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Abstract

MicroRNAs (miRNAs) are ,20–24 nucleotide-long regulatory RNAs that have been proven to play important roles in many
cellular processes. Since their discovery, a number of different techniques have been developed to detect and accurately
quantify them. For individual mature miRNA measurements, quantitative stem-loop real-time PCR represents a widely used
method. Although there are some data on optimization of this technique, there are still many factors that have not been
investigated yet. In this study, we have thoroughly optimized this technique and pointed out several important factors that
influence reliable quantification. First, we found that total RNA input can affect the measurements. Second, our data showed
that carryover DNA contamination could also mislead the detection in a sequence-specific manner. Additionally, we
provided evidence that different 39 isomiR species of a particular miRNA can be reverse transcribed and cross-detected even
by specifically targeted assays. Besides these, we have investigated the measurement of reaction efficiencies from total RNA
samples and the accuracy of simultaneous reverse transcription reactions for increasing reliability and cost effectiveness
without the loss of sensitivity and specificity. In summary, we provide a detailed, refined protocol for reliable detection of
microRNA species by quantitative stem-loop PCR.
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Introduction

MicroRNAs (miRNAs) are short, non-coding regulatory RNA

molecules that control mRNA stability and translation by targeting

the 39 untranslated region of given mRNA species [1,2]. They

influence various cellular functions and now are believed to form a

crucial and extensive regulatory network similar to that of

transcription factors [3]. The biogenesis of miRNAs consists of

different, subsequent processing steps during which mature

miRNA is liberated from longer precursor RNA forms [4–6]. In

order to understand proper regulation and function, the different

RNA forms can be studied and measured by various techniques.

In the general laboratory practice, however, it is often sufficient to

measure individual mature miRNA steady state levels. Neverthe-

less, measurements are challenging due to their short size, and

sequence specific detection methods are more limited than in the

case of mRNA molecules. Traditional hybridization techniques

using radioactively or fluorescently labeled nucleic acids are

generally applied, including in situ hybridization [7,8] or Northern

blotting [9–11]. Their sensitivity can be strongly increased by

using specifically modified artificial nucleotides, such as locked

nucleic acids (LNAs) [12–15], but miRNAs with low abundance

can still be beyond the sensitivity of these methods [16,17].

Similarly to mRNA detection and quantification, measuring the

expression level of miRNA species by real-time PCR represents

one of the most sensitive and accurate methods developed so far

for such purposes. However, due to the short nature of miRNAs, a

specific stem-loop real-time PCR technique has been developed

among other methodologies [18–20]. The detection of mature

miRNAs by this technique is composed of two main steps

(Figure 1). The first step is a specifically targeted cDNA synthesis

when a sequence specific stem-loop primer is hybridized to the

mature miRNA and used to initiate the reverse transcription

reaction. The second step is the real-time PCR during which the

extended and transcribed miRNA is quantified using oligos

specific for the miRNA and the primer loop sequences. This

technique is fast and could be standardized for high-throughput

purposes. However, this method has the a priori assumption that

the miRNA in question has a well-defined 39 end. Conversely,

based on deep sequencing results, recent reports described

significant sequence length heterogeneity of miRNAs originating

from a given locus, often having significant variability of their 59
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and/or 39 ends [21,22]. Moreover, the distribution of such

isomiRs seems to vary among cell types or physiological statuses of

the cells [23,24]. Therefore, such 39 end variability could seriously

influence miRNA detection by stem-loop PCR by interfering with

the very first step, the sequence specific reverse transcription.

There are several data on optimization of miRNA detection from

discussing RNA isolation techniques to comparing various

platforms [25–30]. Nevertheless, there are many other factors

during individual mature miRNA detection by the widely used

stem-loop quantitative PCR that are not discussed yet, although

they play important roles in the accuracy and reproducibility of

the measurements.

In this study, we intended to systematically investigate the stem-

loop real-time PCR detection method of small RNA molecules.

Careful optimization of this technique pointed to a previously

underestimated aspect, that total RNA input and DNA contam-

ination could severely influence the accurate detection. Moreover,

we provide evidence that 39 isomiR species are not exclusively

measured by the stem-loop qRT-PCR methodology, and thereby

can be cross-detected. This latter problem could not be overcome

even by using the poly(A)-tailing-based qRT-PCR methodology.

