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Abstract: This paper investigates the capabilities of a sophisticated robust nonlinear controller
designed directly for a widely known and used high-order nonlinear type 1 diabetes (T1DM)
model to lessen the dependency from patient compliance and to answer practical requirements
such as avoiding hypoglycaemia. The resulting controller can perform adequately in nominal
conditions, but expected to keep this performance even in extreme situations, e.g. high
carbohydrate intake, rejecting hypoglycaemic episodes.
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1. INTRODUCTION

Diabetes mellitus is the dysfunction of the human glucose
regulation system that is currently incurable, but treat-
able. The World Health Organization predicts that the
number of patients can soar to 552 million approximately
worldwide by 2030, Wild et al. (2004), doubling the dia-
betes population of 2000. The treatment of this disease is
therefore of paramount importance. Classical therapy of
type one diabetes mellitus (T1DM) consists of injections
administered by the patient to replace the otherwise im-
paired production of insulin, which is a hormone of key
importance in human metabolism.

The automatic glucose regulation for T1DM patients, the
Artificial Pancreas (AP), aims to keep the blood glu-
cose concentration in the normoglycemic range of 70-110
mg/dL (3.9-6 mmol/L) more effectively than the currently
existing therapies without relying on the compliance of the
patient. Moreover, it is required to avoid dangerously low
glucose levels that could directly endanger the patients’
life. It consists of a sensor, an insulin pump and a control
algorithm Harvey et al. (2010).

From engineering standpoint this is a rather complicated
disturbance rejection problem using a single glucose sen-
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sor, control algorithm and insulin pump, although dual-
hormone approach also exists Banks et al. (2011). An
adequate mathematical model of human metabolism - like
the ones presented in Magni et al. (2009) and Wilinska
et al. (2010) - is usually rather complicated, where verifi-
cation and parameter identification alone are challenging
tasks Kirchsteiger et al. (2011), while model-based control
algorithms must handle nonlinearity and inaccuracy alike.
The commercially available continuous glucose measure-
ment (CGM) sensor has significant measurement noise and
five minutes sampling time Battelino and Bolinder (2008).
Moreover, even when using the most rapid acting insulin
analogue in the pump, the time constant of the meal intake
having effect on the blood glucose level is shorter due to the
use of subcutaneous route. Yet, the research has reached
clinical testing phase in the last couple of years Cobelli
et al. (2011).

Considering the control algorithm in the AP there
were various different approaches, including classical
PID controllers Palerm (2011), run-to-run control Zisser
et al. (2009), fuzzy logic based control Phillip et al.
(2013), model-free soft computing-based control Zarko-
gianni et al. (2011), exact linearization based nonlinear
control Palumbo et al. (2011), H∞ control Parker et al.
(2000) and Model Predictive Control (MPC) Kovatchev
et al. (2010), among others.

Although MPC is one of the most effective in individual-
based therapies, in practice the controlled process can
deviate from the nominal model. Hence, robust methods
are required in order to satisfy general requirements (like
avoiding hypoglycaemia) under unexpected situations or

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9247

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/42930602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


extreme conditions as well. Modern robust control, like
H∞ methodology are predetermined for such cases and
regarding the AP problem linear H∞ robust controllers
are gaining popularity Femat et al. (2009), Kovács and
Szalay (2012). However, the nonlinearity of the system
is difficult to handle for a linear controller alone. Linear
Parameter Varying (LPV) controllers could capture the
dynamics of the glucose-insulin interaction well Kovács
et al. (2011) Pena et al. (2011), making direct nonlinear
control possible. The combination of the two approaches
have high potential for glucose control Kovács et al. (2013).

This paper investigates whether the capabilities of a ro-
bust LPV controller could be extended by additional con-
straints to answer certain practical issues, such as avoiding
hypoglycaemia and high carbohydrate intake. The design
will be performed directly on the model which will be
presented in Section 2, as well as how the LPV model
is defined. Section 3 details each step of the controller
design, while simulation results using virtual patient data
will be presented in Section 4. The paper is concluded with
Section 5, where further research directions will be given
as well.

