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Abstract

Statistical physicists have become interested in models of collective social behavior

such as opinion formation, where individuals change their inherently preferred

opinion if their friends disagree. Real preferences often depend on regional cultural

differences, which we model here as a spatial gradient g in the initial opinion. The

gradient does not only add reality to the model. It can also reveal that opinion

clusters in two dimensions are typically in the standard (i.e., independent)

percolation universality class, thus settling a recent controversy about a non-

consensus model. However, using analytical and numerical tools, we also present a

model where the width of the transition between opinions scales !g{1=4, not

!g{4=7 as in independent percolation, and the cluster size distribution is
consistent with first-order percolation.

Introduction

Disagreement between neighbors costs energy, in human societies as well as in

ferromagnetic spin interactions. Because of this similarity, statistical physicists

have recently shown great interest in models of opinion formation (e.g. [1–6], see

[7, 8] for literature reviews). Individual actors in a population are regarded as

nodes in a network and their opinions represent political affiliations, religions or

consumer choices (Microsoft Windows vs. UN*X, Blu-ray vs. HD-DVD, etc.).

The nodes influence each other’s opinions along the edges in the network

according to rules specific to the model in question. Rules that allow a critical

mass of like-minded peers to persuade a disagreeing individual have recently

found support in behavioral experiments [9]. The resulting opinion dynamics has

been linked to election outcomes [10, 11] and innovation diffusion [12, 13],

suggesting lessons for political campaigns [14] and advertisement [15].
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Many opinion formation models embedded in two-dimensional space have

only one stable solution, namely complete consensus [3, 5, 16], in particular when

they implement deterministic rules. In reality, however, deterministic social

behavior and perfect agreement are rare [17] – at least one small village of

indomitable Gauls always holds out against the Romans. Some models thus allow

clusters of a minority opinion to persist even if entirely surrounded by the

opposite opinion [18, 19]. In this case, percolation theory provides the tools to

analyze the geometry of the minority clusters [19, 20]. However, the results

[19, 21] have been subject to some controversy because long-range correlations,

thought to be responsible for deviations from independent percolation, are

expected to require a long time to develop from an uncorrelated initial state [22].

Clearly, interactions generate complex correlations that can obscure the familiar

scaling behavior of independent percolation. However, as illustrated in the present

work, one must exercise great care before concluding that a given interaction

spoils the (asymptotic) scaling of independent percolation.

In this article we tackle the open question: can opinion dynamics, with or

without a stochastic element, fundamentally alter percolation properties such as

the clusters’ fractal dimensions or the cluster size distribution? We show that in

many cases we retrieve the scaling laws of independent percolation. Moreover, we

also give one example where a slight change of the dynamic rules leads to a

radically different scaling behavior.

Methods

We focus on models where the nodes are placed on a square lattice with edges

linking them to their four nearest neighbors. Each node holds one of two possible

opinions: ‘‘black’’ or ‘‘white’’. Initially, the probability to be black is independent

at all sites and given by

p(x)~gxzpc, x[ {pc=g,(1{pc)=g½ �, ð1Þ

where x is the node’s horizontal position and g[Rz a constant gradient. (We set

the intercept pc equal to the percolation threshold for later convenience.) We

interpret p(x) as the innate propensity to hold the black opinion at the beginning

as well as during the evolution of the opinions. Thus, nodes on the far left and far

right of the lattice are likely to have opposite opinions. Some previous spatial

models have included heterogeneous agents [23–25], but no gradient. In contrast,

election results in various countries exhibit clear, smooth gradients, especially

between progressive urban and conservative rural areas [26–28]. Our model

resembles such a ‘‘culture war’’ fought on a gradient.

Including a non-zero gradient in the numerical simulations also has advantages

for studying percolation properties [29]. As opposed to running many individual

simulations for a range of different values of p, a gradient model allows us to

analyze, in a single simulation, clusters for a whole interval of p rather than a

single fixed value.

Opinion Formation Models on a Gradient

PLOS ONE | DOI:10.1371/journal.pone.0114088 December 4, 2014 2 / 13



In the present work we consider opinion formation according to the following

local rules.

N Majority vote (MV): the node follows the majority opinion of its four nearest

neighbors. If both opinions are equally represented, no opinion change occurs.

