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Localization transition, Lifschitz tails, and rare-region effects in network models
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Effects of heterogeneity in the suspected-infected-susceptible model on networks are investigated using
quenched mean-field theory. The emergence of localization is described by the distributions of the inverse
participation ratio and compared with the rare-region effects appearing in simulations and in the Lifschitz tails.
The latter, in the linear approximation, is related to the spectral density of the Laplacian matrix and to the
time dependent order parameter. I show that these approximations indicate correctly Griffiths phases both on
regular one-dimensional lattices and on small-world networks exhibiting purely topological disorder. I discuss
the localization transition that occurs on scale-free networks at γ = 3 degree exponent.
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I. INTRODUCTION

Epidemic spreading in complex networks such as biological
populations and computer networks is of great interest, both
for practical applications and from a fundamental point of
view [1–3]. Simple models, like the contact process (CP)
[4,5], have been introduced and studied intensively by various
techniques. They can also be considered as simple models of
information spreading in social [6] or in brain networks [7].
In these models sites can be infected (active) or susceptible
(inactive). Infected sites propagate the epidemic to all of their
neighbors, with rate λ, or recover (spontaneously deactivate)
with rate ν = 1. The susceptible-infected-susceptible (SIS) [8]
model differs slightly from the CP, in which the branching rate
is normalized by k, the number of outgoing edges of a vertex
permitting an analytic treatment via symmetric matrices. By
decreasing the infection (communication) rate of the neighbors
a continuous phase transition may occur at some λc critical
point from a steady state with finite activity density ρ to an
inactive one, with ρ = 0. The latter is also called absorbing,
since no spontaneous activation of sites is allowed. In the
case of the SIS λc = 0 in networks with a degree distribution
decaying slower than an exponential [9].1 The transition type is
continuous and belongs to the directed percolation universality
class [13–16].

In real systems various heterogeneities occur that may cause
deviations from the results of the homogeneous models. From
the homogeneous system point of view if the disorder varies
rapidly both in space and time, its contribution can be described
by an increased temperature or noise of the system [15]. In
the quasistatic limit, when the variation of the heterogeneity
is much slower than the dynamics of the pure model we
can consider it as a quenched disorder. It causes a memory
effect, whose relevancy has been studied in quantum and
nonequilibrium systems (see [17]).

In networks, with finite topological dimension, defined as
N ∝ rD , where N is the number of nodes within the (chemical)
distance r , it was shown [18] that disorder can be relevant.
Heterogeneities can induce arbitrarily large rare regions (RRs),
changing their state exponentially slowly as the function of
their sizes, inducing so called Griffiths phases (GPs) [17,19].

1Note, that some recent studies debate this, see: [10–12].

In these phases the dynamics is slow and nonuniversal and at
the phase transition point it is even slower, and logarithmic
dynamical scaling may occur. These heterogeneities can be
explicit features of the interactions or maybe the result of the
topology of the graph.

Recent observations show generically slow time evolution
in various systems. For example in the working memory
of the brain [20] or in recovery processes following virus
pandemics [6,21,22] the power-law type of time dependencies
have been found, resembling dynamical critical phenomena
[23]. In social networks the occurrence of generic slow
dynamics was suggested to be the result of the non-Markovian,
bursty behavior of agents in small-world networks [22]. Very
recently it has been shown [24], that bursty dynamics can arise
naturally, in network models as the consequence of power-law
decaying autocorrelations due to the collective behavior of
Markovian variables.

Disorder effects are stronger in quantum systems, where
the thermal noise does not fade effects of the quenched noise.
However, in several cases the critical behavior is dictated by
an infinitely strong disorder fixed point, resulting in robust
universality classes, that can be observed even in classical
models. In particular, the same universal behavior occurs
in disordered quantum Ising chains and the CP [25]. The
dynamics of the CP far in the absorbing state can be mapped
to the quantum-mechanical one, described by the disordered
Hamiltonian of the Anderson type (see [26]).

Heterogeneous mean field (HMF) theory provides a good
approximation in network models, when the fluctuations are
irrelevant [27–29]. To describe quenched disorder in networks
the so-called quenched mean-field (QMF) approximation is
introduced [30–33] and heterogeneities of the steady state
are quantified by calculating the inverse participation ratio
(IPR) of the principal eigenvector of the adjacency matrix.
Effects of the quenched disorder on the dynamical behavior of
SIS have recently been compared using QMF approximations
in different network models. Numerical evidences have been
provided for the relation of localization to RR effects, that
slows the dynamics [34,35].

