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Abstract. For a model of gasless combustion with heat loss, we use geometric singular
perturbation theory to show existence of traveling combustion fronts. We show that the
fronts are nonlinearly stable in an appropriate sense if an Evans function criterion, which
can be verified numerically, is satisfied. For a solid reactant and exothermicity parameter
that is not too large, we verify numerically that the criterion is satisfied.

1. Introduction

We consider the gasless combustion model

∂tu1 = ∂xxu1 + u2ρ(u1 − ū1)− δu1, (1.1)

∂tu2 = κ∂xxu2 − βu2ρ(u1 − ū1), (1.2)

with β > 0, δ ≥ 0, κ ≥ 0, and

ρ(u) =

{

e−
1

u if u > 0,

0 if u ≤ 0.
(1.3)

Here u1 is temperature, u2 is reactant concentration, u1 = ū1 is the temperature below which
the reaction does not occur (ignition temperature), and u1 = 0 is the ambient temperature.
We assume that ū1 ≥ 0, so the reaction does not occur at the ambient temperature. ρ is
the unit reaction rate, which is a function of temperature. Temperature, x, and t have been
scaled to normalize the first equation. β is the exothermicity parameter; the larger β is, the
more fuel one must burn to achieve a given increase in temperature. κ is diffusivity of the
reactant, which is the inverse of the Lewis number; if κ = 0, the reactant is a solid. The
term δu1 represents heat loss from the system to the environment according to Newton’s law
of cooling. The 4-tuple (β, ū1, δ, κ) is a vector of parameters.

Our interest is in traveling combustion fronts and their stability. Combustion fronts are a
type of traveling wave. If they travel to the right, they connect a burned state at the left to
an unburned state at the right. The unburned state is the state before combustion occurs;
the temperature is 0 (ambient temperature), and the reactant concentration is positive. If
there is no heat loss to the environment (i.e., if δ = 0), the burned state is at combustion
temperature β−1 and has reactant concentration 0 (all the reactant has burned). On the
other hand, if there is heat loss to the environment (δ > 0), the burned state cannot maintain
a positive temperature; it, like the unburned state, is at the ambient temperature, due to
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gradual heat loss behind the combustion front. It turns out that in this case, some of the
reactant remains unburned at the burned state. See Figure 1.1
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Figure 1.1. Combustion front profiles with β = 0.5 and κ = 0 (solid re-
actant). Curves that approach 1 (respectively 0) at the right are reactant
concentration (respectively temperature). Solid: δ = 0. Behind the front,
temperature is 2 (there is no heat loss to the environment) and all reactant
has burned. Dashed: δ = 0.0380. Behind the front, temperature slowly falls
due to heat loss to the environment. Dotted: δ = 0.0561. Behind the front,
temperature again slowly falls. One can see more clearly than for δ = 0.0380
that there is unburned reactant behind the front.

The traveling combustion fronts of (1.1)–(1.2) have long been used for studies of pre-
mixed laminar flames, a basic topic in combustion theory; see the recent review article [21].
Questions of flame propagation and quenching translate into questions about existence and
stability of traveling waves. In Section 2 we review the literature on existence and stability of
combustion waves for the gasless combustion model, which often concerns various equivalent
forms of the model.

We shall always limit our attention to fronts that approach both end states exponentially.
This is only a limitation when δ = 0 and ū1 = 0, i.e., when there is no heat loss to the
environment and ignition temperature and ambient temperature are equal. Additional jus-
tifications for ignoring traveling waves that do not approach both end states exponentially
have been given in the literature. For example, they vanish in the presence of heat loss to the
environment, and they are only seen in simulations when carefully prepared, physically im-
plausible initial conditions are used. There is a theoretical explanation for this observation;
see [8].

In this paper we do several things that add to the known facts about the gasless combustion
model. In stating our results, and in the remainder of the paper, the reactant concentration
at the unburned state is normalized to be 1.

1. It is known that for δ = 0 (no heat loss) and small κ ≥ 0 (small diffusivity of the
reactant), the system (1.1)–(1.2) admits a unique combustion front with speed given by a
smooth function σ1(β, ū1, κ). In Section 3, we use geometric perturbation theory [13] to
prove that these combustion fronts perturb to ones with small δ > 0. The wave speed
σ(β, ū1, δ, κ), with σ(β, ū1, 0, κ) = σ1(β, ū1, κ), is a smooth function. Previously this was
known only numerically.
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We remark that here and throughout the paper, by a “unique combustion front” we mean
unique up to shift; traveling waves can always be shifted in space, which corresponds to a
shift of time.

2. It is known that for δ = 0 and small κ ≥ 0, the unique combustion front is nonlinearly
exponentially stable in an appropriate sense, provided an Evans function criterion is satisfied.
In Section 4, we prove, for δ > 0, the corresponding result for the perturbations of these
combustion fronts.

Let us give some background on this result. Denote the linearization of a PDE at a
traveling wave by ut = Lu. We have the following notions:

• Spectral stability: the spectrum of L is contained in Reλ ≤ −ν < 0, except for a
simple eigenvalue λ = 0, which traveling waves typically have because they can be
shifted.

• Linearized stability: there is a space Y of codimension one that is invariant under etL,
and constants ν > 0 and K ≥ 1, such that ‖etL|Y ‖ ≤ Ke−νt. (Y is complementary
to the eigenspace of L for the simple eigenvalue λ = 0.)

