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Abstract

The bifurcations in a three-variable ODE model describing the oxygen
reduction reaction on platinum surface is studied. The investigation is
motivated by the fact that this reaction plays an important role in fuel
cells. The goal of this paper is to determine the dynamical behaviour of
the ODE system, with emphasis on the number and type of the stationary
points, and to find the possible bifurcations. It is shown that a non-trivial
steady state can appear through a transcritical bifurcation, or a stable
and an unstable steady state arise as a result of saddle-node bifurcation.
The saddle-node bifurcation curve is determined by using the Parametric
Representation Method, and this enables us to determine numerically the
parameter domain where bistability occurs that is important from the
chemical point of view.
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1 Introduction

During the development of efficient and reliable fuel cells it is crucial to un-
derstand the oxygen reduction reaction (ORR) on platinum surface. Several
attempts has been made to establish the reaction scheme [2, 5, 6, 7, 8, 11], how-
ever, there is no final conclusion. The most widely used scheme that also serves
as a common base for others was introduced by Damjanovic and Brusic [5] and
this will be the one that we will use in this paper. The detailed mathematical
study of the model can also help the experimental researchers to develop more
realistic reaction schemes.

In our model the first step is a fast oxygen adsorption followed by an elec-
trochemical reaction forming an adsorbed O2H molecule, see the first reaction
below. The next step is a chemical reaction between the adsorbed O2H and
a water molecule resulting in adsorbed OH species. Finally, the adsorbed OH
species are reduced to water in a fast electrochemical step in the last reaction
step. So the reaction scheme reads as follows.

O2 +H+ + e− ↔ O2H(ads)
O2H(ads) +H2O ↔ 3OH(ads)

OH(ads) +H+ + e− ↔ H2O

Let us introduce the variables θ1, θ2 to denote the relative coverage of the surface
with OH and O2H molecules, and let θs denote the number of free surface
spaces per surface unit, and c denote the water concentration in the system.
The reaction rates of the above reactions can be given as

v1 = K1θs − L1θ2,

v2 = K2θ2θ
2
sc− L2θ

3
1,

v3 = K3θ1 − L3θsc,

where

K1 = k1 exp
(
−β1(η − E1)F

RT

)
, K2 = k2, K3 = k3 exp

(
−β2(η − E2)F

RT

)

L1 = k−1 exp
(

(1− β1)(η − E1)F
RT

)
, L2 = k−2,

L3 = k−3 exp
(

(1− β2)(η − E2)F
RT

)
,

η is the electrode potential, F is Faraday’s constant, R is universal gas constant,
ki are rate constants, and βi, Ei are electro-chemical parameters [1].

Based on the above reactions the kinetic equations take the form

θ̇1 = 3v2 − v3, (1)
θ̇2 = v1 − v2, (2)
ċ = v3 − v2 − αc, (3)
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where α is a parameter describing the drainage of water. In our previous model
[4] the water concentration c was assumed to be constant, which is a reasonable
approximation, leading to the two-dimensional system (1)-(2). The detailed
study of that two dimensional dynamical system was given in [4], and now our
goal is to understand the role of water in the mathematical model. From the
chemical point of view the amount of water is extremely important since it has
a strong effect on the performance of the fuel cell.

Substituting the expressions of vi into system (1)-(3) we get the following non-
linear system of ODEs.

θ̇1 = 3K2θ2θ
2
sc− 3L2θ

3
1 −K3θ1 + L3θsc, (4)

θ̇2 = K1θs − L1θ2 −K2θ2θ
2
sc,+L2θ

3
1 (5)

ċ = K3θ1 − L3θsc−K2θ2θ
2
sc+ L2θ

3
1 − αc, (6)

where θs = 1− θ1 − θ2. The goal of this paper is to understand the dynamical
behavior of system (4)-(6).

In Section 2 it is shown how can the steady state system be reduced to a single
equation. The number of solutions of this equation will yield the number of
steady states. To find the number of solutions we will use the Parametric
Representation Method [9, 10]. Using this method the discriminant curve (i.e.
the saddle-node bifurcation curve or D-curve) can be determined analytically.
The shape of the D-curve is studied in Section 3. It will be shown that the D-
curve belongs to one of two different classes, leading to two different bifurcation
diagrams. In the first case only transcritical bifurcation may occur, while in
the second case saddle-node bifurcation can also be found. The exact condition
for the transcritical bifurcation is given in Section 4, where the non-existence
of Hopf bifurcation is also revealed. The possible phase portraits of the system
are summarized in Section 5.

2 Reduction of the steady state system to a sin-
gle equation

First, let us investigate the steady states of system (4)-(6). The equations
defining the stationary points are θ̇1 = 0, θ̇2 = 0 and ċ = 0. Our aim in this
Section is to reduce this system to a single equation with only one unknown.
It turns out that we get the most convenient form if this unknown is θs. From
(1)-(3) we get 3v2 − v3 = 0, v1 − v2 = 0 and v3 − v2 − αc = 0. The sum of
first and third equation gives v2 = αc

2 , so we get v1 = αc
2 and v3 = 3αc

2 . The
definitions of vi yield

K1θs − L1θ2 =
αc

2
, (7)

K2θ2θ
2
sc− L2θ

3
1 =

αc

2
, (8)

K3θ1 − L3θsc =
3αc
2
. (9)
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Starting from equations (7), (9) and θs = 1− θ1− θ2 a simple calculation shows
that

θ1 = P1(θs), θ2 = P2(θs), c = Pc(θs), (10)

where

P1(θs) =
A1(θs)A3(θs)

N(θs)
, P2(θs) =

A2(θs)
N(θs)

, Pc(θs) = 2K3
A3(θs)
N(θs)

and
A1(θs) = 2L3θs + 3α,

A2(θs) = 2L3K1θ
2
s + α(3K1 +K3)θs − αK3,

A3(θs) = L1 − (K1 + L1)θs,

N(θs) = 2L1L3θs + α(3L1 −K3).

