data are expressed as mean ± SEM and the level of significance was set at p < 0.05. 

 

3. Results 
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3. 1. Physiological parameters 

The higher water consumption of KO versus the WT animals remained significant throughout (factor 

’group’: p < 0.001). Within 24-48 h after implantation of the minipumps water intake reached the 

level of the WT animals in DDAVP treated rats, illustrating the successful treatment of the peripheral 

symptoms of the diabetes insipidus (Fig. 1A; both factor ’time’ and ’group’ x ‘time’ interaction: p < 

0.001). 

The body mass increased in the animals of all groups during the course of the experiment (factors 

‘group’, ‘time’ and ‘group’ x ‘time’ interaction: p < 0.001). Initially, the body mass of the KO rats was 

~ 30% lower than that of WT animals (first measurement, factor ’group’: p < 0.001). Although in 

DDAVP treated animals the body mass increased significantly after onset of the treatment (last 

measurement, factor ’group’: p < 0.001), it did not reach the level of the WT group until the end of 

the study (Fig. 1B). 

We also measured the mass of the adrenal glands, to obtain a parameter allowing some insight into 

the glucocorticoid supply. The absolute adrenal mass was significantly lower in KO than in WT 

animals (factor ‘group’: p < 0.001). However, if referenced to the body mass (calculated as relative 

organ mass) the difference between the groups disappeared (data not shown). 

3. 2. Behavioral parameters 

3. 2. 1. DW test 

Figure 2 shows the results obtained in the DW test. The first three sessions were used to habituate 

the animals to the DW apparatus. After habituation the animals swam twice for 10 min. The latter 

was done to trigger the release of AVP into the extracellular fluid of the PVN (Engelmann et al., 

1998). Airpuff startle applied before the fourth DW session was previously reported to increase 

anxiety (Engelmann et al., 1996) and thought to enhance the differences between the treatment 

groups. Statistical analysis revealed that during the successive sessions the animals spent an 

increasing duration in the tube, and the latency to enter the periphery was increased (factor ‘time’: 

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com


Balázsfi et al. 

15 
 

p<0.001; Fig. 2A). WT animals showed significantly increased latency to leave the tube compared to 

the other groups (factor ‘group’: p < 0.01). Specifically, the latency to leave the tube failed to differ 

between the DDAVP treated and KO rats during the sessions 1-3. After forced swimming and airpuff-

startle, during session 4, the latency of leaving the tube in the DDAVP group did not differ 

significantly both from KO and WT animals (Fig. 2A).  

Another parameter extracted from the behavioral profile of the animals in the DW apparatus 

(quotient of the time rats spent in center/open field) reached nearly zero in WT animals during 

sessions 2-4 (factor ‘session’: p < 0.001; Fig. 2B). In contrast, throughout these sessions DDAVP 

treated rats spend significantly more time in the center (factor ‘group’: p = 0.01). Also, KO animals 

tended to spent more time in the center (p = 0.09). 

 

3. 2. 2. FS test 

Statistical analysis revealed a significant difference between WT and KO rats during both the  two FS 

sessions in Experiment 1 and the session in Experiment 2 (Fig. 3; data are shown from session 2 of 

Exp. 1 and Fig.6C; Exp. 2) in the percentage of time spent floating (factor ‘group’: p < 0.05; Fig. 3A; 

Fig.6C). Subsequent analysis revealed that both DDAVP treated and KO rats spend significantly less 

time floating than WT animals. The time spend in active behavior was also significantly different 

between the groups, however, during Experiment 1 only struggling (factor ‘group’: first: p = 0.002; 

second: p = 0.001; Fig. 3B), whereas during Experiment 2 only swimming (factor ‘group’: p < 0.05; 

Fig. 6C) were detected to differ statistically significantly. 

Interestingly, the number of faeces boli found at the end of the 10 min swimming session paralleled 

the floating behavior (Fig. 3C, D). Namely this parameter was significantly lower in KO vs. WT 

animals (factor ‘group’: p < 0.05); but DDAVP failed to significantly alter the number of faeces boli 

when compared to KO animals. There was a positive correlation between the time spent floating and 

the number of faeces boli both during the first (p=0.02; r=0.417) and also during the second session 

(p=0.018; r=0.427). 
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3. 2. 3. Anhedonia test 

In contrast to previous reports (Mlynarik et al., 2007) we were unable to find an enhanced sucrose 

preference in KO animals (Supplementary Fig. 1). 