• Nonlinear or orbital stability: for the nonlinear system, perturbations of the traveling
wave stay close to the curve (in function space) of shifts of the traveling wave.

• Nonlinear exponential (respectively algebraic) stability with asymptotic phase: the
nonlinear system is nonlinearly stable, and in addition, perturbations of the traveling
wave decay exponentially (respectively algebraically) to a shift of the traveling wave.

These “definitions” are purposefully vague. Of course the space in which one calculates
spectra must be taken into account. In some situations, perturbations of the traveling
wave may be small in one space and satisfy the nonlinear stability or asymptotic stability
conditions in another. However, a standard result, which does not apply to the gasless
combustion model, is that if L is sectorial and spectrally stable on a space X , then the
traveling wave is linearly stable and nonlinearly exponentially stable with asymptotic phase
on X [19].

The essential spectrum of L is determined by the linearization of the PDE at the end
states of the wave. The discrete spectrum is found using the Evans function, an analytic
function from C to C. It is an infinite-dimensional analog of the characteristic polynomial,
in that its zeros correspond to eigenvalues, and the multiplicity of the zero is the multiplicity
of the eigenvalue [19].

The stability proof in Section 4 is nonstandard due to the fact that the essential spectrum
of L touches the imaginary axis, so L is not spectrally stable. By using a weighted space one
can move the essential spectrum to the left, but the spaces that achieve this are not closed
under multiplication and so cannot easily be used to study the nonlinear problem. When
κ = 0 there is the additional difficulty that the essential spectrum includes a vertical line, so
L is not sectorial. We shall make use of machinery appropriate to dealing with these issues
that was developed in [9] and [10], generalizing the methods of [8] (for gasless combustion
with δ = 0 and κ = 0) and [6] (for gasless combustion with δ = 0 and κ > 0).

It is standard in applied mathematics to check for stability by checking that the spectrum
of the linearization is contained in Reλ ≤ 0. Unfortunately, this condition alone does
not imply anything stronger. For the gasless combustion model, using the machinery just
mentioned allows one to pass from spectral calculations to detailed information about how
perturbations of the combustion wave behave.
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More precisely, let E0 denote either H1(R) or BUC, the space of bounded uniformly
continuous functions on R with the sup norm, and let Eα denote the corresponding space
with weight function eαξ, ξ = x − σt, where σ is the velocity of the combustion front;
α is positive and small. Functions in Eα decay exponentially as ξ → ∞ but may grow
exponentially as ξ → −∞; functions in E0 ∩ Eα decay exponentially as ξ → ∞ and are
bounded at the left. We show that as t → ∞, perturbations of the combustion front that
are small in E0 ∩ Eα decay exponentially in Eα to a shift of the combustion front. This is
a type of nonlinear exponential stability with asymptotic phase. Furthermore, for δ > 0,
the u1-component of the perturbation (temperature) decays exponentially in E0, and the
u2-component of the perturbation (reactant concentration) stays small in E0. This is a type
of nonlinear orbital stability. Moreover, if κ > 0 and the perturbation is, in addition, in L1,
then the u2-component of the perturbation stays small in L1 and decays algebraically in L∞

(like t−
1

2 ).
For δ > 0 these results have the following interpretation. If the combustion front is

perturbed in a way that is bounded or in H1 at the left and decays exponentially at the
right, the solution eventually looks like the combustion front at the right but not necessarily
at the left. The temperature component of the perturbation rapidly decays in time; at the left
this is because of heat loss to the environment. The reactant component of the perturbation
may not decay in time at the left when κ = 0; this is because at the left, the temperature
is too low for it to burn. (Both components of the perturbation decay exponentially at the
right in time in the weighted norm, because initially they decay exponentially in space at
the right, and, relative to the front, they move left.) In addition, when κ > 0 and the
perturbation is, in addition, in L1, the reactant component of the perturbation at the left
does at least decay by diffusion as expected.

The behavior of temperature and reactant concentration at the left for δ > 0 is the reverse
of their behavior for δ = 0; compare [8] and [6]. Without heat loss to the environment, the
temperature behind the combustion front is high, so perturbations in the reactant concen-
tration quickly decay (because the reactant burns), while perturbations in the temperature
at best decay by diffusion.

3. In Section 5, we show analytically, for δ > 0, that the Evans function for the combustion
front of Section 3 has a simple zero at the origin. This fact, which is equivalent to simplicity
of the zero eigenvalue for the linearization of the system at the traveling wave, is needed
for the stability result in Section 4. A similar result was obtained for δ = 0 in [8] and [7].
As in those papers, the result is a consequence of the nondegenerate splitting of invariant
manifolds that occurs in the construction of the front.

4. Also in Section 5, for κ = 0, β not too large, and δ > 0, we provide numerical evidence
that the Evans function for the combustion front of Section 3 has no zeros in Reλ ≥ 0, other
than the simple zero at the origin. Similar numerical results have previously been obtained
for the other cases; see the following section.

