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Abstract
Deliberate deceptiveness intended to gain an advantage is commonplace in
human and animal societies. In a social dilemma, an individual may only pretend
to be a cooperator to elicit cooperation from others, while in reality he is a
defector. With this as motivation, we study a simple variant of the evolutionary
prisonerʼs dilemma game entailing deceitful defectors and conditional coop-
erators that lifts the veil on the impact of such two-faced behavior. Defectors are
able to hide their true intentions at a personal cost, while conditional cooperators
are probabilistically successful at identifying defectors and act accordingly. By
focusing on the evolutionary outcomes in structured populations, we observe a
number of unexpected and counterintuitive phenomena. We show that deceitful
behavior may fare better if it is costly, and that a higher success rate of iden-
tifying defectors does not necessarily favor cooperative behavior. These results
are rooted in the spontaneous emergence of cycling dominance and spatial
patterns that give rise to fascinating phase transitions, which in turn reveal the
hidden complexity behind the evolution of deception.
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1. Introduction

Natural selection favors the fittest under adversity and testing conditions. According to
Darwinʼs The Origin of Species, organisms therefore change gradually over time to give rise to
the astonishing diversity of life that is on display today [1]. Sometimes, the most effective
change is pretending to be someone or something one is not. In the animal world, mimicry is
common to provide evolutionary advantages through an increased ability to escape predation or
by elevating chances of predatory success [2]. The mimics and the species they are trying to
fool are in an arms race, each trying to optimize their chances of survival while having to
accommodate additional costs. Beautiful examples of mimicry include the Pandora sphinx
moth, which looks like a dead leaf to avoid detection; the flower mantis, which mimics flowers
to lure prey, and the many insects that have adopted the yellow and black stripes common to
bees and wasps to fool others into thinking that they are precisely that. Cuckoos are particularly
cunning and famous for their breeding behavior. A female cuckoo lays its egg in the nest of a
completely different species of bird, simply because it wants to avoid spending energy on
raising offspring. An important mechanism for getting away with such behavior lies in the
ability of cuckoos to cleverly deceive their host [3]. First, the egg the cuckoo lays is very similar
to the host species’ eggs, and second, when the cuckoo chick hatches, it mimics the calls made
the host species’ chicks. In human societies, the methods of deception are of course even more
cunning and elaborate. Our advanced intellectual abilities convey to us an impressive array of
different strategies and actions by means of which we may fool others into a different reality.
Obviously, some forms of trickery involve little to no additional costs, while others impose a
significant burden on the practitioners.

Here we study the impact of such deceitful behavior on the evolution of cooperation in a
social dilemma. Like deceptiveness intended to gain an advantage, situations that constitute
social dilemmas are common in human and animal societies. In general, a social dilemma
implies that the collective wellbeing is at odds with individual success [4]. Individuals are
therefore tempted to defect and maximize their own profit, while at the same time neglecting the
negative consequences such behavior has for the society as a whole. A frequently quoted
outcome of such selfishness is the ‘tragedy of the commons’ [5]. Indeed, the evolution of
cooperation remains an evolutionary riddle [6, 7], and it is one of the most important challenges
to Darwinʼs theory of evolution and natural selection. If during the course of evolution only the
fittest survive, why should one sacrifice individual fitness for the benefit of unrelated others?
While there is no single answer to this question, several mechanisms are known that promote
cooperative behavior [8].

Evolutionary game theory [9–11] is well established as the theory of choice for studying
the evolution of cooperation among selfish individuals, and likely the most frequently studied
social dilemma is the prisonerʼs dilemma game [12–25]. Defection is the Nash equilibrium of
the game, as it is the optimal strategy regardless of the strategy of the opponent. Beyond the
consideration of cooperators and defectors as the simplest competing strategies, one of the most
recent developments is the introduction of more advanced strategies that engage in evolutionary
social dilemmas [26–35]. Typically, individuals are endowed with cognitive skills, which them
to identify the actions of other players or to learn from the failures made in previous rounds of
the game. Along this line, unconditional strategies—cooperators that always cooperate and
defectors that always defect—constitute a simplification that deserves further exploration since
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it is a fact that individuals, whether human or animal, will likely behave differently under
different circumstances [31].