Thus the unknowns c, θ1 and θ2 can be expressed in terms of θs. Substituting
the above expressions of c, θ1 and θ2 into equation (8) the following equation
can be derived for the only unknown θs.

A3(θs)
(
αK3N

2(θs)− 2K2A2(θs)θ2sK3N(θs) + L2A
3
1(θs)A2

3(θs)
)

= 0

Hence the solution of A3(θs) = 0 gives a stationary point. This linear equation
can be easily solved for θs as θs = L1

K1+L1
, leading to θ1 = 0, c = 0 and θ2 =

K1
K1+L1

. Since for these values θ1, θ2, θs ∈ [0, 1] and c ≥ 0 hold, this gives a

chemically realistic steady state
(

0, K1
K1+L1

, 0
)

that will be referred to as trivial
stationary point.

If the stationary point is not trivial, then θs is the solution of

αK3N
2(θs)− 2K2A2(θs)θ2sK3N(θs) + L2A

3
1(θs)A2

3(θs) = 0. (11)

Thus concerning the steady states of system (4)-(6) we have proved the following
Lemma.

Lemma 1 System (4)-(6) has a trivial steady state
(

0, K1
K1+L1

, 0
)

. Besides this
state, a point (θ1, θ2, c) is a steady state if and only if the numbers θ1, θ2 ∈ [0, 1],
c ≥ 0 satisfy (10) with θs ∈ [0, 1] being a solution of (11).

In the rest of this Section we derive a condition on θs ensuring that the values
obtained from (10) satisfy θ1, θ2 ∈ [0, 1] and c ≥ 0.

Proposition 1 The equation N(θs) = A1(θs)A3(θs) has a unique positive so-
lution. Denoting this solution by θ∗s we have that θ1 = P1(θs) ∈ [0, 1] holds if
and only if θs is between θ∗s and L1

K1+L1
.

Proof. The left hand side of the equation is linear and increasing, while the
right hand side is a concave parabola. Hence N(0) = α(3L1 −K3) < 3αL1 =
A1(0)A3(0) implies that the equation has exactly one positive solution.

According to the position of θ∗s we can distinguish three cases. In the first case
θ∗s <

L1
K1+L1

. Now we show that θ1 = P1(θs) ∈ [0, 1] if and only if θ∗s ≤ θs ≤
L1

K1+L1
.
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• If θs < θ∗s , then 0 < N(θs) < A1(θs)A3(θs) so θ1 > 1, or N(θs) < 0 <
A1(θs)A3(θs) so P1(θs) < 0, or θs < 0.

• If θs > L1
K1+L1

, then N(θs) > 0 > A1(θs)A3(θs) so P1(θs) < 0.

• If θs ∈
[
θ∗s ,

L1
K1+L1

]
, then N(θs) > A1(θs)A3(θs) > 0 so P1(θs) ∈ [0, 1].

Now we show that the statement holds also in the second case when θ∗s >
L1

K1+L1
.

• If θs > θ∗s , then N(θs) > 0 > A1(θs)A3(θs) so θ1 < 0, or 0 > N(θs) >
A1(θs)A3(θs), but |N(θs)| < |A1(θs)A3(θs)| so P1(θs) > 1.

• If θs < L1
K1+L1

, then N(θs) < 0 < A1(θs)A3(θs) so P1(θs) < 0, or θs < 0.

• If θs ∈
[

L1
K1+L1

, θ∗s

]
, then N(θs) < A1(θs)A3(θs) < 0 so P1(θs) ∈ [0, 1].

In the third case θ∗s = L1
K1+L1

yielding P1(θs) < 0 when θs 6= θ∗s , and P1(θs) = 0
when θs = L1

K1+L1
.

�

As an obvious consequence of the definitions of the functions P1 and Pc below
(10) we get the following statement.

Proposition 2 The functions P1 and Pc have the same sign, that is θ1 ≥ 0
holds if and only if c ≥ 0.

The definition θs = 1− θ1 − θ2 implies the following.

Proposition 3 If θ1, θs ∈ [0, 1], then θ2 ≤ 1.

So it remains to derive a condition for θ2 ≥ 0. The function A2 is a convex
parabola, and we have A2(0) < 0 and A2(1) > 0. Hence A2 has exactly one
root in the interval [0, 1]. Let us denote this root by θ′s. Let us introduce the
closed intervals

I1 = I

(
θ∗s ,

L1

K1 + L1

)
I2 = I

(
θ′s,

α(K3 − 3L1)
2L1L3

)
, (12)

where I(a, b) denotes the closed interval with endpoints a and b. Then the sign
of θ2 = P2(θs) can be given as follows.

Proposition 4 The inequality θ2 > 0 holds if and only if θs /∈ I2.

Proof. Since θ2 = P2(θs) = A2(θs)
N(θs) , we investigate the signs of A2 and N . The

only root of A2 is θ′s and root of N is α(K3−3L1)
2L1L3

. We divide the proof into two
parts according to the mutual position of these roots.

Let us start with the case α(K3−3L1)
2L1L3

< θ′s. The two roots divide the real line

into three parts. If θs ∈
(
−∞, α(K3−3L1)

2L1L3

)
, then N(θs) < 0 and A2(θs) < 0,
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hence θ2 is positive. If θs is in the interval
(
α(K3−3L1)

2L1L3
, θ′s

)
, then N(θs) > 0 and

A2(θs) < 0, therefore θ2 < 0, and finally, when θs is in the interval (θ′s,∞), then
N(θs) > 0 and A2(θs) > 0 i.e. θ2 > 0. Thus we obtained, that θ2 > 0 holds if
and only if θs /∈ I2.

