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Bill S. Hansson5, Timothy C. Pearce1, Shannon B. Olsson5*

1 Department of Engineering, University of Leicester, Leicester, United Kingdom, 2 School of Psychology and Psychiatry, Faculty of Medicine, Nursing and Health Sciences,

Monash University, Clayton, Victoria, Australia, 3 NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, University of Melbourne, Melbourne,

Victoria, Australia, 4 Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia, 5 Department of Evolutionary Neuroethology, Max Planck

Institute for Chemical Ecology, Jena, Germany, 6 Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences,

Budapest, Hungary, 7 Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden, 8 Department of Neuroscience, School of Mind, Brain and

Behavior, University of Arizona, Tucson, Arizona, United States of America

Abstract

The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems
often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To
identify these temporal features, we have developed an analysis that allows the comparison of statistically significant
features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to
utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant
wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection
neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of
single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in
biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate
functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time
window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in
excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor
trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency
differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as
mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe
exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on
early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety
of neuronal data sets.
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Introduction

The discrimination of complex stimuli in the noisy natural

background is an immense computational task for any sensory

system. For the olfactory system in particular, what we perceive as

a single odor is generally composed of many different molecules

creating an odor mixture. In addition, the odor molecules travel

through the environment as discrete filaments in a turbulent and

stochastic odor plume [1,2]. Odor recognition therefore requires

the simultaneous elucidation of the identity and complexity of

molecular mixtures in specific ratios and concentrations, and at

specific points in time. Comparative analyses across several

invertebrate and vertebrate species suggest that complex stimuli

are coded by sensory systems in a spatiotemporal fashion (for

olfaction in particular see [3]), determined by where (spatial

patterning), when (timing and synchronicity), and how much

(intensity) neuronal activity occurs.

In addition to ensemble information, the firing rate of the

individual neurons within sensory systems such as olfaction also

provides information concerning the stimulus [4,5]. In fact,

neurons in the first olfactory neuropil of both invertebrates and

vertebrates are known to exhibit complex temporal firing

characteristics in response to odor stimuli that last for several

hundred milliseconds after the stimulus has ended [6]. In insects,
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odor stimuli are encoded by these firing patterns in several ways

(see [7] for recent review). First, a large body of studies have found

that odors can be coded by differences in response amplitude

across individual neurons (‘‘fast rate coding’’ [7]). Odors can also

be coded by response latency (‘‘latency coding’’ [8–11]). Finally,

odors can be represented in the post-stimulus firing period (so-

called ‘‘trace coding’’) [12–14].

In a previous study of the moth antennal lobe (AL), the first

olfactory synapse and insect analog to the olfactory bulb [15], we

found that odor mixtures were coded by a latency code, while odor

concentration was coded by increased firing rate [9]. However,

using traditional spike-counting methods such as the mean firing

rate, we were unable to localize specific time periods during the

response where these differences occurred. Peri-stimulus time

histograms (PSTH) derived from spike trains provide more

temporal information, but they are restricted to the bin size set

by the experimenter. Therefore, subtle neural patterns such as

odor trace coding, may be overlooked, as suggested by Nawrot [7].

In order to identify specific temporal features of the neuronal

response, we require a method that can allow us to compare

different data sets and find statistically significant spike train

features localized in time. The Discrete Wavelet Transform

(DWT) is a type of time-frequency transformation of sampled data

that is able to localize features in both time and frequency using

basis functions called wavelets [16–18]. The main advantage of the

DWT (and other techniques such as multitaper spectrotemporal

analysis) over time-resolved Fourier transform is that the time

domain is decomposed on multiple temporal scales, and thus low

frequencies are examined over longer time periods than high

frequencies, providing multiple scales of time-frequency resolution

[19]. Wavelet-based applications are not new to neuroscience [19–

22], but their use for spike train analysis has been relatively scarce,

even if some successful algorithms have been developed in the

context of real-time spike train decoding for neural prosthesis

[23,24].

In this study, we calculate the DWT of the instantaneous firing

rate function in order to localize temporal features relevant to

discriminating different stimulus categories (i.e. different com-

pounds, concentrations, and mixtures). We apply this multi-

resolution time-frequency analysis to three different data sets,

comprising neuronal responses recorded in sexually isomorphic

glomeruli of female Manduca sexta [9] and in the pheromone-

responsive macroglomerular complex (MGC) of male Manduca

[25] and Ostrinia nubilalis [26]. In contrast to sexually isomorphic

AL neurons that receive input from receptor neurons with a

variety of tuning properties, macroglomerular neurons receive

sensory input from highly specific receptor neurons responding to

pheromone components. The question remains to what extent the

specialized MGC system differs from the larger, sexually

isomorphic antennal lobe portion [27]. The MGC is generally

considered to be a labeled-line network with highly specific input,

while the sexually isomorphic neurons utilize combinatorial

processing with a mixture of specific and broadly-tuned OSNs

[28,29].

