
Using Total Correlation to Discover Related Clusters
of Clinical Chemistry Parameters

Tamás Ferenci
Physiological Controls Group
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Abstract—Clinical chemistry tests are widely used in medical
diagnosis. Physicians typically interpret them in a univariate
sense, by comparing each parameter to a reference interval, how-
ever, their correlation structure may also be interesting, as it can
shed light on common physiologic or pathological mechanisms.
The correlation analysis of such parameters is hindered by two
problems: the relationships between the variables are sometimes
non-linear and of unknown functional form, and the number of
such variables is high, making the use of classical tools infeasible.
This paper presents a novel approach to address both problems. It
uses an information theory-based measure called total correlation
to quantify the dependence between clinical chemistry variables,
as total correlation can detect any dependence between the
variables, non-linear or even non-monotone ones as well, hence it
is completely insensitive to the actual nature of the relationship.
Another advantage is that is can quantify dependence not only
between pairs of variables, but between larger groups of variables
as well. By the virtue of this fact, a novel approach is presented
that can handle the high dimensionality of clinical chemistry
parameters. The approach is implemented and illustrated on a
real-life database from the representative US public health survey
NHANES.

I. INTRODUCTION

Clinical chemistry is the subspecialty of clinical pathology
that focuses on the analysis of various body fluids [1], [2].
Perhaps the most important part is the analysis of the con-
stituents of blood; these tests include haematology tests, renal
and liver function tests, determination of various electrolyte
concentrations etc. Such ”blood tests” are now routine diag-
nostic tools that are used by many clinical fields to come up
with and verify diagnoses.

Physicians typically use tests results in a univariate sense
(i.e. they interpret them separately) and the most abundant
interpretation is to compare them to limits – so-called reference
intervals [3] – that indicate the range which can be considered
”normal” and outside which some pathology can be suspected
to be present.

Despite this, the multivariate structure of the test results
might also be of interest. Stochastically connected parameters
can indicate common mechanism behind the physiological
regulation of the measured quantities, or the fact that the
tests are affected by similar pathological processes. This phe-
nomenon, and also its association with states like obesity has
been discussed in the literature [4].

However, the multivariate interpretation of laboratory re-
sults is hindered by two problems. First and foremost, the
number of tests, even the commonly used ones, is huge
(and increasing). With several dozen – or more – variables,
the classical methods of investigating correlations can not be
applied or are infeasible. This can be considered as an example
of the ”curse of dimensionality” [5]. Second, the clinical chem-
istry parameters are themselves often not normally distributed,
their connections can be non-linear (or perhaps even non-
monotone).

This paper presents a novel approach to address these
issues. The problem of non-linear (or non-monotone) relation-
ships is addressed by the application of a dependence-measure
that is insensitive to the nature of the relationship, while the
high dimensionality is addressed by a clustering algorithm that
reduces the search space by rearranging it is a search tree and
pruning unnecessary parts as early as possible.

II. MATERIALS AND METHODS

First, different metrics to measure the dependence of vari-
ables will be presented, culminating in the introduction of the
metric that will be used in our approach. The estimation of this
metric from sample will be discussed in more detail afterwards.
Next, the other important element of the approach is presented,
the clustering algorithm. The approach will be illustrated on
a real-life example, this is presented next, together with the
details of the software implementation of the approach.

A. Measuring Dependence of Variables

The issue of quantitatively measuring the dependence
(stochastic connection, relationship) of variables dates back to
the late 19th century [6]. We will now confine our discussion
to continuous variables, i.e. the question of correlation.