The success of this relation is the consequence of the
fact that GP effects arise even in the active phase, where
localization of the steady state can be traced by the IPR value.
Although for best understanding, the effects of dynamical fluc-
tuations should also be taken into account, such approaches,
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like renormalization group (RG) methods [36–38] have some
limitations. For example, strong disorder RG works around
an infinite disorder fixed point, which is not always present;
still Griffiths singularities can co-exist with the clean critical
behavior [39]. Furthermore, this method cannot handle models
with pure topological inhomogeneity.

In this work I show that the QMF theory describes
localization in the one-dimensional SIS model, with quenched
disorder, in agreement with the expectation that RR effects
and GP should occur below the critical point. I extend previous
localization studies by considering distributions of the IPR and
eigenvalues, casting more light on the localization transition
of SIS in various complex networks. In particular, I investigate
SIS on scale-free (SF) networks, possessing P (k) ∝ k−γ

degree distributions and provide numerical evidence for a
localization transition at γ = 3.

Very recently Moretti and Muñoz [7] have investigated
hierarchical brain networks by simulations and QMF approxi-
mations. They gave a brief overview about the relation of slow
dynamics and Lifschitz tails in synchronization and spreading
models [40]. Lifschitz tails have provided valuable information
in regular, equilibrium systems about the Griffiths singularities
(see for example [41]). In network models they have been stud-
ied in mathematics literature mainly [42]. In graph theory there
is a growing interest in spectral properties of linear operators,
mostly of the adjacency matrix or the graph Laplacian (see
for example [43,44]). In physics literature Samukhin et al.
[45] provided analytical forms for the Laplacian spectrum of
complex random networks and for the dynamical two-point
functions of random walks running on them. They pointed
out that the minimum degree of vertexes is important for the
dynamics, which is related to the lower edge of the Laplacian.
On the other hand numerical evidences have been shown that
the spectral gaps at the lower edge describe well the slow-down
of dynamics due to disorder in models like the CP [46] or by
synchronization transition [47,48]. This is based on the validity
of linearization near the phase transition point. In this case the
probability distribution at the lower tail of the Laplacian can
be considered the density of states, the Lifschitz tail of the
disordered network model. If it holds it enables us to describe
the dynamics near the critical point. In this study I calculate
the lower tail distributions of the Laplacian of the networks
considered and test how well it describes the GP behavior of
the SIS.

II. SUMMARY OF EARLIER STUDIES: LOCALIZATION
VERSUS RR EFFECTS

Starting from the master equation for state vectors of site
occupancies, |P(n1,n2,...,nN )(t)〉 where ni = 0 or 1, one can
derive the QMF theory for the SIS model [31,33]. Although
QMF neglects the dynamical correlations, it can take into
account heterogeneities of the network by considering the
vector of infection probabilities ρi(t) of node i at time t ,

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑
j=1

Aijwijρj (t). (1)

Here Aij is an element of the adjacency matrix and wij

describes the possibility of weights attributed to the edges.

For large times the SIS model evolves into a steady state,
with an order parameter ρ ≡ 〈ρi〉. This equation with i ↔ j

symmetric weights can be treated by a spectral decomposition
on an orthonormal eigenvector basis. Furthermore the non-
negativity of the Bij ≡ Aijwij matrix involves a unique, real,
non-negative largest eigenvalue yM .

For t → ∞ the system evolves into a steady state and the
infection probabilities can be expressed via Bij as

ρi = λ
∑

j Bijρj

1 + λ
∑

j Bijρj

. (2)

The order parameter (prevalence) ρ ≡ 〈ρi〉 becomes finite
above an epidemic threshold λc. In the QMF approximation
one finds λc and ρ(λ) around it from the principal eigenvector.
Using a Taylor expansion of ρ one can solve Eq. (2) and find
that the threshold is related to the largest eigenvalue of Bij

as 1/λc = yM . The order parameter slightly above λc can be
approximated via

ρ(λ) ≈ a1� + a2�
2 + · · · , (3)

where � = λyM−1
1 and the coefficients

aj =
N∑

i=1

ei(yj )

/[
N

N∑
i=1

e3
i (yj )

]
(4)

are functions of eigenvectors e(yj ) of the largest eigenvalues
(j = M,M − 1,M − 2, . . .) of Bij . This expression is exact,
if there is a gap between yM and yM−1 [49].