If we replace u2ρ(u1) by a more general function ω(u1, u2), then, except in Section 5.3
where we do some numerics, the only properties of ω that are actually used are: ω is defined
and C3 on {(u1, u2) : 0 ≤ u2 ≤ 1}; ω(u1, u2) = 0 for u1 ≤ 0; ω > 0 for u1 > 0 and u2 > 0;
ω(u1, 0) = 0 for all u1; and

∂ω
∂u2

(u1, 0) > 0 for u1 > 0.
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2. Literature on the gasless combustion model

Instead of the combustion model (1.1)–(1.2), several equivalent forms are often used in
the literature.

One equivalent form is

∂tu1 = ∂xxu1 + u2ρ̂(u1 − ū1)− δu1, (2.1)

∂tu2 = κ∂xxu2 − u2ρ̂(u1 − ū1), (2.2)

where ρ̂ is a function chosen from a one-parameter family of functions with properties similar
to those of ρ, ū1 ≥ 0, δ ≥ 0, and κ ≥ 0. To derive (2.1)–(2.2) from (1.1)–(1.2), in (1.1)–(1.2)
make the substitution u1 = 1

β
ũ1. After dropping the tildes, one obtains (2.1)–(2.2) with

ρ̂(u) = βρ
(

u
β

)

.

Another equivalent form is

∂tu1 = ∂xxu1 + u2ǫ
−2e

1

ǫ ρ(ǫ(u1 − ū1))− δ̂u, (2.3)

∂tu2 = κ∂xxu2 − u2ǫ
−2e

1

ǫ ρ(ǫ(u1 − ū1)), (2.4)

with ǫ > 0, ū1 ≥ 0, δ̂ ≥ 0, and κ ≥ 0. Studying the limit ǫ→ 0 is called high activation energy
asymptotics. To derive (2.3)–(2.4) from (1.1)–(1.2), in (1.1)–(1.2) make the substitutions

β = ǫ−1, u1 = ǫũ1, u2 = ũ2, t = ǫ−1e
1

ǫ t̃, x =
(

ǫ−1e
1

ǫ

)
1

2

x̃.

After dropping the tildes, one obtains (2.3)–(2.4) with δ̂ = ǫ−1e
1

ǫ δ.

Remark 2.1. An alternative to (1.1)–(1.2) that is not equivalent to it is the system

∂tu1 = ∂xxu1 + u2ρ(u1)− δ(u1 − u
†
1), (2.5)

∂tu2 = κ∂xxu2 − βu2ρ(u1). (2.6)

In this system, which is better physically motivated than (1.1)–(1.2), u1 = 0 is absolute

zero, and u
†
1 ≥ 0 is ambient temperature. Unfortunately, if u†1 > 0, physically meaningful

traveling waves do not exist. This is called the cold boundary difficulty: traveling waves only
exist when the ambient temperature is absolute zero. Nevertheless, approximate traveling
waves have been studied numerically [12].

The system (2.5)–(2.6) is sometimes altered by replacing the Arrhenius reaction rate func-
tion ρ(u1) by the discontinuous function

ρū1
(u) =

{

e−
1

u if u ≥ ū1,

0 if u < ū1,
(2.7)

where ū1 > 0 is ignition temperature. If 0 ≤ u
†
1 ≤ ū1, physically meaningful traveling waves

often exist [1].

We shall now briefly review the literature on existence and stability of traveling combus-
tion fronts for (1.1)–(1.2). As previously mentioned, we limit our discussion to fronts that
approach their end states exponentially. Without loss of generality we restrict our attention
to waves with positive velocity.
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2.1. Literature on traveling combustion fronts for (1.1)–(1.2) with no heat loss
(δ = 0). We consider fronts with values (u1, u2) = (u∗1, 0) at the left and (u1, u2) = (0, 1)
at the right, where u∗1 is the temperature of combustion. It must be determined; it turns
out to be β−1. We therefore assume ū1 < β−1, i.e., ignition temperature is less than the
temperature of combustion.

2.1.1. Existence and uniqueness. For infinite Lewis number (κ = 0) and ū1 = 0, existence
of a traveling front is shown in [4, 22]: the system reduces to one second-order equation by
means of a first integral, and the proof is by phase plane analysis. The same proof would
work for 0 < ū1 < β−1. Uniqueness follows from the Melnikov integral calculation in [8]:
the Melnikov integral is nonzero and has the same sign at any front. This material will be
reviewed in Subsection 3.1. Earlier proofs using shooting were given in [15, 16]. We denote
the speed of the traveling front by σ0(β, ū1); from the fact that the Melnikov integral is
nonzero, it is a smooth function.

For finite Lewis number (κ > 0), there are the following existence and uniqueness results.
The papers [3] and [17] use the system (2.1)–(2.2); we have converted their results into results
for the system (1.1)–(1.2).

(1) κ = 1, ū1 = 0: the system reduces to one second-order equation, and existence is
proved by phase plane analysis [4]. The same proof would work for 0 < ū1 < β−1.
For 0 < ū1 < β−1, uniqueness is shown in [3].

(2) κ > 0, 0 < ū1 < β−1: proof of existence by Leray-Schauder degree [3]. For 0 < κ < 1,
uniqueness is shown in [17].

(3) κ > 0, ū1 = 0: proof of existence by Leray-Schauder degree [17].
(4) κ > 0 small, ū1 = 0: proof of existence and uniqueness by geometric singular per-

turbation theory [7]. The same proof would work for 0 < ū1 < β−1. This method of
proof also shows that the speed of the traveling wave for small κ is close to that for
κ = 0, and in fact is a smooth function of (β, ū1, κ) for β > 0, 0 ≤ ū1 < β−1, and
0 ≤ κ < κ0(β, ū1) for some positive function κ0.

