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ABSTRACT  

 

Background: IDPs function without relying on three-dimensional structures. No clear 

rationale for such a behavior is available yet. PreSMos are transient secondary structures 

observed in the target-free IDPs and serve as the target-binding "active" motifs in IDPs. 

Prolines are frequently found in the flanking regions of PreSMos. Contribution of prolines to 

the conformational stability of the helical PreSMos in IDPs is investigated. 

 

Methods: MD simulations are performed for several IDP segments containing a helical 

PreSMo and the flanking prolines. To measure the influence of flanking-prolines on the 

structural content of a helical PreSMo calculations were done for wild type as well as for 

mutant segments with ProAsp, His, Lys, or Ala. The change in the helicity due to removal 

of a proline was measured both for the PreSMo region and for the flanking regions. 

 

Results: The -helical content in ~70% of the helical PreSMos at the early stage of 

simulation decreases due to replacement of an N-terminal flanking proline by other residues 

whereas the helix content in nearly all PreSMos increases when the same replacements occur 

at the C-terminal flanking region. The helix destabilizing/terminating role of the C-terminal 

flanking prolines is more pronounced than the helix promoting effect of the N-terminal 

flanking prolines. 

 

General Significance: This work represents a novel example demonstrating that a proline is 

encoded in an IDP with a defined purpose. The helical PreSMos presage their target-bound 

conformations. As they most likely mediate IDP-target binding via conformational selection 

their helical content can be an important feature for IDP function. 

 

Keywords: Intrinsically Disordered Protein (IDP), PreSMo (Pre-Structured Motif), Flanking 

Proline, Molecular Dynamics Simulation 
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1. INTRODUCTION 

 

 Intrinsically disordered proteins (IDPs) [1-4] do not form uniquely folded structures 

under physiological conditions but they are still able to perform their specific functions, such 

as transcriptional activity [5], translational activity [6], and binding to target proteins [4]. 

IDPs exist as a dynamic conformational ensemble and have no fixed equilibrium values for 

backbone dihedral angles (). Various reasons including uncompensated charge groups 

and the low percentage of hydrophobic amino acid residues have been hypothesized as the 

reason that IDPs do not form well-ordered three-dimensional structures [7,8]. The 

conformational states of both globular proteins and IDPs can be affected by temperature, pH, 

counter ions, and other factors [9]. However, the target-bound structures of IDPs are more 

significantly governed by their binding partners than globular proteins because they fold into 

relatively ordered structures upon binding [10]. Furthermore, the structural flexibility of IDPs 

makes them more promiscuous in target interactions [2,11]. For example, the tumor 

suppressor p53, which is 50% disordered in its monomeric form, can bind to hundreds of 

target proteins [2]. More specifically, the N-terminal transactivation domain (TAD) of p53, 

containing three pre-structured motifs [5,12], can bind to three different target proteins [12-

14]. In addition, a short disordered segment in the C-terminal region of p53 binds with four 

different partners, adopting different conformations depending on the context provided by the 

binding partners [2,15-18].  

 Although IDPs are topologically disordered, they often contain transient secondary 

structural elements that were originally named local structural (lost) elements which have 

recently been redefined as pre-structured motifs (PreSMos) [5,12]. These results contradicted 

the simple notion which prevailed in the early days of IDP research that IDPs with extended 

disorder were completely unstructured down to the level of secondary structures. It turned out 

that PreSMos are present in over two dozens of target-unbound IDPs which represent 

approximately two-thirds of IDPs whose structural states have been characterized in detail by 

NMR [4]. In fact, IDPs can be divided into two classes, a mostly unstructured (MU, “”,) 

subtype and a completely unstructured (CU, “Q”) subtype based upon whether they contain 

PreSMos or not [4]. PreSMos are critically involved in the target binding of many IDPs, such 

as p53 TAD [13], VP16 TAD [19,20], preS1 of HBV [21], and 4EBP1 [6], and represent the 

“active sites” in these IDPs [4]. Unlike the spatially disposed active pockets found in globular 
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proteins the PreSMos are linear contiguous motifs most of which are a short stretch (2~3 

turns) of a helix. Presence of PreSMos in target-unbound IDPs has an important bearing to 

the question of whether the IDP-target binding mechanism involves conformational selection 

or not.  

Proline is one of two natural amino acids that do not have the typical backbone 

torsion angles. The ring formation in prolines involving the peptide backbone restricts the 

allowed backbone torsion ψ and φ angles to a smaller region than other amino acids [22]. 

Theoretical studies on the proline-containing -helix model peptides revealed an interesting 

correlation between the position of proline and the stability of a helix [23]. The highest 

positional propensities of proline were found in the helical peptides when a proline is situated 

at the N-terminus of a helix [23,24]. Without much surprise one finds that IDPs have many 

disorder-promoting proline residues [25,26]. Furthermore an interesting point was revealed 

during a recent examination of the amino acid sequences for the  type IDPs that prolines are 

more frequently observed in the flanking regions of PreSMos than other regions of IDPs. 