Let us turn now to the second case when α(K3−3L1)
2L1L3

> θ′s. The two roots divide
the positive half line into three parts. We can check the signs similarly in each
part separately, and we get that θ2 > 0 holds if and only if θs /∈ I2.

It is easy to see that the statement holds also in the border case when α(K3−3L1)
2L1L3

=
θ′s.

�

The next two Propositions will be used to determine the mutual position of the
intervals I1 and I2.

Proposition 5 For any values of the parameters we have θ∗s ∈ I2.

Proof. A simple calculation shows that

N(θs)−A1(θs)A3(θs) = A2(θs) + θsN(θs). (13)

Since θ∗s is the root of the left hand side, therefore it is also a root of the
right hand side. Thus A2(θ∗s) and N(θ∗s) have opposite signs. This means that
P2(θ∗s) = A2(θ

∗
s )

N(θ∗s ) < 0, hence according to Proposition 4 we have θ∗s ∈ I2.

�

Proposition 6 The root θ′s is between α(K3−3L1)
2L1L3

and L1
K1+L1

.

Proof. Rearranging (13) we get A2(θs) = N(θs)(1 − θs) − A1(θs)A3(θs).
The number θ′s is the root of A2, i.e. A2(θ′s) = 0 yielding N(θ′s)(1 − θ′s) =
A1(θ′s)A3(θ′s). Since θ′s ∈ [0, 1] and A1(θs) > 0 holds for any θs ∈ [0, 1], we
obtain that the signs of A3(θ′s) and N(θ′s) are same. Thus θ′s is between the
roots of N and A3.

�

From the previous two Propositions we obtain the following relation for the
intervals I1 and I2. (We recall that the notation I(a, b) was introduced below
(12).)

Proposition 7 The set I1 \ I2 is a semi-closed interval, namely

I1 \ I2 = I

(
θ′s,

L1

K1 + L1

]
=: I3,

where this notation means that the interval is closed at the end point L1
K1+L1

,
and open at the other end point.
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Proof. We divide the proof into two parts according to the mutual position of
α(K3−3L1)

2L1L3
and L1

K1+L1
.

If α(K3−3L1)
2L1L3

< L1
K1+L1

, then according to Proposition 6 we have α(K3−3L1)
2L1L3

< θ′s,

hence I2 =
[
α(K3−3L1)

2L1L3
, θ′s

]
. Then θ∗s ∈

(
α(K3−3L1)

2L1L3
, θ′s

)
according to Proposi-

tion 5. Thus the ordering of the endpoints of the intervals is

α(K3 − 3L1)
2L1L3

< θ∗s < θ′s <
L1

K1 + L1
, (14)

hence I1 \ I2 =
(
θ′s,

L1
K1+L1

]
.

If L1
K1+L1

< α(K3−3L1)
2L1L3

, then similarly we get θ∗s ∈
(
θ′s,

α(K3−3L1)
2L1L3

)
, thus the

ordering of the endpoints is

L1

K1 + L1
< θ′s < θ∗s <

α(K3 − 3L1)
2L1L3

, (15)

hence I1 \ I2 =
[

L1
K1+L1

, θ′s

)
.

�

The above considerations lead us to the following Lemma.

Lemma 2 The inequalities P1(θs), P2(θs) ∈ [0, 1] and Pc(θs) ≥ 0 hold if and
only if θs ∈ I3.

This Lemma together with Lemma 1 yields that the non-trivial steady states
can be obtained as follows.

Theorem 1 A point (θ1, θ2, c) is a non-trivial steady state if and only if these
numbers are given by (10) and θs ∈ I3 is a solution of (11).

In the next Section we will apply the Parametric Representation Method [9] to
determine the number of solutions of (11) in the interval I3.

3 The possible shapes of the discriminant curve
and the exact number of steady states

In order to apply the parametric representation method we need to choose two
control parameters that are involved linearly in the equation that is to be solved.
We have to solve the equation p(θs) = 0, where according to (11)

p(θs) = αK3N
2(θs)− 2K2A2(θs)θ2sK3N(θs) + L2A

3
1(θs)A2

3(θs).

We will use K2 and L2 as control parameters that are involved linearly. Then
our equation takes the form

f0(θs) +K2f1(θs) + L2f2(θs) = 0, (16)
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where
f0(θs) = αK3N

2(θs), f1(θs) = −2A2(θs)θ2sK3N(θs),

f2(θs) = A3
1(θs)A2

3(θs).

The number of solutions of the equation p(θs) = 0 can change when p′(θs) = 0
also holds. Hence the bifurcation value of the parameters K2 and L2 is given
by (16) and by

f ′0(θs) +K2f
′
1(θs) + L2f

′
2(θs) = 0. (17)

These two equations together determine the discriminant curve in the (K2, L2)
parameter plane. One of the main advantages of the parametric representation
method is that this curve is expressed in explicit form parametrized by θs [9,
10]. Solving system (16)-(17) for K2 and L2 we get the following parametric
representation of the discriminant curve.

K2 = D1(θs) :=
f ′0f2 − f0f ′2
f1f ′2 − f ′1f2

L2 = D2(θs) :=
f0f
′
1 − f ′0f1

f ′2f1 − f2f ′1
(18)

We will refer to this curve as D-curve.

The reason for using the parametric representation method is that the number
of solutions of the equation can be easily determined by the so called tangential
property. This means that the number of solutions of (16) belonging to a given
parameter pair (K2, L2) is equal to number of tangents drawn to the D-curve
from the point (K2, L2), see [9, 10] or the brief summary of the parametric
representation method in [4]. We note that similarly to the parametric repre-
sentation method the so-called envelope method, developed by Cheng and Lin
[3], can also be applied to determine the bifurcation curve. To apply the tangen-
tial property we need to know the shape of the D-curve that will be investigated
in the next subsections.