N Unanimity rule (UR): the node changes its current opinion if and only if all of

its nearest neighbors hold the opposite opinion [30].

N Independent percolation (IP): the node keeps its current opinion irrespective of

the surrounding opinions.

When a node is updated, it follows the local rule with probability q. Otherwise

it independently chooses a random opinion according to Eq. 1, so that 12q is the

level of noise entering the dynamics. Notably, Eq. 1 is the only way for the local

prevalence of a certain opinion and thus the gradient to enter into the dynamics of

the system. At q51 the evolution is affected by the presence of the gradient only

through the initial condition. At q,1 the random updates during the evolution

exhibit the innate propensity gradient towards one or the other opinion by

allowing agents to revert to their original opinion even if it contradicts the local

majority.

All nodes simultaneously update their opinion at each time step, but other

choices such as random sequential updates do not change our findings noticeably.

The latter may have the more immediate social interpretation as an ongoing

opinion formation with agents re-considering choices with a fixed rate, but

simultaneous updates are, surprisingly, slightly more accessible analytically. For a

fixed value of q, we abbreviate the models by MVq or URq, respectively. We do not

need a subscript q for IP because, regardless of the value of q, any snapshot of the

lattice looks statistically alike, depending only on the parameters pc and g in Eq. 1.

Once the model reaches the steady state, we study the geometric properties of

the clusters formed. On the left of Fig. 1(a)–(c), the black clusters form small

isolated islands, whereas on the right a single large black cluster spans from top to

bottom [31]. This percolation transition can be characterized by the hull of the

spanning cluster [32], defined as the following left-turning walk [33, 34]. We start

the walk at a site with minimal x-coordinate in the black spanning cluster and face

towards the right (Fig. 1d). First we attempt to turn to the neighbor on our left,

but step in this direction only if we reach a black site. Otherwise, we try to move

forward, then to the right, and finally backward until we have discovered the first

black neighbor. If we iterate this procedure and apply periodic boundary

conditions in the y-direction, the hull has visited the entire front of the spanning

cluster when it returns to the starting position.

Results and Discussion

Our numerical and analytical findings are summarized in Table 1. In the following

we discuss them in detail.
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Steady-state hull width and length

If q51, the dynamics is deterministic and the only source of randomness lies in

the initial assignment of opinions. In this special case, MV1 is identical to the non-

consensus opinion model of Ref. [19], where it was already noted that a small

fraction of the nodes – in our simulations 1.2% on average at pc50.50643(1) –

keeps switching opinions with period 2. When all other nodes have stopped

changing opinions, we will consider MV1 to have reached its steady state. The

convergence is quick: a non-periodic node freezes after a mean of only 0.8 time

steps. In UR1, oscillatory opinions can occur only if the initial opinions form a

Figure 1. Opinion distributions and percolation hull. We show typical steady-state opinion distributions for
g5561023 and (a) MV1, (b) UR1, (c) MV0.8. The two opposing opinions are shown as black and white
squares. The sites marked by gray squares form the spanning cluster’s hull. (d) Illustration how the hull can be
parameterized by a left-turning walk [33].

doi:10.1371/journal.pone.0114088.g001

Table 1. Summary.

Model q Exponents Universality Class

Independent Percolation (IP) a~4=7, b~3=7, df ~91=48, n~4=3 IP (by definition)

Deterministic Majority Vote Model (MV1) 1 a~4=7, b~3=7, df ~91=48, n~4=3 IP

Deterministic Unanimity Rule (UR1) 1 a~4=7, b~3=7, df ~91=48, n~4=3 IP

Stochastic Majority Vote Model (MV0.8) 0.8 a~1=4, b~0, df ~2 Edwards-Wilkinson

Stochastic Unanimity Rule (UR0.8) 0.8 a~4=7, b~3=7, df ~91=48, n~4=3 IP

Summary of the results. For definitions of models and exponents see text.

doi:10.1371/journal.pone.0114088.t001
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perfect checkerboard pattern. Because the gradient pins the left (right) edge to be

entirely white (black), a checkerboard pattern is impossible. Hence, every node

reaches a stationary opinion, on average after just 0.06 updates at pc50.549199(5).

For IP, percolation occurs, as in zero-gradient percolation, at pc50.59274(1) [35].