Previous analyses of these data sets used mean rate, PSTH, and

latency measurement [9,25,26], and thus provide a suitable

reference for assessing the additional insight provided by the

DWT analysis. In addition, an interspecies comparison can reveal

general physiological properties that could be widely applicable to

several species, given the widespread sexual dimorphism of the AL

among moths and other insects [30]. Hence, we apply our multi-

resolution time-frequency analysis to assess how AL neurons from

two separate sections of the moth antennal lobe provide

information concerning odor identity, concentration, and presence

of a mixture. In addition, we compare the time localization of

spike train features obtained with our DWT analysis to a PSTH-

based analysis. Finally, we discuss significant response features

localized in time and frequency revealed by our application of the

DWT, and its implications for understanding the mechanistic basis

of odor coding in the antennal lobe.

Materials and Methods

Neuronal recordings and odor stimulation
We present a DWT of rate functions derived from intracellular

recordings of AL neurons reported previously for the moth

Manduca sexta [9,25] and Ostrinia nubilalis [26]. Data sets were

obtained using plant [9] and pheromone [25,26] compounds,

respectively. Raw membrane potential data was obtained from

these studies for the current analysis. Please refer to these studies

for details of animal and stimulus preparation, electrophysiological

recording, and morphological analysis. Single trial responses to

monomolecular host plant odors or pheromones and their

mixtures were separated into the three response classes as

previously described [9] (Figure 1).

Briefly, female Manduca sexta moths were immobilized in

modified Falcon tubes and the primary olfactory processing

centers of the brain (the antennal lobes) surgically exposed. Once

intracellular contact was established using a sharp glass micro-

electrode, the ipsilateral antenna was stimulated with (+) linalool,

(2) linalool, phenyl acetaldehyde, benzaldehyde, hexanol, nonanal

Figure 1. Basic temporal response types. (A) A biphasic neuron
from M. sexta stimulated with a mixture (upper panel) and a single
component at the mixture concentration (lower panel). (B) An excited
neuron stimulated at low (upper panel) and high (lower panel)
concentrations of a compound. (C) An Inhibited neuron stimulated
with low (upper panel) and high (lower panel) concentrations of a
compound. Stimulus elapse shown in grey. The panels on the right
show confocal micrographs of the three respective female M. sexta AL
neurons, each extracting a single optical orthogonal slice (soma with
asterisks, left images). Neurobiotin-injected cells were stained with
Alexa-conjugated Streptavidin. Pictures were obtained by confocal
microscopy of three separate whole mount brain preparations using a
106, 0.45-NA objective lens (C-Apochromat, Zeiss). Optical sections
(102461024 pixel) were taken at intervals of 0.8 mm. A and B display
LNs, while C shows a multiglomerular PN; scale bar: 50 micrometers.
doi:10.1371/journal.pone.0084037.g001
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or trans- 2-hexenyl acetate (used instead of nonanal in some

experiments), and cis-3-hexenyl acetate. Each odor was dissolved

at 1024 in mineral oil. Stimulations were performed at 500 ms

duration using a novel multicomponent stimulus device that

equilibrated all odor concentrations according to vapor pressure

[31]. Neurons were first presented with all components simulta-

neously, then each of the seven odors separately. Odors that

elicited a response were tested together as the ‘‘mixture’’. Finally,

the single components that elicited a response were again tested

separately at the total mixture concentration. Neurons were

identified as projection neurons or lateral interneurons by either

morphological staining or physiological characterization via

measurement of spike width (see [9]). In the former case, Lucifer

or neurobiotin was injected iontophoretically after physiological

characterization.

For assessment of macroglomerular neurons, male Manduca sexta

were immobilized in plastic tubes and male Ostrinia nubilalis (Z

race) were immobilized in plastic pipette tips and the antennal

lobes surgically exposed. For Manduca MGC recordings, juxtacel-

lular, rather than intracellular recording was performed. Sharp-

ened borosilicate glass capillaries were used to measure extracel-

lular activity of single MGC neurons in a manner similar to

perforated-patch recording. 50 ms stimulations of (E)-10,(Z)-12-

hexadecadienal (bombykal), the primary component of the

conspecific female’s sex pheromone, (E)-11,(Z)-13-pentadecadienal

(C15, a chemically more stable mimic of another essential

component of the sex pheromone), and their blend were presented

at various concentrations (10 ng and 100 ng used for the current

study). After recording, neurons were injected iontophoretically

with Lucifer Yellow CH for morphological characterization.

For Ostrinia recording, odorants were diluted in redistilled n-

hexane and applied on a filter paper inside a Pasteur pipette.

Stimuli were presented as a 500 ms stimulation of (Z) or (E)-11-

tetradecenyl acetate and their mixture at a range of concentrations

(1 ng and 10 ng data used for our analyses). The purity of the

odorants was verified using GC. After physiological characteriza-

tion, neurons were injected iontophoretically with neurobiotin.