It was proposed in Ref. [33] and tested on weighted
Barabasi-Albert models [34] that the localization of activity in
the active steady state can be characterized by the IPR value,
related to the eigenvector of the largest eigenvalue e(yM ) as

I (N ) ≡
N∑

i=1

e4
i (yM ). (5)

This quantity disappears as ∼1/N in the case of homogeneous
eigenvector components or remains finite if the activity is
concentrated on a finite number of nodes.

III. LIFSCHITZ TAILS IN NETWORK MODELS

Besides IPR calculation, that works in the active steady
state, some other way to check RR effects would be desirable.
The study of the spectrum tail of the Laplacian will be
introduced here in the hope of providing information about
GPs below the critical point of the SIS. The Laplacian matrix
of a graph is defined as

Lij = δij

∑
l

Ajl − Aij , (6)

which takes values −1 for pairs of connected vertexes and
the degree ki in the diagonal. The Laplacian is positive
semidefinite, i.e., �i � 0 and �1 = 0. The smallest nonzero
eigenvalue �2 is called the spectral gap.

Near the critical point, in the inactive phase we can linearize
the dynamical equation of SIS (1) as

dρi(t)

dt
= −ρi(t) + λ

∑
j

Bijρj (t). (7)
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We can rewrite it, using the weighted (symmetric) Laplacian
matrix [50,51]

Lij = δij

∑
l

Bjl − Bij , (8)

which has the sums of weights in the diagonal, expressed by
the Kronecker delta (δij ), as follows:

dρi(t)

dt
=

[
λδij

∑
l

Bjl − 1

]
ρi(t) − λ

∑
j

Lijρj (t). (9)

A linear stability analysis can be performed above the critical
point, similarly to the synchronization process [47]. For the
normal modes of the perturbations above the absorbing state
we can write

dρi(t)

dt
= −λ

∑
j

Lijρj (t). (10)

By this approximation we replaced the diagonal elements in
Eq. (7), from −1 to −λLii , which increases the spontaneous
recovery rate ν of sites, pushing the system deeper into the
inactive phase. In spreading models it is known that the
value of ν can modify nonuniversal quantities, shift λc, but
in the inactive phase, where this approach is applied, it is
not expected to induce relevant RR effects; it can make them
weaker and harder to detect. However, I have confirmed this
approximation in the case of CP on networks with purely
topological disorder.

Using the spectrum of Lij one can make the eigenvalue
expansion

ρi(t) =
∑
j l

e−λ�l tfi(�l)fj (�l)ρj (0), (11)

where fi(�l) is ith the component of the lth eigenvector of
the Laplacian. The total density is determined by the lowest
eigenvalues of the spectrum,

ρ(t) ∼
N∑

l=2

e−λ�l t , (12)

for any network. In finite systems there is always a finite
�2 > 0 gap, causing exponential cutoff in the decay of the
order parameter. In this study I consider P (�) above �2, i.e.,
shift the numerically obtained distributions to zero and express
ρ(t) as the Laplace transform of P (�) in the continuum limit,

ρ(t) ∝
∫ �M

�2

d� P (�)e−λ�t , (13)

where �M corresponds to the experimentally determined end
of tail value of the finite network. Note that the control param-
eter λ appears as a constant, which can induce nonuniversal
power laws in the inactive GP.

One can also take into account the original diagonal
elements of (7), if one considers the CP instead of SIS, where
the interactions are normalized by the degree as λi/ki . In
the case of purely topological heterogeneities the linearized,
governing equation takes the form

dρi(t)

dt
= −ρi(t) +

N∑
j=1

λ

kj

Aijρj (t). (14)
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FIG. 1. (Color online) Lifschitz tail of the ER graph with 〈k〉 = 4
and N = 104. The dashed line shows a numerical fit with the form
(15) as 2400��

1/10
i exp(−4.5/(��

1/2
i ).

thus the sum of nondiagonal elements λ
kj

Aij is constant: λ.