This invites the introduction of conditional strategies and deceptiveness [36, 37], both of
which we accommodate in the presently studied variant of the evolutionary prisonerʼs dilemma
game. In particular, we introduce conditional cooperators (C) that cooperate only with other
cooperators but defect otherwise, and we introduce deceitful defectors (X) that only pretend to
be cooperative. In this way, we focus only on the ‘darker’ side of deception, although it is worth
emphasizing that prosocial lies with positive motivation have also been studied [38].
Consequently, we allow defectors to go beyond pure defection (D), thus potentially providing a
competitive answer to conditional cooperators. In addition to the temptation to defect r,
however, these modifications introduce two additional parameters, namely, the probability p
that a conditional cooperator will correctly identify a pure defector and avoid being exploited,
and the cost γ that deceitful defectors need to bear in order to successfully belie cooperation. For
further details we refer to the Model section. The questions we seek to answer within this
theoretical framework are: what conditions allow the evolution of deception? How large can
affordable γ values be? And what is the role of the effectiveness of conditional cooperators in
identifying defectors? As we will show, the answers to these questions are far from trivial.
While low detection probabilities help defectors and high hiding costs obviously work against
the effectiveness of deception, much more unexpectedly, we will also show how deceitful
behavior may fare better if it is costly, and how a higher success rate of identifying defectors
does not necessarily favor cooperative behavior. These results are due to the spontaneous
emergence of cyclic dominance and self-organized pattern formation, both of which give rise to
continuous and discontinuous phase transitions that highlight the complexity behind the
evolution of deception.

2. Model

2.1. Deceitful defectors and conditional cooperators

We consider a simple three-strategy social dilemma game where players can be deceitful
defectors (X), conditional cooperators (C), or pure defectors (D). The payoffs among strategies
are defined by the matrices

γ γ γ γ γ γ− − − − − −

D C X
D
C S
X T

D C X
D T
C S S
X T

A B
0 0 0
0 1

( )

and
0 0

1
( )

.

We use the payoff matrix A with probability p and the payoff matrix B with probability
− p1 . In matrix A the conditional cooperator correctly identifies pure defectors and acts as a

defector itself, while in matrix B the conditional cooperator fails to identify pure defectors and
thus decides to cooperate. In the latter case, strategies C and D are simply unconditional
cooperation and defection. Importantly, as a specific case of a more general model [37],
conditional cooperators always cooperate with deceitful defectors, as the latter invest γ
specifically to that effect. If we would allow conditional cooperators to also reveal the
deceptiveness of deceitful defectors the cost γ would simply always constitute an evolutionary
disadvantage.
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Without losing generality, we use the temptation to defect = +T r1 and the suckerʼs
payoff = −S r, thus building upon the traditional prisonerʼs dilemma formulation of an
evolutionary social dilemma game. Here the parameter >r 0 determines the strength of the
dilemma, and in what follows, we will present results for r = 0.3 and r = 0.7, representative of a
moderate and a strong prisonerʼs dilemma, respectively.

2.2. Monte Carlo simulations

We perform Monte Carlo simulations of the evolutionary social dilemma on a square lattice of
size L2 with periodic boundary conditions. The square lattice is the simplest network that allows
us to go beyond well-mixed populations, and as such it enables us to take into account the fact
that the interactions among competing species are often structured rather than random. By using
the square lattice, we also continue a long-standing tradition that began with the work of Nowak
and May [39], who were the first to show that the most striking differences in the outcome of an
evolutionary game emerge when the assumption of a well-mixed population is abandoned for
the usage of a structured population [14, 40–45].