If q,1, the opinions in MVq and URq never freeze, but, after a transient, the

stochastic time series of black occupancy in any column x becomes stationary. All

measurements for q,1 presented here were made at q50.8 in this steady state. A

visual comparison between Fig. 1(a)–(c) suggests a qualitative difference between

MV1 and UR1 on the one hand and MV0.8 on the other hand. In the latter case,

the spanning cluster appears significantly more compact and the hull, which is

centered at pc50.5000(4), much straighter. So, counterintuitively, the stochastic

dynamics of MV0.8 anneals rather than roughens the surface compared to MV1

and UR1.

We can quantify this observation by computing the hull’s width w and length l.

If the hull consists of the walk (x1,y1), . . . ,(xl,yl), we define

w~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i x2

i

l
{

P
i xi

l

� �2
s

: ð2Þ

As the numerical results in Fig. 2 show, the width and length for all models scale

as power laws w!g{a and l!g{b in the limit g?0z. With only one exception

among all investigated cases, the results are consistent with a~4=7 and b~3=7,

the exact exponents of independent gradient percolation [36]. We also retrieve the

correlation length critical exponent n of standard percolation via the formula

n~a=(1{a)~(1{b)=b~4=3 [31]. The notable exception is MV0.8 with

a~0:250(4) and b~0:0074(1), based on numerics for g~10{4 and g~5:10{5.

Studying the dependence of b on g systematically suggests b?0 for g?0, while a
stays close to 1/4. In fact, the analytical results presented below indicate that

a~1=4 and b~0. In independent percolation, a=4=7 can arise only if the

probability to be black increases nonlinearly at the percolation threshold [37].

However, in that case the ratio b=a must still equal 3/4 which is not true for MV0.8

so that we must look elsewhere for an explanation.

We will briefly summarize why a equals 1/4 for MVq if q is close to, but not

equal to 1. For details we refer to the online Information S1. We make two

approximations. (1) The hull can be treated as a single-valued function of y so

that we can parameterize the hull at time t as a function h(t,y). (2) In MV0.8, as

opposed to URq and IP, we observe only few isolated minority nodes, which

motivates a ‘‘solid-on-solid’’ approximation: we neglect that there is a small

number of black (white) sites to the left (right) of h(t,y). With the notation

r~1{q, the only transition probabilities for h(t,y) up to terms of order O(r2) are

(see Information S1)

Pr h?h{1zKy
� �

~r
1
2
zg h{

1
2
zKy

� �� �
, ð3Þ
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Pr h?hzKy
� �

~1zr(g{1), ð4Þ

Pr h?hz1zKy
� �

~r
1
2
{g hz

1
2
zKy

� �� �
, ð5Þ

where Ky~z1 if h(t,y) is a strict local minimum in y, Ky~{1 for a maximum,

and Ky~0 otherwise. In the continuum limit [38], the leading terms in the

evolution of the hull are (see Information S1)

Lh
Lt

~D
L2h
Ly2

{EghzFg(t,y), ð6Þ

where D,E,F are independent of g and g is white noise with mean zero and

covariance hg(t,y)g(t’,y’)i~d(t{t’)d(y{y’). Equation 6 is the Edwards-

Wilkinson equation [39] with an Ornstein-Uhlenbeck restoring force [40, 41] and

can be integrated (see Information S1) to obtain the continuum limit of Eq. 2,

w2~ lim
t??

h(t)2{h(t)
2

D E
~

F2

4
ffiffiffiffiffiffiffiffiffi
DEg
p , ð7Þ

Figure 2. Mean hull width and length determined numerically as a function of the gradient. Insets: slope
in doubly-logarithmic scales (i.e. d log(w)=d log(g) in upper, d log(l)=d log(g) in lower panel). Dashed lines
indicate the limiting slopes for g?0z which follow from scaling analysis (see text): 24/7 and 21/4 in the upper,
23/7 and 0 in the lower panel. Error bars are smaller than the symbol sizes.

doi:10.1371/journal.pone.0114088.g002
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where the angle brackets denote the ensemble average and the overlines symbolize

spatial averages. Thus, we obtain w!g{1=4 consistent with the numerical results

for MV0.8. Although we have here derived the scaling law only for the MV model,

numerical evidence suggests that a~1=4 is valid for a broader class of gradient

models. In Ref. [42], a numerical fit for a spatial birth-death process on a gradient

also yields a~0:26(1).