The eigenvalue spectrum of the matrix L′
ij = δij − λ

kj
Aij is

the linear combination of the normalized Laplacian: L′
ij =

λ
kj

Lij − δij (λ − 1) for such models. Therefore, by performing

a spectral analysis of L′
ij we can investigate the lower

gap behavior. The penalty is that we have nonsymmetric
matrices, which can be diagonalized by slower algorithms.
I have determined this spectrum for uncorrelated random and
generalized small networks (for definition see later sections)
and found tails very similar as that of SIS, except from the
linear transformation.

For comparison I calculated the Laplacian eigenvalue spec-
trum of the Erdős Rényi (ER) [52] graph with N = 104 nodes
and 〈k〉 = 4 average degree. Averaging over 2.5 × 105 random
graph realizations and histogramming, with the bin size
δ� = 0.001 one can determine numerically the probability
distribution P (�i) in the region 0 < � < 0.6. The gap size
due to the finite system was �2 = 0.036, that I subtracted:
��i = �i − �2. A good fitting can be obtained with the
cumulative distribution derived form [45] with the numerical
factors shown in Fig. 1,

P (��) 
 ��1/10e−a/
√

��. (15)

The Laplace transform of (15) predicts the long time
asymptotic behavior of the density decay

ρ(t) ∼ e−(ctλ)1/3
(16)

which is a λ dependent stretched exponential time dependence.
Numerical simulations of the disordered CP on ER graphs have
obtained indeed λ dependent stretched exponential density
decay behavior below the critical point [53]. However, the
validity of Eq. (15) is limited to t1/3/ ln N 
 1 [45], hence
in numerically accessible systems this should be observable
for very short times only. In density decay simulations of
SIS on pure ER systems with N = 5 × 106 the effect of
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topological disorder can be seen for very early times, otherwise
exponential decay is observed.

Contrary, for a power-law distributed P (�) the Laplace
transformation results in a power-law decaying density,

ρ(t) ∝
∫ �M

�2

d� �xe−λ�t ∝ t−λ(x+1), (17)

which suggests a GP behavior for the model. Therefore, in the
following sections I determine numerically P (�) for certain
models and determine how well the tail behavior can be
fitted by a power-law form. By knowing dynamical simulation
results about the existence of GPs in these systems I test the
predicting power of this approach. Later, I apply the method
to more difficult cases and try to support statements about
existence of GPs in them.

IV. QMF OF THE ONE-DIMENSIONAL SIS MODEL WITH
QUENCHED INFECTION RATES

The CP on regular lattices with quenched infection rates
has been studied by many authors (for a recent overview
see [17]). First [54] showed, using the Harris criterion [4],
that spatially quenched disorder (frozen in space) changes
the critical behavior of the directed percolation for D < 4.
Field theoretical RG [55] found quenched disorder to be a
marginal perturbation below D < 4 and the stable fixed point
shifted to an unphysical region. This means that spatially
quenched disorder changes the critical behavior of the directed
percolation. This conclusion is supported by simulation results
[56–58]. In the subcritical region they found GP, in which the
time dependence is governed by nonuniversal power laws,
while in the active phase the relaxation of activity survival is
algebraic. A real-space RG study by [59] showed that in case
of strong enough disorder the critical behavior is controlled by
the infinite randomness fixed point and below λc GP behavior
emerges. Very recently GP is reported in the five-dimensional
CP below the clean, mean-field critical point [39].

Here I consider the one-dimensional SIS model with
quenched disorder (QSIS), which exhibits i ↔ j symmetry in
the governing Eq. (1). First I investigated the case of uniformly
distributed disorder, by putting symmetric weights, drawn
from the distribution wi,i+1 ∈ (0,1), on the edges connecting
neighbors.

The spectral analysis was done using the sparse matrix
functions of the software package OCTAVE [60]. The largest
eigenvalues and eigenvectors were determined and averaged
over thousands of disorder realizations for N = 103, . . . ,5 ×
105. The probability distribution of (5), P (I (N )), is calculated
by histogramming with the bin size: δI = 0.001. As one
can see in Fig. 2 the mean values of IPR remain finite and
localization persists for any size. The P (I (N )) distributions
do not smear, but shift to slower values by increasing the size.
In the N → ∞ limit one can extrapolate the mean values
P̄ (I (N )) with a power law, resulting in the asymptotic value
I = 0.168(2).