Initially, each player on site x is designated either as a deceitful defector ( =s Xx ), a
conditional cooperator ( =s Cx ) or a pure defector ( =s Dx ) with equal probability. The Monte
Carlo simulations comprise the following elementary steps. First, a randomly selected player x
acquires its payoff Πx by playing the game with its four nearest neighbors. Next, one randomly
chosen neighbor, denoted by y, also acquires its payoff Πy in the same way. Lastly, player y
adopts the strategy of player x with the probability

⎡⎣ ⎤⎦Π Π
→ =

+ −( )
w s s

K
( )

1

1 exp ( )
, (1)x y

y x

where K determines the level of uncertainty in the Fermi function [14]. The latter can be
attributed to errors in judgment due to mistakes and external influences that affect the evaluation
of the opponent. Throughout this work we use K = 0.1, which implies that better performing
players are readily imitated, but it is not impossible to adopt the strategy of a player performing
worse. We note that the main results are robust to variations of K and the strategy adoption rule,
such as choosing the best or the better performing neighbor for the imitation, and they also
remain qualitatively valid on other lattices and random networks where the degree distribution
remains unchanged but the links are uncorrelated.

Each full Monte Carlo step (MCS) gives a chance to every player to change its strategy
once on average. Depending on the proximity to phase transition points and the typical size of
emerging spatial patterns, we have varied the linear size of the lattice from L = 400 to L = 6000
and the relaxation time from 103 to 105 MCS to obtain solutions that are valid in the large
system size limit, and to ensure that the statistical error is comparable with the size of the
symbols in the figures. Importantly, even at such a large system size (L = 6000), for certain
parameter values close to discontinuous phase transition points, the random initial state may not
necessarily yield a relaxation towards the most stable solution of the game. To verify the
stability of different subsystem solutions, we have therefore also applied prepared initial states
(see for example figure 10 in [46]), and we have followed the same procedure as applied
previously in [47, 48].
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3. Results

3.1. Well-mixed populations

Before presenting the main results obtained in structured populations, we briefly describe the
evolutionary outcomes in well-mixed populations, where players interact with the whole
population and choose competitors randomly [37].

In the p = 1 limit, where pure defectors are always uncovered, strategy C is superior to
strategy D. This relation, however, is reversed if < +p r

r1
. For p values in between, a bistable

competition between C and D is possible, whereby the final outcome depends on the initial
concentration of the competing strategies. In other words, C and D cannot coexist regardless of
the value of p. The coexistence of C and X is also impossible, because deceitful defectors
dominate cooperators if γ < r, while otherwise strategy C is superior to strategy X. Lastly, we
note that D always beats X because the latter have to bear the additional cost γ.

As a consequence, strategy C prevails in the whole population if the values of p and γ are
sufficiently high. Similarly, the full D phase is attainable in the small p limit. A mixed
equilibrium, where all three competing strategies coexist, is also possible if

γ− + < < +p r r p r(1 ) (1 ) (1 ) and γ < r are fulfilled simultaneously. Although these results
already provide useful insight into the impact and evolutionary stability of deception, we next
focus on studying evolutionary outcomes in structured populations.

3.2. Structured populations

In structured populations, we first focus on the moderate limit of the prisonerʼs dilemma game
that is obtained for r = 0.3. The left panel of figure 1 shows the full γ − p phase diagram, which
describes all possible stable solutions. Evidently, the richness of solutions is greater than in
well-mixed populations. In general, small detection probabilities, when conditional cooperators
frequently fail to correctly identify pure defectors, are beneficial for the evolution of defection,