 

3. 2. 4. EPM test 

Statistical analysis revealed that the percentage of time spent on the open arms differed significantly 

between the groups tested (factor ‘group’: p < 0.01; Fig. 4A). Post hoc analysis showed that WT rats 

spent significantly less time on the open arm than KO or DDAVP treated groups; the two later groups 

did not differ in their reduced anxiety-like behavior. The other main parameter, the open arm 

frequency (percentage of open and close arm frequency as a locomotion independent measure) 

represented also a significant difference between groups (factor ‘group’: p = 0.02; Fig. 4B). During 

the post hoc comparison the WT animals entered less to the open arm (lower frequency) than 

untreated or DDAVP treated KO rats. Locomotion, estimated upon the closed arm frequency, did not 

differ between the groups (Fig. 4C).  

 

3. 2. 5. Marble burying test 

There was a significant difference between the three groups (factor ‘group’: p = 0.012) during the 

marble burying test, and the number of buried marbles depended upon the time (factor ‘time’: p < 

0.01; Fig. 4D). During the test the WT animals buried an increasing number of marbles, whereas KO 

and DDAVP rats buried 1-2 marbles only. 

 

3. 2. 6. Object discrimination test 

During the sampling session all rats spent enough time investigating the to-be-recognized object to 

become familiar with it (Fig. 5A), showing no significant difference in the investigation duration 

between the different groups. As indicated by the significantly longer investigation duration of the 
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novel object during the discrimination session WT animals showed intact discrimination abilities, 

while the DDAVP group failed to do so (single sample t test; Fig. 5B). There was a tendency for higher 

‘discrimination index’ of WT animals compared to KO or DDAVP treated rats that just failed to reach 

statistical significance (factor ‘group’: p = 0.05).   

 

3. 2. 7. c-Fos immunohistochemistry 

After forced swim test we measured c-Fos immunohistochemistry in three distinct parts of both the 

lateral septum (dorsal: LSD, intermediate: LSI, ventral part: LSV) (Fig. 6A) and the amygdala (medial: 

MeA, central: CeA, basolateral amygdala: BLA) (Fig. 6B). The number of labeled cells was similar in all 

three groups in the different parts of the lateral septum (the highest number of labeled cells found 

in LSV). However, the number of labeled cells was found to be significantly different in MeA between 

WT and both KO and DDAVP groups (factor ‘group’: p=0.015). Further, we found a significant 

correlation between the number of c-Fos labeled cells in MeA and both the time spent floating 

(p=0.003; r=-0.77) and the time spend swimming (p=0.0074; r=-0.75) (Fig. 6C). The correlation 

analysis of the other two parts of the amygdala showed a similar tendency, but it failed to reach the 

level of statistical significance. 

 

4. Discussion 

Our data confirm that DDAVP treatment compensated for the peripheral effects of AVP-

deficiency and thereby eliminated the symptoms of the diabetes insipidus, indicated by the 

normalized water consumption and the increased body weight gain in DDAVP animals. As 

subsequently KO and DDAVP treated animals showed a different body weight but failed to differ in 

their behavioral profile it is unlikely that original differences seen between WT and KO animals can 

be simply related to body weight differences. Thus, our present results confirm previous findings 
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suggesting an anxiolytic-like and a reduced depressive-like behavioral profile of KO rats (Mlynarik et 

al., 2007).  

