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Abstract: Cancer treatment is one of the most important research fields of modern medicine.
In the last decades, targeted molecular therapies showed prosperous results. These treatments
achieve tumor regression with limited side-effects. Mathematical models were posed which
describe the dynamics of tumor regression under the applied control. The current paper
investigates antiangiogenic therapy, which inhibits the tumor to grow its own endothelial
capillaries and thus inhibits tumor to grow over a certain size. Many different control approaches
were elaborated and published since the model formulation was posed. The aim of this paper
is to give an overview of these methods and results, and to review the work carried out by the
authors.
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1. INTRODUCTION

Modern medical research aims to find harmless and effec-
tive therapies to fight cancer. Targeted molecular ther-
apies propose better solutions than conventional treat-
ments, Gerber (2008); Li et al. (2012). These therapies
apply drugs which are non-toxic towards normal cells,
hence these cause limited side-effects. Antiangiogenic ther-
apy influences the life cycle of the tumor in a way which
secures that the tumor can not grow over a certain size
(1-2 mm3), Pluda (1997). Antiangiogenic drugs (endo-
statin, O’Reilly et al. (1997) or bevacizumab, Ellis and
Haller (2008)) inhibit the tumor to develop own blood ves-
sels, thus the tumor is not able to take up more nutriants
and oxygen over a certain amount, Wu et al. (2008).

The mathematical formalism which describes angiogenic
signalling in case of an in vivo tumor was posed in Hah-
nfeldt et al. (1999). The model was investigated and
reformulated many times, d’Onofrio and Cerrai (2009);
d’Onofrio et al. (2009). Different control methodologies
were elaborated to design optimal dosaging for a simpli-
fied second-order model. Bang-singular-bang control was
designed in Ledzewicz and Schättler (2005), and set-valued
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protocol was proposed in Kassara and Moustafid (2011).
Optimal state-feedback design was carried out in Sápi
et al. (2012), and robust methodologies were presented
in Szeles et al. (2012). Flatness based techniques were
elaborated in Szeles et al. (2013), and for the original
model flat control design was presented in Drexler et al.
(2012).

These techniques involve different approaches towards the
nonlinearity of the system, these are: application of nonlin-
ear control, Ledzewicz and Schättler (2005); Kassara and
Moustafid (2011), working point linearization, Sápi et al.
(2012); Szeles et al. (2012), and exact linearization, Drexler
et al. (2012); Szeles et al. (2013).

The aim of this paper is to give an overview of the tech-
niques applied by the authors. The differences, advantages
and disadvantages of each methodology is to be empha-
sized.

Section 2 describes the mathematical model of tumor
growth under antiangiogenic treatment. Section 3 presents
the different control techniques (LQ regulation, H∞ con-
trol, and flatness based control methodologies), related
simulation results are detailed in Section 4. Based on the
results, a detailed comparison is proposed including the
effects of model parametric perturbations. The paper ends
with the conclusions in Section 5.
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Fig. 1. Growth of untreated tumor

2. MATHEMATICAL MODEL OF TUMOR GROWTH

The mathematical model which describes tumor growth
dynamics was posed in Hahnfeldt et al. (1999). The
model was biologically validated through experiments in
which mice were injected with Lewis lung carcinoma cells.
This paper uses a simplified second-order model. The
simplification originates from the fact that instead of
first-order, zero-order pharmacokinetics is applied. The
description of tumor growth dynamics is based on a
Gompertzian growth (1), which captures the phenomenon
of tumor growth slowdown. Tumor stimulated growth and
regression and the effects of the antiangiogenic inbihition
are summarized in (2). The measured output of the system
is the tumor volume (3). Thus, the model formulation
becomes:

ẋ1 = −λx1 ln

(

x1

x2

)

(1)

ẋ2 = bx1 − dx
2

3

1 x2 − ex2u (2)

y = x1 (3)

where x1 is the tumor volume (mm3), x2 is the vasculature
volume (mm3), and u is the serum level of the administered
inhibitor (mg/kg). The parameters λ, b and d are charac-
teristic for the animals and the Lewis lung carcinoma, the
parameter e is characteristic for the applied inhibitor, that
was endostatin:

λ = 0.192 (day
−1

) d = 0.00873 (day
−1

mm−2)

b = 5.85 (day
−1

) e = 0.66 (day
−1

(mg/kg)
−1

)
. (4)

The dynamics of an untreated tumor comprised by the
model is presented in Fig. 1.

3. APPLIED CONTROL TECHNIQUES

3.1 Linear control methods

The first approach was using linear control methodologies
in the following way:

(1) working point linearization was carried out,
(2) the control design was performed for this linear

model,
(3) the designed controller was wired to the nonlinear

model.

The behavior of the system in different working points
was analyzed in Drexler et al. (2011). The chosen working
point and the characteristics of the linearized system were
detailed in Szeles et al. (2012).