3.1 Numerical classification of the possible shapes of the
D-curve

In this section our goal is the investigation of the D-curve. For this we need the
following formulas for the derivatives of the functions f0, f1 and f2.

f ′0(θs) = 2αK3N(θs)N ′(θs)

f ′1(θs) = −2A′2(θs)θ2sK3N(θs)− 2A2(θs)θ2sK3N
′(θs)− 4A2(θs)θsK3N(θs)

f ′2(θs) = 3A2
1(θs)A2

3(θs)A′1(θs) + 2A3
1(θs)A3(θs)A′3(θs)

Since the D-curve depends on many parameters we made first a systematic
numerical study of the curve by simply plotting (D1(θs), D2(θs)) for θs ∈ I3 for
different values of the parameters K1, L1, K3, L3 and α. It turned out that
the D-curve has a vertical asymptote belonging to the end point θs = L1

K1+L1
.

At this asymptote the second coordinate can tend to +∞ or to −∞, hence the
shape of the curve can basically belong to two different types.

The first type, for which the second coordinate tends to −∞, does not enter the
positive quadrant of the (K2, L2) parameter plane. It may be a concave arc or
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it can have a cusp depending on the values of the parameters K1, L1, K3, L3

and α, see Figure 1.
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Figure 1: The two possible shapes of the D-curve when it belongs to the first
type. The parameters in the concave case (a) are K1 = 10, L1 = 1, K3 = 6.5,
L3 = 90, α = 0.1, and in the cusp case (b) K1 = 10, L1 = 1, K3 = 6.5, L3 = 5,
α = 0.1.

The number of solutions of (16) in the different regions is also shown in Figure
1. If we choose a point from the right hand side of the vertical asymptote in
the positive quadrant, then we can draw exactly one tangent from this point to
the D-curve, so in this case the number of stationary points is two (the trivial
stationary point is always a solution). If the point (K2, L2) is in the left hand
side of the vertical asymptote, then we cannot draw any tangent from this point
to the D-curve, so in this case the number of stationary points is one, it is the
trivial stationary point.

The second type, for which the second coordinate tends to +∞, enters the
positive quadrant of the (K2, L2) parameter plane. It may be a convex arc or
it can have a cusp depending on the values of the parameters K1, L1, K3, L3

and α, see Figure 2.

The number of solutions of (16) in the different regions is also shown in Figure
2. If we choose a point from the right hand side of the vertical asymptote in
the positive quadrant, then we can draw exactly one tangent from this point to
the D-curve, so in this case the number of stationary points is two (the trivial
stationary point is always a solution). If the point (K2, L2) is between the
vertical asymptote and the D-curve, then we can draw two tangents from this
point to the D-curve, so in this case the number of stationary points is three.
If the point (K2, L2) is in the left hand side of the D-curve, then we cannot
draw any tangent from this point to the D-curve, so in this case the number of
stationary points is one, it is the trivial stationary point.
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Figure 2: The two possible shapes of the D-curve when it belongs to the second
type. The parameters in the convex case (a) are K1 = 5, L1 = 0.01, K3 = 5,
L3 = 82.5, α = 0.001 and in the cusp case (b) K1 = 10000, L1 = 0.01, K3 = 1,
L3 = 1, α = 1.

3.2 Analytic classification of the possible shapes of the
D-curve

In this subsection we determine the shape and position of the curve

{(D1(θs), D2(θs)) : θs ∈ I3},

where D1, D2 are given in (18) and I3 is given in Proposition 7. The sign of
the numerator of D2 will play an important role during our investigation. After
some algebra we get that it can be expressed as

f0(θs)f ′1(θs)− f ′0(θs)f1(θs) = −2αK2
3N

2(θs)θsH(θs), (19)

where

H(θs) = A′2(θs)θsN(θs)−A2(θs)θsN ′(θs) + 2A2(θs)N(θs). (20)

We will see that the shape of the D-curve is partly determined by the sign of
H.

Proposition 8 The function D2 has a singularity in the point L1
K1+L1

:= θs.

• If θ′s < θs, then we have

lim
θs→θs

D2(θs) = −∞.

• If θ′s > θs and H(θs) < 0, then

lim
θs→θs

D2(θs) = −∞.
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• If θ′s > θs and H(θs) > 0, then

lim
θs→θs

D2(θs) =∞.

We note that here the limit θs → θs is understood in the sense that θs is between
θ′s and θs.

Proof. The root of A3 is θs = L1
K1+L1

, hence the denominator of D2(θs) is
zero, while the numerator is non-zero. Therefore |D2| converges to infinity as
θs tends to θs. This means that the D-curve has a vertical asymptote.

In the case θ′s < θs a more general statement will be proved in Proposition 12,
hence we omit the proof here.

Let us consider now the case θ′s > θs. According to (19) the sign of the numer-
ator of D2(θs) as θs → θs is given by the sign of H(θs). Hence it is enough to
prove that the denominator of D2(θs) is negative as θs → θs. Since θs is the
root of A3, f2 contains a factor A2

3 and f ′2 = 3A2
1A

2
3A
′
1 + 2A3

1A3A
′
3, the sign of

the denominator f ′2f1 − f2f ′1 when θs is close to θs is equal to the sign of

2A3
1(θs)A3(θs)A′3(θs)f1(θs) = −4A3

1(θs)A3(θs)A′3(θs)A2(θs)θ2sK3N(θs).

The signs of these functions can be easily determined, their graphs are shown
schematically in Figure 3. Using this Figure one can easily check that the
denominator is really negative.