On the other hand, simultaneous reverse transcription of the

target miRNA and the endogenous control does not necessarily

influence the outcome of the results and may be a more accurate

and cost effective approach for miRNA level quantitation. Based

on our experiments, we suggest a refined protocol of miRNA

detection by stem-loop real-time PCR technology.

Results

Relative quantification, reaction efficiency and the
amount of reverse transcribed RNA

In quantitative RT-PCR applications, determination of the

target is based on absolute or relative quantification. For

individual miRNA measurements, relative quantification is the

commonly used method, when the amount of the target is

determined relative to an endogenous control. Since the target is

compared to the control, they must be amplified with similar

efficiencies. The accurate amplification efficiency in practice is

calculated from the slope of a standard curve made by at least 5

points, encompassing the relevant concentration range of the

application. Making an accurate and reproducible standard curve

for miRNAs from total RNA samples (which is physiologically

more relevant than using synthetic oligos) is challenging, since

many miRNAs are present in low abundance. A sensitive balance

has to be found between the sufficient dilution of the reverse

transcription reaction (e.g.: for mRNA detection, it is a minimum

of 1:10) and an optimal Ct value (delayed by the dilution of the

reverse transcription reaction; Figure S1). Therefore, we recom-

mend the employment of small dilution steps (e.g. 1.56) with only

3 or 4 points in the strict range of the measurement. If there is

appropriate correlation between the control and target, the

relative quantification method can be used at the particular

dilution range for the analysis of the measurements.

The next question is about the optimal amount of total RNA

used for the reverse transcription reaction. As mentioned above,

mature miRNA levels are often low in certain samples. Therefore,

one could speculate to increase the amount of total RNA to

increase the input of mature miRNAs in the reverse transcription

reaction. To investigate this question, we measured more and less

abundant miRNAs (abundance was estimated based on previous

data: http://www3.appliedbiosystems.com/cms/groups/

mcb_marketing/documents/generaldocuments/cms_089374.pdf

and [17,30]) from different total RNA input, relative to the widely

used U6 small nuclear RNA (snRNA) or to the miR-21-5p

endogenous miRNA. Target and endogenous control samples

were prepared simultaneously and measured in the same plate

during the real-time PCR reaction. The increase of the total RNA

amount resulted in a decrease of mature miRNA detection when

applying the U6 endogenous snRNA control (Figure 2A). It has

dropped significantly above 20 ng in general and the effect did not

seem to depend on the abundance of the miRNA target.

Considering the miR-21-5p endogenous control, the effect of the

total RNA input on the measurements was less pronounced

(Figure 2B). Finally, the lower range of RNA input was measured

less accurately probably because the low template concentration

leads to delayed Ct values. Summarizing the results, the optimal

range of RNA input varies depending on endogenous controls and

targets, therefore, should be optimized. Based on our data,

however, 10 ng total RNA input can be appropriate when using

U6 endogenous snRNA control and 20 ng with the application of

miR-21-5p endogenous miRNA control.

Different targets can be reverse transcribed in the same
reaction

For cDNA synthesis of miRNAs, the different small RNA

targets have unique, sequence specific stem-loop primers to assist

their reverse transcription. Although numerous miRNAs are

reverse transcribed together in array experiments [31–33], it is

indicated in the general protocol that for individual miRNA

measurements, the endogenous control and the target have to be

reverse transcribed in separate reactions (http://tools.

lifetechnologies.com/content/sfs/manuals/cms_042167.pdf). To

examine the feasibility of the simultaneous reactions, we compared

real-time PCR measurements of simultaneously and separately

reverse transcribed samples. We measured the level of several

miRNAs including miR-1226-3p and miR-33b-5p in stably

overexpressing HeLa cell lines, and the endogenous miR-21-5p

in normal HeLa cell line. We found that there is no significant

difference in the results when the reverse transcription was done

separately or together with the endogenous control for the

investigated assays (Figure 3). However, it is important to note

that the long term storage of different hairpin primers mixed

together in the same solution is not recommended as it may lead to

a false positive detection of mature miRNAs (data not shown). In

summary, the level of an individual miRNA can be determined by

using cDNA samples in which the given target and the

endogenous control are reverse transcribed together, thereby

reducing potential pipetting errors and making the measurements

more cost effective.