LQ regulation The aim of the regulation is to find the
optimal u∗ control input which minimizes the J(x, u) cost
function, Zhou (1996). The cost function is the following:

J(x, u) =
1

2

∫

∞

0

[< Qx(t), x(t) > + < Ru(t), u(t) >]dt

(5)

To determine the optimal control input, the Algebraic
Riccati Equation has to be solved whose solution is the
P > 0 positive definite matrix,

PA+ATP − PBR−1BTP +Q = 0 (6)

Thus, the control input (and the optimal state feedback)
becomes:

u∗ = −Kx = −R−1BTPx (7)

The output is minimized in a quadratic sense, from which
Q ≥ 0 is determined, and R > 0 is tuned accordingly,
hence the applied weighting matrices are:

Q = CTC R = 10000 (8)

H∞ design The aims of robust control design are the
following, Zames (1981); Zhou (1996):

• handle model uncertainty,
• eliminate disturbances and measurement noise,
• minimize the controller output.

The goal of the design is to find a stabilizing controller
which minimizes the H∞-norm of the closed-loop system,

min
Ks

‖Fℓ(P,K)‖∞ (9)

where K is the controller, P refers to the nominal model
of the system including the input and output weighting
functions and not including model uncertainty and distur-
bances, and the operation Fℓ is the lower linear fractional
transformation.

The input and output weighting functions are responsible
for transforming the signal magnitudes into a desired
domain and to realize signal filtering if necessary. These
are the following:

Wn = 0.1 Wunc = 0.01 s+2

s+8

Wu = 1

50
Wperf = 6.5 · 10−7 s+8

s+1

(10)

where Wn penalizes the wide-band measurement noise,
Wunc weights the disturbances originating from model
uncertainties, Wu weights the control input, and Wperf

decreases the deviation of the output signal from the
desired output.

The state-space description of the controller resulting from
the H∞ design is:

v̇ = KAv +KB

[

r
y

]

(11)

u = KCv +KD

[

r
y

]

(12)

where r is the reference signal (constant zero), y is the
output of the tumor model, u is the control input, v is the
state-space variable of the controller, and the matrices are:
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KA =











−15.80 0.19 0 0 0
−653.18 −1.77 0.01 −0.01 −170.81

0 0 −0.07 0 0
0 0 −0.11 −1 0

0.03 0.01 0 0 −7.37











KB =











0 0.89
0 37.43

2.88 0
0 0
0 0











KC = [ 2.27 0.42 0 0 44.96 ]

KD = [ 0 0 ]
(13)

The investigation of parametric sensitivity, the steps of
controller design and stability related issues are detailed
in Szeles et al. (2012). However, simulations were recal-
culated to compare the controllers under standardized cir-
cumstances (observed tumor range changed, see Section 4).

3.2 Flatness based control methods

The second approach was using exact linearization; hence,
the nonlinear system could be transformed into a series
of integrators, Isidori (1995). Each step of the transforma-
tion was calculated in Szeles et al. (2013), the resulting
linearizing feedback is:

u =
v − a(x)

b(x)
(14)

where u is sent to the nonlinear system, and the closed-
loop interconnection between v and the output of the
system y can be handled as a series of integrators, and

a(x) = (λ ln
x1

x2

+ λ)λx1 ln
x1

x2

+ λx1

1

x2

(bx1 − dx
2

3

1 x2)

(15)

b(x) = −eλx1. (16)

Flat control In the case of flat control, path tracking
is realized according to prescribed error dynamics. The
reference signal describes exponential decrease from the
initial tumor volume to the plateau of 1 mm3, Drexler
et al. (2012); Szeles et al. (2013). The mathematical form
of the reference signal is:

yref = (x0 − 1)e−
t

T + 1 (17)

ẏref = −
1

T
(x0 − 1)e−

t

T (18)

ÿref =
1

T 2
(x0 − 1)e−

t

T . (19)

The Hurwitz polinomial which defines the error dynamics
is:

s2 + k2s+ k1 = 0. (20)

The simulation and design parameters are:

T = 1/0.35 x0 = 2000
k1 = 18.25 k2 = 8

(21)

and the reason behind the applied error dynamics is
detailed in Szeles et al. (2013).

Flatness based switch control Since the controlled sys-
tem shows nonlinear behavior, in different tumor volume
domains different error dynamics are advantegous. Thus, it
is prosperous to divide the observed tumor volume domain
into several regions, as presented in Fig. 2 and prescribed
in Table 1, where the most appropriate error dynamics and
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Fig. 2. Division of the tumor domain

Table 1. Simulation parameters

Domain

1 2 3 4 5 6-7

Limit 2000 1600 1150 850 500 200,50

s1 -0.15 -0.25 -0.3 -0.35 -0.32 -0.2
s2 -8 -8.75 -11 -12.5 -12.7 -19

T 1/0.35 1/0.45 1/0.5 1/0.7 1/0.8 1

reference signal can be defined. In our case, this means that
in lower tumor volume ranges both the reference signal and
the error dynamics can be fastened.

To avoid discontinuities, the affine combination of the
control inputs calculated in the neighboring intervals is
sent to the system (u = λui + (1 − λ)ui+1) such that in
the middle of the ith interval λ = 1. Table 1 shows the
upper limits of the tumor regions, the time constant of the
reference signal, and the poles of the Hurwitz polinomial
which describe the error dynamics in each domain. The
chosen error dynamics and time constants are further
detailed in Szeles et al. (2013).