2. DIABETES MODEL

The model presented by Wilinska et al. (2010) is described
by the following differential equations:

Ċ(t) = −ka,intC(t) +
ka,int
VG

Q1(t)

Q̇1(t) = −

(

F01

Q1(t) + VG

+ x1(t)

)

Q1(t) + k12Q2(t)−

−Rclmax{0, Q1(t)−RthrVG} − Phy(t)+

+EGP0max{0, 1− x3(t)}+min

{

UG,ceil,
G2(t)

tmax

}

Q̇2(t) = x1(t)Q1(t)−
(

k12 + x2(t)
)

Q2(t)

ẋ1(t) = −kb1x1(t) + SIT kb1I(t)
ẋ2(t) = −kb2x2(t) + SIDkb2I(t)
ẋ3(t) = −kb3x3(t) + SIEkb3I(t)

İ(t) =
ka
VI

S2(t)− keI(t)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

Ġ2(t) =
G1(t)−G2(t)

max
{

tmax,
G2(t)
UG,ceil

}

Ġ1(t) = −
G1(t)

max
{

tmax,
G2(t)
UG,ceil

} +D(t)

(1)

where the state variables are: C(t) glucose concentration
in the subcutaneous tissue [mmol/L], Q1(t) and Q2(t) the
masses of glucose in accessible and non-accessible com-
partments [mmol], x1(t), x2(t) and x3(t) remote effect
of insulin on glucose distribution, disposal and endoge-
nous glucose production respectively [1/min], I(t) insulin
concentration in plasma [mU/L], S1(t) and S2(t) insulin
masses in the accessible and non-accessible compartments
[mU], G1(t) and G2(t) glucose masses in the accessible
and non-accessible compartments [mmol]. u(t) injected
insulin flow of rapid-acting insulin [mU/min] is the input
of the system, while D(t) amount of ingested carbohy-
drates [mmol/min], and Phy(t) effect of physical activity

[mmol/min] are considered as disturbances. The following
parameters are time-varying with ±5% deviation: ka,int,
F01, k12, EGP0, kb1, kb2, kb3, SIT , SID, SIE , ka and ke.
This is represented by sinusoidal oscillations superimposed
on the nominal values with 3 hour period and a randomly
generated phase.

The system is complete with a sensor model additionally
defined by us, which defines 5 minutes sampling time
and white additive measurement noise with 1 mmol2/L2

variance.

The model (1) contains elements such as F01Q1(t)(Q1(t)+
VG)

−1, x1(t)Q1(t) and x2(t)Q2(t) which are nonlinear
functions of certain state variables. By introducing the
notation:

ρ(t) =

(

ρ1(t)
ρ2(t)
ρ3(t)

)

=





Q1(t)
F01(Q1(t) + VG)

−1

Q2(t)



 (2)

we can capture the model with an LPV system of the
following form:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

A(ρ) = A0 +
m
∏

i=1

ρi(t)Ai B(ρ) = B0 +
m
∏

i=1

ρi(t)Bi

C(ρ) = C0 +
m
∏

i=1

ρi(t)Ci D(ρ) = D0 +
m
∏

i=1

ρi(t)Di

(3)

since the chosen scheduling variables are bounded together
with their time derivatives as well. State variables x1(t)
and x2(t) are also candidates for scheduling variables
replacing Q1(t) and Q2(t), which is more advantageous
for observer design Szalay et al. (2013).

ρ2(t) is a nonlinear function of ρ1(t). However, as shown in
Fig. 1 treating them as independent variables requires the
controller to needlessly ensure stability and performance
for scheduling variable configurations which would never
appear in practice (solid line). There are two possible
approaches to overcome these limitations. One would be to
give a linear estimation of the function F01(Q1(t)+VG)

−1

and hence eliminating ρ2(t) (dotted line). This would
simplify the problem greatly by reducing the number of
variables during controller synthesis.

On the other hand it introduces further parameter uncer-
tainty to the system. Another possibility is to use a linear
T transformation on the scheduling parameters (4) and
the nominal model (5) in order to minimize

∏m
i=1 ρi(t)

(dashed line). The controller synthesis will be performed
on the transformed system and inverse transformation on
the resulting controller.

All 3 approaches will be investigated and compared.

(

ρ̃1(t)
ρ̃2(t)

)

=

[

cos(α) −sin(α)
sin(α) cos(α)

](

ρ1(t)
ρ2(t)

)

−

(

ρ1,min

ρ1,max

)

(4)
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ρ2,min

ρ2,max

ρ2(ρ1)

ρ1,min ρ1,max

ρ1
ρ̃1

ρ̃2

aρ1 + b

Fig. 1. Different configurations for LPV system. Solid line:
classical approach; dashed line: transformed schedul-
ing variables; dotted line: linear approximation.