1) Bivariate Case: First the theory of the bivariate case
was devised, initially focusing on capturing linear relationships
(”Pearson” or linear or product-moment correlation [7]). While
this was of huge importance for a myriad of applications (linear
regression, for instance), it is unable to capture non-linear
connections which poses a problem in certain circumstances.
To circumvent this, several alternative measures were devel-
oped later, the most famous being the Spearman-ρ [8] and the
Kendall-τ [9]. These coefficients – both being rank correlation
[10] – are able to capture arbitrary monotone (but no longer
necessarily linear) relationship between the variables.
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These are, however, still unable to capture non-monotonic
connections. When one is willing to assume a given functional
form on the relationship, the estimation of its strength is
relatively straightforward, but to capture this without any pre-
sumption, i.e. completely non-parametrically, is a much more
complicated issue. One classical solution is the application
of mutual information. To introduce this, first note that the
entropy [11] (or information entropy) of a discrete random
variable X concentrated to the real values {x1, x2, . . . , xk}
with probability mass function p (x) = P (X = x) is

H (X) = E
[
− log p (X)

]
= −

k∑
i=1

p (xi) log p (xi) . (1)

This definition founds its roots in thermodynamics, and is
related to the uncertainty in the outcome of the variable, or its
information content [12]. Entropy can be analogously defined
for multivariable case [11], i.e. for a p-dimensional random
vector X, called joint entropy:

H
(
X1, X2, . . . , Xp

)
= E

[
− log p

(
X1, X2, . . . , Xp

)]
= −

k1∑
i1=1

· · ·
kp∑

ip=1

p
(
xi1 , . . . , xip

)
log p

(
xi1 , . . . , xip

)
.

(2)

(The entropy does not depend on the values the random
variable can take, only on its probabilities. Also note that the
joint entropy is not fundamentally different from the univariate
one: it can be considered as a univariate entropy for a variable
defined on the product space.) Considering the ”information
content” view of the entropy, H (X,Y ) is the information in
the joint distribution (dealing now with the bivariate case), that
is, it includes every information known on the distribution of
these two variables, while the sum of the informations that
are known marginally, i.e H (X) +H (Y ), includes both the
information that is ”contained” only in either of the variables,
and twice the information that is ”contained” in both. Thus, it
is quite logical to define the quantity

I (X,Y ) = H (X) +H (Y )−H (X,Y ) , (3)

which is called mutual information [11]. As it follows from
the above reasoning, this can be used to measure how the two
variable is connected, without any presumption on the nature
of their relationship: we can measure their linear, arbitrary
monotone, and even non-monotone relationships. (This, of
course, does not mean that such measures are universally
superior to the more traditional correlation coefficients: apart
from interpretability, these might also be inferior in inductive
statistical sense when being estimated from a sample.) Note
that mutual information is the Kullback–Leibler divergence
[13] between the variable’s actual joint distribution, and the
joint distribution obtained when they are presumed to be
independent, i.e. the product of their marginal distributions:
I (X,Y ) = DKL

(
p (x, y) ‖p (x) p (y)

)
.

Mutual information is not the only measure devised to
capture the correlation of two variable universally (in the above
sense). Another notable example is the distance correlation
[14], [15] that was only recently introduced.

2) p-variate Case: All the above measures characterize
the dependence between two variables, we might however be
also be interested in characterizing the dependence between
p > 2 variables. The traditional correlation has such no
generalization (multiple correlation [16], that can be defined
using the classical terms, is not symmetrical, i.e. requires the
declaration of a variable to be dependent on the others, hence
it is unfit to measure the overall dependence of the variables
in which the role of the variables is obviously symmetrical).

Mutual information can, in contrast, be extended to p > 2
variables, but this generalization is not straightforward. Several
alternatives have been described [17], [18], including interac-
tion information [19], total correlation and dual total correla-
tion [20]. Each grabs different aspect of mutual information
that is generalized to higher dimensions.

Total correlation will be now employed for the further stud-
ies as a multivariate measure of the – universal – dependence
of variables. Total correlation [21] is defined as

C
(
X1, X2, . . . , Xp

)
=

 p∑
i=1

H (Xi)

−H (X1, X2, . . . , Xp

)
.

(4)
It is immediately obvious that this definition generalizes (3),
and it can also be shown that

C
(
X1, X2, . . . , Xp

)
= DKL

(
p
(
x1, x2, . . . , xp

)
‖p (x1) p (x2) . . . p

(
xp
))
.

(5)

stands as well, i.e. it is still the Kullback–Leibler divergence
between the actual joint distribution of the variables and the
joint distribution obtained when they are presumed to be
independent.