DNA contamination significantly influences the
measurement of mature miRNAs

Next, we investigated the effect of genomic and plasmid DNA

on miRNA measurements. Based on our previous data from

transient transfections, we had indications that contaminating

DNA might interfere with mature miRNA detection. Thus, we

examined whether stem-loop qRT-PCR is specific to the present

mature miRNA or it has false positive signal from samples which

do not contain the particular target. We tested miR-1226-3p and

miR-33b-5p assays on genomic DNA (gDNA), total RNA and

plasmid DNA (encoding the corresponding miRNA) samples. The

investigated plasmids differ only in their pre-miRNA coding

sequence. Total RNA and gDNA samples were derived from mir-

1226 and mir-33b overexpressing or parental HeLa cell lines. We

compared DNase treated and non-treated parallels for each

sample. After reverse transcription, we measured the mature
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Figure 1. Schematic representation of stem-loop microRNA quantitative RT-PCR. The two main steps are reverse transcription and real-time
PCR. In the first step, mature miRNA is extended and reverse transcribed by a sequence specific stem-loop primer. In the second step, the reverse
transcribed miRNA is quantified by a fluorescently labeled hybridization probe using the strand replacement reaction. According to the previous
protocol, all targets (e.g. endogenous control and target) should be reverse transcribed separately. In the dual-labeled probe based detection systems Q
stands for quencher, F for fluorophore. Red exclamation marks indicate crucial points of the procedure that are discussed in this paper.
doi:10.1371/journal.pone.0106315.g001
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miRNA levels in the above samples (Figure 4). The miR-1226-3p

probe detected 4 fold higher amounts (2 Ct difference) of mature

miRNA from the gDNA of mir-1226 overexpressing cell line

compared to the two ‘‘non-relevant’’ gDNA samples (from HeLa

and HeLa_mir-33b cell lines). In the case of the miR-33b-5p assay,

the measured miRNA levels were similar among all gDNA

samples. For RNA samples, as it was expected, both miR-1226-3p

and miR-33b-5p probes resulted in significantly higher detected

Figure 2. Mature miRNA detection from different amount of total RNA input. Different amount of total RNA samples were reverse
transcribed for the detection of a particular mature miRNA by real-time PCR. MiRNAs with various abundance were measured, using relative
quantification. The more abundant miR-1226-3p, miR-33b-5p and the less abundant miR-877-3p (mir-877*) were measured from cell lines stably
overexpressing the corresponding miRNA, while the abundant endogenous miR-21-5p from parental HeLa cell line. Concerning the endogenous
controls, the U6 snRNA (A) and the endogenous miR-21-5p (B) were applied. The optimal range of RNA input varies depending on endogenous
controls and targets. The corresponding concentration series (controls and targets) were prepared and measured simultaneously. Mean values of
three independent experiments (three biological parallels with three technical replicates) are shown. Error bars represent S.E.M.; samples are
compared to a chosen optimal condition (10 ng of total RNA). *: p,0.05.
doi:10.1371/journal.pone.0106315.g002

Figure 3. Reverse transcription of target and control can be done simultaneously. Mature miRNA levels of miR-1226-3p and miR-33b-5p
were detected in stably overexpressing HeLa cell lines, whereas the endogenous miR-21-5p in parental HeLa cell line. cDNA samples were used from
simultaneous or separate reverse transcription reactions of the endogenous control and the target. Experiments were carried out with three RT
parallels and three technical replicates, error bars represent standard deviations.
doi:10.1371/journal.pone.0106315.g003
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mature miRNA levels from the corresponding miRNA overex-

pressing cell line than in the controls. Concerning plasmid DNAs,

apparently similar amount of miR-33b-5p was detected from mir-

33b encoding plasmid as from mir-33b overexpressing cell line

derived RNA. This striking false effect was even more pronounced

in the case of miR-1226-3p when the mir-1226 expression plasmid

served as a template. There was 9 Ct difference compared to the

mir-1226 overexpressing cell line derived RNA sample, and about

14 Ct difference compared to the RNA backgrounds, representing

an apparent 5126 and 163846 higher miRNA amount,

respectively. From plasmids encoding other ‘‘non-relevant’’

miRNA, very low signals were detected both for miR-1226-3p

and miR-33b-5p. The above data indicate that the false positive

signals from the relevant plasmid samples are miRNA sequence

specific. Therefore, although mature miRNA molecules are not

present, signals can be apparently detected from DNA containing

the coding sequence of the corresponding pre-miRNA form.

These results were also confirmed by experiments using miR-877-

3p and miR-877-5p assays (data not shown).