A0 +

m
∏

i=1

ρi(t)Ai = Ã0 +

m
∏

i=1

ρ̃i(t)Ãi

B0 +
m
∏

i=1

ρi(t)Bi = B̃0 +
m
∏

i=1

ρ̃i(t)B̃i

C0 +

m
∏

i=1

ρi(t)Ci = C̃0 +

m
∏

i=1

ρ̃i(t)C̃i

D0 +

m
∏

i=1

ρi(t)Di = D̃0 +

m
∏

i=1

ρ̃i(t)D̃i

(5)

Furthermore, since endogenous glucose production and
renal extraction are only present in certain regions of the
state space, it is necessary to introduce switching to the
controller. Based on Doyle (2012) one can define several
different zones, and define a controller for each. Here only
6 controllers will be used based on the value of Q1(t) and
x3(t). The two regions defined for the latter are x3(t) ≤ 1
and x3(t) > 1 and three for the former as follows:

• The blood glucose concentration is close to the refer-

ence 4.9 mmol/L: Q
1,ref

≤ Q1(t)
VG

< Q̄1,ref . Here, the

values 4.5 mmol/L and 5.5 mmol/L were used;
• The blood glucose concentration is higher than the
reference, but there is no renal extraction: Q̄1,ref ≤
Q1(t)
VG

< Rthr;
• The blood glucose concentration is higher than the

threshold of renal clearance: Rthr ≤ Q1(t)
VG

;

To conclude, we can define six nominal LPV models
P0,j , j = 1, . . . , 6 from (1) for model-based controller
design. The differential equations for state variables G1(t)
and G2(t) are excluded, and will be used to construct
a weighting function capturing worst case meal intake
instead.

3. CONTROLLER DESIGN

3.1 Uncertainties

To design a robust controller it is necessary to exam-
ine the uncertainty of the controlled process. There are
two main sources of uncertainty: parameter inaccuracy
and scheduling parameter inaccuracy. The latter comes
from the requirement that for LPV controller ρ(t) must
be available for measurement. In this case this is not

min
{

UG,ceil,
G2(t)
tmax

}

nd(t)

ÛG(t)
Wd1(s)

σd2

Fig. 2. Glucose flux estimation

satisfied. A form of extended Kalman-filter was used for
scheduling parameter and meal intake estimation. To be
more specific the following state variables were estimated:
C(t), Q1(t), Q2(t), x3(t), G2(t). Then, we assumed that the
estimated scheduling parameters ρ̂(t) were the correct
ones, it is the system has parameter inaccuracy. The result-
ing error was divided into multiplicative inaccuracy and
additive error:

(

ρ1(t)x1(t)
ρ2(t)Q1(t)
ρ3(t)Q2(t)

)

=











(

ρ̂1(t)(1 + ∆1) + ρ̃1(t)
)

x1(t)
(

ρ̂2(t)(1 + ∆2) + ρ̃2(t)
)

Q1(t)
(

ρ̂3(t)(1 + ∆3) + ρ̃3(t)
)

Q2(t)











=

(

ρ̂1(t)(1 + ∆1)x1(t) + dρ,1(t)
ρ̂2(t)(1 + ∆2)Q1(t) + dρ,2(t)
ρ̂3(t)(1 + ∆3)Q2(t) + dρ,3(t)

)

(6)

where ∆ρi are the multiplicative inaccuracies of the
scheduling parameters, ρ̃i(t) are additive errors which mul-
tiplied with the respective state variables define additional
dρ,i(t) disturbance inputs for the systems (i = 1, 2, 3).
Using this setup we can apply LPV control for this system
with the cost of increased inaccuracy and disturbances.
Moreover, it was found that it is more advantageous to
make the multiplicative inaccuracies a function of the
respective scheduling variables: ∆ρi(ρi(t)).

Since the estimation of the glucose flux from the gut

ÛG(t) =
Ĝ2(t)
tmax

is available as well, one can define a SISO

transfer function Wd1(s) and a zero mean additive noise
with variance σ2

d2 to define the connection between the
estimated and the real value (Fig. 2).

Finally, the estimated output Ĉ(t) was used for feedback
to the controller instead of the real measurement. The
estimation error can be seen as a virtual measurement
noise, which has usually a smaller variance (σ2

C) than the
actual measurement noise.

The values of ∆ρi(ρi(t)), dρ,i(t), Wd1(s), σd2 and σC were
determined from 500 Monte Carlo simulations for each
virtual patien using randomized meal intakes, physical
activity, insulin injections, parameter inaccuracies and
measurement noise.

