Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

Synthetic Test Data Generation for Hierarchical
Graph Clustering Methods *

Liészlé Szilagyi''?, Levente Kovécs®, and Sandor Miklés Szilagyi

! Dept. of Control Engineering and Information Technology,
Budapest University of Technology and Economics, Hungary
2 Sapientia - Hungarian Science University of Transylvania, Romania
lazacika@yahoo.com
3 Obuda University of Budapest, Hungary
4 Dept. of Informatics, Petru Maior University of Tirgu Mures, Romania

Abstract. Recent achievements in graph-based clustering algorithms
revealed the need for large-scale test data sets. This paper introduces a
procedure that can provide synthetic but realistic test data to the hi-
erarchical Markov clustering algorithm. Being created according to the
structure and properties of the SCOP95 protein sequence data set, the
synthetic data act as a collection of proteins organized in a four-level
hierarchy and a similarity matrix containing pairwise similarity values
of the proteins. An ultimate high-speed TRIBE-MCL algorithm was em-
ployed to validate the synthetic data. Generated data sets have a healthy
amount of variability due to the randomness in the processing, and are
suitable for testing graph-based clustering algorithms on large-scale data.
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1 Introduction

Bioinformatics is one of the fields where there is an excessive need for clustering
algorithms that are capable to handle large-scale protein sequence or interaction
networks [2]. Graph-based algorithms usually need to store the matrix represen-
tation of the graph [5], which becomes prohibitively costly in memory storage
above 10* nodes. Sparse matrix models made it possible to extend this limit
towards one million nodes [12]. However, there are few publicly available large
data sets, and even those existing ones are not suitable for a wide variety of
algorithms.

Using synthetic test data is a frequently employed method, even if real data
is also available (e.g. [4,13]). Our main goal is to provide synthetic but real-
istic test data for clustering algorithm designed to process large-scale protein
sequence data sets. Our principal target is the Markov clustering algorithm, and
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more exactly the TRIBE-MCL [5], which groups protein sequence data based
on pairwise similarity measures stored in a similarity matrix. Synthetic data is
created in two steps: first the main properties and attributes of the 11944-node
similarity graph and corresponding similarity matrix of the SCOP95 data set [8]
are identified, and then a random data set is generated, which has similar proper-
ties and the desired size. Properties considered by the proposed method include:
four-level hierarchy of SCOP95, distribution of protein family sizes, density and
distribution of nonzero values in various locations of the similarity matrix.

The rest of this paper is structured as follows. Section 2 presents background
information on the structure and properties of the SCOP95 data set, and the
TRIBE-MCL algorithm that will be used for test purposes. Section 3 presents the
details of the proposed property identification and synthetic test data generation
process. Section 4 produces a numerical analysis to support the validity of the
produced synthetic data. Conclusions are given in the last section.

2 Background

2.1 The SCOP95 Database

The Structural Classification of Proteins (SCOP) database [10] contains protein
sequences in order of tens of thousands, which are organized in a four-level hier-
archy composed by classes, folds, superfamilies and families [2]. This hierarchy
can be employed as ground truth for protein sequence clustering algorithms.
The SCOP95 database that we use as input is a subset of SCOP (version 1.69),
which contains 11944 proteins, exhibiting a maximum similarity of 95% among
each other. Pairwise similarity matrices (e.g. BLAST [1], Smith-Waterman [9],
Needleman-Wunsch [7]) are also available at the Protein Classification Bench-
mark Collection [8]. Our purpose is best served by the BLAST matrix due to its
sparse nature: in its symmetrized version it has a density of 0.00387 indicating
that an average node in the similarity graph is connected to 45 other nodes.

2.2 TRIBE-MCL Markov Clustering

TRIBE-MCL is an efficient clustering method based on Markov chain theory
introduced by Enright et al [5]. TRIBE-MCL assigns a graph structure to the
protein set such a way that each protein has a corresponding node. Edge weights
are stored in the so-called similarity matrix S, which acts as a stochastic matrix.
At any moment, edge weight s;; reflects the posterior probability that protein i
and protein j have a common evolutionary ancestor. TRIBE-MCL is an iterative
algorithm, performing in each loop two main operations on the similarity matrix:
inflation and expansion. Inflation raises each element of the similarity matrix to
power r, which is a previously established fixed inflation rate. Due to the con-
straint r > 1, inflation favors higher similarity values in the detriment of lower
ones. Expansion, performed by raising matrix S to the second power, is aimed to
favor longer walks along the graph. Further operations like column or row nor-
malization, and matrix symmetrization are included to serve the stability and
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Fig. 1. A selected part (classes e-g) of the BLAST similarity matrix of the SCOP95
data set indicating the hierarchy of classes, folds, superfamilies and families (left), and
the magnified view of superfamilies g.3.6-g.3.14 within the inset (right). Black pixels
on the right image represent the nonzero values in the matrix.

robustness of the algorithm, and to enforce the probabilistic constraint. Similar-
ity values that fall below a previously defined threshold value e are rounded to
zero. Clusters are obtained as connected subgraphs in the graph. Further details
on TRIBE-MCL operations are available in [5,11].