2.1.2. Stability. For ū1 = 0, it is shown in [8] for κ = 0 and in [6] for small κ > 0 that
the front is nonlinearly stable in an appropriate sense, provided the Evans function has
no zeros in Reλ ≥ 0 other than a simple zero at the origin. The same proof would work
for 0 < ū1 < β−1. Simplicity of the zero at the origin is a consequence of the fact that
the Melnikov integral mentioned above is nonzero; equivalently, it is a consequence of the
nondegenerate splitting of invariant manifolds that occurs in the construction of the front.

Numerical computation with ū1 = 0 indicates that the Evans function condition holds for
β not too large (for κ = 0 see [8], for κ > 0 see [11, 2]). However, for larger β, the wave
becomes unstable due to a pair of eigenvalues crossing into the right half-plane [11, 2].

2.2. Literature on traveling combustion fronts for (1.1)–(1.2) with heat loss (δ > 0).
For δ > 0, spatially homogeneous equilibria of (1.1)–(1.2) all have temperature u1 equal to 0.
We consider fronts with values (u1, u2) = (0, u∗2) at the left and (u1, u2) = (0, 1) at the right,
where u∗2, the concentration of unburned reactant behind the front, must be determined.

2.2.1. Infinite Lewis number (κ = 0). We found no results in the literature.



GASLESS COMBUSTION FRONTS WITH HEAT LOSS 7

2.2.2. Finite Lewis number (κ > 0). Existence:

(1) For the system (2.3)–(2.4) with ǫ small, κ = 1, and ū1 > 0: proof of existence of two

solutions for small δ̂ by Leray-Schauder degree [5].
(2) For the system (1.1)–(1.2) with β = 1, κ > 0, and ū1 > 0: proof of existence of two

solutions for small δ by Leray-Schauder degree [18].

Numerical results: Figure 5 in [21], which uses the system (2.3)–(2.4), is typical of the
numerical results in the literature. For (ǫ, ū1) = (0.1, 0), it shows the wave speed plotted

against δ̂ for different values of κ > 0. For δ̂ small there two traveling waves; they meet in
a saddle-node bifurcation at some δ̂ = δ̂0, and there are no traveling waves for δ̂ > δ̂0. As
δ̂ → 0, the two speed of one traveling wave appears to approach the speed of the combustion
front for δ̂ = 0, and the speed of the other traveling wave appears to approach 0.

Spectral stability: see the review article [21], which uses the form (2.3)–(2.4).

(1) Essential spectrum: At both ends of the wave, the spectrum of the corresponding
constant-coefficient operator lies in the left half-plane but touches the imaginary axis.
See Figure 6 in [21].

(2) Discrete spectrum: Determined using the Evans function. A typical result is shown
in Figure 9 in [21], reproduced here as Figure 2.1. The figure shows, for (ǫ, ū1, κ) =

(0.1, 0, 0.5), the curve in δ̂σ̂-space (σ̂ = wave speed) for which traveling waves exist.

On the upper part of the curve (δ̂ small, σ̂ near the speed of the traveling wave for

δ̂ = 0) all eigenvalues except for 0 lie in the left half-plane. At a point marked H

on the upper part of the curve a pair of complex eigenvalues crosses into the right
half-plane. Thereafter the traveling waves are unstable. However, as one moves along
the curve, these eigenvalues become real, and then, at the saddle-node bifurcation
point (see p. 27), one of these real eigenvalues crosses back over the imaginary axis.
Figure 5 in [21] shows how this bifurcation diagram changes as κ varies with ǫ held

fixed. As κ increases (LA decreases), H and the saddle-node bifurcation point come
together in a Takens-Bogdanov point. After that the saddle-node bifurcation point
is still present but H is not. Above the saddle-node bifurcation point all eigenvalues
except for 0 lie in the left half-plane, and at the saddle-node bifurcation point, one
crosses into the right-half plane.
On the other hand, as κ decreases (LA increases), eventually H moves left to δ̂ = 0.

For lower κ (higher LA) all traveling waves are unstable.
For ǫ near 0, this whole picture can be derived asymptotically [21].
The fact that for ǫ = 0.1 and small κ, all traveling waves are unstable, is consistent

with [11], in which it is found that for δ = 0 and κ small, the combustion front, which
is stable for small β, loses stability in a Hopf bifurcation when β increases past about
7 (or when ǫ fall below about 0.14).
For β below about 7 and κ small, the traveling wave is stable for δ = 0, and, as in

Figure 2.1, we would find stability on the upper branch, at least near δ = 0.
It appears that for all (β, κ) that have been studied, the traveling waves with δ

below the saddle-node bifurcation value are unstable.

Linearized and nonlinear stability: not discussed in the literature. Since the essential spec-
trum of the linearization touches the imaginary axis, the spectral information just discussed
does not imply either linearized or nonlinear stability.
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Figure 2.1. Figure 9 of [21], showing, for the system (2.3)–(2.4) with ǫ = 0.1,

ū1 = 0, and κ = L−1
A = 0.5, the curve in δ̂σ̂-space (σ̂ = wave speed) for which

traveling waves exist. In the figure, γ corresponds to our δ̂ and c to our σ̂.