Discrete wavelet transform of spike trains
We made use of the DWT here to localize in time and

frequency relevant features of instantaneous rate functions derived

from spike trains encoding odors among AL neurons. The

temporal period over which we performed the DWT for

recordings in the isomorphic AL of Manduca and the MGC of

Ostrinia lasted 1.4 s, starting when the odorant reached the

antenna (stimulus onset; determined empirically in [9]) and

continuing for 900 ms after stimulus offset. As control, we also

analyzed the 1.4 s preceding the stimulus. For juxtacellular PN

recordings from the Manduca MGC, the temporal period lasted

1.4 s, starting when the odorant reached the antenna (including a

120 ms mechanical delay) and continuing for 1350 ms after

stimulus offset.

The steps followed to obtain the wavelet coefficients for each

trace are shown in Figure 2. First, spikes (Figure 2A) were detected

when the membrane potential crossed a threshold set to half of the

maximum peak amplitude. In the case of the juxtacellular Manduca

MGC recordings the voltage was previously high pass filtered and

the threshold was set to one third of the maximum peak

amplitude. Detected spikes (Figure 2B) were then checked

graphically to discard false positive or negative counts, and the

threshold was varied in some cases to ensure a correct detection.

The series of firing times for each trace were then represented as

sums of delta functions (Figure 2B), which were convolved with

unit area Hanning windows (half width = 50 ms) to obtain

instantaneous rate functions expressed in Hz [32,33]. It should

be noted that the use of alternative Hanning window widths (e.g.

5 ms) did not significantly alter the overall results. The rate

functions were divided into 128 bins (Figure 2C, bin dura-

tion = 10.94 ms) and decomposed into 4 frequency band levels

(Figure 2D) using a dyadic discrete wavelets transform algorithm

[17] with a Daubechies (db1) kernel [16]. In this way, we obtained

4 sets of detailed coefficients and 1 set of approximation

coefficients that were squared to quantify the power spectral

density (PSD) of the spiking rate function (plotted with color code

in Figure 2E) in specific time windows and frequency bands. The

number of detailed coefficients was as follows: 64 in the 1st level

(22.86 to 45.71 Hz), 32 in the 2nd level (11.43 to 22.86 Hz), 16 in

the 3rd level (5.71 to 11.43 Hz) and 8 in the 4th level (2.86 to

5.71 Hz). The approximation coefficients (0 to 2.86 Hz) were also

8. Thus, using the complete set of 128 coefficients, we constructed

the frequency bands of the original signal. Following this

procedure, the response and control periods were analyzed in

successive time windows having different duration in each

decomposition level, the duration being equal to the analyzed

time (1.4 s) divided by the number of coefficients in the

corresponding level.

The corresponding squared coefficients of the two data sets (e.g.,

responses to mixture and single component) were statistically

compared (see Statistical Comparisons, below; Figure 2F) in order

to localize significant features across the entire neuronal popula-

tion. The pre-stimulus control periods were also compared for

significant differences to control for false positives of the method.

Ringing effects were minimized by the use of the db1 wavelet

kernel, although we obtained similar results using other kernels

(e.g. higher order db and rbio kernels).

Statistical Comparisons
Using the DWT-based procedure described above, we searched

for significant differences in the value of each squared coefficient

for three comparisons: 1) mixture vs. single odorants at the

mixture concentration, 2) single odorants at low vs. high

concentration and 3) single odorants compared to each other.

We divided the data set into subsets by response type (excited,

inhibited, or biphasic neurons; Figure 1) and morphological type

(projection neurons, PNs and lateral interneurons, LNs in M. sexta,

and MGC neurons in M. sexta and O. nubilalis) following the

classifications provided in [9]. Comparisons were performed only

within these subsets. We assessed significant differences between

correspondent squared coefficients with a Mann-Whitney U-test,

using false discovery rate (FDR) [34–36] as a method to correct for

multiple comparisons. Our null hypothesis was that there was no

difference between two compared categories for any correspond-

ing squared coefficients. The differences were considered signif-

icant when the uncorrected p values were smaller than the crit_p

value obtained using a FDR level q set to 0.10 (Table 1). With this

choice of q we did not find any significant difference in the pre-

stimulus control periods of tested data sets. However, we also

considered differences as marginally significant when the uncor-

rected p values were lower than a crit_p obtained using q,0.25 if

the differences were found in the stimulus period and absent in the

control period, and occurred during time periods not already

indicated as significant (Table 1).

The associated time windows are indicated with red bars

(q#0.10) or yellow bars (q,0.25) on the abscissas (Figures 2 and

3). As an additional test, we randomly shuffled stimulus labels

within each data subset separately. After this manipulation, no

significant differences were observed, indicating that the results are

Temporal Features in the Moth Antennal Lobe
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unlikely to arise by chance. The data analysis was performed using

customized Matlab codes (File S1).