The case of bimodal disorder distribution, where a fraction
q takes a reduced value rλ, while the remaining fraction of the
nodes take a value (1 − r)λ,

p(λi) = (1 − q)δ[λi − (1 − r)λ] + qδ(λi − rλ), (18)
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FIG. 2. (Color online) Finite size scaling of the IPR results of
the one-dimensional QSIS model. Mean values of IPR for uniformly
(bullets) and binary (squares) distributed disorder. Dashed line shows
an extrapolation to N → ∞ as 0.13(1) + (0.17/N )0.1. Dotted line:
0.12(1) + (0.54/N )0.15. Inset: distributions of I (N ) in case of uniform
distributed disorder for various sizes.

has also been studied. For q = 0.5 only slow convergence
of I (N ) could be observed, so I used a strong disorder
distribution: p = 0.1 and r = 0.9. In this case the IPR values
are larger than for uniform distribution but extrapolate roughly
to the same I = 0.125(15) value in the thermodynamic limit.

The finite-size scaling of the largest eigenvalue determines
the critical point within the QMF approximation λc = 1/yM .
This extrapolates with a similar correction to scaling as for
I (N ) to the value λc = 0.548 + (0.35/N )0.27. Naturally, this
value is much smaller than the true critical point of the model
due to the nature of approximations made.

Thus the IPR, defined in the supercritical phase, predicts
a localization in agreement with the known RR effects of
CP in one dimension. Note that for left-right asymmetric
disorder, when sites interact with their right or left neighbors,
the localization disappears in the N → ∞ limit in agreement
with the recent results [61].

For the QSIS model the lower tail of the Laplacian has been
determined numerically for N = 2 × 104. As Fig. 3 shows one
can fit the tails with power laws well. For uniform distribution

P (�) ∼ �4.75, (19)

suggesting a GP behavior with decay law,

ρ(t) ∝ t−5.75λ, (20)

similarly for the known result of the CP.
In conclusion I demonstrated here that even for this low

dimensional model, where dynamical fluctuations are relevant
at the critical point the effect of quenched disorder away from
λc can be well described via the QMF approximation.
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FIG. 3. (Color online) Lifschitz tails in 1D QSIS models.
Squares: tail distribution of the N = 2 × 104 QSIS with bimodal
random infection rates. Circles: tail distribution of the L = 104 QSIS
with uniform random distribution of infection rates. This curve is
shifted by ln(10) both in x and y direction for better visibility. Solid
line shows a power-law fit ∼ln(��i)4.75(5); dotted line: power-law fit
∼ln(��i)0.51(1).

V. LOCALIZATION TRANSITION ON A GENERALIZED
SMALL-WORLD NETWORK MODEL

In this section I show results of the QMF analysis done
on networks, which exhibit purely topological disorder. I
analyzed a generalized small-world (GSW) network model
[62–66], which exhibits finite D, defined as follows. We add
to a one-dimensional lattice (a ring) a set of long-range edges
of arbitrary, unbounded, length. The probability that a pair of
sites separated by the Euclidean distance l is connected by an
edge decays with l as

P (l) 
 βl−s (21)

for large l and amplitude β. These networks interpolate
between the quasi-one-dimensional network (s = ∞) and the
mean-field limit (s = 0). Recently, simulations of the CP
provided numerical evidence for the emergence of GP in s � 2
networks [53]. When a quenched disorder added to the birth
process rates a recent RG study arrived to similar conclusions
[38].

Here I show the finite-size scaling results of 〈I (N )〉 defined
on these GSW networks for sizes N = 103, . . . 2 × 105. As
Fig. 4 shows a clear localization occurs in the s = 2 case
with β = 0.1 for N → ∞. For s = 2 and large β, where
the CP simulations and the RG analysis were not completely
conclusive, a slow crossover to localization can be concluded
using an extrapolation to the data points: I (N ) = 0.20(2) −
0.18(1/N )0.02 (see inset of Fig. 4). Here, the unusually small
crossover exponent expresses the very slow change from small
to large IPR in the infinite-size limit. This result suggests that
the GP of the SIS model may exist for any β in case of marginal
(s = 2) GSW networks. In numerical simulations one should
observe GP regions of shrinking size, becoming invisible for
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1/N0.125
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0 0.0004 0.0008
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0.055

<I
>

β=3
 0.20 − 0.184 x

0.02

FIG. 4. (Color online) Mean values of IPR of the SIS model on
GSW networks. For s = 2, β = 0.1 (diamonds) extrapolation to N →
∞ shows the localization of the principal eigenvector. For s = 1,
β = 0.1 (bullets) one observes a homogeneous steady state in the
thermodynamic limit. For s = 2, β = 3 (squares) a slow crossover to
localization seems to emerge. On the main plot abscissa is rescaled to
allow better visibility of the finite-size scaling. Inset: The crossover
region magnified, rescaled, and fitted with a power law.

large βs. Finally, for s = 1 one observes a homogeneous steady
state above the critical point.