Note that total correlation measures every dependence
”buried” within the connections of the variables (also including
every possible interaction). These may be decomposed, as it
has has been discussed in the literature [22], [21] but is not
elaborated in more detail here.

B. Estimating Total Correlation from Sample

Even the estimation of entropy (from a sample) is not a
trivial issue. Considering now continuous variables, there is a
definition for entropy holding for continuous variables as well,
called differential entropy [11]. It is the straightforward gen-
eralization of the discrete definition, that is, for a continuous
random variable X with probability density function f , the
differential entropy is

H (X) = −
∫
supp(f)

f (x) log f (x) dx. (6)

There is a great deal of approaches to estimate this quantity
from a sample [23]. Now a method will be used which
first discretizes the continuous variable, and then applies a
James–Stein-type shrinkage estimator [24]. This estimator is
demonstrated to be effective in a number of scenarios with
p = 1000 variables even with less than 100 sample [24].

The discretization was performed by equal width binning,
with 4 bins for each variable (i.e. the range of the given
variable was divided to four segments of equal length). Higher
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number of bins offers a more faithful representation of the
original variable’s distribution, but it also quickly increases
the dimensionality of the problem. (Note that after discretiza-
tion, the dimension of the entropy estimation problem for p
variables will be bp, where b is the number of bins. That is,
the dimensionality is increasing exponentially with the number
of bins.)

After the marginal and joint entropies are estimated with
the above method, the total correlation is calculated directly,
using the definition.

C. Clustering Algorithm

Three possible clustering algorithms will be presented and
investigated that use total correlation to measure the depen-
dence between a set of variables.

1) Traditional agglomerative hierarchical clustering: Ag-
glomerative hierarchical clustering [25] defines distances be-
tween clusters using the distances between the objects to be
clustered (which the algorithm receives as an input) and merges
the nearest clusters starting from a situation in which every
object is considered to be a separate cluster until all is merged
to the same cluster. The clusters that are merged, together with
the distance of merging can be visualized on a very illustrative
diagram called dendrogram [25].

The major point of hierarchical clustering is that it directly
reduces the definition of cluster-distance to object-distance
(by taking, for instance, the minimal or maximal or average
distance between the objects of a cluster as the cluster’s
distance) without attempting to calculate a distance using the
cluster as a whole. In other words, it always uses only pairwise
distances, hence, it is unable to utilize total correlation’s
possibility to describe to correlation of p > 2 variables.

2) Greedy clustering using total correlation: To address the
above issue, it is logical to define the similarity of two clusters
as the total correlation after merging them, but otherwise
follow the logic of hierarchical clustering [26]. That is: initially
we consider every object to be a separate cluster, and merge
those two objects/clusters in every step which results in the
highest total correlation of the merged cluster from every
possible merge. It may be called greedy clustering as it retains
the greedy nature [27] of hierarchical clustering.

At this point it worth noting that total correlation has a
monotonicity property, that is, the total correlation of a set of
variables can not be smaller than the total correlation of any
subset of them. The proof is simple by applying the chain rule
for entropy [11]:

C
(
X1, . . . , Xp

)
=

 p∑
i=1

H (Xi)

−H (X1, . . . , Xp

)

=

p−1∑
i=1

H (Xi)

−H (Xp|X1, . . . , Xp−1
)

+H
(
X1, . . . , Xp−1

)
+H

(
Xp

)
= C

(
X1, . . . , Xp−1

)
+
[
H
(
Xp

)
−H

(
Xp|X1, . . . , Xp−1

)]
≥ C

(
X1, . . . , Xp−1

)
,

(7)

as the conditional entropy can not be greater than the uncon-
ditional entropy [11].

3) APRIORI-style clustering with threshold: Another pos-
sible algorithm is to relax the requirement of greedy cluster-
growing (i.e. to select ”the” best merge), and rather to set
a threshold – for the total correlation – above which we
accept every cluster as an ”interesting” group of objects.
Itself this definition is not useful due to the aforementioned
monotonicity: it implies an upward closure property (if a set
meets the criteria, every superset will also meet the threshold),
but this can be addressed by requiring that only minimally
connected groups are found, i.e. clusters that themselves meet
the threshold for total correlation, but none of their subsets
does.