3 Methods

3.1 Identification of SCOP95’s Properties

The identification of the SCOP95 matrix properties is performed in several steps.
Proteins are grouped into families of various sizes (1-557 members), each repre-
sented by a square block situated on the matrix diagonal. These diagonal blocks
are not very sparse as they contain over two thirds of all nonzero values in the
matrix. Superfamilies are small groups of families represented by larger diagonal
blocks that include the blocks of contained families. Similarity values within the
superfamily blocks but outside the family blocks are significantly less dense, and
they become sparser as the distance from the diagonal grows. The structure of
the similarity matrix is depicted in Fig. 1.

According to the recently developed theory of natural networks [3], the num-
ber of connections the graph nodes have follows a negative power distribution.
This is also valid in case of the SCOP95 graph: both the distribution of connec-
tions and the distribution of family sizes share this attribute. Figure 2 exhibits
the approximation of this distribution in the range of families with up to 80
proteins. A few larger families are also present in SCOP95, their distribution
also follows the rule of the power distribution.
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Table 1. Identified parameter values for families of various sizes

Proteins |Average| Families of| Average density in Average
in family| density |full density|not fully dense families|similarity value
2 0.827 82.7% 0.000 0.440
3 0.809 70.4 % 0.353 0.421
4-5 0.733 51.5% 0.452 0.382
6-10 0.659 31.3% 0.507 0.358
11-19 | 0.617 14.9% 0.547 0.318
20-99 | 0.485 6.67 % 0.470 0.251
100+ 0.807 0.00 % 0.807 0.315
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Fig.3. Distribution of nonzero similarity values in the SCOP95 matrix, in case of
protein couples situated in the same family: various distributions for all family sizes
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Fig. 4. Distribution of nonzero similarity values in the SCOP95 matrix, in case of
protein couples situated in different families, but in the same superfamily, fold, or
class, and also for proteins from different classes

Table 2. Identified densities in various parts of the SCOP95 BLAST similarity matrix

Same |Different families |Different superfamilies|Different folds|Different
family [same superfamily same fold same class | classes
0.7211 0.0376 0.00274 0.00161 0.00103

Table 1 exhibits some identified parameters concerning matrix density and
protein families. Average density gives us the probability that the similarity
value s;; with ¢ # j but proteins ¢ and j chosen from the same family is a
nonzero. Some part, of the families are represented by fully dense blocks in the
similarity matrix. Larger families of such property are usually rare. The average
nonzero s;; value (¢ # j) present in the families are also indicated in Table 1. The
unit values situated on the diagonal are not counted into these averages. The
distribution of the nonzero similarities within families of various sizes is exhibited
in Fig. 3. These similarity values cover the whole range between 0 and 1. On the
other hand, Fig. 4 shows the distribution of nonzero similarities between proteins
of different families of the same superfamily, proteins of different superfamilies
situated in the same fold, proteins of different folds situated in the same class,
and proteins of different classes, respectively. These parts of the similarity matrix
have a decreasing density in the enumerated order. Such similarity values rarely
exceed 1/3.

The properties enumerated above are all taken in consideration when new
matrices are generated.

3.2 Generating New Large Matrices

When a new matrix is generated, there is a single input parameter to set, namely
the number of proteins (V) in the synthetic data set. This number N is supposed
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to be greater than 1000. There is no sense to define an upper limit, it will be
forced by technical constraints. The main goal is to be able to create matrices
describing pairwise similarities of 10 proteins using an ordinary PC. One im-
portant tool in matrix generation is a good-quality random number generator
[6]. The main steps of matrix generation are enumerated below:

1. First thing to create is a series of random numbers ni, na, ... ng such a way
that they follow the identified power function distribution of family sizes,
and > . n; = N. The new synthetic protein data set will consist of F
families, and family with index ¢ will contain exactly n; proteins.