Since many PreSMos are -helical [4] it is likely then that the conformational stability of 

PreSMos may be affected by the proline residues in the flanking regions of PreSMos. We 

have used bioinformatics analysis tools and molecular dynamics (MD) simulation to explore 

the effect of prolines on the structural integrity of the helical PreSMos. We have replaced the 

prolines both in the N- and the C-terminal flanking regions of PreSMos with 4 different 

amino acid residues and have monitored the incurring conformational changes of PreSMos in 

several  type IDPs [4] such as p53 TAD, securin, I-2, ENSA, CREB KID, and DARPP-32.  
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2. MATERIALS AND METHODS 

 

2.1 PreSMo Selection 

The helical PreSMos for MD simulation were selected manually from the recently 

published list of PreSMos [4]. These PreSMo peptides shown in Table 1 were selected 

because they are the ones defined most clearly by NMR experiments. The degree of pre-

population or pre-structuring for most PreSMos in IDPs is 20~50% [4]. All PreSMo peptides 

under investigation contained at least one proline both at the N-terminal flanking region 

(NFR), and the C-terminal flanking region (CFR) within 5 amino acid residues from a 

PreSMo except for the case of the PreSMo VII in ENSA and the PreSMo IX in the CFR of 

DARPP-32 (see below). We have limited the number of flanking residues to 5 since beyond 

this number of residues the capping effect is likely to be insignificant. For convenience we 

have divided the PreSMo peptides into three regions; an NFR, a PreSMo region (PR), and a 

CFR (Figure 1). In Table 1 we summarized the sequences of 9 PreSMo peptides, i.e., p53 

TAD (12-28, 35-48, and 45-59, denoted as I , II, and III) [5,12], securin (144-164 and 172-

183, denoted as IV and V) [27], I-2 (90-107, denoted as VI) [28], ENSA (27-43, denoted as 

VII) [29,30], CREB KID (131-147, denoted as VIII) [31,32], and DARPP-32 (27-46, 

denoted as IX) [ 28].  

 

2.1.1 p53 TAD  

p53 TAD has three PreSMos, one is helix (residue 18-26), and the other two are short 

turns (residue 40-44 and 48-53) [5]. The populations of each PreSMo obtained from SSP 

calculation were approximately 25, 5, and 15% [4], respectively. Pro residues were located in 

both flanking regions of all three PreSMos in p53 TAD.  

 

2.1.2 Securin  

Securin was shown to have three PreSMos, one is -strand (residues113-127) and the 

others (residue 150-159 and 174-178) are helices [27]. SSP calculations show that the 

populations of the helices are 45 and 20%, respectively [4]. All three PreSMos have Pro 

resides in their both terminal flanking regions. We selected two helical PreSMos since all the 

other PreSMos examined in this study are helical. 
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2.1.3 I-2  

Dancheck et al. showed that I-2 had three PreSMos (residues 36-42, 96-106, and 

132-138) [28] with the helical populations of 30, 48, and 98%, respectively. The second helix 

PreSMo was used for the current study. 

 

2.1.4 ENSA  

The predicted populations of three PreSMos of ENSA were 40, 10, and 30% for 

residue 32-36, 48-50, and 65-70, respectively [4,29,30]. Only the first PreSMo has Pro 

residues in both flanking regions. 

 

2.1.5 CREB KID  

Originally CREB KID was viewed as a CU type requiring an induced-fit for IDP-

target binding [32]. However, upon examination of NMR parameters we concluded that it in 

fact has two helical PreSMos in its unbound state [4,31]; the populations of two PreSMo 

helices are >50% (A-Helix: residue 119-129) and ~10% (B-Helix; 134-143), respectively 

[1,31]. In the case of A-Helix, Pro was found only in its CFR, but the B-Helix has Pro 

residues both in NFR and CFR. Thus, we have chosen the B-Helix for our study.  

 

2.1.6 DARPP-32  

DARPP-32 has two helical PreSMos (residues 22-29 and 103-114) [28] and their 

predicted populations were 50 and 25% [4]. Only the first PreSMo selected in this study has 

prolines in both flanking regions. 

 

2.2 Amino Acid Composition in PreSMos/-MoRFs and Their Flanking Sequences 

In Table 2, we show the amino acid frequencies of all reported PreSMo peptides [4] 

were calculated not only for the PR themselves but also for CFRs and NFRs. A previous 

bioinformatics analysis identified so called -helical molecular recognition elements (-

MoRFs) that are short segments of IDPs to form an -helix upon target binding [33-35]. 

PreSMos and -MoRFs are similar in their helical structural nature even though -MoRFs 

are different by definition from the helical PreSMos since the latter are found to be helical in 
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the target-unbound state whereas the former are helical segments of IDPs only observed in 

the target-bound x-ray structures. We have analyzed the amino acid frequencies in the -

MoRFs and their flanking regions using the same logic used for analyzing the amino acid 

sequence of PreSMos and the results are summarized in Table 3. The second column was 

calculated by taking the residue specific averages of five contiguous residues preceding the 

first residue in an -MoRF. These averages were normalized to the residue specific 

frequencies in all disordered proteins. The third column shows the frequency of prolines in 

the C-terminal flanking region of -MoRFs. The values in this column were calculated by 

taking the residue specific averages of five contiguous residues following the last residue in 

an -helical conformation. These averages were also normalized to the residue specific 

frequencies in all disordered proteins. 