3. Existence of traveling waves with speed of order one

In (1.1)–(1.2), we replace the spatial coordinate x with one ξ that is moving with velocity
σ: ξ = x− σt. We obtain

∂tu1 = ∂ξξu1 + σ∂ξu1 + u2ρ(u1 − ū1)− δu1, (3.1)

∂tu2 = κ∂ξξu2 + σ∂ξu2 − βu2ρ(u1 − ū1). (3.2)

A steady solution of (3.1)–(3.2) is a traveling wave solution of (1.1)–(1.2) with velocity σ.
Steady solutions of (3.1)–(3.2) satisfy the system of ODEs

0 = ∂ξξu1 + σ∂ξu1 + u2ρ(u1 − ū1)− δu1, (3.3)

0 = κ∂ξξu2 + σ∂ξu2 − βu2ρ(u1 − ū1). (3.4)

3.1. Infinite Lewis number (κ = 0), no heat loss (δ = 0). This subsection should be
regarded as a review.

We consider (3.3)–(3.4) with (β, ū1) fixed and δ = κ = 0. We are interested in solutions
with σ > 0 that satisfy the boundary conditions

(u1, ∂ξu1, u2)(−∞) = (u∗1, 0, 0), (u1, ∂ξu1, u2)(∞) = (0, 0, 1). (3.5)

The temperature of combustion u∗1 > ū1 and the speed σ > 0 are yet to be determined. In
addition we require that the solution approach its end states exponentially. As mentioned
in the introduction, this is only a limitation when δ = 0 and ū1 = 0.
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In the system (3.3)–(3.4) with δ = κ = 0, we set v1 = ∂ξu1 and use prime to denote
derivative with respect to ξ. We obtain the first-order system

u′1 = v1, (3.6)

v′1 = −σv1 − u2ρ(u1 − ū1), (3.7)

u′2 =
β

σ
u2ρ(u1 − ū1), (3.8)

which has the vector of parameters (β, ū1, σ). A solution of (3.3)–(3.4) that satisfies the
boundary conditions (3.5) corresponds to a solution of (3.6)–(3.8) that goes from an equi-
librium (u∗1, 0, 0) to the equilibrium (0, 0, 1).

The set of equilibria of (3.6)–(3.8) is the half plane Hū1
= {(u1, v1, u2) : u1 ≤ ū1 and v1 =

0} together with the ray Rū1
= {(u1, v1, u2) : u1 > ū1 and v1 = u2 = 0}. Hū1

is normally hy-
perbolic: the equilibria in Hū1

have two zero eigenvalues and one negative eigenvalue. (See
Appendix A for an introduction to normally hyperbolic invariant manifolds.) Rū1

is also
normally hyperbolic: the equilibria in Rū1

have one positive and one negative eigenvalue.
To find a solution to the boundary value problem that satisfies the exponential approach
condition, we need to find a solution in the intersection of W u(Rū1

), the unstable manifold
of the ray Rū1

, which has dimension 2, and W s(0, 0, 1), the stable manifold of the equilib-
rium (0, 0, 1), which has dimension 1. Of course these manifolds depend on the vector of
parameters (β, ū1, σ).

The function (u1, v, u2) → σu1+v+
σ
β
u2 is a first integral of (3.6)–(3.8). To take advantage

of this fact, we replace v1 by w1 defined by w1 = σu1 + v1 +
σ
β
u2. In the new variables, the

differential equation (3.6)–(3.8) becomes

u′1 = −σu1 + w1 −
σ

β
u2, (3.9)

w′
1 = 0, (3.10)

u′2 =
β

σ
u2ρ(u1 − ū1). (3.11)

Each plane w1 = constant is invariant. Corresponding to Hū1
and Rū1

we have

H̃(β,ū1,σ) = {(u1, w1, u2) : u1 ≤ ū1 and u2 = −βu1 +
β

σ
w1}, (3.12)

R̃(β,ū1,σ) = {(u1, w1, u2) : u1 =
1

σ
w1, w1 > σū1, and u2 = 0}. (3.13)

For a fixed w1 with w1 > σū1, the phase portrait of (3.9), (3.11) is shown in Figure 3.1.

The half-line of equilibria is part of H̃(β,ū1,σ), and the isolated equilibrium on the u1-axis is

part of R̃(β,ū1,σ). Where the unstable manifold of the isolated equilibrium goes depends on
the vector of parameters (β, ū1, σ, w1) in (3.9), (3.11).

Set w1 =
σ
β
, so that the equilibrium (u1, u2) = (0, β

σ
w1) on the u2 axis is at (0, 1) as desired.

The isolated equilibrium is then (u1, u2) = ( 1
β
, 0), so we assume ū1 <

1
β
. If we now vary σ,

it is not hard to see that for small σ, the unstable manifold of ( 1
β
, 0) lies above the stable

manifold of (0, 1), and for large σ it lies below [4, 22]. Therefore there is a value σ∗ of σ for
which the unstable manifold of ( 1

β
, 0) meets the stable manifold of (0, 1).
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u1

u2

(β/σ)w1

(1/σ)w1

u1

Figure 3.1. Phase portrait of (3.9), (3.11) for a fixed w1 with w1 > σū1.