Figure 1. Full γ − p phase diagram, as obtained for r = 0.3. Solid lines denote
continuous phase transitions. The vertical resolution hides the intricate structure of the
phase diagram for intermediate values of γ and p, which we therefore show enlarged in
the right panel. Stable solutions include the three-strategy + +C D X phase, two-
strategy +C D and +C X phases, as well as the absorbing D and C phase.
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thus yielding an absorbing D phase as the only stable solution in this region of the phase
diagram, regardless of the cost of deception. As the effectiveness of conditional cooperators
increases, the pure D phase transforms into a two-strategy +D C phase. This solution, which is
absent in well-mixed populations, is due to the aggregation of cooperators into compact
clusters, by means of which a stable coexistence of the two strategies becomes possible within a
narrow band of p (see also the right panel of figure 1). This is a purely spatial effect that is
rooted in network reciprocity [39]. If both γ and p are large, the +D C phase terminates into an
absorbing C phase, while for sufficiently low values of γ deceitful defectors become viable,
either through the emergence of a two-strategy +C X phase or the emergence of a three-
strategy + +C D X phase. Within the latter the competing strategies may dominate each other
cyclically, although the stable coexistence of all three strategies in the + +D C X phase does
not always involve cyclic dominance. Several aspects of these results are counterintuitive and
unexpected. Foremost, one would expect that decreasing values of p will impair the evolution of
C, and that increasing values of γ will be detrimental for X. But this is not necessarily the case.
In fact, as the value of p decreases, the first to die out are the deceitful defectors, giving way to a
mixed +C D phase. Moreover, as γ increases, the first to vanish from the three-strategy phase
are the pure defectors, thus yielding the +C X phase. If γ > 0.401 and >p 0.2664, then only C
can survive. Interestingly, the two two-strategy phases are always separated by the three-
strategy + +D C X phase, as illustrated clearly in the enlarged part of the phase diagram
depicted in the right panel of figure 1.

Representative cross-sections of the phase diagram provide a more quantitative insight into
the different phase transitions depicted in figure 1. In figure 2, we first show how the fractions of
the three strategies vary in dependence on the cost γ at p = 1, where conditional cooperators are
100% effective in identifying pure defectors. When the cost is small, all three strategies coexist
in a stable + +D C X phase. As γ increases, deceitful defectors initially suffer, but the actual

Figure 2. Cross-section of the phase diagram depicted in figure 1, as obtained for p = 1.
Depicted are stationary fractions of the three competing strategies depending on the cost
of deceit γ. As the value of γ increases, the three-strategy + +C D X phase first gives
way to the two-strategy +C X phase, and subsequently to the absorbing C phase. In
this cross-section all phase transitions are continuous. We emphasize that the rise of the
fraction of X as γ increases (before the extinction of D) is an unexpected and
counterintuitive evolutionary outcome that can only be explained by means of the
spontaneous emergence of cyclic dominance amongst all three competing strategies, as
illustrated in figure 3.
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victims turn out to be the pure defectors—the main rivals of the deceitful defectors. Based on
the presented results, we may conclude that, up to a certain point, deceitful behavior fares better
if it is costly. Put differently, the larger the value of γ, the higher the fraction of strategy X in the
stationary state. Only after D die out does the trend reverse, and larger values of γ actually have
the expected impact of lowering the evolutionary success of deceitful defectors, to the point
when the latter finally die out to give rise to the absorbing C phase.

This evolutionary paradox, namely that deceitful behavior fares better if it is costly, can
only be explained through the self-organized spatial patterns that emerge spontaneously and
drive cyclic dominance among the three competing strategies. As shown in figure 3, traveling
waves indeed emerge, where C beats D, D beats X, and X beats C to close the loop of
dominance. The → → →C D X C loop of dominance is clearly inferable from the presented

Figure 3. Consecutive snapshots of the square lattice, illustrating the spontaneous
emergence of cyclic dominance from a random initial state between deceitful defectors
(green), conditional cooperators (blue), and the pure defectors (red). The snapshots are
taken at 60, 100, 120 and 160 MCS from top left to bottom right, respectively. Invasions
proceed according to the → → →C D X C closed loop of dominance. Parameter
values are: r = 0.3, p = 1, γ = 0.02, and L = 100.
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snapshots, as the initial C wave (blue) spreads into the sea of D (red). The pure defectors, on the
other hand, invade the territory of X (green), which in turn spread into the territory of C.