Comparison to peristimulus time histogram analysis
(PSTH)

The isomorphic AL neuron recordings of Manduca sexta that we

studied here with DWT were previously analyzed using the mean

firing rate and the area bellow the PSTH over the total response

period (1.4 s) [9]. In order to compare the time localization

obtained using the DWT with a standard temporal spike train

analysis, we calculated PSTHs of the response and pre-stimulus

control periods using a bin of 50 ms as in [9]. The spike counts

found for each of the 28 bins were compared between the different

conditions, in a similar manner as for the wavelet coefficients. The

time periods found to be significant (Table 2) are shown with

orange (q#0.10) and green (q,0.25) bars under the abscissas of

Figures 3 and 4. Thus, the red and orange bars compare

significant windows for DWT and PSTH, while yellow and green

bars compare marginally significant windows for both analyses. In

the case of PSTH we included one case of q = 0.28 (Manduca

isomorphic PNs, low vs. high concentration of components, green

bars in Figure 3B bottom; Table 2) for the sake of comparison with

DWT.

Figure 2. Example of DWT analysis for two traces. Left, response to a mixture, and right, response to a single component at mixture
concentration. Stimulus period shown as gray bar. Raw traces (A) were transformed into sums of delta functions (B) from which instantaneous rate
functions (in Hz) were determined. Dotted lines in (A) indicate set spike threshold. The rate functions were then separated into 128 bins (C) and used
as input to the DWT, which decomposed the binned data into 4 frequency band levels 1–4 and one approximation (or scaling) level 5 (D). Color code
indicates the power spectral density (PSD) corresponding to the resultant wavelet coefficients (E). The instantaneous spiking rate for each trace was
thus decomposed in specific frequency bands and time windows. Finally, the corresponding PSD values (E) were statistically compared using a Mann-
Whitney U test (complete data sets shown as rasters in F). The time windows associated with each wavelet coefficient were considered significant
(red bars on the abscissa) when the uncorrected p values were smaller than the crit_p value obtained using a FDR level q set to 0.10 (Table 1).
doi:10.1371/journal.pone.0084037.g002
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Results

We analyzed the response of 29 neurons (7 biphasic, 5 excited,

and 9 inhibited PNs; 2 biphasic, 4 excited, and 2 inhibited LNs) in

the sexually isomorphic glomerular portion of the Manduca sexta

AL responding to low/high concentrations and mixtures of active

plant volatiles [(+) linalool, (2) linalool, phenyl acetaldehyde,

benzaldehyde, hexanol, nonanal or trans- 2-hexenyl acetate (used

instead of nonanal in some experiments), and cis-3-hexenyl

acetate]. We also analyzed 24 neurons (8 biphasic, 9 excited and

7 inhibited) in the MGC of Ostrinia nubilalis responding to low/high

concentrations and mixtures of (E) and (Z)-tetradecenyl acetate,

and another 5 PNs from the MGC of M. sexta responding to low/

high concentrations and mixtures of Bombykal and C15. Within

each morphological and response type, we compared the response

of the neurons to single odorants, to single odorants at low vs. high

concentrations and to mixtures vs. single odorants at the mixture

concentration. In Figure 3 we present the cases in which

significant differences were found in the time-frequency analysis

of the instantaneous rate function in sexually isomorphic AL

neurons of Manduca sexta. The results for MGC neurons of Ostrinia

nubilalis and Manduca sexta with excited response profiles are

depicted in Figure 4.

PNs showing biphasic response in sexually isomorphic AL

neurons of Manduca sexta displayed higher firing rate for mixtures

than for single components at the mixture concentration in a long

lasting time window from 175 ms to 525 ms after stimulus onset

(Table 1; Figure 3). This suggests that biphasic PNs respond to

stimulus mixtures with a shorter latency than to single compo-

nents. The difference was localized across all frequency bands

(levels 1–5; 0 to 45.71 Hz) early in the response onset (175 to

350 ms). In the low frequency band (level 5, 0 to 2.86 Hz, Table 1)

of the instantaneous rate function, the difference extended from

175 to 525 ms. Thus, no significant differences were observed

25 ms after stimulus offset, indicating that the larger response

evoked by the mixture occurred only within the stimulus period.

These biphasic isomorphic PNs also exhibited a marginally

significant difference in response to different concentrations of

single odorants (Figure 3B, top) occurring in the highest frequency

band (level 1, 22.86–45.71 Hz) during a small 66 ms time window

from 394–459 ms following stimulus onset. The significant wavelet

coefficients are listed in Table 1.

Table 1. Significant differences found between corresponding wavelet coefficients in the time-frequency analysis of biphasic and
excited PNs from sexually isomorphic and MGC AL neurons of Manduca sexta.