4. SIMULATION RESULTS

Simulations were carried out in the [0 2000] mm3 tu-
mor volume domain. Because of physiological reasons,
the inhibitor serum level shall not be greater than 50–
70 mg/kg, however linear controllers may generate sig-
nificantly higher control input (over 600 mg/kg), thus
control input saturation of 50 mg/kg was applied for the
linear controllers. Tumor regression (tumor volume and
vasculature volume) and corresponding control inputs are
presented in Fig. 3.

The designed controllers are compared according to the
following aspects:

• time until tumor volume decreased to 1% (20 mm3)
of initial tumor volume (days);

• time until achieving the plateau of 1 mm3 (days);
• tumor volume achieved in 50 days (mm3);
• time while daily endostatin inlet is over 40 mg/kg
measured in days;

• total endostatin inlet (mg/kg);
• minimal total endostatin inlet (mg/kg) in the per-
turbed cases;

• maximal total endostatin inlet (mg/kg) in the per-
turbed cases.

In the cases of LQ and H∞ control, Fig. 3(a) and 3(b),
the control inputs needed to be saturated, since initial
serum levels exceeded 600 mg/kg, while the control inputs
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(b) H∞ design
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(d) Flatness based switch control

Fig. 3. Comparison of the performance of the applied control techniques

of flatness based techniques remained under 65 mg/kg,
Fig. 3(c) and 3(d).

Though linear controllers generate lower control inputs
at the final part of the therapy and presented low total
drug inlets, these were unable to reduce the tumor volume
under 1% of the initial tumor volume. However, flatness
based techniques were able to attain the desired plateau
of 1 mm3. The performance of switch control suits the
requirements the best: the tumor volume decreased to
1 mm3 using relatively low daily and total inhibitor inlets,
without external saturation.

4.1 Effects of parameter perturbation

To investigate the effects of parametric changes, simu-
lations were carried out where the four model related
parameters (λ, b, d, e) were perturbed independently in the
range of ±25%. The effects of the parameter changes on
the tumor regression and control input can be seen in
Fig. 4. Compared to the nominal behavior of the model,
some model parameter combinations appear to influence
both the performance of tumor regression and the in-
hibitor inlets (daily and total) advantegously. In those
cases, where inhibitor inlets increased, the total inlet is
still lower than inlets published in Ledzewicz and Schättler
(2005); Kassara and Moustafid (2011), latter inlets were

over 3000 mg/kg. Minimal and maximal total inhibitor
inlets are detailed in the last rows of Table 2.

In the cases of linear control, tumor regression showed
the nominal performance despite the parametric changes
during most of the simulations. However, the total in-
hibitor inlet showed high variance. The characteristics of
the control input did not change significantly due to the
saturation that is needed to avoid physiologically unac-
ceptable input serum levels.

Flatness based techniques (especially switch control) out-
performed linear methods in the following aspect: if model
parameters changed advantegously (e.g. d increased, b
decreased, e increased), the control algorithms resulted in
far lower control inputs, while linear controllers did not
adapt to changes appropriately.

In the case of switch control, two model parameter combi-
nations caused significant performance deterioration, while
in the case of flat control, the performance of tumor
regression remained nearly unchanged (three parameter
combinations caused relevant difference in tumor volume
changes, and two of them showed amelioration in the speed
of regression).

However, flat control based methodologies may result in
greater total inlet compared to linear techniques.
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Property
H∞

control
LQ

regulation
Flat

control
Switch
control

Time to 1% (days) - - 13 17

Time to 1 mm3 (days) - - 19 39

Size after 50 days (mm3) 58 65 1 1

Daily inlet high (days) 5 5 17 7

Total inlet (mg/kg) 671 644 1412 1148

Minimal total inlet (mg/kg) – model
parameters perturbed ±25%

493 482 902 1020

Maximal total inlet (mg/kg) – model
parameters perturbed ±25%

1258 1231 2252 1479

Table 2. Comparison of the applied control techniques
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(b) H∞ design
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(c) Flat control
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(d) Flatness based switch control

Fig. 4. Tumor regression and control inputs in the case of model parameter perturbation in the range of ±25%

5. CONCLUSION

In this paper, different control methodologies were com-
pared through a biomedical model. The two different
approaches towards the nonlinearity of the system were
working point linearization and exact linearization.

Working point linearization is a plausible solution to
handle nonlinear systems. However, if the initial states
of the system are far from the chosen working point, the
control input may exceed certain limits which have to be
taken into consideration. Despite the low inhibitor inlets,
the presented linear methods were not able to attain the
desired tumor volume plateau of 1 mm3. Although, these

techniques are able to tolerate parameter perturbations of
high degree.

Flatness based techniques adapt better to the nonlinearity
of the presented system. The minimal tumor volume was
reached by both techniques, using higher total drug inlet,
though. The disadvantage of this solution is that it is more
sensitive towards parametric changes.

Since the expected perturbation of the model parameters
is far lower than ±25%, we can state that flatness based
switch control is a favorable solution for the posed biomed-
ical problem.
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