 

2.3 Molecular Dynamics (MD) Simulations  

 

2.3.1 MD Procedure 

All MD simulations were performed with SANDER module of AMBER10 program 

package [36] using the ff99SB force field [37]. Nine wild-type PreSMo peptides and four 

mutants of each wild-type PreSMo were generated by Swiss PDB Viewer [38]. Since we 

wanted to observe how the structural content of a helical PreSMo is affected by presence or 

removal of a proline in the flanking regions we started MD calculations with the PreSMo 

peptides which are initially in an ideal alpha-helical conformation and followed the loss of 

helicity (unfolding) due to mutations during the course of MD simulations. The helical 

structure contents of the wild-type PreSMos were compared with those of the mutants 

containing Asp, His, Lys, or Ala; Asp and Lys were chosen for their negative or positive 

charge effects. Ala was selected for its small hydrophobic sidechain whereas His was selected 

for its somewhat larger sidechain than a proline. 

Simulations were performed for 10ns at 300K under a neutral pH condition (total 81 

trajectories) with the peptides capped by ACE (acetyl) and NME (N-methylamine) at the N- 

and C-terminus, respectively. Short simulations were performed since the main purpose of 

our study is to compare the effect of different mutations to the loss (unfolding) of the helicity. 

On the other hand, for a few cases a longer simulation time (40~50 ns) was used in order to 
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check if short simulation results may be extrapolated to longer simulations. The starting 

PreSMo peptides were explicitly solvated with 1,600~4,100 TIP3P water molecules in the 

rectangular box where the distance to the edge of solvent box from PreSMo peptide was 

chosen to be 10~14 Å. To neutralize the systems, Na+ or Cl- counter ions were added. The 

particle mesh Ewald method [39] was applied to account for long-range electrostatic 

interactions, and a 10.0 Å cutoff was used for nonbonded interactions. The hydrogen atoms 

were constrained to the equilibrium bond length using the SHAKE algorithm [40]. In order to 

remove unfavorable van der Waals contacts, 500~4,000 steps of steepest minimization and 

500~6,000 steps of conjugate gradient minimization were performed with 500 kcal (mol Å2)-1 

harmonic potential. Then, the whole system (peptide and solvent) was minimized using 

4,000~12,000 steps of steepest descent minimization without any restraints. These systems 

were subsequently subjected to 50~100 ps equilibration process where the temperature of the 

system was gradually raised to 300K under atomic positional restraint of peptide. After 

equilibration, the production runs were preformed for 10 ns with 2fs time steps and NPT 

ensemble and 5,000 structures were collected for every PreSMo peptide. 

 

2.3.2 Trajectory Analysis 

The trajectories were analyzed using several parameters. The root-mean-square 

deviation (RMSD) value for C atoms is a useful parameter for quantifying the 

conformational changes between two structures of the same peptide or protein. In this study, 

C RMSDs between structures in the trajectories and the initial -helical state were 

calculated. To analyze the fluctuation and statistics of the secondary structure of the wild-type 

and its four mutants, the dictionary of secondary structure of proteins (DSSP) program 

developed by Kabsch and Sander was used [41]. All secondary structures were characterized 

by DSSP and were classified into three helix types (alpha-helix, 310-helix, and π-helix), two 

sheet types (antiparallel and parallel β-sheet), and others (turn and coil). Here we considered 

only alpha-helical structure to keep the consistency in comparing several PreSMo peptides. 

The clustering analysis was employed to generate the pools of conformation for each MD 

trajectory. The clustering method used the pairwise C RMSDs between different frames. 　

Using this clustering method, 40 groups were produced for each trajectory and the closest 

structure to the centroid of the largest cluster was selected (See Figure 2). The helicity of each 

stored structure was calculated from secondary structure analysis. Also various distance 
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analyses between two specific atoms were directly measured from MD trajectories. The ptraj 

toolset available in the AMBER program as well as in-house analysis programs were used to 

analyze the resulting MD trajectories. The VMD [42] and PyMol [43] software were used for 

the preparation of the structural figures and the visual analyses in this study. 
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3. RESULTS 

 

3.1 Amino Acid Frequency in PreSMos/-MoRFs and Their Flanking Regions 

The amino acid composition within PRs and their flanking regions are summarized 

in Table 2. For several hydrophobic residues we observed reduced frequency inside the PRs 

where an overrepresentation of polar residues is also observed. The number of experimentally 

verified PreSMos is ~ 50 [4]. Nonetheless, the observed trend is remarkably clear for prolines 

even with this small sample size. The frequency of prolines is ~ 3 times higher in NFRs and 

CFRs than that from UniProt is observed whereas it is only half of the UniProt value inside 

PRs.  