Comparisona
Wavelet
Levelb

Wavelet
Coefficient

Starting
Time Window

Ending
Time Window

Mann-Whitney
U p value

FDR
q value

FDR crit_p
value

Biphasic Isomorphic PNs 1 10 196.875 218.75 0.0011 0.04 0.0022

Mixture vs. 1 11 218.75 240.625 0.0010

single components 1 14 284.375 306.25 0.0016

2 5 175 218.75 0.0009

3 3 175 262.5 0.0016

4 2 175 350 0.0018

5 2 175 350 0.0013

1 9 175 196.875 0.0036 0.10 0.0091

2 6 218.75 262.5 0.0043

2 7 262.5 306.25 0.0047

2 10 393.75 437.5 0.0022

3 4 262.5 350 0.0055

5 3 350 525 0.0084

1 58 1246.875 1268.750 0.0091 0.11 0.0123

Biphasic Isomorphic PNs 1 21 437.5 459.375 0.0079 0.13 0.008640569

1 20 415.625 437.5 0.0086

Excited Isomorphic PNs 1 52 1115.625 1137.5 0.0023 0.18 0.0028

Low vs. high 1 54 1159.375 1181.25 0.0104 0.22 0.0119

concentration 1 55 1181.25 1203.125 0.0070

4 2 175 350 0.0028

5 6 875 1050 0.0090

5 7 1050 1225 0.0080

Excited MGC PNs 1 39 831.25 853.125 0.0027 0.22 0.0080

Mixture vs. 1 42 896.875 918.75 0.0027

single components 3 13 1050 1137.5 0.0027

aAll LNs, other MGC neurons and inhibited PNs exhibited no significant differences (see Results).
bWavelet levels correspond to the following frequency bands: level 1: 22.86 to 45.71 Hz, level 2: 11.43 to 22.86 Hz, level 3: 5.71 to 11.43 Hz, level 4: 2.86 to 5.71 Hz, level
5 (scaling): 0 to 2.86 Hz.
doi:10.1371/journal.pone.0084037.t001
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PNs showing excited responses in the sexually isomorphic

portion of the Manduca sexta AL exhibited marginally significant

differences in response to different concentrations of single

odorants (Figure 3B, bottom). In a early time window (175 to

350 ms), the lower concentrations evoked larger response than the

higher concentrations only in the wavelet level 4 corresponding to

the frequency band 2.86 to 5.71 Hz. Conversely, the higher

concentrations evoked larger responses in a late time window from

875 to 1225 ms after stimulus onset localized in 2 different

frequency bands, corresponding to wavelet levels 5 (0–2.86 Hz)

and also 1 (22.86–45.71 Hz) during part of this time period (see

Table 1). This indicates that higher concentrations of individual

odorants evoked responses that were less intense during the

stimulus, but the spike trains were sustained at an increased rate

for longer time after stimulus offset (at least 350–700 ms following

the stimulus).

No other significant windows were found in PNs or LNs of

different response profiles in Manduca sexta for mixtures, concen-

tration or identity of single components (see examples in Figure 3).

We also obtained no significant differences among neurons

responding to pheromone components in the MGC of Ostrinia

nubilalis (Figure 4), suggesting that the individual firing patterns

observed in the responses do not provide significant temporal

information to discriminate compounds, concentrations, or

mixtures.

To confirm whether the observed differences were a result of

AL portion (isomorphic glomeruli or MGC), species (Manduca or

Ostrinia), or morphological type (i.e. projection or inter-neuron), we

additionally assessed the response of MGC PNs of Manduca sexta

(Figure 4). In this data set, all PNs exhibited excited responses.

Marginally significant differences were found in a series of discrete

time windows roughly 800 ms following stimulus offset (Table 1;

Figure 4). These responses were confined to wavelet levels 1

(22.86–45.71 Hz) and 3 (5.71 to 11.43 Hz) in discontinuous

windows between 831 and 1137 ms following stimulus onset. As a

result, it appears that the differences observed in M. sexta

isomorphic PNs are predominantly a result of their innervation

of isomorphic glomeruli in the AL, rather than their species origin

(Manduca) or morphological type (PN).

The comparisons in which we found significant differences in

the sexually isomorphic portion of the Manduca sexta AL (mixture

vs single odorants in PNs with biphasic response and single

odorants at high vs low concentrations in excited PNs) are in

general agreement with the findings of [9]. The time localization

obtained using DWT (Table 1) and PSTH (Table 2) occurred in

similar time periods (compare red vs. orange and yellow vs. green

bars in Figs. 3 and 4). However, the segments found significant

with the DWT occurred over longer durations and in most cases

reached lower FDR values than with the PSTH.