Next, we intended to address the question that which part of the

measurement (reverse transcription or real-time PCR) misleads the

mature miRNA detection. To answer this question, first we made

quantitative real-time PCR for miR-1226-3p from reverse

transcribed and non-transcribed samples. We tested gDNA and

RNA samples from mir-1226 overexpressing cell line and we also

used mir-1226 encoding plasmid samples. Mir-33b overexpressing

cell line and mir-33b encoding plasmid samples served as non-

relevant controls. As shown in Figure 5A, there is a slight detection

during the real-time PCR reaction from the relevant plasmid DNA

without reverse transcription, but the majority of the false positive

signal is detected only when the reverse transcription reaction is

performed. We obtained similar results with the miR-33b-5p assay

(Figure S2). In summary, these data reveal the unexpected fact

that DNA may serve as a template during the reverse transcription

reaction in a (stem-loop primer) sequence specific manner.

In further experiments, we tested whether the above phenom-

enon has a real relevance, for example when investigating

miRNAs in transiently transfected cells. In such cases, RNA

samples are prepared from cells containing the transfected

plasmids. For these measurements we used RNA samples from

HeLa cells transiently transfected with different amounts of a mir-

1226 encoding plasmid (Figure 5B). The data showed that when

samples were not treated with DNase, a significantly higher

amount of miRNA was detected as compared to the DNase

treated samples. This problem occurred not only by using the

Trizol based total RNA isolation method, but also when applying

a column-based isolation protocol such as the mirVana Kit (Figure

S3). These results indicate that there is plasmid DNA contami-

nation in the total RNA samples which indeed misleads the

accurate detection of mature miRNAs.

39 isomiR forms of miRNAs are cross-detected
Emerging data strengthen the existence of isomiRs which are

the results of the heterogeneous nature of miRNA processing,

leading to variation in the length and/or sequence of mature

miRNAs [23]. Since the exact 39 end sequence seems to be crucial

for stem-loop quantitative PCR, we investigated whether the

different 39 end variants of miRNAs can be exclusively detected by

this technique. We applied different assays, designed for different

39 isomiR species of a particular miRNA and tested the detection

on various synthetic RNA oligonucleotides (,105 molecules/

reaction).

First, among numerous 39 isomiRs of miR-877-5p, the three

most abundant species were analyzed by specific assays (http://

www.mirbase.org/cgi-bin/get_read.pl?acc = MI0005561, at date

of November, 2013). Since there were no commercially available

pre-designed assays for them, we used custom made TaqMan

assays (Life Technologies, CA, USA). They were tested on

synthetic RNA oligonucleotides, identical to the miR-877-5p

isomiR sequences. Each assay was tested for each isomiR species,

bearing nucleotide differences in their 39 ends (Figure 6A). Assays

specific for the ‘‘GACA’’ and ‘‘GAC’’ 39ends detected both

‘‘GACA’’ and ‘‘GAC’’ ended RNAs similarly, while ‘‘GA’’ ending

was detected with ,3 Ct delay. On the other hand, ‘‘GA’’ specific

assay detected all three isoforms similarly. As concerning non-

reverse transcribed (no RT) controls, signals were detected in the

case of all three probes, indicating that these real-time PCR assays

are somehow able to detect their synthetic RNA targets without

reverse transcription. However, there were at least 10 Ct

differences between the values of no RT controls and the reverse

transcribed target containing samples.

In other experiments, we tested miR-33b-5p isomiRs. There are

two indicated 39 isomiR forms of miR-33b-5p in the miRBase

database, with 1 nt difference in their 39 ends. The shorter mature

miRNA is marked as the reference sequence but the longer form

seems to be more abundant in investigated cell lines based on deep

sequencing data (http://www.mirbase.org/cgi-bin/get_read.

pl?acc = MI0003646, at date of November, 2013). We tested

these variants by commercially available pre-designed TaqMan

assays (Life Technologies, CA, USA). Both ‘‘GCA’’ and ‘‘GC’’ 39

end specific assays detected the corresponding template better

than the other isomiR, but the cross-detections were still

considerable (2–4 Ct delayed; Figure 6B). To examine if a

different miRNA detecting qRT-PCR approach might overcome

this problem, we analyzed the above miR-33b-5p isomiRs by

using the poly(A)-tailing-based method [19]. However, the

isomiRs were also strongly cross-detected in those experiments

(Figure S4), and even the melting curve analysis could not make

reliable indication that more isomiRs are present when applying

mixed isomiR population as a template for the different assays

(data not shown).