A similar but weaker trend is observed in the case of -MoRFs. The second column 

in Table 3 shows the relative frequency of prolines in the N-terminal flanking region with 

respect to those of -MoRFs. In concurrence with the data on PreSMos presented in Table 2, 

the frequency of the C-terminal flanking prolines in -MoRFs is higher than the frequency of 

0.0718 observed in all IDPs [44]. The frequency of N-terminal flanking prolines of -MoRFs 

is also higher in CFRs when compared with the average frequency in all IDPs. Interestingly, 

if the average is taken over 6 N-terminal flanking residues instead of 5 the proline frequency 

is even higher (1.23). Overall in both PreSMos and -MoRF data sets, the frequency of 

prolines flanking the alpha helix-forming regions in IDPs is higher than the overall frequency 

of prolines in IDPs. These results strongly suggest presence of positive selection to maintain 

proline residues in flanking regions of transient helical segments.  

 

3.2 MD Simulations Suggest a Helix-Destabilizing Role for Flanking Prolines 

Figure 2 shows the relative average C RMSDs of the mutant PreSMo peptides with 

respect to the wild-types containing prolines can be calculated by subtracting the average 

values of the wild-types from those of mutants. The C RMSDs for the NFR mutants were 

on the average increased by 0.302, but those for the CFR mutants decreased in the opposite 

direction by 0.439, indicating that the NFR mutants, i.e., removing a proline in the N-terminal 

flanking region of a helix, destabilized the helical nature when compared with the CFR 

mutants where a proline is replaced by other amino acids in the C-terminal flanking region of 

a helix. Figure 3 shows the most populated structures of each PreSMo peptide that are close 

to the centroid of the largest cluster obtained from MD simulations. The size of the largest 
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clusters increased if a proline was removed in CFR whereas the size decreased when we a 

proline is replaced by other amino acids in NFR. In case of ProAla mutation in NFR, the 

population of the largest cluster decreased by 0.5% on the average, but for ProAsp 

mutation in NFR the population remained same as that in the wild-type. On the contrary all 

the mutations in CFR increased the population of the largest clusters more noticeably by 

1.4~2.6%. In almost all cases the helical content of the largest cluster in the CFR mutants was 

higher than that in the wild-type. Such a tendency was not observed for the NFR mutants. 

These results indicate that the overall effect of the prolines present in CFR of the wild type 

PreSMo peptides is larger than that in NFR.  

It should be noted that the structures shown in Figure 3 are not necessarily the same 

as the experimentally determined structures of PreSMos since we focused on only the most 

populated cluster of each PreSMo peptide. Figure 4 summarizes the residual alpha helical 

content for each residue. It can be seen that ~90% (36 out of 40) of cases the helical content 

in the CFR mutants is higher than that in the wild type and that ~70% (32 out of 40) of the 

NFR mutants show a lower helix content than the wild type. The overall summary of 

variation in the alpha helical content of the mutant PreSMo peptides with respect to the wild-

type PreSMo is summarized in Figure 5. 

 

3.2.1 p53 TAD  

p53 TAD 1 (I) is a relatively well-defined helix. This PreSMo is the critical site in 

p53 that triggers many factors involved in tumor suppressing function [5,12,45]. When mdm2 

blocks this site of p53 the tumor suppressive activity of p53 disappears [46]. Figure 3 shows 

that the helicity for the entire PreSMo-forming residues (residues 7-15) significantly 

decreases if a proline in its NFR is replaced by other amino acid residues. The helicity of 

NFR itself also decreases drastically except for the case of Lys mutant. On the contrary when 

a proline in CFR is replaced by Asp, His, Lys or Ala the helicity of this PreSMo increases by 

a large amount. 

 p53 TAD 2 (II) was originally found to form one turn of a helix by residues 40-44. 

The p53 TAD 2 PreSMo (II) peptide we studied here has 14 residues and hence forms a 

slightly longer PreSMo helix with two turns. With a proline mutation in its CFR the helicity 

of this PreSMo increases slightly. But, the CFR mutations involving Asp, His, or Ala do not 

influence the helicity of the NFR-forming residues. Interestingly, a lower helicity for the 
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NFR-forming residues is observed in the case of CFR Lys mutation. The helicity of the CFR-

forming residues in CFR mutants is always higher than that of the wild type. In contrast, NFR 

proline mutations reduce the helicity of the PreSMo noticeably (40~60%), in particular, in the 

case of His and Lys mutants. The reduction is less pronounced (~10%) in Ala and Asp 

mutants. The helicity of the NFR residues also decreases significantly with N-terminal 

mutations, i.e., by ~60%, 20%, 40% and 10% respectively, for Asp, His, Lys and Ala 

mutation. On the other hand minimal reduction in the helicity of the CFR-forming residues is 

observed with N-terminal mutations.  

 p53 TAD 3 (III) is also a turn PreSMo, which by itself can bind to mdm2 or p62 

[12,13]. When RPA binds to p53 TAD, p53 TAD 2 (II) and p53 TAD 3 (III) help the binding 

by forming a two-turn helix [14]. The effect of removing a proline from its NFR is not 

pronounced; the helicity of this PreSMo remains the same before and after mutations. On the 

other hand, the helicity of the entire PreSMo peptide including NFR, PR and CFR 

dramatically is enhanced due to the proline removal at its CFR.  