The Lij matrices have also been diagonalized for N �
4 × 104 in the case of s = 1 and s = 2 networks with β = 0.1.
Dropping the trivial �1 = 0 eigenvalues I calculated the
probability distribution of the smallest 500 eigenvalues of the
spectrum gap: P (��i) = P (�i − �2). For the N = 4 × 104

networks the Lifschitz tail results are summarized in Fig. 5.
For s = 2 a power-law tail emerges clearly, which can be
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FIG. 5. (Color online) Lifschitz tails on GSW graphs with N =
4 × 104. Bullets: s = 1, squares: s = 2. Dashed line: power-law
fitting: ∼��

0.55(1)
i .
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fitted well using the least squares error method as ∼��
0.55(1)
i ,

in agreement with the expected GP behavior. Contrary, at
s = 1 a deviation from power-law behavior can be observed
on the log-log plot, the P (��i) curve grows faster than
a simple power law. Plotting s = 1 curves on lin-log scale
an exponential initial tail can be detected for (��i) < 0.1,
slowing down later in a network size dependent way.

VI. LOCALIZATION TRANSITION ON SCALE-FREE
NETWORKS

Up to now I showed agreement and success of the QMF-
IPR method by predicting the RR effects in agreement with
the expectations. Now I point out some limitations. Problems
arise for example in the case of the SIS model on Barabasi-
Albert (BA) networks [67]. These networks are generated by a
linear preferential attachment rule, starting from a small fully
connected seed (N0). At each time step s, a new vertex (labeled
by s) with m edges is added to the network and connected to
an existing vertex s ′ of degree ks ′ with the probability 
s→s ′ =
ks ′/

∑s ′′<s
s ′′=1 ks ′′ . By iterating the attachments for N times one

arrives at a graph with N + N0 nodes with an asymptotic SF
degree distribution P (k) 
 k−3.

A previous work [35] showed that for SIS models the IPR
remained small in these networks, however uncertainties grew
by increasing N . Now I compute IPR for a large number
of disorder realizations for each N and show that P (I )
distributions become wide as N → ∞, with the appearance
on an additional peak, besides the one at zero. As shown in
Fig. 6 the second peak becomes dominant for N � 5 × 105,
suggesting a crossover to localization in the infinite size limit.
In this analysis m = 3 BA networks with N0 = 5 were used.

Earlier dynamical simulations of the CP did not show
deviations from the mean-field transition in the case of γ = 3
degree distribution, except for BA trees, especially when
certain weighting schemes were applied [68]. Note that for
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FIG. 6. (Color online) Probability distribution of IPR of the m =
3 BA SIS model for sizes N = 104, 5 × 104 105, 5 × 105, and
N = 106 (from left to right).

the SIS model λc = 0 is expected in the N → ∞ limit, thus
RR effects, if occuring, could only slow down the relaxation
towards the active state.

To investigate this further I considered the SIS on uncorre-
lated configuration model (UCM) [69], since one can control
the degree distribution easily and these have been studied
by various techniques. The UCMs were generated by the
standard way. In a set of N vertexes one assigns to each vertex
ki number of stubs, drawn from the probability distribution
P (k), with the k0 � ki < kc and the mod (

∑
i ki ,2) = 0

constraints. The network is completed by connecting pairs
of these stubs chosen randomly to form edges, respecting ki

and avoiding self or multiple connections. A minimum degree
k0 = 2 and a structural cutoff kc = N1/2 was used to generate
uncorrelated connected networks with probability 1. The result
of this construction is a random network, whose degrees are
distributed according to P (k) without degree correlations.