One of the most widely used tests for anxiety in laboratory rodents is the EPM. It was used 

to selectively bread high (HAB) and low anxiety (LAB) rat and mouse lines which were reported to 

show alterations in the AVP signaling that is probably responsible for high anxiety phenotype in HAB 

animals (Landgraf and Wigger, 2003, Murgatroyd et al., 2004, Kessler et al., 2007, Landgraf et al., 

2007). Our results are in accordance with these studies as we found that the congenital absence of 

AVP in the brain is accompanied by lower anxiety-like behavioral profile, similarly to LAB animals. In 

a previous study on Brattleboro animals (Mlynarik et al., 2007) we did not find this difference, but in 

those experiments heterozygous animals were used as controls, while in the present study WT- 

animals were used. Nevertheless, the DW, which also tests innate fear from open spaces 

(Engelmann et al., 1996), showed also similar results, thereby confirming the results on the EPM in 

the present study. Another facet of innate fear, aimed at testing the aversive impact of novel 

objects, was studied by the MB test. Again we observed a significant difference between KO and 

DDAVP versus WT Brattleboro rats with the latter burying significantly more marbles. Taken 

together, our data suggest that the behavioral changes observed in three different tests 

investigating distinct facets of innate fear cannot be corrected by treating the peripheral symptoms 

of diabetes insipidus and are, thus, primarily linked to the action of central AVP signaling. However, 

we cannot entirely exclude that the developmental effects of AVP-deficiency (Hammock, 2014) 

contribute to behavioral alterations which cannot be restored by acute/subacute treatment in 

adulthood. In this context it seems worth noting that different other systemic treatments (e.g. with 

antipsychotic drugs) were able to “normalize” distinct behavioral parameters in Brattleboro rats 

(Feifel et al., 2009, Cilia et al., 2010). 

A widely used test for antidepressant development is FS. Here we could repeatedly confirm 

more active behavioral response in AVP-deficient Brattleboro rats. This is in line with the assumption 

that central AVP signaling may play an important role in the development of depressive pathology 
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(Landgraf and Wigger, 2002, Scott and Dinan, 2002, Griebel et al., 2003, Keck, 2006, Landgraf, 2006, 

Frank and Landgraf, 2008, Simon et al., 2008, Surget and Belzung, 2008, Ryckmans, 2010). Infusion of 

V1a and V1b antagonists not only into systemic circulation (Overstreet and Griebel, 2005) but also 

into the PVN (Wigger et al., 2004), septum (Stemmelin et al., 2005) and the amygdala (Ebner et al., 

2002) increased the active behavior during FS. Previous studies showed that in response to repeated 

FS AVP is released not only from the axon terminals into the blood stream, but also from the somata 

and dendrites of vasopressinergic neurons into the extracellular fluid of the PVN (Engelmann et al., 

1998, Ebner et al., 2002, Engelmann et al., 2004, Wigger et al., 2004). As antisense mRNA of AVP into 

the septum decreased the anxiety-like behavior in rats, this brain region seemed to be the most 

important target of somatic-dendritic AVP release (Landgraf et al., 1995).  

 A particularly interesting finding of the present study concerns the observation of a 

significant correlation between the percentage of time spend floating and the increased number of 

c-Fos positive cells in the MeA (Fig. 6). Previously it was shown that FS triggers AVP release within 

the amygdala complex and V1 receptor antagonist treatment significantly reduces floating and 

increased struggling behavior in male rats (Ebner et al., 2002). Due to technical limitations of the 

microdialysis technique, a more specific analysis which of the parts of the amygdala complex might 

have played a particular role in the observed effects was impossible. The present study confirms not 

only that blocked/absent AVP-signaling within this brain area causes a more active behavioral 

response during forced swimming, they also extend the previous findings by suggesting that the 

MeA and, perhaps to a lesser extent the CeA and BLA, plays an important role in the behavioral 

regulation during defined stressor exposure. Different studies suggested an involvement of 

amygdaloid V1b receptor in FS behavior (Salome et al., 2006) and V1a receptors in the amygdala, but 

not in the lateral septum, modulated the behavior in a paradigm for female anxiety (Poirier et al., 

2013). In this context it is of note that V1a (Bielsky et al., 2004) and V1b (Egashira et al., 2005) 

receptor deficient mice failed to show a behavioral difference to WT animals in the FS test. These 

data suggest a species-specific effect of local AVP signaling. 
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Interestingly, the number of c-Fos positive cells was not significantly altered in the areas 

constituting the lateral septum of KO and DDAVP treated rats when compared with WT animals (Fig. 