The above data indicate that the examined quantitative real-

time PCR methods for miRNA detection are not exclusively

specific for a given isomiR, consequently 39 isomiR species can be

cross-detected in various extent. These results underline that

careful selection of the assay is essential, since the accurate

measurement of the given mature miRNA species strongly relies

on the selected assay.

Discussion

In this study, we examined several factors in detail influencing

accuracy and reliability of the miRNA quantitative stem-loop

PCR. Considering the reverse transcription step of this method-

ology, our data indicate that the increase of the total RNA amount

can result in a lower apparent miRNA expression level. This

phenomenon could occur due to dissimilar reaction efficiencies of

the target and the control in certain ranges of total RNA amount.

Thus, it may lead to elevated detection of the endogenous control

compared to the target (at higher concentration ranges, as

suggested by the analysis of the raw data), therefore resulting in

an apparent decrease in the level of the target. For a particular

endogenous control/target pair the optimal amount of the total

RNA for the reverse transcription reaction can vary, therefore

pilot investigations are advisable prior to the real experiments.

However, based on our experiments, 10–20 ng of total RNA

might be adequate. In addition to these data, we provided

evidence that the target of interest can be reverse transcribed

Reliable miRNA Detection by Stem-Loop qRT-PCR
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together in one reaction with the appropriate endogenous control.

Apart from lowering the costs of experiments, it has the advantage

of reducing pipetting errors and thereby making the measurements

more accurate.

Next, we found the unexpected result that contrary to the claims

of the original protocol [18], DNA could serve as a template

during mature miRNA measurements, mostly during the reverse

transcription reaction. Our data suggest that the corresponding

pre-miRNA coding sequence is detected by the stem-loop primer.

There are data that reverse transcriptases can use (single stranded)

DNA as a template, therefore this DNA dependent DNA

polymerase activity might be an explanation for our observation.

However, the extent of the DNA-derived false detection varied

among different miRNA targeting assays, and plasmid DNAs had

more pronounced effects on the detection than gDNA contam-

inations. The significance of DNA contamination is further

underlined by the fact that miRNA expression studies are often

carried out on transiently transfected cells, which contain a

significant amount of plasmid DNA originating from the used

expression vector. Additionally to this, DNA and RNA molecules

are both detected at 260 nm by spectrophotometry, therefore

DNA contamination also disturbs the accurate measurement of

RNA concentration. All these factors imply that extensive DNase

treatment is a critical part of this miRNA quantification protocol

which cannot be omitted when using certain RNA isolation

methods. Our data show, that in contrast to total RNA isolation

using either Trizol reagent or mirVana Kit, no significant DNA

contamination present in the RNA samples when applying small

RNA isolation by the mirVana Kit (Figure S3).

In addition to the technical issues described above, the recently

discovered isomiR species impose another challenge on miRNA

detection by the stem-loop qPCR technique, as the sequence

diversity of miRNA species could be quite extensive both at the 59

and the 39 ends. Although there are emerging data on the

existence of this variability, neither all mechanisms responsible for

the generation of isomiRs nor their potential functional differences

are clear as yet. Even if 39 variability appears to be redundant in

function at present [23], it represents a problematic issue not only

for stem-loop qRT-PCR, but also for miRNA detection by the

poly(A)-tailing based methodology ([21]; Figure 6 and Figure S4).

Therefore, the a priori knowledge of the exact 39 sequence is a

prerequisite for designing an accurate, specific assay for any

particular small RNA species, and examining miRNA databases

and available online deep sequencing data is strongly recom-

mended. Additionally, we would like to point out that the

indicated reference sequences in databases often represent only a

small proportion of isomiRs, therefore it could mislead researchers

in assay design. Thus, as it was shown in the case of miR-33b-5p

and miR-877-5p, cautious selection or design of the assay is

essential, since only one nucleotide difference in the 39 end

terminus can cause inaccurate detection, leading to false repre-

sentation of a mature miRNA form.

In addition to our findings, we would like to note that besides

the factors investigated here, there are other issues reported to

influence reliable miRNA detection. For example, when applying

the widely used Trizol reagent based RNA isolation method also

for miRNAs, it is important to keep in mind that the extraction

efficiency of miRNAs with low GC content or stable secondary

structure is sensitive for the initial number of the cells [34].