Returning to the cross-sections of the phase diagram depicted in figure 1, we show in
figures 4 and 5 how the fractions of the three strategies vary in dependence on the probability p
at γ = 0.2 and γ = 0.31, respectively. If the probability to reveal D is small, then conditional

Figure 4. Cross-section of the phase diagram depicted in figure 1, as obtained for
γ = 0.2. Depicted are stationary fractions of the three competing strategies depending
on the probability p. As the value of p increases, the absorbing D phase first gives way
to the two-strategy +C D phase, and subsequently to the three-strategy + +C D X
phase. In this cross-section all phase transitions are continuous. We emphasize that the
rise of the fraction of D as p increases (just after the emergence of X) is again an
unexpected and counterintuitive evolutionary outcome that can only be explained by
means of the spontaneous emergence of cyclic dominance amongst all three competing
strategies (see main text for details).

Figure 5. Cross-section of the phase diagram depicted in figure 1, as obtained for
γ = 0.31. Depicted are stationary fractions of the three competing strategies in
dependence on the probability p. As the value of p increases, the absorbing D phase first
gives way to the two-strategy +C D phase, then to the three-strategy + +C D X
phase, and finally to the two-strategy +C X phase. Evidently, sufficiently increasing
the value of p may eradicate pure defectors and thus pave the way for deceitful defectors
to capitalize on their investment γ. Due to network reciprocity, however, conditional
cooperators never die out but rather form the +C X phase.
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cooperators are unable to survive. Consequently, deceitful defectors do not exist either, as their
‘targets’ (C) are not available, and the direct competition with D obviously leaves them at a
disadvantage due to nonzero γ. As p increases, the absorbing D phase gives way to the two-
strategy +C D phase, which is possible due to network reciprocity and is thus a purely spatial
effect. Interestingly, weakening D further by elevating p will initially generate more D players
in the stationary state. As the value of p increases further, D does begin to decline on the
expense of C, but on the other hand, X emerges and serves as an additional target for D. One
might expect that increasing p further will support C because they will not let D players exploit
them. While the fraction of D indeed decreases, this in turn paves the way for deceitful
defectors, who can finally capitalize on their investment γ. Together, these ‘plus’ and ‘minus’
effects will nullify each other and leave the fraction of conditional cooperators practically
unaffected, despite their elevated efficiency in detecting pure defectors. Thus, again
unexpectedly, a higher success rate of identifying defectors does not necessarily favor
cooperative behavior.

Notably, a qualitatively different final phase is reached if we apply a higher value of γ, as
shown in figure 5. Here the fraction of X cannot rise as high, which in turn provides fewer
targets for pure defectors, who therefore die out more easily. In the absence of D, however, the
conditional cooperators and deceitful defectors can coexist, which is again made possible by the
clustering of cooperators and is thus a purely spatial effect. Naturally, if we increase the cost
further, then strategy X cannot survive either, and the population evolves from an absorbing D
to the absorbing C phase via a coexisting +C D phase (cross-section not shown).

In the strong limit of the prisonerʼs dilemma game that is obtained for r = 0.7, we observe
solutions that are qualitatively different from those obtained for r = 0.3. Due to the large
temptation to defect, pure defectors and conditional cooperators are unable to coexist in the
absence of deceitful defectors. Instead, below pc = 0.5231, pure defectors will prevail, while
above this critical value conditional cooperators will dominate the whole population.
Remarkably, the consideration of deceitful defectors not only results in the lack of the

+C D phase, but also gives rise to the emergence of an absorbing C phase at an intermediate
value of p, even if the cost of deception is moderate. The phase diagram presented in figure 6
summarizes these fascinating evolutionary outcomes, which indicate that belying cooperation
may actually beget cooperation.

If we compare the two phase diagrams in figures 1 and 6, then we also find that there exist
certain solutions that remain valid independently of the strength of the social dilemma. In
addition to the dominance of D at low values of p and the dominance of C at sufficiently high
values of γ and p, our previous observation regarding the optimal value of γ when C are efficient
also remains valid. Namely, from the point of view of X it is actually better to bear a larger cost
of deceit than a small one, because the former effectively prevents pure defectors from
exploiting these additional efforts aimed at deceiving cooperators. In the absence of D, or when
they are rare, the evolutionary advantage of X can still manifest even at relatively large γ values,
especially if r is also large. Moreover, for r = 0.7 too, it is possible to observe that the highest
detection probability does not always ensure the highest density of conditional cooperators.
Even more strikingly, here an intermediate value of p can result in an absorbing C phase that
becomes unstable at higher p values.