Figure 3. Temporal Response Patterns in sexually isomorphic AL neurons. (A) Raster plots showing the response of PNs to a mixture of 2–7
components and the single odorants at mixture concentration for biphasic (top) and excited (bottom) response types. (B) Raster plots showing the
response of PNs to single odorants at low (161024) vs. high (2–761024) concentration as displayed as in A. Rasters include every recording from all
sampled PNs for a given stimulus and response type. Each raster provides an example case on top showing the membrane potential recorded from
same PN for the two different types of stimuli compared. Top row of colored bars on the abscissas indicate time windows where significant or
marginally significant DWT differences in the temporal response patterns were found (red, FDR#0.10; yellow, FDR,0.25, Table 1). In the second row
of colored bars, time windows exhibiting significant differences via PSTH analysis are shown (orange, FDR#0.10; green, FDR,0.25; note that
FDR = 0.28 for comparison in B lower panel, Table 2). Stimulus timing is shown as a gray vertical bar.
doi:10.1371/journal.pone.0084037.g003

Temporal Features in the Moth Antennal Lobe

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e84037



Discussion

Here, we apply a new approach based upon the DWT to assess

sexually isomorphic and specialized portions of the moth AL and

statistically localize particular features of spike trains in both time

and frequency that discriminate odor stimuli. As applied to

existing data sets, the DWT analysis not only confirmed results

obtained by rate and latency analyses [9,26], but exposed novel

information-bearing temporal features within the response train.

Below, we discuss these differences in temporal patterning from

sexually isomorphic and specialized neurons of the moth AL, and

suggest potential sources for such localized response features.

A ‘‘latency code’’ for mixtures in sexually isomorphic AL
neurons

In biphasic PNs, the onset latency was significantly shorter for

mixtures than for single components at the mixture concentration.

It is important to note that, as discussed previously [9], these

observed differences in latency are a product of neuronal

processing of mixtures rather than stimulus presentation, as

component and mixture intensities were equilibrated using a

unique stimulus presentation system (for more information see

[31]). In addition, these differences in latency were not observed

when presenting different intensities of the individual components

themselves (Figure 3). Thus, our results confirm the finding of the

previous study [9] that mixture information is transmitted by the

AL more quickly than for its components using a ‘‘latency code’’

[8,9]. However, our previous study could not localize these

differences in time and frequency. The present DWT analysis

shows that the latency code is present from very low (,3 Hz) to

relatively high (11–46 Hz) frequencies.

The observed differences in response between mixtures and

components also end abruptly following stimulus offset. This

suggests that any mixture information carried in the localized

temporal response features does not persist after the stimulus has

ended. Increased stimulus information during signal transients

(onset and offset) has also been reported in PN responses in the

locust [4]. In addition, a study in Bombyx mori [37] showed that

onset and offset responses have different properties and might rely

Figure 4. Temporal Response Patterns in the MGC. A–B Confocal
micrographs of two male ALs of Z-strain O. nubilalis, each extracting an
overlay of several optical orthogonal slices (38 in A, 20 in B).
Neurobiotin-injected cells were stained with Alexa-conjugated Strepta-
vidin and alpha-synapsin/Alexa for background staining. Pictures were
obtained by confocal microscopy of two separate whole mount brain
preparations using a 406, 1.3 Oil DIC objective lens (Plan-Neufluar,
Zeiss). Optical sections (1031/102461024 pixel) were taken at intervals
of 0.9 mm (A) and 0.7 mm (B). A and B display PNs innervating the MGC
(outlined with dotted line); soma in B indicated with asterisk; scale bar:
50 micrometers. C–D Raster plots showing spiking times in different
MGC neurons with excited response type. (C) Raster plots of excited
neurons in the Ostrinia nubilalis MGC stimulated with the mixture
(upper panel; 10 ng total) and the individual pheromone components
at the mixture concentration (lower panel). (D) Excited PNs in the
Manduca sexta MGC stimulated with the mixture (upper panel; 100 ng
loading) and the individual pheromone components at the mixture
concentration (lower panel). Colored bars indicate significant differenc-
es as in Figure 3. Stimulus timing shown in grey.
doi:10.1371/journal.pone.0084037.g004

Table 2. Significant differences found in the PSTH analysis of biphasic and excited PNs from sexually isomorphic and MGC AL
neurons of Manduca sexta.

Comparisona Bin
Starting
Time Window

Ending
Time Window Mann-Whitney U p value FDR q value FDR crit_p value

Biphasic Isomorphic PNs 7 300 350 0.0013 0.03 0.0016

Mixture vs. 4 150 200 0.0093 0.07 0.0096

single components 8 350 400 0.0016

6 250 300 0.0096 0.16 0.0273

Biphasic Isomorphic PNs 7 300 350 0.0078 0.24 0.0168

Low vs. high

concentration

Excited Isomorphic PNs 7 300 350 0.0239 0.28 0.0297

Low vs. high 21 1000 1050 0.0093

concentration

Excited MGC PNs 20 950 1000 0.0120 0.20 0.0140

Mixture vs.

single components

aAll LNs, other MGC neurons and inhibited PNs exhibited no significant differences (see Results).
doi:10.1371/journal.pone.0084037.t002
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on different mechanisms. The source of this offset response might

be due to peripheral input to the AL. Temporal coding of OSNs

for identity, concentration, and stimulus timing has been shown to

directly influence resultant PN responses [38]. A recent paper also

suggests that PNs in the MGC of moths closely track the stimulus

duration, and that this tracking could be due to inhibitory LN

connections driven by OSN input [39].