2. The second thing is to decide the hierarchy of families, which is performed
sequentially. Initially we need to create a class, a fold in the class, a superfam-
ily in the fold, and assign the first family to the newly created superfamily.
For each further family there is a p. probability to add a new class; if no
new class is created then there is a py probability to add a new fold in an
existing class; if no new fold is created then there is a p, probability of add
a new superfamily into an existing fold and place the new family there. Oth-
erwise the new family is included into the existing superfamilies, following
the popularity rule introduced in network theory [3]. The new family will be
assigned to popular classes, folds and superfamilies with higher probability.
The current version uses p. = 0.99, py = 0.8, p, = 0.75, but there is also an
upper limit for the number of classes, which logarithmically grows with V.

3. Nonzero similarity values are generated as random numbers in the (0,1]
interval. Diagonal values are all 1 by default. Further nonzeros within the
blocks representing families follow the identified distribution functions shown
in Fig. 3. Nonzero values in other regions of the matrix follow the corre-
sponding distribution function indicated in Fig. 4. The density of nonzeros
in various regions of the matrix corresponds to the values given in Table 2.
The generated matrix is perfectly symmetrical.

4. Finally the randomly generated nonzeros are sorted according to row and
column and are transferred into the output file. The header of the output file
contains information on the number of proteins and the hierarchical structure
of the generated data set so that it can serve as ground truth at testing.

4 Results and Discussion

The first-order validation of the proposed method consisted of inspection of
properties and attributes of output matrices, and functional testing using the
TRIBE-MCL algorithm.

For the sake of property inspection, we have created synthetic test data of
sizes varying from 10,000 to 250,000 proteins, 25 instances of each. Table 3
indicates the average and standard deviation of the hierarchy attributes, namely
the number of classes, folds, superfamilies, and families, and finally the density if
the matrix as well. The table reflects that the randomness within the generation
process produces a considerable amount of variance among matrices of the same
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Table 3. Properties of the generated synthetic protein graphs, for various sizes of the
data set

Proteins[Classes| Folds [ Superfam.| Families [Density (x107°)
10kl 7 280 £ 25| 557 &£ 45| 1389 £129| 5.06 £1.80
15kl 7 392 £ 23| 770 £ 42| 1926 £ 105 4.16 £1.17
20k| 8 515 £ 45(1024 &= 58| 2526 &£ 137| 3.56 £ 0.59
30k| 9 726 £ 28|1441 £ 57| 3593 £103| 3.03 £0.37
50k| 11 |1136 & 34|2254 £ 68| 5677 £184| 2.44+0.36
70k| 12 |1550 £ 65(3087 + 124| 7657 £295| 2.15+0.16

100k| 13 (2138 &£ 53|4283 £ 91|10671 £227| 1.72+£0.13
150k| 14 (3066 £ 95|6111 £ 195(15270 £404| 1.63+£0.15
200k| 15 3992 + 122(7964 + 233|19915 +624| 1.54+0.15
250k| 16 4900 £ 88(9762 £ 154|24360 +420| 1.47 £0.17

size. Each generated matrix is different of all others and can be used to test the
TRIBE-MCL algorithm.

In order to run a set of simple functional tests, we have created test matrices
of sizes between 10,000 and 50,000 varying in small steps, 15 instances of each
size. All these matrices were fed to our ultimate high-speed and memory saving
version [11] of the TRIBE-MCL algorithm, using inflation rate » = 2.0 and
similarity threshold e = 1073. Simple statistical parameters were extracted from
the total runtime values, and are exhibited in Fig. 5. Generated matrices contain
a considerable amount of variability, which seemingly reduces as the size of the
matrix grows. Considerably wider test suites and detailed results using data
generated by the proposed method are exhibited in [11].

The main limitation of the proposed method is the fact that it builds on
information extracted from a single protein data set designed to test clustering
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Fig. 5. Total runtime of TRIBE-MCL clustering process plotted against the protein
count in the synthetic protein graph: minimum, maximum, median and average values
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algorithms. Further efforts will be made to provide the user the opportunity to
manually tune the attributes of the output data set and similarity matrix.

Creating synthetic protein data sets and corresponding pairwise similarity
matrices of up to 250 thousand items can be performed on an ordinary Pentium4
PC with 2GB RAM in less than one minute. Creating larger data sets of up to
10% items is also possible, but it requires more memory and time.

5 Conclusions

In this paper we proposed a novel method to create test data to hierarchical
clustering methods based on pairwise similarity measures. The proposed method
was applied to generate synthetical protein data sets, their four-level hierarchical
structure and sparse similarity matrix that contains BLAST-like pairwise align-
ment scores. Test matrices were fed to the TRIBE-MCL algorithm, which proved
the validity of the synthetical data. The proposed method can efficiently support
the validation process of hierarchical clustering algorithms on large-scale data.
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