For the system (3.9), (3.11), one can define a separation function S̃0(β, ū1, σ) between
the unstable manifold of ( 1

β
, 0) and the stable manifold of (0, 1); S0 is positive (respectively

negative) when the former is above (respectively below) the latter. Then one can show that

if S̃0(β, ū1, σ) = 0 then ∂S̃0

∂σ
(β, ū1, σ) < 0; this is done [8] by calculating an integral, called a

Menikov integral, whose value gives the partial derivative. Therefore the unstable manifold
of ( 1

β
, 0) always crosses from above the stable manifold of (0, 1) to below it as σ increases.

It follows that σ∗ is unique, and the intersection breaks in a nondegenerate manner as σ
varies. We let σ∗ = σ0(β, ū1); because the Melnikov integral is nonzero, σ0 is smooth by the
Implicit Function Theorem. For the given (β, ū1), the heteroclinic solution we have found
is the unique traveling wave with positive velocity that satisfies the exponential approach
condition, and σ0(β, ū1) is its velocity.

S̃0(β, ū1, σ) can be reinterpreted as referring to the system (3.9)–(3.11). It is then a
separation function between the 2-dimensional manifoldW u(R̃(β,ū1,σ)) and the 1-dimensional
stable manifold of the equilibrium (0, σ

β
, 1).

Returning to u1v1u2-space, for the system (3.6)–(3.8) we have a separation function
S0(β, ū1, σ) between the 2-dimensional manifoldW u(Rū1

) and the 1-dimensional stable man-
ifold of the equilibrium (0, 0, 1). When S0 = 0, the two manifolds intersect in a heteroclinic
solution from ( 1

β
, 0, 0) to (0, 0, 1). There is a smooth function σ0(β, ū1) such that S0 = 0 if

and only if σ = σ0(β, ū1), and
∂S
∂σ

there is nonzero. In consequence we have

Theorem 3.1. For κ = δ = 0 and fixed (β, ū1), there is a unique speed σ = σ0(β, ū1) such
that the gasless combustion model (1.1)–(1.2) has a traveling wave of speed σ that connects
a burned state (u∗1, 0, 0) to the unburned state (0, 0, 1). The combustion temperature u∗1 is 1

β
.

The function σ0(β, ū1) is smooth.

3.2. Infinite Lewis number (κ = 0) with heat loss (δ > 0). We consider (3.3)–(3.4)
with (β, ū1) fixed, δ > 0, and κ = 0. We are interested in solutions with σ > 0 that satisfy
the boundary conditions

(u1, ∂ξu1, u2)(−∞) = (0, 0, u∗2), (u1, ∂ξu1, u2)(∞) = (0, 0, 1). (3.14)

The unburned reactant concentration behind the front u∗2 and the speed σ are yet to be
determined.
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As in the previous subsection, in the system (3.3)–(3.4) we set v1 = ∂ξu1 and use prime
to denote derivative with respect to ξ. We obtain the first-order system

u′1 = v1, (3.15)

v′1 = −σv1 − u2ρ(u1 − ū1) + δu1, (3.16)

u′2 =
β

σ
u2ρ(u1 − ū1), (3.17)

which has the vector of parameters (β, ū1, σ, δ). A solution of (3.3)–(3.4) that satisfies the
boundary conditions (3.14) corresponds to a solution of (3.15)–(3.17) that goes from an
equilibrium (0, 0, u∗2) to the equilibrium (0, 0, 1).

3.2.1. Equilibria. For δ > 0, the set of equilibria of (3.15)–(3.17) is the u2-axis. The lin-
earization of (3.15)–(3.17) at a point (u1, v1, u2) has the matrix





0 1 0
−u2ρ

′(u1 − ū1) + δ −σ −ρ(u1 − ū1)
β

σ
u2ρ

′(u1 − ū1) 0 β

σ
ρ(u1 − ū1)



 (3.18)

On the u2-axis, (3.18) becomes




0 1 0
δ −σ 0
0 0 0



 , (3.19)

so the equilibria all have the eigenvalues

0 and λ±(σ, δ) = −
σ

2
±

(

σ2

4
+ δ

)
1

2

. (3.20)

Since δ > 0, we have λ− < 0 and λ+ > 0. Therefore each equilibrium has a one-dimensional
unstable manifold and a one-dimensional stable manifold. We need to find a solution that
lies in the intersection of the unstable manifold of the u2-axis, which is two-dimensional, and
the stable manifold of (0, 0, 1), which is one-dimensional.

For δ = 0 the equilibria are the half-plane Hū1
of the previous section, which we now

denote H(β,ū1,σ,0) (the last component is δ), and Rū1
; see Figure 3.2 (a).

3.2.2. Normally hyperbolic invariant manifolds. For δ=0, the unstable manifolds of points on
Rū1

fit together with the half-plane H(β,ū1,σ,0) to make a normally attracting two-dimensional
manifold that we denote M(β,ū1,σ,0). See Figure 3.2 (a). For an introduction to normally
hyperbolic invariant manifolds, see Appendix A.

For small δ > 0, M(β,ū1,σ,0) perturbs to a two-dimensional normally attracting manifold
M(β,ū1,σ,δ). M(β,ū1,σ,δ) is just the u2-axis, a line of equilibria, together with the unstable
manifolds of these equilibria. One can check that M(β,ū1,σ,δ) includes the half-plane

H(β,ū1,σ,δ) = {(u1, v1, u2) : u1 ≤ ū1 and v1 = λ+(σ, δ)u1},

and the line
L(β,ū1,σ,δ) = {(u1, v1, u2) : v1 = λ+(σ, δ)u1 and u2 = 0}.