Cluster sizes

The scaling laws for w and l signal that MV0.8 is not in the same universality class

as IP. In Ref. [19] it is claimed that MV1 is in yet another class, namely invasion

percolation with trapping (IPT). Although w scales identically in IP and IPT [43],

we now demonstrate how the gradient method can still show unequivocally that

MV1 belongs to the IP class after all, thus supporting the arguments of Ref. [22].

We calculate the size smax of the largest cluster in a lattice whose linear size is L in

both x- and y-direction. We center the x-axis at pc so that the initial probability to

be black in Eq. 1 is limited by +
1
2

gLzpc on the right (left) edge. As a function of

L and g, smax is expected to satisfy the ansatz

smax~Ldf fsmax(L=j(g)): ð8Þ

Here df is the fractal dimension of the cluster at pc, j(g) is the characteristic

length scale for changes in the cluster density, and the scaling function fsmax(z)

approaches a constant for z?0z. The fractal dimensions differ between the two

universality classes in question: df ~91=48<1:896 for IP and df ~1:831(3) for IPT

[44]. Furthermore, j(g) in IP scales linearly with w!g{4=7 [31]. Thus, according

to Eq. 8, a plot of smaxL{91=48 versus Lg4=7 collapses the IP data for different L and

g on a single curve that asymptotically approaches a constant for small Lg4=7 (

Fig. 3a). For MV1, we obtain a data collapse with the same IP exponents (Fig. 3b).

By contrast, if we assume df ~1:831, there is neither a collapse nor do the

individual curves approach a constant for Lg4=7?0z (Fig. 3c), hence ruling out

that MV1 is in the same universality class as IPT. Changing the exponent 4/7 on g

leads to a lateral shift of the data in Fig. 3(c), but we found no value yielding a

convincing data collapse. Moreover, it cannot overcome the problem that the

hypothetical scaling function fsmax (z) would not become constant for z?0z.

However, the collapse of MV0.8 with df ~2 (which lends further support to the

solid-on-solid approximation) and j(g)!g{1 in Fig. 3(d) corroborates that

opinion dynamics can lead to percolation outside the IP universality class.

The cluster size distribution provides further support for this classification. We

count all non-spanning clusters with at least one site in the stripe jxjvw and

compute the fraction pcs(s) of clusters of size s. In IP [42]

pcs(s)~s{tfcs sg1=½s(nz1)�
	 


, ð9Þ
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where the critical exponents are t~187=91<2:055, s~36=91, n~4=3 [45], and

fcs(z)?const: for z?0z (Fig. 4a). Reference [19] hypothesizes that in MV1 the

exponent t is replaced by 1.89(1), the corresponding value for the pore size

distribution in IPT. However, Fig. 4(b) and (c) show that, while the data collapse

is excellent for t~187=91, it is poor for the alternative value 1.89. In summary,

MV1 and IP share the following critical exponents: the hull width and length

exponents a, b and consequently n~4=3; the fractal dimension df and thus

b~n(2{df ); furthermore t and s. This list is clear evidence that MV1 is in the IP

universality class. As shown in the Information S1, we reach the same conclusion

for UR1 and UR0.8.

The situation is different in MV0.8 where the cluster size distribution appears to

drop more sharply with a cutoff that varies much less with the gradient. We want

to assess the lack of scaling quantitatively and distinguish it from a power law with

large exponent t and little dependence of the upper cutoff on g. Moment ratios

s(n)
c ~hsnz1i=hsni are asymptotically proportional to the upper cutoff, provided

nwt{1. If the transition is continuous, then s(n)
c scales asymptotically as a power

of g. This power law can be detected more easily than the asymptotic scaling

regime pcs!s{t [46].

We plot the moment ratios of IP, UR1, MV1, UR0.8 and MV0.8 for n~2,3,4 in

Fig. 5. Except MV0.8, all of these cases are in excellent agreement with the

prediction of Eq. 9, s(n)
c !g{1=½s(nz1)�, where s~36=91 and n~4=3 are the critical

Figure 3. Fractal dimensions. For the correct exponents df and c, smaxL{df as a function of Lgc should
collapse on a single curve with slope zero for Lgc?0. For (a) IP and (b) MV1, df ~91=48 is the same as the
fractal dimension of standard percolation. (c) Replacing df with the value 1.831 of invasion percolation with
trapping (IPT) does not produce a data collapse. (d) For the largest MV0.8 cluster, we obtain a data collapse if
df ~2.

doi:10.1371/journal.pone.0114088.g003
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exponents of IP [45]. The cutoff s(n)
c in MV0.8, by contrast, does not diverge as a

power law for g?0z. Instead s(n)
c appears to reach an asymptotic value for all n.