�
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Figure 3: The schematic graphs of the functions A1, A2, A3 and N in the case
θ′s < θs (a), and in the case θ′s > θs (b). The order of the roots of the functions
is given in (14) and (15).

Proposition 9 The vertical asymptote of the D-curve is at a positive position,
more exactly

lim
θs→θs

D1(θs) =
α(K1 + L1)3

2K1L2
1

> 0.
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Proof. Using the formulas for f0, f1, f2 and for f ′0, f
′
1, f
′
2, and exploiting the

fact that the root of A3 is θs one can easily get that

lim
θs→θs

D1(θs) = −f0(θs)
f1(θs)

.

Then the definitions of f0 and f1 yield

−f0(θs)
f1(θs)

=
α

2θ2s

N(θs)
A2(θs)

.

It can be easily seen that the identity

L1A2(θs)−K1θsN(θs) = αK3(θs(K1 + L1)− L1)

holds for any θs. Substituting θs = θs the right hand side becomes zero, hence
N(θs)

A2(θs)
can be easily expressed as L1

K1θs
. Substituting this into the above equation

we get the desired formula.

�

Now the behaviour of the D-curve at the endpoint θs of the interval I3 has been
determined. Let us turn to the study of the behaviour at the other endpoint θ′s.

Proposition 10 We have D2(θ′s) < 0.

Proof. The number θ′s was defined as the root of the function A2, hence
f1(θ′s) = 0. Therefore

D2(θ′s) = −f0(θ′s)
f2(θ′s)

< 0

because f0 and f2 are positive functions. The positivity of the first one is obvious
from its definition, and the positivity of the second follows from the fact that
A1(0) > 0 and A1 is an increasing function.

�

This Proposition implies that one endpoint of the D-curve is in the negative
half plane. Now we prove that it reaches this negative value with a horizontal
tangent. The tangent vector of the D-curve is (D′1, D

′
2) and this is horizontal if

and only if D′2 = 0.

Proposition 11 We have D′2(θ′s) = 0.

Proof. The derivative of D2 can be expressed as

D′2 =
(f0f ′1 − f ′0f1)′(f ′2f1 − f2f ′1)− (f ′2f1 − f2f ′1)′(f0f ′1 − f ′0f1)

(f ′2f1 − f2f ′1)2
.

We have f1(θ′s) = 0, hence the numerator can be considerably simplified as
follows. (The functions in the next expressions are taken at θ′s.)

(f0f ′1 − f ′0f1)′(f ′2f1 − f2f ′1)− (f ′2f1 − f2f ′1)′(f0f ′1 − f ′0f1) =

12



= (f ′0f
′
1 + f0f

′′
1 − f ′′0 f1 − f ′0f ′1)(f ′2f1 − f2f ′1)−

(f ′′2 f1 + f ′2f
′
1 − f ′2f ′1 − f2f ′′1 )(f0f ′1 − f ′0f1) =

= (f ′0f
′
1 + f0f

′′
1 − f ′0f ′1)(−f2f ′1)− (f ′2f

′
1 − f ′2f ′1 − f2f ′′1 )f0f ′1 =

= f0f
′′
1 (−f2f ′1)− (−f2f ′′1 )f0f ′1 = 0.

�

Our numerical investigations showed that in the case when the D-curve tends
to −∞ at the vertical asymptote, it is below the horizontal line L2 = 0. This is
what we will prove now separately in the cases θs > θ′s and θs < θ′s.

Proposition 12 If θs > θ′s, then for any θs ∈ I3 the inequality D2(θs) < 0
holds.

Proof. We prove that the numerator of D2 is negative and its denominator is
positive. First, let us consider the numerator as it is given in (19). We will prove
that H(θs) > 0 holds for any θs ∈ I3 = (θ′s, θs). Observe first, that H(θ′s) > 0,
since A2(θ′s) = 0 (by definition), A′2(θ′s) > 0, because A2 is a convex parabola
and θ′s is its larger root, and N is positive, see Figure 3. Moreover, H is an
increasing function in I3 since

H ′(θs) = A′′2(θs)θsN(θs) + 3A′2(θs)N(θs) +A2(θs)N ′(θs) > 0,

by using again the properties of the functions A2 and N .

Let us consider now the denominator of D2. We will use that in the interval I3
we have the following signs (see Figure 3):

A1 > 0, A′1 > 0, A2 > 0, A′2 > 0, A3 > 0, A′3 < 0, N > 0, N ′ > 0. (21)

A straightforward but tiresome calculation shows that

f ′2f1 − f2f ′1 = J [G1 +G2 +G3 +G4 − 3F ], (22)

where

J(θs) = 2K3A
2
1(θs)A3(θs)θs, F (θs) = A3(θs)A′1(θs)A2(θs)θsN(θs),

G1(θs) = A1(θs)A3(θs)A′2(θs)θsN(θs),

G2(θs) = A1(θs)A3(θs)A2(θs)θsN ′(θs),

G3(θs) = 2A1(θs)A3(θs)A2(θs)N(θs),

G4(θs) = −2A1(θs)A′3(θs)A2(θs)θsN(θs).

Using the signs in (21) we have that J and G4 are positive functions. In order
to prove the positivity of the denominator it is enough to prove that Gi−F > 0
for i = 1, 2, 3. Let us introduce the notations A2(θs) = a2θ

2
s + a1θs + a0,

A1(θs) = b1θs + b0 and N(θs) = n1θs +n0. It is easy to see from the definitions
of these functions that a2 > 0, a1 > 0, b0 > 0, a0 < 0, b1 > 0.
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Then

G1(θs)− F (θs) = A3(θs)θsN(θs) [A1(θs)A′2(θs)−A′1(θs)A2(θs)] .