 

3.2.2 Securin  

Securin PreSMo 1 (IV) is 10 residues long (residues 150-159) with 4 glutamic acids. 

The wild type PreSMo peptide used for MD simulations is a 21-residue long peptide. This 

PreSMo peptide shows an interesting dip in its helicity within the PreSMo-forming residues 

(Figure 4IV). In three NFR mutants (Asp, His, and Ala) this dip disappears with a 

concomitant increase in the helicity of the PreSMo-forming residues. Removal of a proline in 

NFR decreases the helicity of the NFR-residues in two (Asp and Lys) mutants following a 

similar trend observed in p53 TAD. Yet, it is remarkable that the overall helicity increases 

when a proline is mutated to a histidine (the second panel from the left in Figure 4IV). This 

represents the only case showing such a behavior in the current study. As in p53 TAD the 

helicity of all three regions, NFR, PR and CFR, with His and Lys mutations in CFR is higher 

than that of the wild type. The helicity remains similar to that of the wild type in the case of 

Asp and Ala mutants in CFR. The helicity of the NFR-forming residues in Asp mutant is 

lower than the wild type.   

 Securin PreSMo 2 (V) is a short 5-residue PreSMo. A significant reduction in the 

overall helicity due to NFR mutations was noted in the case of His mutant. The other mutants 

have a similar degree of helicity as the wild type. In the case of CFR mutants a slight increase 
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in the helicity was observed except for the case of Lys mutant where the helicity decreased 

due to removal of a proline.  

 

3.2.3 I-2  

I-2 PreSMo (VI) is an 11-residue PreSMo having a ~50% degree of helix pre-

population [28]. We have used an 18-residue long PreSMo peptide for calculations. It is 

notable that all the CFR mutations drastically increased the helicity of the PreSMo especially 

at the C-terminus of PR. For three mutants the NFR-forming residues did not experience any 

noticeable change in the helicity except for the case of Asp mutant which showed ~15% 

decrease in the helicity. The Asp mutation in NFR decreased the helicity of the NFR-forming 

residues, but not that of the PreSMo-forming residues. The other NFR mutations did not 

influence the helicity of the NFR-forming residues. The Lys mutation in NFR increased the 

helicity of the N-terminal half of the PreSMo-forming residues to a significant degree (~20%). 

For Ala mutant removal of a proline in NFR did not affect the structural stability of PreSMo 

whereas His mutation changed the helicity of the N-terminal 4 residues of the PreSMo by 

10~50%.   

 

3.2.4 ENSA  

The ENSA PreSMo (VII) formed by residue 32-36 is ~ 40% pre-populated [4], and 

the length of the ENSA PreSMo peptide used for MD simulations is 17. The Asp and Ala 

mutants in NFR drastically reduced the helicity of NFR-, PR- and CFR-forming residues. But 

it did not change to any significant degree by His and Lys mutations in NFR. In the case of 

CFR mutants none of the mutations seems to affect the helicity noticeably.  

 

3.2.5 CREB KID  

The NFR mutations all seem to increase the helicity at the C-terminal half of the 

PreSMo-forming residues except for the case of Ala mutant. As for the CFR mutations two 

(Asp and Lys) mutations increased the helicity by a large amount (20~70%). But, His and Ala 

mutations seem to decrease the helicity by 10~50%.  

 

3.2.6 DARPP-32  

The DARPP-32 PreSMo (residues 22-29, IX) is the only PreSMo containing a 
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proline (residue 24) in the middle [28]. Although this PreSMo is ~50% populated by SSP 

calculations [4] it contains a kink within a helix. It is difficult to find any general trend with 

NFR mutations. In three CFR mutants (Asp, Lys, and Ala) the helicity seems to increase. 

However in His mutant in CFR the effect seems to be in the opposite direction at least for ~5 

residues which show a lower helicity. 
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4. DISCUSSION 

One of the characteristics observed in IDPs is a higher composition of disorder-

promoting residues including proline than in globular proteins [26]. An apparent role of 

prolines is to render proteins flexible. But, prolines may play a specific structural role by 

stabilizing helical structures when they are placed at the N-terminus of a helix, i.e., act 

preferentially as a helix initiator at an N-terminus rather than a helix breaker [47]. For 

example, several computational studies on the helical pentadecapeptide, Ac-(Ala)n-Pro-

(Ala)m-NHME, demonstrated that the highest positional propensity of a proline is found for 

the Ncap+1 position in a helical peptide [22,48,49]. Would such a positional propensity of 

prolines hold for the prolines flanking the helix-forming segments such as PreSMos in IDPs? 

Our study was designed to investigate if prolines in IDPs, in addition to such a general 

disorder-promoting role, may have a further specific role of influencing the length and the 

stability of the helix-forming PreSMos.  