I generated the adjacency matrices for a large number of
UCM graph realizations for degree distributions with γ = 4,
3.5, 3, 2.8, 2.5 and performed the QMF analysis for sizes
N = 103, 2 × 103, 104, 5 × 104, 105, 2 × 105. The estimated
threshold values λc = 1/yM tend to zero in the N → ∞ limit,
in agreement with theoretical arguments for SIS: λc ∼ 1/N1/4

for 2.5 < γ � 3 and λc ∼ 1/N1/[2(γ−1)] for γ > 3 [29,32].
Power-law fits provided 〈λc〉 ∼ 1/N0.25(1) for γ = 2.5,3 and
〈λc〉 ∼ 1/N0.17(1) for γ = 4 (see Fig. 7).

The probability distributions of IPR values are also cal-
culated and as the right inset of Fig. 7 shows they converge
to a sharp peak at I = 0 for γ = 2.5, 2.8, while they smear,
similarly as in case of BA, suggesting a localization transition
at γ = 3 (see left inset of Fig. 7). For γ = 4, 3.5 the peaks of
P (I (N )) are localized around I 
 0.25.

The mean value results of the IPR distributions are sum-
marized in Fig. 8. For γ = 2.5 networks limN→∞〈I (N )〉 = 0,
thus no sign of localization appears. On the other hand, for
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−0.25
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<λ
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I0

5e+03
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P
(I
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FIG. 7. (Color online) Finite size scaling of QMF results of SIS
on UCM networks. Mean value of λc for N = 103, . . . ,2 × 105 and
for γ = 4 (diamonds), 3 (squares), 2.5 (bullets). Lines correspond
to power-law fits. Right inset: P (I )s for γ = 2.5 with network sizes
increasing from right to left curves. Left inset: P (I )s for γ = 3 with
network sizes increasing from the left to right curves.
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0.46

FIG. 8. (Color online) Mean values of IPR on UCM graphs with
N = 103, . . . 2 × 105. Rhombuses: γ = 4 extrapolation N → ∞
results in I = 0.26(1) (localization). Bullets: γ = 2.5. For γ = 3
(squares) a crossover (a localization transition) emerges.

γ = 4 the mean IPR remains finite and a localized network
with I (N ) → 0.26(1) can clearly be observed. Data are plotted
on the 1/N0.3 scale, which shows the leading order finite-size
scaling in the best way. At γ = 3 we can see a crossover
towards eigenvector localization. The distribution of 〈I (N )〉 is
very wide here as in the case of the BA graph.

The coefficients of the expansion a1, a2, and a3 in Eq. (3)
disappear as ∼(1/N ) in case of γ � 3. On the other hand for
γ < 3, a1 decays slower than ∼(1/N), while a2 and a3 are
roughly zero, corresponding to a clear mean-field transition
with β = 1. Such change has been observed in Refs. [34,35]
in accordance with the emergence of RR effects.

I have also studied the Lifschitz tail above and below the
localization transition in a similar way as before on UCM
graphs with N = 105 nodes. The spectrum gap grows by
decreasing γ as �2 = 2.0166 for γ = 4, �2 = 2.0359 for
γ = 3 and �2 = 2.0961 for γ = 2.5. This is in agreement
with our expectations, because a larger gap means more
entangled networks, in which epidemic spreads quickly. The
lowest 500 eigenvalues are calculated and histogrammed
using bin sizes δ� = 0.0001, following the drop of the
�1 = 0 eigenvalue. The P (�i) distributions are shifted by
−�2 helping us to recognize possible power laws on log-log
plots. As Fig. 9 shows, in the localized phase (γ = 4) a
power-law distribution seems to emerge indeed, characterized
by P (��i) = 2.258(12)(��i)1.52(1). On the other hand in the
delocalized phase, for γ = 2.5, one can observe a faster than
power-law behavior, which can be fitted well with the stretched
exponential form: 5000 exp[−3/(��)0.5], in agreement with
the asymptotic of Eq. (15), valid for uncorrelated random
networks. For comparison, a power-law fit assumption would
lead to a large standard error of the regression coefficient:
ε = 0.142. Finally, at the γ = 3 localization transition point,
the tail behavior at small �� deviates slightly away from a
power law, suggesting the lack of GP phase, in agreement

10
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10
−1

ΔΛi

10
−2

10
−1

10
0

10
1

10
2

P(
ΔΛ

i)

5000 exp(−3/(ΔΛ)0.5)
x

1.52(1)

γ=2.5
γ=3
γ=4

FIG. 9. (Color online) Lifschitz tails of SIS on UCM graphs
Bullets: γ = 4, triangles: γ = 3, squares: γ = 2.5. Dashed line:
power-law fitting with ∼(��i)1.52(1). Dotted line: least squares fitting
with the stretched exponential form 5000 exp[−3/(��)0.5].

with the numerical simulations of [68] done for the CP in
BA networks. Assumption of a power-law fit form provides
ε = 0.018.