This is positive because A3(θs)θsN(θs) > 0 and

A1(θs)A′2(θs)−A′1(θs)A2(θs) = (b1θs + b0)(2a2θs + a1)− b1(a2θ
2
s + a1θs + a0) =

= b1a2θ
2
s + 2b0a2θs + (b0a1 − b1a0) > 0.

The second part is

G2(θs)− F (θs) = A3(θs)A2(θs)θs [A1(θs)N ′(θs)−A′1(θs)N(θs)] .

This is positive because A3(θs)A2(θs)θs > 0 and

A1(θs)N ′(θs)−A′1(θs)N(θs) = (b1θs + b0)n1 − b1(n1θs + n0) =

b0n1 − b1n0 = 3α2L1L3 − 2L3α(3L1 −K3) = 2αL3K3 > 0.

The third part is

G2(θs)− F (θs) = A2(θs)A3(θs)N(θs) [2A1(θs)−A′1(θs)θs] .

This is positive bacause A2(θs)A3(θs)N(θs) > 0 and

2A1(θs)−A′1(θs)θs = 2b1θs + 2b0 − b1θs = b1θs + 2b0 > 0.

Thus we have proved that the denominator is positive.

�

Proposition 13 If θs < θ′s and H(θs) < 0, then for any θs ∈ I3 the inequality
D2(θs) < 0 holds. (We recall that H is defined in (20).)

Proof. Similarly to the proof of the previous Proposition we will determine the
signs of the numerator and the denominator of D2. In this case the numerator is
positive and the denominator is negative. First, let us consider the numerator as
it is given in (19). We will prove that H(θs) < 0 holds for any θs ∈ I3 = (θs, θ′s).
At the left end point of the interval we have H(θs) < 0. Moreover, H is a
decreasing function in I3 since

H ′(θs) = A′′2(θs)θsN(θs) + 3A′2(θs)N(θs) +A2(θs)N ′(θs) < 0,

by using again the properties of the functions A2 and N , see Figure 3.

Let us consider the sign of the denominator of D2. Using (22) the denominator
can be expressed as

f ′2f1 − f2f ′1 = J [G1 +G2 − 3F ] + J [G3 +G4].

Now it is easy to see from Figure 3 that J [G1 + G2 − 3F ] < 0. Furthermore,
one can observe that G3 + G4 = 2A1A2NL1 > 0. Hence using that J < 0 we
get that the denominator is negative.

�

Using the above Propositions the possible shapes of the D-curve can be classified,
then based on the simple rules of the PRM [9] for counting the number of
tangents we get the following Theorem.
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Theorem 2 The D-curve has a vertical asymptote at

K2 =
α(K1 + L1)3

2K1L2
1

.

• If θ′s < θs, then the D-curve tends to −∞ at this asymptote and does not
enter the positive quadrant. The number of tangents that can be drawn to
the D-curve from a given point of the positive quadrant is one if the point
is in the right hand side of the asymptote, and it is zero if it is in the left
hand side.

• If θ′s > θs and H(θs) < 0, then we have the same conclusion.

• If θ′s > θs and H(θs) > 0, then the D-curve tends to +∞ at the asymptote
and enters the positive quadrant. The number of tangents that can be
drawn to the D-curve from a given point of the positive quadrant is one if
the point is in the right hand side of the asymptote, it is two if the point
is between the D-curve and the asymptote, and it is zero if it is in the left
hand side of the D-curve.

4 Bifurcations of the steady states

4.1 Bifurcations of the trivial steady state

In this subsection we investigate the transcritical and Hopf bifurcations. Hopf
bifurcation may occur in the system if the Jacobian has a complex eigenvalue
with zero real part. The characteristic polynomial of the Jacobian is a cubic,
hence we will need the following two Lemmas.

Lemma 3 The characteristic polynomial of a matrix A ∈ R3×3 is λ3−λ2TrA+
λ(A11 + A22 + A33) − det A = 0, where Aii is the 2-by-2 determinant obtained
from the matrix A after omitting the i-th row and column.

Lemma 4 The polynomial λ3 − b2λ
2 + b1λ − b0 with real coefficients has a

complex root with zero real part if and only if b0 = b1b2 and b1 > 0.

Proof. If there is a complex root with zero real part, then we have λ1,2 =
±iω 6= 0 because the polynomial is real. Let us denote the third root by λ3 = a.
Then we have λ3 − b2λ2 + b1λ− b0 = (λ2 + ω2)(λ− a) = λ3 − aλ2 + ω2λ− aω2,
yielding b2 = a, b1 = ω2 and b0 = aω2. If the coefficients b0, b1, b2 are given,
then one can find a and ω if and only if b0 = b1b2 and b1 > 0 hold, namely
a = b2 and ω =

√
b1.

�

Let us express the Jacobian of the system in terms of the vi’s as follows

 3∂1v2 − ∂1v3 3∂2v2 − ∂2v3 3∂3v2 − ∂3v3
∂1v1 − ∂1v2 ∂2v1 − ∂2v2 ∂3v1 − ∂3v2
∂1v3 − ∂1v2 ∂2v3 − ∂2v2 ∂3v3 − ∂3v2 − α

 (23)
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where ∂1, ∂2 and ∂3 denote differentiation with respect to θ1, θ2 and c, respec-
tively and

∂1v1 = −K1, ∂2v1 = −K1 − L1, ∂3v1 = 0,

∂1v2 = −2K2θ2θsc− 3L2θ
2
1, ∂2v2 = K2θ

2
sc− 2K2θ2θsc, ∂3v2 = K2θ2θ

2
s ,

∂1v3 = K3 + L3c, ∂2v3 = L3c, ∂3v3 = −L3θs.