The broad frequency band (0–45 Hz) of the differences in

response to mixtures vs. single components is noteworthy in that it

persists for only 175 ms in the middle of the stimulus window

(ending at 350 ms after stimulus onset). Interestingly, this broad

frequency information exists in a time window closely preceding

the response time to conditioned odor found in insects (honeybees;

,400 ms [40]). This broad frequency band including high

frequency differences in response to mixtures may allow a more

effective recruitment of Kenyon cells in the mushroom body ([41],

see below). A similar time period was also observed for low

frequency differences (2.86–5.71 Hz) between responses to differ-

ent concentrations in excited PN cells (Table 1), with low

concentrations evoking larger responses than higher concentra-

tions (Figure 3B, bottom panel). However, our analyses were

performed on purely physiological data and cannot directly

confirm any connection to higher order processing, learning, or

behavior. Nevertheless, these results suggest that our DWT

analysis could provide an important tool to reveal unique spike

information that could potentially be correlated to behavioral

output.

Long-term ‘‘odor trace coding’’ for concentrations in the
moth AL

Single components presented at two different concentrations

elicited specific changes in the slow temporal kinetics of excited

type PNs in the sexually isomorphic neurons of the M. sexta AL

(Figure 3, Table 1), but no significant differences in localized

temporal response features were found in other isomorphic

neurons. Although these values were marginally significant

(Table 1, q = 0.22) due to the large variation within each dataset

(Figure 3-B, bottom panel), they far exceeded any differences

within the control period for these cells (q = 0.5). In addition, our

previous analysis of the data [9] also found differences in response

to concentration among excited type neurons, but could not

localize these differences in time within the response. Using the

DWT analysis, we discovered that the differences occurred in two

different time periods, an early window (175 to 350 ms) in which

low concentrations elicited larger response only at low frequencies

(2.86–5.71 Hz), and a late window where the response was larger

for high concentrations. This late window explains the results in

[9], in which the response averaged along the total 1.4 s response

time was found to be larger for higher concentrations. In this last

window both low and high frequency differences (,2.86 Hz,

22.86–45.71 Hz; Table 1) were found late in the post-stimulus

period (375–725 ms after stimulus offset), suggesting a form of

‘‘odor trace coding’’ [12–14] for concentration in the sexually

isomorphic portion of the AL.

Recent trace conditioning versions of classic Pavlovian learning

experiments in moths [42], bees [13] and flies [14] show learning

even when the unconditioned stimulus is separated from the

conditioned stimulus in time (i.e. there is no overlap in time

between stimuli). However, these studies could find no correlation

with trace conditioning and trace coding at either sensory or

projection neuron levels. Intriguingly, the high frequency differ-

ences in response to concentration were only present in this later

time window (22.86–45.71 Hz; ,600–700 ms following stimulus

offset), and correspond well with the hypothesized integration time

constant (i.e. maximal separation of incoming EPSPs that still

results in temporal summation) for Kenyon cells in the mushroom

body (12–35 ms or 14–41 Hz, see Figure 2 in [41]), the proposed

learning center of the insect brain [29]. This provides a tantalizing

hypothesis that such high frequency information might provide

higher brain centers with trace information for learning and

memory. Although our data were derived from purely physiolog-

ical analyses, the presence of long term differences in odor trace

coding among excited projection neurons suggest that a similar use

of our wavelets analysis on paired trace conditioning and

physiological studies may reveal subtle differences in coding not

seen using the traditional spike or calcium trace analyses.

Localized temporal features in the MGC vs. sexually
isomorphic AL neurons

Our assessment of neurons residing in the sexually isomorphic

portion of the M. sexta AL and the pheromone-specific macro-

glomerular complex (s) of Ostrinia nubilalis suggests that localized

temporal response features are neither de facto of, nor a necessity

for, pheromone coding. When presented with single pheromone

components at low and high concentrations as well as the mixture

itself, no significant differences in localized temporal response

features emerged for MGC neurons. To confirm that these results

were not due to species-specific differences, we additionally

assessed the response of MGC PNs in Manduca sexta. Few

significant differences were found, including a series of discontin-

uous marginally significant differences roughly 800–1100 ms

following stimulus onset at frequencies between 5.71–11.43 and

22.86–45.71 Hz. The sparse and discontinuous nature of the

results for both MGC data sets in comparison to isomorphic

Manduca PNs suggests that they do not likely play a significant role

in odor coding, although the late time periods may suggest some

role for trace coding (see above section). The apparent differences

between temporal coding in sexually isomorphic vs. MGC neurons

may reflect the specificity of their input, rather than any distinction

in cellular properties or overall network connectivity. A ‘‘mixture

response’’ in the sexually isomorphic portion of the AL reflects the

activity of several OSNs [43] with different affinities and responses

to odor components [44,45], while the MGC response here results

via input from only a few OSN types specific for pheromones (two

in this study, [46,47] and references therein). This creates a much

higher level of OSN and lateral input within the sexually

isomorphic neurons, which alters the slow temporal response. In

addition, pheromone components can be coded as a labeled-line

from OSN to behavior [48,49], which does not impose, or

necessitate complex temporal coding.