This can be best imagined on a usual lattice that contains
every possible subset of the variables, ordered by inclusion.
Simply requiring a minimum total correlation would mean that
if a node meets the criteria, every connected node above it will
also meet the threshold. The minimally connected requirement
however means that in such case, only the lowest group (node)
will be found to be a cluster. The tree above can be pruned.

This dictates the following algorithm: first, two-element
cluster are checked against the threshold. Those that meet it,
are returned as ”interesting” clusters and the trees connected
them are pruned (in effect, variables included in these clus-
ters are removed). Then, with the remaining variables, three-
element clusters are checked against the threshold. Once again,
those that meet it, are returned as results, they are removed,
and four-element clusters are checked within the remaining
variable, and so on.

This search tree pruning, bottom-up logic is close to the
very-well known APRIORI algorithm [28]. It is interesting to
note that there exists an algorithm operating similarly to the
one described here and also using entropy, called ENCLUS
[29]. ENCLUS is a so-called subspace clustering algorithm
[30], hence it is somewhat different from the approach dis-
cussed above: it also has criteria for the cluster’s entropy to
be low enough (as it represents ”interestingness” in subspace
clustering context). As we are now interested in the correlation
structure, this criteria is not needed.

D. Illustrative Example

To illustrate the above approach, data from the representa-
tive United States survey called National Health and Nutrition
Examination Survey (NHANES) will be used. NHANES is
now a continuous public health program, with results published
in biannual cycles [31]. It is a nation-wide survey aimed to
be representative for the whole civilian non-institutionalized
US population, by employing a complex, stratified multi-stage
probability sampling plan. The amount of collected data is
tremendous (although sometimes varying from cycle to cycle),
including demographic data, physical examination, collection
of clinical chemistry parameters, and a thorough questionnaire
concentrating on anamnesis and lifestyle.

In this example, data from the 2011-2012 cycle will be
used, as these are the latest that are currently available [32].
To achieve more homogeneity, the database will be filtered to
males, aged > 18 years.
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To account for the survey design of the NHANES, weight-
ing has to be used. As per the analytic guidelines, the weights
of the smallest analysis subpopulation have to be used, which
were the so-called MEC weights in this case (as variables that
were measured in the mobile examination center were also
included in the analysis), named WTMEC2YR.

The following clinical chemistry parameters will be used
in the example:

• Standard Biochemistry Profile (BIOPRO_G data file).

• Complete Blood Count with 5-Part Differential in
Whole Blood (CBC_G data file).

• Glycohemoglobin (GHB_G data file).

• HDL-Cholesterol (HDL_G data file).

Together, they include 39 variables; they will be addressed by
abbreviations, internationally used ones, wherever possible.

Demographic data were extracted from the Demographic
Variables and Sample Weights (DEMO_G) data file.

Every subject with missing value was removed (resulting
in a database without missing values); the final sample size
was n = 2480.

E. Implementation

The approach described in this paper was implemented
under R statistical program package, version 3.1.0 [33] using
library entropy version 1.2.0 [34]. The script is available
from the corresponding author on request.

III. RESULTS AND DISCUSSION

Pairwise dependences between the variables of the database
are shown on Fig. 1. As a comparison, the – traditional –
correlation matrix of the database is also shown (Fig. 1a). The
pairwise total correlations (mutual informations) are shown
on Fig. 1b. Note that this latter can not be considered to
be a valid correlation matrix, as the ”self-total correlation”
need not be unity, and no normalizing was applied to enforce
this. To achieve comparability of the two matrices Fig. 1a
depicts the absolute values of the correlations. Both matrix is
visualized with a heat map, using logarithmic colouring which
was necessary as the correlations span several magnitudes.