Let us investigate first the trivial steady state where θs = L1
K1+L1

, θ1 = 0, θ2 =
K1

K1+L1
, and c = 0. The Jacobian in this stationary point takes the following

form:

A :=

 −K3 0 3K2θ2θ
2
s + L3θs

−K1 −K1 − L1 −K2θ2θ
2
s

K3 0 −L3θs −K2θ2θ
2
s − α

 .

According to Lemma 3 the coefficients of its characteristic polynomial are

b0 = detA, b1 = A11 +A22 +A33, b2 = TrA.

It can be easily seen that detA = −(K1+L1)A22. Hence the condition b0 = b1b2
in Lemma 4 takes the form detA = (A11 +A22 +A33)TrA that is equivalent to

(K1+L1)A22 = (A11+A22+A33)(K3−a33)+(A11+A33)(K1+L1)+(K1+L1)A22.

If this is true, then b1 > 0 cannot hold, because b1 = A11 + A22 + A33 and if
this is positive, then the left hand side is less then the right hand side. Hence
according to Lemma 4 we have proved the following.

Proposition 14 Hopf bifurcation cannot occur at the trivial steady state.

In order to find the transcritical bifurcation we examine the stability of the
trivial stationary point by using the Routh-Hurwitz criterion.

Proposition 15 The trivial stationary point is stable if and only if

−TrA > 0, (24)
−TrA(A11 + A22 + A33) + det A > 0, (25)

detA[detA− TrA(A11 + A22 + A33)] > 0. (26)

Condition (24) is obviously always true, because the variables and parameters
are positive. We have seen above that there is no Hopf bifurcation, hence in the
case − detA > 0 condition (25) also holds. Hence the condition of stability is
−detA > 0. This enables us to prove the following.

Proposition 16 The trivial stationary point is stable if and only if the inequal-
ity K2 <

α(K1+L1)
3

2K1L2
1

holds.

Proof. The inequality −detA > 0 holds if and only if A22 > 0 that is equiva-
lent to the given inequality.

�

Thus we have the following Theorem concerning the bifurcations at the trivial
steady state.
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Theorem 3 There cannot be Hopf bifurcation at the trivial stationary point,
and for K2 = α(K1+L1)

3

2K1L2
1

transcritical bifurcation occurs.

We note that the condition of the transcritical bifurcation gives the first coor-
dinate of the vertical asymptote of the D-curve.

4.2 Numerical study of the Hopf bifurcation at the non-
trivial steady state

The investigation of the stability of the non-trivial stationary points becomes
too complicated analytically, hence we will show numerical evidence that there
is no Hopf bifurcation at a non-trivial steady state. Based on Lemma 3 and
Lemma 4 it is enough to show that b0 = b1b2 and b1 > 0 cannot hold at the
same time. Now we explain how an exhaustive parameter search was carried
out to show numerical evidence that there is no Hopf bifurcation at a non-trivial
steady state.

First a mesh in the five dimensional parameter space of the parameters K1,
L1, K3, L3 and α was given. At every mesh point, i.e. for a given value of
these parameters, the following procedure was carried out. First, the interval
I3 = I(θ′s, θs) is determined, then the points of the D-curve can be obtained from
(18). Taking a mesh in this interval, the value of θs is varied along the mesh
points. We have seen that once θs is given, then the coordinates of the steady
state are determined by (10). Moreover, according to the Tangential property
(see [9, 10]), if θs is given, then the parameter pair (K2, L2) lies on the tangent
line of the D-curve drawn at the point D(θs). Therefore the Hopf bifurcation
points could be found in the following way. For a given θs we introduce a distance
parameter d along the tangent line of the D-curve at D(θs). From the value
of d we determine the K2 and L2 value along the tangent, which determines a
point being in distance d from the tangent point D(θs). The values of θ1, θ2
and c are given by (10). Hence in the Jacobian (23) every term is expressed in
terms of θs and d. Hence for a given θs the coefficients bi of the characteristic
polynomial are functions of d. Then choosing a sufficiently large number R the
value of d is varied in the interval (−R,R) and the values of b1b2 − b0 and b1
are determined. We found that for all values of d for which b1 > 0 holds the
expression b1b2− b0 gives a positive number which means that Hopf bifurcation
cannot occur. This has been tested for all values of θs in the given mesh, and
for all values of the parameters K1, L1, K3, L3 and α given by the mesh in the
five dimensional parameter space.

5 Dynamical behaviour

Let us consider first the phase space of the system. Since the variables θ1, θ2
denote the relative coverage of the surface with OH and O2H molecules, and θs
denotes the number of free surface spaces per surface unit, therefore the values
of these variables are between zero and one. The third variable c is obviously
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non-negative by chemical reasons, however, according to the next Proposition
there is a bounded positively invariant set.

Proposition 17 The (0, 0, 0), (1, 0, 0), (0, 1, 0) triangular prism in the phase
plane with height K3+L2

α + ε is positively invariant for system (4)–(6) (for any
positive value of ε).

Proof. From equation (4) one can see that θ1 = 0 and θ2 ∈ [0, 1] imply θ̇1 > 0.
Similarly, if θ2 = 0, and θ1 ∈ [0, 1], then θ̇2 > 0. If θ1 + θ2 = 1 (so θs = 0), and
θ1, θ2 ∈ [0, 1], then θ̇1 + θ̇2 < 0. From equation (6) if c = 0 and θ1, θ2 ∈ [0, 1]
then ċ > 0.

We need to show that ċ < 0 holds if c is large. Since ċ = K3θ1 − L3θsc −

K2θ2θ
2
sc+L2θ

3
1 −αc therefore ċ < 0 follows from

K3θ1 + L2θ
3
1

α+K2θ2θ2s + L3θs
< c. Now

using
K3θ1 + L2θ

3
1

α+K2θ2θ2s + L3θs
≤ K3 + L2

α
the statement follows.