6). This sheds new light on data of two other studies reporting a significant impact of V1 receptor 

antagonist treatment in the lateral septum (Ebner et al., 1999) versus the MeA (Ebner et al., 2002) 

on FS behavior of adult male rats. Interestingly, in the septum the treatment effects were exactly the 

opposite than those observed in the MeA. Therefore, it was concluded that AVP controls the 

behavioral response in both brain areas that results in a balanced response during FS (Ebner et al., 

2002). Upon first glance, the present findings could not only suggest that the MeA plays an 

important role in the control of FS behavior, but also that the congenital absence of AVP signaling at 

brain level does not result in a balanced behavioral response. However, a closer look reveals that the 

behavioral data obtained during FS do not show without doubt that the lack of AVP signaling in the 

amygdala ‘overrules’ the absence in the lateral septum. As a consequence, further studies have to 

analyze whether the behavioral profile is indeed primarily controlled by the ‘septum versus MeA 

balance’ or the result of a downstream manifestation of altered, behaviorally relevant AVP signaling 

elsewhere in the brain. Therefore, it would be worth testing whether during acute stressor exposure 

somatic-dendritic release of AVP from the SON versus PVN might influence the behavioral response 

in addition to local signaling (Ebner et al., 2002, Ludwig and Leng, 2006).  

Anhedonia was suggested to be one of the core symptoms of depression (Di Giannantonio 

and Martinotti, 2012, Harden et al., 2012, Hill et al., 2012, Warnock et al., 2012). Our experiment 

investigating anhedonia in KO rats failed to reveal significant differences between the groups. This 

observation, however, may be hampered by the physiologically disturbed fluid consumption in KO 

animals and, therefore, does not provide an unbiased outcome.  

Taking into consideration the high prevalence of cognitive disturbances in depression 

(Murrough et al., 2011) we also studied this aspect of our rats. The short term memory and learning 

processes were examined by object discrimination, as we did not wanted to confound our results 

with potential social alterations (Neumann and Landgraf, 2012). We confirmed the positive effect of 
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centrally released AVP in short-term recognition memory. Previous studies used social discrimination 

tests in Brattleboro rats and showed that AVP injection to the septum improved their social 

discrimination skills (Dantzer and Bluthe, 1993, Engelmann and Landgraf, 1994, Landgraf et al., 

1995). Thus, our data extend the findings using conspecifics as stimuli and show that the absence of 

central AVP signaling results in an impaired short-term recognition memory also towards objects. 

 

5. Conclusions 

In summary, male AVP-deficient Brattleboro rats showed in several tests (DW, FS, EPM, MB) 

a behavioral profile that can be interpreted as reduced anxiety and/or depressive-like which was not 

„normalized” after peripheral replacement of AVP by chronic DDAVP treatment acting via V2 

receptors. In addition, KO animals showed – similar to previously reports – short-term recognition 

memory deficits. As the DDAVP treated animals behaved similarly to untreated KO rats in all studied 

tests, it is quite probable that the effect of AVP on affective and memory symptoms is due to its 

central (neuromodulator/neurotransmitter via V1a and V1b receptors) rather than peripheral role 

(antidiuretic hormone via V2 receptors). Further studies have to reveal whether indeed the MeA, 

rather than the lateral septum contributes primarily to the behavioral effects of intracerebrally 

signaling AVP, e.g. after its release from the somata-dendrites during defined stressor exposure. 
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Figure captions 

 

 

Figure 1: Effects of DDAVP treatment on distinct physiological parameter 

(A) After the osmotic minipump implantation KO rats’ (day 0) water consumption normalized within 

1-2 days, thus the compensation of the peripheral lack of AVP was successful. (B) Body mass 

increased in all groups, and DDAVP treated group gain significantly more mass than KO rats. Y axis 

reflects the days after minipump implantation. Data from experimental series 1; n = 10 for each 

group; WT: wild type, KO: homozygous vasopressin-deficient rat; DDAVP: desmopressin treated KO 

rats; *p<0.05, **p<0.01: KO and DDAVP vs. WT; ##p<0.01: DDAVP vs. KO; ++p<0.01 vs. first 

measurement  

 