Summarizing our results, we provide a detailed and improved

protocol for proper application of quantitative stem-loop RT-PCR

for the accurate detection of mature miRNA species (see Figure 1

and Materials and Methods).

Materials and Methods

Refined, detailed protocol for stem-loop quantitative RT-
PCR of individual miRNAs

Assay design. Careful assay selection for the proper isomiR

species is crucial to evade misleading data. If the desired isomiR

species is not known for a given miRNA, several previously

annotated abundant isoforms should be tested in parallel.
RNA isolation. If total RNA isolation is done by Trizol

reagent, the usage of minimum 1–26106 cell/ml Trizol is strongly

recommended (see ref [34]). The assessment of the quality of the

isolated RNA sample (e.g.: by BioAnalyzer, Agilent Technologies)

is also advisable.

DNase treatment (strongly recommended for total RNA

samples).

e.g. 5 mg of total RNA,

2 ml (4 unit) of DNase (New England Biolabs),

2 ml of 106DNase buffer,

1 ml (40 unit) of RNasin (Life Technologies), in total volume of

20 ml.

Incubate at 37uC for 1 hour, inactivate at 75uC for 10 minutes,

then put on ice. Quantification of RNA by spectrophotometry

(e.g.: NanoDrop 2000 Spectrophotometer, Thermo Scientific).
cDNA preparation (TaqMan MicroRNA Reverse

Transcription Kit, Life Technologies). For one reaction:

0.15 ml of 100 mM dNTP Mix,

1 ml of Reverse Transcriptase,

1.5 ml of 106 buffer,

0.19 ml of RNase inhibitor,

1.16 ml of H2O.

Mix gently, then add 5 ml of total RNA (2 ng/ml).

Mix gently and add 3 ml of endogenous control specific RT

primer and 3 ml of target specific RT primer.

Reverse transcribe the RNA according to the manufacturer’s

instructions (16uC for 309, 42uC for 309, 85uC 59).

Important note: reverse transcription efficiency may vary

among samples in different type of PCR tubes.
cDNA dilution for quantitative PCR. Dilute the total 15 ml

of cDNA volume 5 times by adding 60 ml of H2O.
Quantitative real-time PCR (using TaqMan MicroRNA

Assays, Life Technologies). Perform the samples in triplicate

in singleplex reactions, in a final volume of 20 ml.

for one reaction:

10 ml of 26Mix (TaqMan Universal Master Mix II with UNG,

Life Technologies),

1 ml of 206 probe,

9 ml of diluted cDNA.

Figure 4. The effect of DNA contamination on mature miRNA measurements. Mature miR-1226-3p and miR-33b-5p detection were tested
on the indicated samples, with or without DNase treatment. On the y-axis, dCt value is represented, calculated as the Ct difference between the
examined samples and the gDNA of control HeLa cell line (Ct = 33,8 for miR-1226-3p and Ct = 34,9 for miR-33b-5p experiments). Signal was not
detected up to 40 reaction cycles for the mir-33b plasmid control by the miR-1226-3p assays. One Ct difference represents about 26higher detected
mature miRNA level. The effect of DNA is probe specific and plasmid DNAs have more pronounced effect on the measurements than gDNA
contaminations. Experiments were carried out with three replicates at least twice, one representative experiment is shown. Error bars represent
standard deviations.
doi:10.1371/journal.pone.0106315.g004
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The final dilution of the cDNA in the reaction is 116. Always

apply non-template controls for the different assays. Perform the

PCR reaction according to the manufacturer’s instructions (50uC
for 29, 95uC for 109, in 40 cycles: 95uC for 150, 60uC 19).

Data analysis. If relative quantification is to be applied,

make sure by standard curve analysis that it is indeed applicable

for comparison of the particular assays. Always check the baseline

and threshold values since big differences in Ct values of the

samples or little contamination in the non-template control might

cause false auto fit by the program.

Plasmid constructs and isolation
EGFP embedded mir-1226, mir-33b and mir-877 expression

plasmids were cloned as described earlier [17]. Plasmid DNAs

were isolated by QIAGEN Plasmid Midi Kit using EndoFree

Plasmid Buffer Set.