These measures can be used to perform a traditional hierar-
chical clustering. Using Ward’s method as linkage criteria [35],
[36], and the usual Lance–Williams algorithm [37], we obtain
the dendrograms shown on Fig. 2. Like noted, this algorithm
makes no actual use of the true strength of total correlation
(that is, the ability to characterize the dependence between
p > 2 variables), rather, it simply extends the traditional
clustering (based on linear correlations) to be able to handle
possibly non-linear relationships between the variables as well,
without any further extension.

Note that we have used the matrix
[
1− log

∣∣cij∣∣]n
i,j=1

in

both cases to perform the clustering. The logarithm was used
to aid the algorithm, as the (absolute) correlations spanned
several magnitudes.

log10(Total correlation)

F
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40
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Fig. 3. Histogram of the pairwise total correlations between the variables of
the database, on logarithmic scale.

While the dendrograms are globally different, many similar
structure can be observed: GHB-GLU, MCV-MCH+MCHC-
RDW+RBC-HGB-HCT, ANC-ABC, BUN-SCR are examples
for structures that remain unchanged indicating no strong
presence of non-linear relationships.

Next, we applied the method that do takes the multivariate
dependences – through total correlation – into account. The
greedy clustering however actually results in a single cluster
being grown larger and larger. Namely, the merges in the first
eight steps are the following:

{HGB,HCT} → {HGB,HCT,RBC} →
→ {HGB,HCT,RBC,MCH} →
→ {HGB,HCT,RBC,MCH,MCV} →
→ {HGB,HCT,RBC,MCH,MCV,MCHC} →
→ {HGB,HCT,RBC,MCH,MCV,MCHC, IRN} →
→ {HGB,HCT,RBC,MCH,MCV,MCHC, IRN,ANC} .

This can be readily explained by the monotonicity of the
total correlation already discussed: clusters with high number
of variables have an advantage when their total correlation is
compared to smaller clusters (simply due to the inflation of
total correlation), and after a point, this can not be ”defeated”
by smaller clusters, hence it will be necessity that a single clus-
ter is grown until it includes every variable. This phenomenon
severely limits the applicability of this algorithm (it is rather
ordinating the variables, then performing a true clustering).

Finally, we performed the APRIORI-style, bottom-up clus-
tering with pruning. The histogram of the pairwise total
correlations (on a logarithmic scale) is shown on Fig. 3.

Based on this, we have chosen a threshold of ε = 0.1,
which resulted in 6 clusters labelled as interesting, all includ-
ing two variables of course. To obtain minimally connected
clusters, the variables in these clusters were removed and the
algorithm was re-run, this time using triples. Using the same
threshold again, 1 three-element cluster is obtained and then,
repeating the procedure, 1 four-element cluster. These results,
i.e. the ”interesting” groups of clinical chemistry parameters
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Fig. 1. Pairwise dependences of the variables in the database, using absolute value of linear correlation coefficient (a) and total correlation (b). Note the
logarithmic colouring.
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Fig. 2. Dendrograms for the hierarchical clustering of variables using linear correlation coefficient (a) and total correlation (b). Note that the logarithms of the
absolute values of correlations were used in both cases.

TABLE I. MINIMALLY CONNECTED CLUSTERS OBTAINED WITH THE
PRESENTED NOVEL CLUSTERING METHOD

Cluster size Cluster members Total correlation

2 {RBC,HGB} 0.1538

2 {RBC,HCT} 0.1502

2 {HGB,HCT} 0.2650

2 {MCV,MCH} 0.2129

2 {GHB,GLU} 0.1125

2 {STP, SGL} 0.1681

3 {SNA, SCL,BIC} 0.1593

4 {ANC,PLT,MPV, SK} 0.1001

obtained with the presented clustering algorithm are shown on
Table I.

IV. CONCLUSION

Total correlation can be effectively employed to detect
connected groups among variables of a dataset, even in the
possible presence of non-linear (or even non-monotone) re-
lationships. The presented algorithm works well for high-
dimensionality datasets as well, as it was demonstrated on a
real-life example of clinical chemistry parameters. In addition
to the elaboration of the details, and a thorough validation,
several improvement – such as the discovery of non-minimally
connected clusters – of this approach can be imagined, which
might be worthy of further research.
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