Figure 5 summarizes the variations in the alpha-helical contents associated with the 

proline mutations in the helix PreSMo peptides studied. When a proline in the NFR is 

replaced by other amino acids, the alpha helical contents of NFR, PR, and CFR of PreSMo 

peptides were all noticeably decreased (Figure 5(A)). Among all the mutants, the alpha 

helical contents in NFR of I-Ala, II-Ala, VII-Lys, VII-Ala, II-His, and I-Asp mutant 

peptides significantly decreased by -65.8%, -63.9%, -48.4%, -47.6%, -45.0%, and -42.9%, 

respectively. For the PRs, the alpha helical contents of II-His and VII-Ala changed by a 

similar degree, i.e., -58.7% and -51.7%, respectively. In case of CFR, the variations in the 

alpha helical contents for most mutants were below 25%. Also the average variation in NFR 

(-12.9%) is much higher than that in the other two regions; PR by ~ -3.1% and CFR by ~ -3.6% 

on the average. These results show that the prolines in NFR tend to serve as an alpha helix 

initiator/promoter in the two-thirds of the cases we have studied similar to the prolines 

preceding -helices in globular proteins.  

In contrast to the prolines in NFR the prolines in CFR of PreSMos take up an 

opposite role. As shown in Figure 5 we clearly observed that the alpha helical contents for the 

most part of the CFR and PR increased when a proline was removed in CFR. Among all the 

C-terminal mutants, the alpha helical contents in NFR of V-Ala, II-Asp, VIII-His mutants 

increased over +30% and for the PRs, those of III-Lys, III-Ala and VI-His were increased 

over +53.2%, +45.7%, and +41.0%, respectively. In case of CFR, the variations of alpha 



16 

helical contents for the most of mutants were significantly increased; more than 50% and 40% 

increase in I-Asp, III-Lys, III-Ala and in VIII-Ala, II-His, IX-Ala, I-Ala, and II-Asp, 

respectively. The average variations of alpha helical contents by the C-terminal mutations 

were -2.9%, +12.0% and +26.8% for NFR, PR, and CFR, respectively. Therefore, the 

prolines in CFR of PreSMo are definite -helix breakers. Also the proline removal from CFR 

more effectively increased the helical contents of PreSMos than that in NFR. Placing two 

prolines in any terminus of a PreSMo appears to be a highly efficient means of forming short 

(1~3turns) helix PreSMos in IDPs. A proline residue in middle of an -helix may introduce a 

bend or kink into a helix [49-52]. Among the PreSMo peptides we studied, only IX (DARPP-

32) came under this category. But the helix kink or bend was not observed due to the short (3 

residues) N-terminal region of IX (DARPP-32). 

Undoubtedly, the helix is the most studied and understood secondary structure in 

proteins. Nonetheless, our knowledge on this important structural element still seems 

incomplete especially in terms of how its stability may be controlled by the capping residues 

at its termini (Ncap and Ccap) and by surrounding residues (N’, N’’ or C’, C’’ etc) which not 

only form hydrogen bonds but exert hydrophobic effects [24]. Even though several studies 

addressing this issue were carried out with the model peptides consisting of a simple 

sequence, e.g., all Ala, it is difficult to extend the results of such studies to our PreSMo 

peptides which have widely varying sequences. In addition, the flanking prolines we have 

studied the effects of are not the capping residues, being a few residues apart from the termini. 

Hence, the observed roles of PreSMo-flanking prolines, probably via more hydrophobic 

effects than hydrogen bonding, we provided in this study is more like an overall comparative 

tendency (wild type vs. mutants) especially at the early stage of peptide structure evolution 

noting the peptide conformation may fluctuate much further during a long simulation [53,54]. 

What seems interesting is that even with such a variation in the sequence the role of the CFR 

prolines as helix terminators seems to be rather clearly manifesting even at some long 

simulation times even though it is less pronounced than at short simulation times (Figure 6 

and Table 4). On the other hand, the less clear tendency (~50% of the cases at a longer 

simulation time instead of ~70% observed at a short simulation) observed for the NFR 

prolines is not surprising if we appreciate the fact that the results are obtained for PreSMo 

peptides, not for a simple all-Ala model peptide. In addition, one must note that there is a 

certain uncertainty for the boundaries of a helix PreSMo determined by NMR. 
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 IDP-target binding can be described by induced fit or conformational selection. 

