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Local and global bifurcations in a simple model of digitally controlled systems
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Summary. Chaotic vibrations that are originated from the digital implementation of control are known for more than 20 years [1].

The consideration of the effects of sampling and processing delay is a routine procedure among control engineers, but the quantization

in the analogue-digital converters is usually neglected. However, this latter effect frequently leads to deterministic but small scale

chaotic behaviour – so-called micro-chaos [2, 3] – which is often considered simply as stochastic noise in the practice. In the present

contribution a simple but quite general PD-controlled system is considered. It is shown that micro-chaotic oscillations may have a

considerable influence on the accuracy and settling time of control systems. We focus on the numerical and analytical examination of

global bifurcations since these may lead to the abrupt change of the aforementioned properties of the control system.

Introduction

Consider a linear oscillator with negative stiffnesswhose equation of motion is linearized about the upper equilibrium:

Mẍ(t) + cẋ(t)− kx(t) = 0, (1)

where M denotes (generalized) mass, c is the damping coefficient, while k > 0 is the (generalized) stiffness. PD control

is applied on the system in order to stabilize the position [x, ẋ] = [0, 0], according to the output of a digital control system.

The control force is assumed to be kept constant between the jth and (j + 1)st samping instants. The samping time is

denoted by τ and we assume that the control force is sent out without delay. Due to the sampling of the state and the

quantisation of the control force with resolution h, the equation of motion of the controlled system assumes the form

ẍ(t) +
c

M
ẋ(t)−

k

M
x(t) = −

h

M
Int

(

P̃ xj + D̃ẋj

h

)

, t ∈ [jτ, (j + 1)τ), (2)

where function Int() rounds toward zero. Introducing dimensionless variables one arrives at the equation

y′′(T ) + 2βy′(T )− α2y(T ) = −Int
(

Pyj +Dy′j
)

, (3)

where T ∈ [j, (j + 1)) and y′ ≡ dy/dT . Equation (3) can be solved between the successive sampling instants. Conse-

quently, the solutions can be given by the following mapping – the micro-chaos map:

yj+1 = Uyj + b Int
(

Pyj +Dy′j
)

≡ Uyj + b m, (4)

where m = Int
(

Pyj +Dy′j
)

and yj ≡ col[yj , y
′

j]. By introducing the notations s ≡ sinh(γ), c ≡ cosh(γ), e ≡ exp(β),

and γ2 ≡ α2 + β2, one obtains

U =
1

eγ

[

γc+ βs s
α2s γc− βs

]

, b =

[

e−c
eα2 − βs

eγα2

− s
eγ

]

. (5)

Phase-space structure

According to the value of the control force m, the phase-space can be divided into parallel bands that are separated by

switching lines:

y′j =
m− Pyj

D
.

The initial points of possible periodic orbits of length p – that visit the bandsm1, m2. . .mp – can be found by the following

formula:

y1 = (I−Up)−1
(

m1U
p−1 +m2U

p−2 + · · ·+mpU
0
)

b.

Note, that yi must be in band mi. For example, the fixed point rm = col
[

m/α2, 0
]

must be in band m, thus

|m|

P
≤

|m|

α2
<

(|m|+ 1)

P
.

If the fixed point crosses the switching line, it becomes virtual via a border collision bifurcation. Since all the fixed points

are saddles, strange attractors or repellers can be formed between neighbouring fixed points (and between a fixed point

and a virtual fixed point). These primary structures can merge with each other, forming new, secondary strange attractors.

The micro-chaos map is similar to a series of Baker maps in a large portion of the domain of stability. In this case
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• The attractor farthest from the origin is close to the mmaxth switching line, at position ySW
max, where mmax is the

index of the virtual fixed point that is closest to the origin:

mmax = Int

(

P

P − α2

)

, ySW
max =

mmax

P
.

• If the size of the primary attractors is small (i.e., the trajectory cannot jump over a whole band and cannot escape

from the structure at the virtual fixed point towards larger displacements), ySW
max provides an estimation for the

maximal control error.

Another estimation method is based on the fact that the micro-chaos map (4) can be rewritten to the following form:

yj+1 = Sjy0 −

j−1
∑

k=0

Skcχk, χk ∈ (−1, 1), (6)

where S would be the coeffcient matrix of the continuous, controlled system and χk corresponds to the fractional part of

the control force. Because limj→∞ Sjy0 = 0, the maximal possible control error can be estimated by the proper choice

of the numbers χk. If the eigenvalues of S are positive real numbers, χk = 1, ∀k provides the maximal error. In this case,

−

∞
∑

k=0

Skc = −T

[ c1
1−µ1

c2
1−µ2

]

=

[

1

P−α2

0

]

.

µi, i = 1, 2 denote the eigenvalues of S, matrix T transforms S to diagonal form and ci are the elements of vector c from

(6), transformed with T. Thus, the maximal distance from the origin is y∞ = 1/(P − α2).
As Figure 1 shows, the two methods provide quite similar results. Certainly, the control error will be less than these

estimates, especially if the farthest Baker map-like structure turns to a repeller. This favourable situation can occur quite

frequently in the practice, as it is also illustrated in the figure. On the other hand, the choice χk = 1, ∀k does not provide

the maximal control error if the eigenvalues of S are complex or negative real numbers. Our goal is to give a more general

estimate for the control error and to describe the bifurcations that lead to the merging of primary attractors.
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Figure 1: The estimated control error at realistic parameters α = 6.85e−3, β = 0 and D = 2.566e−3 (left panel) and the parameters
where the farthest attractor disappears or merges with other attractors (red on the right panel).

Conclusions

We showed that several disconnected attractors may coexist in a simple model of digitally controlled systems. The position

of the attractor, farthest from the origin, was estimated by two different methods that led to similar results. These methods

can be used for the estimation of the largest possible position error of the control system in a broad parameter domain.
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