DWT analysis of rate functions
Our application of the DWT to spike trains was inspired by its

use in the processing of evoked potentials (e.g. [50]). As the spike

firing times form a discontinuous signal, we used rate functions as

the input signal for the DWT analysis. These rate functions were

obtained from the spike trains with a symmetric convolution filter

(Hanning window) to achieve a satisfactory localization in time

(width can vary without significantly altering the results). The rate

functions obtained (e.g. [33]) provide a relatively smooth

representation of spiking activity, and minimize artifacts in the

DWT coefficients due to the coarse quantization of binned spike-

counts.

In the field of evoked potentials, a subset of wavelet coefficients

is used for signal characterization. These relevant coefficients are

often selected by fixing a threshold (e.g. [50]) or by picking the

coefficients (manually or automatically) that prove to be useful for

a specific purpose, for example to de-noise an evoked potential
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signal [19,51]. In this context, our approach was to statistically

compare the coefficients obtained for the response to different

types of odor stimuli (e.g., mixture vs. single components, or low

vs. high concentration) for all available neurons to determine

which coefficients presented significant differences. We then

highlighted the times associated with them in raster plots to

discuss their biological relevance.

In comparison to the PSTH analysis of the spike data (compare

Tables 1 and 2 and colored bars in Figures 3 and 4), the time

localization of the differences that we found with DWT was

similar, albeit over longer time periods and generally reaching

lower FDR values. The difference between the two analysis

methods could be due to the fact that the DWT can detect

differences in several frequency levels, and the significant windows

are formed by adding the times corresponding to all levels where

significant differences are found, thus yielding greater sensitivity in

comparison to a PSTH-based analysis at the same FDR level.

Note that the main DWT differences often appear in several

frequency levels (Table 1). The DWT also uses time windows of

different duration for each wavelet level, while the PSTH-based

analysis uses only a single bin duration. In addition to this

localization in time, the DWT provides localization of differences

in the frequency domain, which is not achieved by the binned

spike counting. These multiple scales of time-frequency resolution

constitute the main advantage of the DWT. In other words, while

both the DWT and PSTH-based analyses reveal similar time

periods where significant differences are observed, only the former

method provides information regarding the frequency bands

where these differences occur. This frequency information can

enable additional inferences as to the nature of the neuronal

processing, and in particular on the local or global scope of the

information being processed. For example, information present in

the DWT levels one and two (higher frequencies) is expected to be

more efficiently conveyed to higher brain areas since it closely

matches the time-scales of synaptic integration in the Kenyon cells

of the mushroom body [41], while significant differences in higher

levels (lower frequencies) might reflect mainly local processing.

Future Directions
Our use of the DWT analysis on sexually isomorphic and

specialized MGC neurons in the moth AL suggests that localized

temporal responses at specific frequencies can lead to the

emergence of olfactory ‘‘features’’ for higher order processing.

Slow feature analysis [52,53] provides a mathematical description

for how slowly varying features can be coded from dynamic input,

and may provide a novel approach to study the temporal responses

of antennal lobe neurons. A recent study applied this analysis to

simulated cortical microcircuits and found that slow pattern

discrimination allows networks to extract information over several

hundred ms and learn without supervision to code time relative to

stimulus onset [54]. Although not yet applied to olfactory circuits,

such a mechanism could explain the slowness of the antennal lobe

as a principle for self organization [52] in the olfactory system. In

line with these ideas, our analysis suggests that localized temporal

features of spike trains are indeed playing a role in the encoding of

mixtures and concentration levels in the sexually isomorphic AL

neurons of Manduca sexta, though not in the MGC of Ostrinia

nubilalis or Manduca sexta. Dynamical modeling techniques, as have

been used recently to assess mixture processing in the sexually

isomorphic [43] and MGC [28] AL networks, could potentially

assess the role of slow feature analysis in olfactory processing.

Supporting Information

File S1 MATLAB m files for the calculation of DWT
coefficients, statistical comparison and multiple com-
parison correction using FDR. Compressed folder contains

the following files: fdr_bh.m, batch_DWT.m, getDWTcoeff.m,

DWT_spiketimes_analysis.m,, and example_data_DWT.mat. File

‘‘batch_DWT.m’’ is the main script. Example spike time data

found in ‘‘example_data_DWT.mat’’. When executed with the

indicated parameters, ‘‘batch_DWT.m’’ outputs the results

reported in Table 1 for a FDR of 0.1 using the example biphasic

PNs of recorded from the isomorphic portion of the Manduca sexta

antennal lobe. All scripts and functions are custom, with the

exception of ‘‘fdr_bh.m’’, which is also available from http://

www.mathworks.com.au/matlabcentral/fileexchange/29274-

mass-univariate-erp-toolbox/content/fdr_bh.m (last accessed 16/

12/2013).
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