(It is enough to check that these sets are invariant under (3.15)–(3.17) and near M(β,ū1,σ,0).)
For δ > 0, the line L(β,ū1,σ,δ) is the unstable manifold of the origin. Note that λ+(σ, 0) = 0,
so L(β,ū1,σ,0) contains Ru1

. See Figure 3.2 (b).
The system (3.15)–(3.17) restricted to H(β,ū1,σ,δ)∪L(β,ū1,σ,δ) is just u

′
1 = λ+(δ, σ)u1, u

′
2 = 0.
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u1

(a) (b)

u1

u1

u1

v1

u2u2

v1

Figure 3.2. (a) The half-plane H(β,ū1,σ,0) of equilibria (red), and the ray of
equilibria Rū1

(part of the u1-axis, also red). The two-dimensional normally
attracting manifold M(β,ū1,σ,0) for (3.6)–(3.8) is also shown; it includes both
these sets, together with the unstable manifolds of points on Rū1

. (b) The
two-dimensional normally attracting manifold M(β,ū1,σ,δ), δ > 0, for (3.15)–
(3.17). It includes the u2-axis, which is a line of equilibria, and the unstable
manifolds of these equilibria. Within the half-plane H(β,ū1,σ,δ), which is part
of M(β,ū1,σ,δ), the unstable manifolds are parallel lines. The entire unstable
manifold of the origin is the line L(β,ū1,σ,δ), which lies in the plane u2 = 0.

Theorem 3.2. For κ = 0, fixed (β, ū1), and δ > 0 small, there is a unique speed σ =
σ1(β, ū1, δ) near the speed σ0(β, ū1) of Theorem 3.1 such that the gasless combustion model
(1.1)–(1.2) has a traveling wave of speed σ that connects a burned state (0, 0, u∗2) to the
unburned state (0, 0, 1). The unburned reactant concentration u∗2 is positive, and u∗2 → 0 as
δ → 0. The function σ1(β, ū1, δ), defined for small δ ≥ 0, with σ1(β, ū1, 0) = σ0(β, ū1), is
smooth. As δ → 0, in u1v1u2-space the corresponding heteroclinic solution of (3.15)–(3.17)
approaches the union of the heteroclinic solution with δ = 0 of Theorem 3.1, with speed
σ = σ0(β, ū1), and the line segment from (0, 0, 0) to ( 1

β
, 0, 0).

See Figure 3.3. The line segment from (0, 0, 0) to ( 1
β
, 0, 0) corresponds to declining tem-

perature behind the combustion front due to heat loss to the environment.
To prove the theorem, just note that the separation function S0(β, ū1, σ) of Subsection

3.1 extends to a separation function S1(β, ū1, σ, δ) between the two-dimensional manifold
M(β,ū1,σ,δ) and the one-dimensional stable manifold of (0, 0, 1); we have S1(β, ū1, σ, 0) =

S0(β, ū1, σ). Since S1 = 0 and ∂S1

∂σ
6= 0 at (β, ū1, σ0(β, ū1), 0, by the Implicit Function

Theorem there is a function σ1(β, ū1, δ), with δ ≥ 0 small and σ1(β, ū1, 0) = σ0(β, ū1), such
that S1 = 0 when σ = σ1(β, ū1, δ). For such σ, a branch of the stable manifold of (0, 0, 1) lies
in M(β,ū1,σ,δ). Since M(β,ū1,σ,δ) is foliated by the unstable manifolds of equilibria, in backward
time it approaches an equilibrium (0, 0, u∗2). We cannot have u∗2 = 0 because our solution
lies in the invariant set u2 > 0, and the unstable manifold of the origin, L(β,ū1,σ,δ), lies in the
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invariant plane u2 = 0. By continuity of the intersection of the invariant manifolds, u∗2 → 0
as δ → 0.

(a) (b)

1 1

u1 u1

u1
v1

u2u2

v1u1

Figure 3.3. Invariant manifolds and connecting orbit for σ = σ(β, ū1, δ): (a)
δ = 0 and (b) δ > 0.

3.3. Finite Lewis number (κ > 0). The approach of this section was used in [2] and [7]
for δ = 0.

We consider (3.3)–(3.4) with (β, ū1) fixed, δ ≥ 0, and κ > 0. For δ = 0 we use the
boundary conditions

(u1, ∂ξu1, u2, ∂ξu2)(−∞) = (u∗1, 0, 0, 0), (u1, ∂ξu1, u2, ∂ξu2)(∞) = (0, 0, 1, 0). (3.21)

The combustion temperature u∗1 and the speed σ are yet to be determined. For δ > 0 we use
the boundary conditions

(u1, ∂ξu1, u2, ∂ξu2)(−∞) = (0, 0, u∗2, 0), (u1, ∂ξu1, u2, ∂ξu2)(∞) = (0, 0, 1, 0). (3.22)