Cell cultures and manipulation
Parental HeLa cell line [35] was kindly provided by Zsuzsanna

Izsvák (Mobile DNA Group, Max-Delbrück Center, Berlin,

Germany). Cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% of fetal calf serum, 1%

of L-glutamine, and 1% of penicillin/streptomycin (Life Technol-

ogies) using standard cell culture methodology. Mir-1226, mir-33b

and mir-877 stably expressing cell lines were established by the

Sleeping Beauty transposon based gene delivery technology as

described earlier [17]. For transient transfections, 36105 HeLa

cells per wells were seeded onto a 6-well plate for transfection on

the next day by FuGENE HD reagent (Life Technologies) using

plasmid DNAs as indicated (DNA:lipid reagent = 1 mg:3 ml).

Transfection efficiencies were followed by EGFP fluorescence,

detected by a IX51 fluorescence microscope (Olympus). Cells were

collected for total RNA isolation 48 h after transfection.

Genomic DNA isolation
After trypsinization, cells were centrifuged and washed with 16

phosphate-buffered saline. Then, after careful removal of the

liquid supernatant, cell pellets were stored at 280uC until further

processing. Genomic DNAs were isolated from the cells by

standard phenol-chloroform extraction after cell lysis and

proteinase K digestion. To remove RNA contamination from

genomic DNA, samples were RNaseA treated at 37uC for 1 hour

before proteinase K treatment.

miRNA analysis
Total RNA was isolated from cultured cells using either the

Trizol reagent or the mirVana miRNA Isolation Kit (Life

Technologies); small RNA samples were isolated using the

mirVana miRNA Isolation Kit (Life Technologies). ,26106 of

cells were harvested and prepared according to the manufacturer’s

instructions. To remove DNA contaminations, RNA samples were

treated with DNaseI (New England Biolabs) at 37uC for 1 hour.

When applying the stem-loop qRT-PCR for cDNA preparations,

if not indicated otherwise, 10 ng of total RNA (or gDNA, or

plasmid) was reverse transcribed with miRNA specific stem-loop

primers using TaqMan MicroRNA Reverse Transcription Kit

(Life Technologies). For the poly(A)-tailing based qRT-PCR

method, the miRCURY LNA Universal RT microRNA PCR

Starter Kit from Exiqon was used following the manufacturer’s

protocol. ‘‘no RT’’ controls were prepared by inactivating the

reverse transcriptase at 98uC for 20 minutes prior to adding it to

the cDNA Mix (stem-loop qRT-PCR) or leaving out the enzyme

mix from the reaction (Exiqon Kit). Related sample series were

prepared simultaneously and measured in the same plate during

the real-time PCR reaction. The general ‘‘cutoff’’ value was 40

cycles, as a standard used by the program of the used instruments.

We always used three technical replicates for the real-time PCR

measurements, and biological and RT parallels as indicated in the

figure legends. When measuring miR-33b-5p and miR-877-3p

with different total RNA input (shown in Figure2A and B), we used

the same three independent RNA samples (isolated from the

respective miRNA overexpressing HeLa cell line) for the

experiments with the U6 and miR-21-5p endogenous controls.

For isomiR detections, synthetic 59-phosphate RNA oligos were

purchased from Sigma. Assuming an average of 105 miRNA

copies per 10 ng of total RNA [30], diluted RNA oligos were used

either alone or supplemented with 10 ng of control HeLa total

RNA samples for reverse transcription. Quantification was

performed by quantitative real-time PCR using either TaqMan

MicroRNA Assays and TaqMan Universal Master Mix II with

UNG (Life Technologies) or LNA PCR primers sets and

ExiLENT SYBR Green master mix (Exiqon). The real-time

quantification reactions were performed on StepOneTM or

StepOnePlusTM platforms (Life Technologies), according to the

manufacturer’s instructions; the data was analyzed by StepOne

software (version 2.1; Life Technologies). Our data were

represented as by the StepOne program (relative to an endogenous

control, delta delta Ct values) or when it was not relevant, as delta

Ct values (comparing to a control sample). For statistical analysis,

two-sided Student’s t-test was performed. The following TaqMan

MicroRNA Assays were used in miRNA quantification, catalog

numbers are in brackets: U6 small nuclear RNA [001973], hsa-

miR-1226-3p [245467_mat], hsa-miR-33b-5p = hsa-miR-33b-5p

‘‘GC’’ [002085], hsa-miR-33b-5p ‘‘GCA’’ [001565], hsa-miR-21-

5p [000397] and hsa-miR-877-3p = hsa-miR-877* [241029_mat].