 

Figure 2: Effects of DDAVP treatment on behavioral parameters measured in the defensive 

withdrawal test combined with forced swim test and airpuff 

(A) During the experiment the latency to enter the periphery increased after the first session then 

during the second and third test animals were habituated to this environment, and in these sessions 

latency did not change. After forced swim and airpuff the WT group stayed longer in the safe 

compartment than the other groups. (B) In the fourth session –after FS and airpuff exposure – WT 

rats spent significantly less time in the center of the DW apparatus compared to KO and DDAVP 

animals. Data from experimental series 1; n = 10 for each group; WT: wild type, KO: homozygous 

vasopressin-deficient rat; DDAVP: desmopressin treated KO rats; FS: forced swim test for 10 min; 

*p<0.05 **p<0.01: KO and DDAVP vs. WT main group effect; ++p<0.01 vs. first session 

 

 

Figure 3: Effects of DDAVP treatment on the behavior in the forced swim test 
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This Figure shows exemplarily the behavioral profile obtained during the second FS session. (A) WT 

rats showed significantly more floating (depressive-like behavior) than DDAVP treated and untreated 

KO rats. (B) Struggling revealed also a significant difference between groups. (C) The number of boli 

in the water differed significantly between WT and KO/DDAVP-treated rats. (D) Regression analysis 

of the floating time and the number of faeces boli during the second session (raw data are on part A 

and C). Data from experimental series 1; n = 10 for each group; WT: wild type, KO: homozygous 

vasopressin-deficient rat; DDAVP: desmopressin treated KO rats; FS: forced swim test for 10 min; 

*p<0.05 **p<0.01: KO and DDAVP vs. WT 

 

 

Figure 4: Effects of DDAVP treatment on anxiety-like behavioral responses in elevated plus maze 

(A-C) and marble burying test (D) 

(A) Percentage spent on open arm, (B) percentage of entries into the open arms and (C) absolute 

number of entries into the closed arms of the EPM. (D) Number of marbles buried. A-C: Data from 

experimental series 1; n = 10 for each group; D: Data from experimental series 2; n = 5 for each 

group; WT: wild type, KO: homozygous vasopressin-deficient rat; DDAVP: desmopressin treated KO 

rats; *p<0.05; **p<0.01 KO and DDAVP vs. WT; +p<0.05 KO and DDAVP vs. WT main group effect 

 

 

Figure 5: Effects of DDAVP treatment on short-term object discrimination 

(A) All groups spent a similar duration investigating the to-be-recognized object during sampling. (B) 

Based on discrimination index (see Material & Methods) WT animals showed significantly better 

discrimination abilities than AVP deficient rats during choice. Data from experimental series 2; n = 5 

for each group; WT: wild type, KO: homozygous vasopressin-deficient rat; DDAVP: desmopressin 

treated KO rats; *p<0.05 KO vs. WT  
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Figure 6: Effects of DDAVP treatment on the stressor exposure induced c-FOS synthesis in septum 

and amygdala 

Number of positively c-Fos-stained cells in distinct nuclei of (A) the septum and (B) amygdala. (C) 

Regression analysis of the number of c-Fos labeled cells in the MeA and floating duration 

during FS (see inset for the raw behavioral data). Data from experimental series 2; n = 5 for each 

group; WT: wild type, KO: homozygous vasopressin-deficient rat; DDAVP: desmopressin treated KO 

rats; LSD: lateral septum dorsal part, LSI: lateral septum intermediate part, LSV: lateral septum 

ventral part, MeA: medial amygdala, CeA: central amygdala, BLA: basolateral amygdala; *p<0.05 KO 

and DDAVP vs. WT  

 

 

Supplementary Figure 1: Effects of DDAVP treatment on sucrose preference 

Percentage of consumed sucrose relative to total fluid intake. Data are from experimental series 1; n 

= 10 for each group; WT: wild type, KO: homozygous vasopressin-deficient rat; DDAVP: 

desmopressin treated KO rats; # p < 0.05 DDAVP vs. KO 
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