Recent studies show that the binding would be better explained by a combination of an 

induced fit and a conformational selection mechanism in the case of the  type IDPs which 

constitute ~70% structurally characterized IDPs [55-58]. PreSMos presage target-bound 

conformations of the binding segment and are specificity determinants for IDP recognition of 

the  type IDPs by target proteins [4]. As our results show that the flanking prolines control 

the conformational stability of PreSMos the prolines that flank PreSMo- or -MoRFs must 

have been designed to act as the “switches” that control the level of helical content, which in 

turn govern the degree of conformational selection by target proteins. Conformational 

selection mechanism is more energetically favorable than an induced fit. In the scenario of 

conformational selection, only a minor structural adjustment of PreSMos or local structures 

will be needed in binding process rather than a full induced fit/folding, where structural 

induction from random coil into a helix would have to occur after the binding segment is 

already seated into the binding pocket of target protein.  
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5. CONCLUSIONS 

 In summary, we have examined the effect of flanking prolines on the structural 

stability of helix-forming PreSMos in several type IDPs using molecular dynamics 

simulations. We observed that in the early stage of conformation evolution the alpha-helical 

contents were significantly decreased by replacement of proline residues with other amino 

acid residues in NFR, but were increased by the same mutations when they occur in CFR. 

Even though the role of prolines in the N-terminal region of a peptide as a helix 

initiator/promoter was examined by the various methods [59-64], this work is the first to our 

knowledge that examined the effect of proline mutations in the C-terminal region of peptides 

by MD simulations, in particular, in IDPs. We conclude that the proline residue in NFR may 

act as an alpha-helix initiator whereas that in CFR is a strong -helix breaker in IDPs; the 

proline in CFR of a PreSMo was most likely selected during evolution as a “terminator” of 

helical PreSMos in IDPs. A helically restrained PreSMo by a proline residue in an IDP which 

would become a stable helix upon target binding may favorably follow the conformational 

selection mechanism during target binding. While the number of investigated PreSMos in this 

study is small the conclusion drawn from this study has provided a useful insight into the role 

of proline residues around PreSMos or similar helix-forming segments such as -MoRFs. 

Further studies with a larger data set of PreSMos, with longer PreSMo peptides entailing 

longer regions of IDPs and with mutation of prolines into more amino acid residues examined 

for a longer simulation time than used in this study are expected to provide a more concrete 

picture regarding the role of prolines in IDPs.   
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TABLES 

 

Table 1. The locations, amino acid sequences, and populations of PreSMos.  

 IDP 
Location including 

PreSMos 
Pre-Population  

(%)a 
Sequence 

(N-term. – PreSMo – C-term.) 
Target protein Ref 

I 
II 
III 

p53-TAD 
 
 

12-28 
35-48 
45-59 

20 
5 
15 

PPLSQE–TFSDLWKLL–PE 
LPSQA–MDDLM–LSPD 
SP–DDIEQW–FTEDPG 

Mdm2, RPA, TFEIIH [5,12] 

IV 
V 

Securin 
 

144-164 
172-183 

45 
20 

VPLMIL–DEERELEKLF–QLGPP 
PP–WESNL–LQSPS 

- [27] 

VI I-2 90-107 48(70) APDILA–RKLAAAEGLEP–K PP1 [28] 
VII ENSA 27-43 40 LPER–AEEAK–LKAKYPS - [29,30] 
VIII CREB KID 131-147 10 RPS–YRKILNDLSS–DAPG KIX [31,32] 
IX DARPP-32 17-36 50 PPSQ–LDPRQVEM–IRRRRPT PP1 [28] 

a. Most of the populations were obtained from the SSP score calculation in ref 4. PreSMo populations obtained from the original papers were written in 

bold. 
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Table 2. The amino acid frequencies in the PreSMo and the flanking regions compared to the 

average frequencies of each amino acid in UniProt and the average amino acid frequencies in 

different parts of PreSMos, normalized to the average frequency of amino acids in disordered 

regions (in parenthesis).  

Amino acida 
N-terminal 

flanking 
PreSMo 

C-terminal 

flanking 
UniProt 

Trp 0.0161 (  -  )b 0.0194 (3.076) 0.0111 (  -  ) 0.0130 

Phe 0.0323 (1.366) 0.0360 (1.523) 0.0056 (  -  ) 0.0403 

Tyr 0.0215 (1.092) 0.0194 (0.985) 0.0222 (1.127) 0.0304 

Ile 0.0323 (1.016) 0.0277 (0.872) 0.0278 (0.875) 0.0601 

Met 0.0215 (1.187) 0.0360 (1.988) 0.0222 (1.226) 0.0248 

Leu 0.0860 (1.378) 0.1274 (2.041) 0.0889 (1.424) 0.0997 

Val 0.0484 (0.852) 0.0388 (0.683) 0.0389 (0.685) 0.0679 

Asn 0.0269 (0.754) 0.0526 (1.474) 0.0611 (1.713) 0.0411 

Cys 0.0000 (  -  ) 0.0000 (  -  ) 0.0000 (  -  ) 0.0123 

Thr 0.0323 (0.582) 0.0388 (0.699) 0.0333 (0.600) 0.0557 

Ala 0.0753 (0.928) 0.0776 (0.957) 0.0556 (0.685) 0.0710 

Gly 0.0753 (1.042) 0.0332 (0.460) 0.0556 (0.770) 0.0710 

Arg 0.0376 (0.819) 0.0859 (1.871) 0.0389 (0.847) 0.0544 

Asp 0.0860 (1.373) 0.0886 (1.414) 0.0611 (0.975) 0.0532 

His 0.0161 (  -  ) 0.0111 (  -  ) 0.0111 (  -  ) 0.0220 

Gln 0.0591 (1.138) 0.0360 (0.693) 0.0778 (1.498) 0.0400 

Lys 0.0323 (0.387) 0.0582 (0.697) 0.0500 (0.599) 0.0526 

Ser 0.1075 (1.226) 0.0637 (0.727) 0.0944 (1.077) 0.0662 

Glu 0.0484 (0.480) 0.1302 (1.292) 0.0944 (0.937) 0.0618 

Pro 0.1452 (1.886) 0.0194 (0.252) 0.1500 (1.949) 0.0467 
a Residues are arranged according to their disorder propensity (from order promoting to 