Such a behavior is typical of a first-order transition. Based on these data, we can

firmly rule out that t in MV0.8 has the IP value 187=91<2:055. We add the caveat

that, for sufficiently large n, s(n)
c may scale as a power of g after all. However, the

data imply tw5, an unusually large value compared to IP, directed percolation

(t~2:112) [47] and Achlioptas percolation (t~2:04762) [48].

Conclusions

We have studied in total five opinion dynamics models on a gradient, as

summarized in Table 1. One of the models we studied, independent percolation,

provides the very definition of the corresponding universality class, IP. We find

that of the four other models studied, three display features that are fully

compatible with IP, which is commonly observed in gradient models with and

without interaction [29, 49, 50].

One model, MV0.8, differs from all of the above. At p~1=2 it has states with

either a black or white majority. Without a gradient, (i.e. g~0 in Eq. 1, so that

p(x)~1=2 is constant in x), there are two stable stationary solutions, where one

state is above and the other below the threshold of percolation of, say, black sites.

There is hysteresis if one tries to move from one majority to the other by tuning p,

Figure 4. Cluster size distributions. (a) The rescaled distribution pcsst for IP collapses if plotted versus
sg1=½s(nz1)�, where the critical exponents n, s, t are those of standard percolation. For MV1 the data collapse is
much better (b) for the IP exponent t~187=91 than (c) for the IPTexponent t~1:89. (d) The MV0.8 distribution
does not follow the same asymptotic power law as IP.

doi:10.1371/journal.pone.0114088.g004
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as expected for first order transitions. By introducing a gradient, the two phases

are forced to collide because the left boundary must be completely white and the

right boundary black. We observe that the gradient stabilizes and sharpens the

front compared to independent percolation.

MV0.8 differs from the other models in two important points. First, its

stochastic nature helps anneal boundaries between opposite opinions. The second

difference is that the majority rule makes small clusters more prone to invasion by

the opposing opinion. The combination of these two features results in what

appears to be a first order transition. Nevertheless, the opinion interface displays

scaling, found to be in the Edwards-Wilkinson universality class, which differs

significantly from independent percolation.

The birth-death model of Ref. [42] suggested already the possibility of first-

order transitions in gradient models. We leave it to future research to analytically

confirm the first-order nature of the MV0.8 transition. It would also be insightful

to investigate more complex network topologies that are based on real social

interactions rather than a regular square lattice. We emphasize that, in the light of

previous work on explosive percolation [48, 51–53], only analytic results can fully

clarify the order of any percolation transition. However, we can conclude with

certainty that, although none of the opinion models we have investigated is

consistent with IPT, MV0.8 is an example of a dynamic rule that leads to

percolation outside the IP universality class.

From a sociological perspective, our study shows that small variations in the

innate propensity towards one or another opinion may turn into a spatial

discontinuity in the opinions. Interestingly, the sharpest division occurs when

agents do not follow the local majority all the time. Hence, processes that may be

perceived as having the effect of making the interface between different opinions

more blurred, such as the majority rule with stochasticity involved, have the

opposite effect. They anneal that interface and contribute to the collapse of

minority clusters, which are sustained in the presence of stricter rules, such as the

deterministic unanimity rule.

Figure 5. Cluster size moment ratios. The moment ratios hsnz1i=hsni of the cluster size distributions for (a) n~2, (b) n~3, (c) n~4. The ratios for UR1, MV1,
and UR0.8 scale in the same manner as in IP, namely hsnz1i=hsni!g13=12. By contrast, the moment ratios for MV0.8 appear to reach an asymptotic limit for
g?0z.

doi:10.1371/journal.pone.0114088.g005
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Supporting Information

Information S1. Derivation of Eq. 3–7 and data showing that UR1 and UR0.8 are

in the IP universality class.

doi:10.1371/journal.pone.0114088.s001 (PDF)
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