Hence the trajectories cross the boundaries of the prism in the direction of the
interior of the prism, therefore the prism is positively invariant.

�

Let us consider now the number of stationary points. As it was mentioned
above, the number of solutions of the equation can be easily determined by
the so called tangential property. This means that the number of solutions of
(16) belonging to a given parameter pair (K2, L2) is equal to number of tangents
drawn to the D-curve from the point (K2, L2). Moreover, according to Theorem
1 the number of non-trivial steady states is equal to the number of solutions
of (16) in the interval I3. Furthermore, there is a trivial steady state given in
Lemma 1. Thus the exact number of stationary points for different values of
K2 and L2 can be given as follows based on Theorem 2.

Theorem 4 Transcritical bifurcation may occur along the vertical asymptote of
the D-curve at

K2 =
α(K1 + L1)3

2K1L2
1

.

• If θ′s < θs or θ′s > θs and H(θs) < 0, then this asymptote, dividing the
positive quadrant into two parts, is the only bifurcation curve. The number
of steady states is two if the point (K2, L2) is in the right hand side of the
asymptote, and it is one if it is in the left hand side, see Figure 4 (a).

• If θ′s > θs and H(θs) > 0, then the D-curve and the asymptote divide the
positive quadrant into three parts. The number of steady states is two if
the point (K2, L2) is in the right hand side of the asymptote, it is three if
the point is between the D-curve and the asymptote, and it is one if it is
in the left hand side of the D-curve, see Figure 4 (b).

Our results about the possible phase portraits are based on those about the
steady states. According to the previous theorem there are two different cases.
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Figure 4: The two different bifurcation diagrams described in Theorem 4. In
the first case (a) only transcritical bifurcation may occur, while in the second
case (b) there can be also saddle-node bifurcation. The number of steady states
belonging to the different parameter regions is also shown.

In the first case only transcritical bifurcation may occur along the vertical
asymptote of the D-curve. If the point (K2, L2) is in the right hand side of
the asymptote, then the trivial steady state is unstable and there is a non-
trivial steady state (with positive coordinates). If the point (K2, L2) is in the
left hand side of the asymptote, then there is a unique stationary point, the
trivial steady state and it is stable.

In the second case described in the above Theorem two bifurcations may occur,
see Figure 5. Along the vertical asymptote there is transcritical bifurcation,
similarly to the previous case, and in addition saddle-node bifurcation may occur
along the D-curve. These two bifurcation curves divide the positive quadrant
of the (K2, L2) parameter plane into three parts yielding three different phase
portraits shown in Figure 5. If the point (K2, L2) is in the right hand side of
the asymptote, then the trivial steady state is unstable and there is a stable
non-trivial steady state. If the point (K2, L2) is between the D-curve and the
asymptote then the trivial steady state is stable and there are two non-trivial
steady states, one of them is stable, the other one is unstable, i.e. bistability
occurs in this region of the parameter space. Finally, if the point (K2, L2)
is in the left hand side of the D-curve, then the two non-trivial steady states
disappear and there is a unique stationary point, the trivial steady state that is
stable.

6 Discussion

We studied the dynamical behaviour of the ODE system (4)-(6) describing the
oxygen reduction reaction (ORR) on platinum surface in nafion. Our mathemat-
ical model is the generalization of a simpler, two-variable model that describes
the same ORR reaction on platinum in electrolyte, i.e. in water containing sul-
furic acid. In this later case the water concentration can be considered to be
constant, hence only two equations, (4) and (5) are needed. We investigated this
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Figure 5: The three different phase portraits belonging to the three parameter
regions determined by the saddle-node and transcritical bifurcation curves. The
bifurcation diagram is shown in part (d) and the phase portraits belonging to
the three regions are shown in parts (a), (b) and (c).

simpler system in [4] and found that the unusual surface mass changes in the
course of the oxygen reduction reaction can be explained by using that simple
kinetic model. Chronopotentiometry and simultaneous electrochemical quartz
crystal nanobalance measurements showed that surface mass can increase during
the reduction [1], that can be interpreted in terms of the presence of bistability,
i.e. the coexistence of two stable steady states. If the reaction takes place in
nafion, instead of the water containing electrolyte, then the water produced dur-
ing the reaction should be drained, this process is described by the parameter
α. In this case the mathematical model is the ODE system (4)-(6) where the
third equation is for water concentration.

The detailed mathematical study of the simpler, two-variable model was car-
ried out in [4]. In that paper it was revealed that the D-curve (saddle-node
bifurcation curve) can have two different shapes. Under certain conditions on
the parameters the D-curve enters the positive quadrant and has a cusp point
there. Hence for those parameter pairs lying inside the cusp domain there are
three equilibria, and for those lying outside there is one. If these conditions do
not hold, then the D-curve does not enter the positive quadrant, hence for all
parameter pairs there there is one equilibrium point. It was also proved that
Hopf bifurcation cannot occur in the system and periodic orbits do not exist for
any values of the parameters.
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In this paper we studied the three-variable model (4)-(6) in detail. Compared to
the two-dimensional case, it is a new feature that there is a trivial steady state
with zero water concentration. This steady state may undergo transcritical bi-
furcation when it looses its stability and a new stable non-trivial steady state
(with non-zero surface mass and water concentrations) appears. It is also a new
phenomenon in this three-dimensional system that bistability occurs between
the saddle-node and transcritical bifurcation curves (the cusp of the D-curve
cannot enter the positive quadrant of the parameter plane). We showed nu-
merical evidence that Hopf bifurcation cannot occur in this system, however it
is proved only for the trivial steady state. The non-existence of periodic or-
bits is conjectured based on our systematic numerical experiments, however its
rigorous proof could be the subject of future work.
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