Also worthy of attention are the phase transitions between the three-strategy + +C D X
phase and the absorbing C phase. When the cost of deception is large, then as p decreases the
frequency of X decreases gradually, as shown in the top panel of figure 7. When X finally
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vanishes, the competition between the remaining D and C terminates in an absorbing C phase.
As p decreases further, an abrupt transition to an absorbing D phase occurs. However, if the cost
γ is small, a qualitatively different behavior can be observed, as shown in the top panel of
figure 8. In this case, the average frequency of X within the + +C D X phase remains nonzero,
but the amplitude of oscillations increases drastically as we approach the phase transition point.

Importantly, the increase in the amplitude of oscillations is not a finite size effect because
the amplitude grows even if we increase the system size. This effect can be quantified by
measuring the fluctuations of strategy X according to

∑χ ρ ρ= −
=
( )L

M
t( ) , (2)

t

M

X i X

2

1

2

i

where M denotes the number of independent values measured in the stationary state. As the
bottom panel of figure 7 demonstrates, this quantity remains finite at large γ, which means that
the amplitude of oscillations can always be reduced by increasing the system size L. The same
quantity, however, behaves very differently at small γ. As the bottom panel of figure 8 shows,
the value of χ is diverging as we approach the phase transition point, indicating that here the
amplitude of oscillations cannot be lowered and that X will inevitably die out. We note that a
similar type of discontinuous phase transition was already observed in the spatial public goods
game with correlated positive and negative reciprocity, where cyclical dominance also emerged
spontaneously between the competing strategies [48]. These results thus reveal the hidden
complexity behind the evolution of deception, which appears to be commonplace in
evolutionary settings with three or more strategies in structured populations.

Figure 6. Full γ − p phase diagram, as obtained for r = 0.7. Solid lines denote
continuous phase transitions, while dashed lines denote discontinuous phase transitions.
As for the r = 0.3 case depicted in figure 1, here too the stable solutions include the
three-strategy + +C D X phase and the two-strategy +C X phase, as well as the
absorbing D and C phase. Evidently, there exist solutions that are independent of the
strength of the social dilemma, but there also exist significant differences, like the nature
of the phase transition points and the ‘replacement’ of the two-strategy +C D phase
with the absorbing C phase.
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4. Discussion

To summarize, we have shown that the introduction of conditional cooperators and deceitful
defectors to a social dilemma gives rise to many counterintuitive evolutionary outcomes that
can only be understood as a consequence of self-organized pattern formation in structured
populations. Spatial systems, where players have a limited interaction range, allow the
observation of rich behavior, including the formation of propagating fronts due to the
spontaneous emergence of cyclic dominance. In particular, we have demonstrated the stable
coexistence of all three competing strategies, as well as the emergence of +C D and +C X
two-strategy phases. Similarly to the results obtained in well-mixed populations, in structured
populations absorbing phases are also possible at specific parameter values. Namely, if the
conditional cooperators are ineffective in identifying pure defectors, the latter dominate like
under mean-field conditions. Conversely, if the conditional cooperators are sufficiently effective
and if the cost of deception is high, then cooperative behavior dominates. Unexpectedly, our