Unfortunately the differences observed between the power-
law and stretched exponential tail behaviors are rather small.
This is probably due to the limitation of computing high
precision P (�) for large sizes. This puts a question mark on
the applicability of the Lifschitz tail method in general.

VII. CONCLUSIONS

Probability distributions of the inverse participation ratio
have been calculated in various network models exhibiting
explicit or topological heterogeneities. Careful finite-size
scaling analysis pointed out the emergence of localization in
generalized small-world and scale-free models. This method
describes well the GP singularities both in one-dimensional
SIS with interaction disorder and in GSWs with topological
heterogeneity. Localization, appearing in the active phase
signals GP singularities there. Former dynamical simulations
in the case of generalized small-world networks [7,18,53]
support this. In infinite dimensional systems like ER graphs
or BA networks GPs with slow dynamics have been shown
to appear only in weighted models [18,34,53,68,70]. In
SF models with pure topological disorder the simulations
have been concentrated on the location of the critical point
by calculating stationary quantities [9,11,28,29] and visible
GP effects have not been reported yet. Only loopless BA
trees showed nontrivial phase transition by very extensive
density decay simulations [68]. This just corresponds to the
localization point, thus one can expect more rare-region effects
for γ > 3 SF networks. Preliminary numerical simulations
indicate a time window, with a power-law-like approach to the
steady state.

On the other hand the lower spectral tail of the Lapla-
cian describes behavior in the inactive phase. In the linear
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approximation this is related to the dynamics of the order
parameter. The predictive power of the Lifschitz tail method
has been investigated and found in qualitative agreement
with the expectations. Finite systems exhibit spectral gaps,
above which power-law tails were found, when GP behavior
is expected. Fat-tail distributions of the adjacency matrix of
SF were already shown in Ref. [10]. This study suggests the
existence of SIS network models with fat-tailed Laplacians.
However, calculation of the Lifschitz tail numerically is a
demanding task, not much easier than simulation of the time
dependent order parameter. Furthermore, since QMF predicts
λc = 0 for SF and GSW networks one cannot deeply be in the
inactive phase of SIS, where the method is expected to work
in the thermodynamic limit.

Application of these methods to SF networks results in
a localization transition at γ = 3 both for correlated and
uncorrelated graphs. This is in agreement with the very
recent simulation results, discussed in Ref. [11] and with the
threshold, where the degree fluctuations 〈k2〉 diverge in the
HMF approximation [21] due to the strong heterogeneities.
The localization in the active phase suggests dynamical RR
effects for γ > 3, like in the models presented in Ref. [12].
However, for SIS, where λc = 0 is expected to be in the
thermodynamic limit, this implies a smeared phase transition,
with an algebraic decaying density in a time window towards
the active steady state value. This scenario is feasible, because
subspaces of an infinite dimensional graph can be RRs with

arbitrary topological dimensions exhibiting phase transition at
different λs, as suggested in Ref. [68]. According to [71] for
large γ s hubs sustain the epidemic processes instead of the
innermost, dense core, thus one may expect that hubs play
the role of RRs here. In finite networks the smeared phase
transition may also look like multiple phase transitions.

The success of the QMF method for describing GP behavior
is demonstrated here for SIS in basic network models. How-
ever, the linearization [36–38] and the complete neglection
of dynamical fluctuations [29] warn for limitations on this
relatively fast method, especially when the strong fluctuations
override the localization effects. The appearance of strong RR
effects above the upper critical dimension [39] supports that the
QMF method is capable to predict exotic GPs with off-critical,
power-law singularities.
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[35] G. Ódor, Phys. Rev. E 88, 032109 (2013).
[36] C. Monthus and T. Garel, J. Phys. A: Math. Theor. 44, 085001

(2011).
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