For custom made miRNA assays, the following RNA sequences

were used for assay design: 59-GUAGAGGAGAUGGCG-

CAGGGGACA for the hsa-miR-877-5p ‘‘GACA’’ isomiR

( = hsa-miR-877-5p), 59-GUAGAGGAGAUGGCGCAGGG-

GAC for the hsa-miR-877-5p ‘‘GAC’’ isomiR and 59-GUAGAG-

GAGAUGGCGCAGGGGA for the hsa-miR-877-5p ‘‘GA’’

isomiR. For Exiqon LNA PCR primers sets, the following assays

were used, catalog numbers are in brackets: has-miR-33b-5p

‘‘GC’’ [205860] and custom designed mir-33b-5p-GCA_1

‘‘GCA’’ [206999].

Figure 5. DNA can serve as a template during miRNA detection. (A) False positive signal of DNA derives mainly from the reverse transcription
reaction. Mature miR-1226-3p was tested in the indicated samples, with or without reverse transcription (RT). On the y-axis, dCt value is represented,
calculated as the Ct difference between the examined samples and the gDNA of control HeLa_mir-33b cell line (Ct = 35,9). One Ct difference
represents about 26higher detected mature miRNA level. (B) DNA contamination remains in total RNA samples during isolation by the widely used
Trizol reagent. Total RNA samples were isolated from transiently transfected HeLa cells; the transfected plasmid DNA amounts are indicated. Samples
were DNase treated and non-treated, then reverse transcribed and subjected to real-time PCR. Expression values relative to U6 snRNA are shown on
the y-axis. Experiments were carried out with three replicates at least from three independent experiments; one representative experiment is shown,
error bars represent standard deviations.
doi:10.1371/journal.pone.0106315.g005
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Supporting Information

Figure S1 Determination of reaction efficiencies of
different targets. (A) Standard curves with 1.56dilution series

and 5 points. Template concentrations are presented in a

logarithmic scale; R2 values represent the correlation coefficients

of the fitted lines. (B) Amplification efficiencies calculated from

different ranges of the curves. 1–5 for five points; 2–5 for four

points, omitting the obvious outlier of the measurement from the

most concentrated template. (It is below the recommended

minimum of 1:10 dilution of the cDNA sample in the qPCR

reaction).

(TIF)

Figure S2 DNA can serve as a template for the reverse
transcription reaction. False positive signal of DNA derives

from the reverse transcription reaction. Mature miR-33b-5p assay

was measured in the indicated samples, with or without reverse

transcription (RT). On the y-axis, dCt value is represented

(calculated as the Ct difference between the examined samples

and the gDNA of control HeLa_mir-1226 cell line). Control

gDNA data are above Ct of 35; one Ct difference represents about

26 higher detected mature miRNA level. Experiments were

carried out in three replicates; one representative experiment is

shown, error bars represent standard deviations.

(TIF)

Figure S3 Residing DNA contamination in RNA samples
prepared by different RNA isolation procedures by
mirVana miRNA Isolation Kit. RNA samples were isolated

from parental (control) and transiently transfected HeLa cells.

Samples were DNase treated and non-treated, then reverse

transcribed and subjected to real-time PCR. Expression values

relative to U6 snRNA are shown on the y-axis. Experiments were

carried out with three technical replicates from three independent

experiments (biol. repl.), error bars represent standard deviations.

There is remaining DNA contamination in the total RNA samples

(A), but not in the small RNA enriched samples (B) when prepared

by the mirVana Kit. The expression level of miR-1226-3p from

total RNA (with DNase treatment) and from small RNA samples

(with or without DNase treatment) is similar.

(TIF)

Figure S4 39 isomiRs of miR-33b-5p are cross-detected
using the poly(A)-tailing based quantitative RT-PCR
method. 39 isomiRs of miR-33b-5p were detected by isomiR-

specific primer sets using synthetic RNA oligonucleotides as

templates. Non-target controls served as references samples (Ct

values .33). In the no RT control reactions, particularly no

signals (Ct .39) were detected. The two different 39 isomiRs are

significantly cross-detected by the specific primer sets and even the

post-PCR SYBR Green-based melting curve analysis could not

make reliable distinction between the different isomiR-specific

PCR products when applying mixed isomiR population as a

template (data not shown). Experiments were carried out at least

twice, one representative experiment is shown, error bars

represent standard deviations.

(TIF)
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