Based on sensitivity analysis a single output multiplica-
tive uncertainty weighting function (Wout,j(s)) was con-
structed for each controller (j = 1, . . . , 6) of each virtual
patient. They have the following form:

Wout,j(s) =
s+ zj
s+ pj

(7)

Wout,j(s) represents 100 % uncertainty for higher frequen-
cies, and 100

zj
pj
% for lower frequencies.

It must be stressed, that the original model (1) has been
used directly for controller synthesis. Even though certain
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Wu

Wm

P0

Wd1

Wout

Wd2

Wn

∆

Wper

Phy(t)

u(t)

zu(t)

dρ(t)

meal(t)
nd(t)

yd(t)

n(t)

−

r(t)

ym(t)

ze(t)

Fig. 3. Complete model for controller design.

state variables have been discarded, it was only necessary if
they added poles to the model with time constants smaller
than the sensor sampling time. The resulting deviation
from (1) was included in Wout,j(s).

3.2 Weighting functions

To design a robust controller, there are several other
weighting functions to be defined. Wmeal(s) describes
worst case meal intake, Wu = 1

umax
represents constraints

of maximum insulin input (umax) and Wn = σC captures
measurement noise.

Wmeal(s) = UG,ceil

t2max

(s+ tmax)2
(8)

Performance weighting function Wper(s) is used to specify
the requirements for how much deviation from the 4.9
mmol/L reference glucose concentration is tolerated. The
following function (9) allows 10 times larger errors for
higher frequencies than for lower frequencies:

Wper(s) =
30s+ 1

300s+ 1
(9)

It is possible to have intergral or two degree-of-freedom
controller by adding specific weighting functions.

The complete system is displayed in Fig. 3.

3.3 Controller synthesis

Based on Zhou (1996), Ghaoui and Niculescu (2000) and
Scherer and Weiland (2004) for an LPV system of the form
(10) it is possible to find an LPV controller of the form
(11) and a constant γ, so that the closed-loop system is
stable and the transfer from the input d(t) to the output
z(t) has an H∞ norm smaller or equal than γ.

ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))d(t) +B2u(t)
z(t) = C1(ρ(t))x(t) +D11(ρ(t))d(t) +D12u(t)
y(t) = C2x(t) +D21d(t)

(10)

ẋc(t) = Ac(ρ(t))xc(t) +Bc(ρ(t))y(t)
u(t) = Cc(ρ(t))xc(t) +Dc(ρ(t))y(t)

(11)

The controller synthesis is performed by solving a corre-
sponding linear matrix inequality (LMI) while minimizing
γ. Although there are various alternative techniques, the
greatest advantage of this method would be that it defines
a convex constraint on the sought variables. Furthermore,
a finite set of LMIs M1(x) < 0, . . . ,Mn(x) < 0 can

Re

Im

1
2fs α

Fig. 4. Stability region for controller design

be combined into a single LMI (12). More precisely,
M1(x) < 0, . . . ,Mn(x) < 0 if and only if







M1(x)
. . .

Mn(x)






< 0. (12)

This means we can create hybrid controllers which can
satisfy more than one requirement for norms. In this
particular case, we had two separate LMIs. One was to
ensure the robust stability of the system and that the
performance criteria for control signal will be met. From
all disturbance inputs to the two outputs ∆out and zu(t)
the H∞ norm of the system must be less than 1. The
other LMI was to minimize the H∞ norm of the transfer
function from all outputs to the output of the performance
weighting function ze(t).

Needless to say it is possible to have requirements based
on different norms, such as H2 or L1, but this is not the
scope of this paper.

There are several other important constraints we can
impose on the controller which can be captured with
LMIs. One of these which have high importance in blood
glucose control define stability region for the poles of
the closed-loop system. The model is usually defined in
continuous time while the controller must be implemented
in discrete time. Hence, there cannot be poles faster than
the sampling time of the glucose measurement sensor.
Moreover, since negative control signal has no physical
meaning in this application, it is undesirable to have
oscillatory transients. Therefore, instead of being satisfied
with closed-loop poles having negative real value, we define
a stability region as shown in Fig. 4.

In this case the constraints for the poles p of the closed-

loop system are 0 > Re{p} > 0.1 and 1 > Im{p}
Re{p} .

4. RESULTS

To show the capabilities of the proposed robust controller
simulations were conducted using the parameter sets of 6
virtual patients presented in Wilinska et al. (2010). For
each patient three LPV controllers were created using
different settings for the scheduling variables (Fig. 1). Sim-
ulations were conducted using three different protocols:

(1) 2 days simulation with 150 g of carbohydrate (CHO)
intake per day (classical T1DM patient protocol).
The considered meal intake consists of a 35 g CHO
breakfast at 8:30, a 65 g CHO lunch at 13:00, and 50
g CHO dinner at 19:00.