disorder promoting).  
b Due to the absence, or very low frequency of the residue (caused by the low sample 

number), some data were excluded 
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Table 3. Averaged amino acid frequency in different parts of -MoRF. 

Residuea 
N-terminal 

regionb
C-terminal

regionc

Trp 1.343 0.000 

Phe 0.685 0.943 

Tyr 0.730 0.914 

Ile 0.777 0.917 

Met 1.610 1.153 

Leu 1.127 0.888 

Val 0.814 0.815 

Asn 1.427 1.441 

Cys 0.721 1.192 

Thr 1.102 0.759 

Ala 0.669 0.745 

Gly 0.662 0.821 

Arg 1.212 1.577 

Asp 1.373 1.267 

His 1.050 0.842 

Gln 0.615 1.043 

Lys 0.812 0.911 

Ser 1.594 1.291 

Glu 0.982 0.748 

Pro 1.016 1.328 
a Residues are arranged according to their disorder propensity (from order to disorder 

promoting).  
b Calculated as the residue specific average of five residues that flank the N-terminus of -

MoRF normalized to the amino acid frequency in all disordered proteins. 
c Calculated as the residue specific average of five residues that flank the C-terminus of -

MoRF normalized to the amino acid frequency in all disordered proteins. 
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Table 4. The averaged variations of residual helical contents for short (10ns) and long 
(40~50ns) MD simulations. All values were obtained by subtracting residual helical contents 
of wild-type from those of mutants. 

  NFR PR CFR 
 short long short long short long 

A. N-terminal mutation 
P53 TAD 1  -42 -5 -22 -24 0 0 
P53 TAD 2  -36 -39 -32 -25 -8 -5 

Securin 2  -7 -10 -13 -13 -13 -6 
CREB KID  +6 +11 +14 +10 +8 +4 

 
B. C-terminal mutation 

P53 TAD 1  -18 +1 +26 +4 +35 +42 
P53 TAD 2  -6 -16 +7 -5 +37 +24 

Securin 2  +2 +5 -2 +6 +20 +17 
CREB KID  +22 +32 +9 +15 +28 +26 
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FIGURE LEGENDS 

 

Figure 1. A schematic diagram for a PreSMo peptide composed of an N-terminal flanking 

region (NFR) prior to a PreSMo, a PreSMo region (PR), and a C-terminal flanking region 

(CFR). Both NFR and CFR are composed of 2~6 residues, one of which corresponds to a 

proline. 

 

Figure 2. Relative average C RMSDs of mutant PreSMo peptides with respect to the wild-

type PreSMo peptides. Each bar was obtained by subtracting the average C RMSD values 

of the wild-type PreSMo peptides from the average C RMSDs (in Å). 

 

Figure 3. The representative structures of the largest clusters obtained by MD simulations for 

each PreSMo peptide. The residues constituting PreSMos are shown in green. The N- and C-

termini are colored blue and red, respectively. The three letter code of amino acids under each 

structure indicates the residue inserted into the position of a proline in the flanking regions. 

The capital letters N and C in the parentheses denote the N- and C- terminal flanking regions 

where mutation of a proline was made. “WT” under each PreSMo peptide (I~IX) means the 

wild-type. 

 

Figure 4. The residual helical content of each residue in the wild-type (WT, black), and the 

mutant (NFR mutants, blue; CFR mutants; red) PreSMo peptides. (from left to right: Asp, His, 

Lys, and Ala residues)  

 

Figure 5. A summary of variations in the helical content of the residues belonging to NFR 

(left), PR (middle) and CFR (right) for NFR mutants (A) and CFR mutants (B). The range of 

variation is from -70% (decrease in helicity, blue) to 70% (increase in helicity, red). 
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Figure 6. Residual secondary structure contents during 40ns MD simulations of a few 

selected PreSMo peptides; (a) p53TAD 1, (b) p53TAD 2, (c) Securin 2, and (d) CREB KID.  

Black, blue, and red lines represent the wild-type (WT) polypeptide including PreSMo, NFR 

mutant, and CFR mutant, respectively. (From left to right: Asp, His, Lys, and Ala mutant). 
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Figure 2.  
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Figure 3.  
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Figure 3. (Continued.) 
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Figure 4.  
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Figure 4. (Continued) 
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Figure 5. 
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Figure 6. 

  

 

 
 