Figure 7. The top panel shows the cross-section of the phase diagram depicted in
figure 6, as obtained for γ = 0.6. Depicted are stationary fractions of the three
competing strategies depending on the probability p. As the value of p increases, the
absorbing D phase changes abruptly to the absorbing C, followed by the gradual
emergence of deceitful defectors that give rise to the three-strategy + +C D X phase.
The bottom panel shows the fluctuation of the vanishing density of deceitful defectors
ρX (see equation (2)) depending on p, as obtained for different system sizes that are
indicated in the figure legend. The always finite value of χ indicates that the amplitude
of oscillations can always be reduced by increasing the system size, thus confirming a
continuous phase transition.
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research indicates that an imperfect ability of cooperators to properly detect defectors may be
beneficial for the evolution of cooperation, and that deceitful behavior may fare better if it is
costly. These results are rooted in the spontaneous emergence of cycling dominance and
complex spatial patterns. It is also worth emphasizing that these results are robust and remain
valid if we choose other strategy updating rules or interaction networks other than lattices. For
example, qualitatively similar evolutionary outcomes can be obtained on random regular
graphs.

We have also shown that continuous and discontinuous phase transitions separate the
different stable solutions, and that changing a model parameter may have highly nontrivial and
unexpected consequences. For example, the three-strategy + +C D X phase may terminate
continuously or abruptly, depending solely on the cost of deception. This type of complexity is
absent in traditional rock figure scissors figure paper or extended Lotka figure Volterra-type
models where the cyclic dominance is hardwired in the food web [49]. Although the evolution

Figure 8. The top panel shows the cross-section of the phase diagram depicted in
figure 6, as obtained for γ = 0.05. Depicted are stationary fractions of the three
competing strategies depending on the probability p. As the value of p increases, the
absorbing D phase changes abruptly to the absorbing C, followed again by an abrupt
emergence of deceitful defectors that give rise to the three-strategy + +C D X phase.
The bottom panel shows the fluctuation of the vanishing density of deceitful defectors
ρX depending on p, as obtained for different system sizes that are indicated in the figure
legend. Unlike for γ = 0.6 (see figure 7), here the value of χ at the phase transition point
is diverging, increasing beyond bound even for very large L, and thus indicating a
fascinating discontinuous phase transition between the absorbing C phase and the
heterogeneous + +C D X phase.
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of deception is also governed by cyclic dominance, the latter emerges spontaneously, and
therefore changing even a single parameter may influence the effective invasion rates between
all three competing strategies. We have made similar observations in the realm of the spatial
ultimatum game [47] and the spatial public goods game with reward [50] and different types of
punishment [46, 51], as well as in the spatial public goods game with correlated positive and
negative reciprocity [48]. Taken together, this indicates that the reported evolutionary
complexity is in fact much more frequent than it might be assumed, and in fact appears to be
commonplace in evolutionary settings where three or more strategies compete in a structured
population.

When introducing punishing cooperators to a social dilemma, the tension between
defectors and cooperators shifts to the tension between the cooperators that punish and the
cooperators that do not punish. Since the latter avoid the additional costs that need to be
invested for sanctioning defectors, they become second-order free-riders [52]. The evolution of
deception gives rise to a conceptually similar shift in the dilemma, only that it is reversed and
applies from the point of view of defectors. The main competitors of deceitful defectors are no
longer cooperators, but rather the pure defectors who do not invest in deception. Whether it
pays to defect or not depends on the effectiveness of the cooperators to correctly identify
defectors. If conditional cooperation is effective, defectors can survive only if they hide behind
those who actually make an effort in deceiving cooperators. Ultimately, this establishes the
possibility of cyclic dominance between the three competing strategies, and it gives rise to the
reported unexpected evolutionary outcomes. Specifically, for defectors it may be advantageous
to bear a significant cost aimed at deceiving cooperators, although this also depends nontrivially
on the efficiency of conditional cooperators.

Recent reviews attest to the fact that interdisciplinary approaches, linking together
knowledge from biology, ecology and sociology as well as applied mathematics and physics,
are successful in identifying new ways in which social dilemmas can be resolved in favor of
cooperation [8, 14, 40, 53], and they also help to understand the observed complexity behind
the riddles of evolution. We hope that our study will inspire further research aimed at
investigating the role of deceitful strategies in evolutionary games, and we also hope that more
experimental work will be carried out to clarify their role in the evolution of human cooperation
[54–57].
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