(2) 2 days simulation based on Magni et al. (2008) meal
intake protocol. It consists of a 45 g CHO breakfast
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Chance of
occurence

Amount [g] Time [hour]

Breakfast 100 % 40-60 6:00 - 10:00

Snack 1 50 % 5-25 8:00 - 11:00

Lunch 100 % 70-110 11:00 - 15:00

Snack 2 50 % 5-25 15:00 - 18:00

Dinner 100 % 55-75 18:00 - 22:00

Snack 3 50 % 5-15 22:00 - 0:00

Table 1. High carbohydrate intake simulation
parameters

LPV type Classic Simplified Transformed

Hypo
0.00% 0.00% 0.00%

<3.9 mmol/L

Normal
27.62% 28.97% 19.63%

3.9-6 mmol/L

Mild hyper
14.45% 15.67% 22.13%

6-7.8 mmol/L

Hyper
41.64% 44.88% 63.45%

6-11 mmol/L

Severe hyper
30.73% 26.15% 16.92%

>11.1 mmol/L

Table 2. Simulation results for high carbohy-
drate intake scenario.

Minimum Blood Glucose [mg/dL]

M
ax

im
um

 B
lo

od
 G

lu
co

se
 [m

g/
dL

]

 

 

110  90  70  50

400

300

180

110

Linear
Classic
Transform

Fig. 5. CVGA of all LPV controllers for 150 g of daily
carbohydrate intake

at 9:30, a 75 g CHO lunch at 13:30, and 85 g CHO
dinner at 19:30.

(3) 2 days simulation with irregular meal timing and
unusually high CHO intake ( Table 1).

For all simulations the measurement noise and the pa-
rameter inaccuracies were randomized. An example for
simulation is shown in Fig. 7. The results for the first
two meal scenario are presented for all virtual patients
and controller types in Fig. 5 and Fig. 6 using control
variability grid analysis (CVGA) similarly to Magni et al.
(2008). For larger meal intake (scenarion 3) the results
are summarized in Table 2 based on 50 simulations for
each virtual patient. The values given are the average time
spent in various blood glucose ranges in percentage of the
whole simulation.

Minimum Blood Glucose [mg/dL]

M
ax

im
um

 B
lo

od
 G

lu
co

se
 [m

g/
dL

]

 

 

110  90  70  50

400

300

180

110

Linear
Classic
Transform

Fig. 6. CVGA of all LPV controllers for (2) meal intake
protocol

 8:00 14:00 20:00 02:00  8:00

3.9
4.9

7.8

 11

time [hour]G
lu

co
se

 c
on

ce
nt

ra
tio

n 
[m

m
ol

/L
]

 

 measured
real

 8:00 14:00 20:00 02:00  8:00
0

50

100

time [hour]

In
su

lin
 [m

U
/m

in
]

Fig. 7. Example for virtual patient simulation

It can be concluded, that based on the acquired results
in case of linear approximation of the second scheduling
variable or transformation of the first two scheduling vari-
ables can avoid hypoglycaemia. The latter can maintain
all patients in the lower B and B zones, which is the
requirement for a robust controller. Furthermore, these
two controllers can adequately compensate for higher meal
intake as well. However, more effective disturbance rejec-
tion is possible considering non-randomized meal protocols
and a strict regime, but here, the scope of the paper was
to demonstrate the robust characteristics of the designed
nonlinear controllers.

5. CONCLUSION

The design process of three different robust LPV con-
trollers for blood glucose control in case of T1DM has
been presented. It can be concluded that robustness is
achieved even in extreme conditions demonstrating the
effectiveness of the methodology and avoiding hypogly-
caemia. Moreover, the capabilities of the designed con-
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trollers were demonstrated on the real nonlinear system
(without reduction or linearization). Further work will
include the investigation whether introducing integrator or
two degree-of-freedom controller structure would improve
the results. Moreover, the performance requirements could
be defined in H2 or L1 norm as well. Different T1DM mod-
els, although represent the same process, have different
properties, advantages and disadvantages from controller
design point of view. More sophisticated sensor models and
different filtering methods can potentially bring further
improvements or address different practical issues. Finally,
these controllers can be combined with MPC techniques to
utilize the benefits of sharply tuned individualized therapy
with robust guarantees.
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