The unburned reactant concentration u∗2 and the speed σ are yet to be determined.
In the system (3.3)–(3.4) we set v1 = ∂ξu1, v2 = ∂ξu2, and use prime to denote derivative

with respect to ξ. We obtain the first-order system

u′1 = v1, (3.23)

v′1 = −σv1 − u2ρ(u1 − ū1) + δu1, (3.24)

u′2 = v2, (3.25)

κv′2 = −σv2 + βu2ρ(u1 − ū1). (3.26)

This system has the vector of parameters (β, ū1, σ, δ, κ). We restrict our attention to κ > 0,
δ ≥ 0, and σ > 0. For κ > 0, a solution of (3.3)–(3.4) that satisfies the boundary conditions
(3.21) (respectively (3.22)) corresponds to a solution of (3.23)–(3.26) that goes from an
equilibrium (u∗1, 0, 0, 0) (respectively (0, 0, u∗2, 0)) to, in both cases, the equilibrium (0, 0, 1, 0).

For κ > 0 and δ = 0, the set of equilibria of (3.23)–(3.26) is the half plane Ĥū1
=

{(u1, v1, u2, v2) : u1 ≤ ū1 and v1 = v2 = 0}, together with the ray R̂ū1
= {(u1, v1, u2, v2) :
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u1 > ū1 and v1 = u2 = v2 = 0}. Hū1
is normally attracting: the equilibria in Ĥū1

have

two negative eigenvalues. R̂ū1
is also normally hyperbolic: the equilibria in R̂ū1

have one
positive and two negative eigenvalue. To solve the boundary value problem (3.23)–(3.26),

(3.21), we need to find a solution in the intersection of W u(R̂ū1
), which has dimension 2,

and Ŵ s(0, 0, 1, 0), which also has dimension 2.
For κ > 0 and δ > 0, the set of equilibria of (3.23)–(3.26) is the u2-axis. Linearization

shows that each equilibrium has a one-dimensional unstable manifold and a two-dimensional
stable manifold. To solve the boundary value problem (3.23)–(3.26), (3.22), we need to find
a solution in the intersection of the unstable manifold of the u2-axis, which has dimension
2, and W s(0, 0, 1), which also has dimension 2.

By rescaling time, the system (3.23)–(3.26) can be converted to

u̇1 = κv1, (3.27)

v̇1 = κ
(

− σv1 − u2ρ(u1 − ū1) + δu1
)

, (3.28)

u̇2 = κv2, (3.29)

v̇2 = −σv2 + βu2ρ(u1 − ū1). (3.30)

In geometric singular perturbation theory, with κ regarded as small, (3.23)–(3.26) is the slow
form of a slow-fast system; (3.27)–(3.30) is the fast form.

For κ = 0, the set of equilibria of (3.27)–(3.30) is the 3-dimensional manifold (slow mani-
fold)

P(β,ū1,σ,δ,0) = ({(u1, v1, u2, v2) : v2 =
β

σ
u2ρ(u1 − ū1)}.

These equilibria have the negative eigenvalue −σ, so the slow manifold is normally attracting.
For small κ > 0, P(β,ū1,σ,δ,0) perturbs to a normally attracting manifold P(β,ū1,σ,δ,κ). These

manifolds are parameterized by (u1, v1, u2). In terms of these variables, the system (3.27)–
(3.30), restricted to P(β,ū1,σ,δ,κ), is given to lowest order by (3.27)–(3.29) with v2 =

β

σ
u2ρ(u1−

ū1). After division by κ (undoing the rescaling that produced (3.27)–(3.30)), we have (3.15)–
(3.17). In geometric singular perturbation theory, this system is called the slow system on
the slow manifold.

The 2-dimensional manifoldM(β,ū1,σ,δ) of the previous subsection, and the one-dimensional
stable manifold of (0,0,1) used in that subsection, correspond to submanifolds of P(β,ū1,σ,δ,0)

that we denote M(β,ū1,σ,δ,0) and N(β,ū1,σ,δ,0).
For small κ > 0, these manifolds perturb to invariant manifoldsM(β,ū1,σ,δ,κ) and N(β,ū1,σ,δ,κ)

of P(β,ū1,σ,δ,κ). M(β,ū1,σ,δ,κ) contains:

• for δ = 0, the 2-dimensional unstable manifold of the ray R̂ū1
of equilibria;

• for δ > 0, the 2-dimensional unstable manifold of the u2-axis.

N(β, ū1, σ, δ, κ) is a 1-dimensional portion of the 2-dimensional stable manifold of (0, 0, 0, 1).
The separation function S1(β, ū1, σ, δ) used in the proof of Theorem 3.2 extends to a sepa-

ration function S(β, ū1, σ, δ, κ) betweenM(β,ū1,σ,δ,κ) and N(β,ū1,σ,δ,κ); we have S(β, ū1, σ, δ, 0) =
S1(β, ū1, σ, δ). At points (β, ū1, σ, δ, κ) with σ = σ1(β, ū1, δ) and κ = 0, we have S = 0 and
the partial derivative of ∂S

∂σ
6= 0. Therefore, by the Implicit Function Theorem, there is a

smooth function σ(β, ū1, δ, κ), with κ ≥ 0 small and σ(β, ū1, δ, 0) = σ1(β, ū1, δ), such that
S = 0 when σ = σ(β, ū1, δ, κ). For such σ, N(β,ū1,σ,δ,κ) lies in M(β,ū1,σ,δ,κ).

For δ > 0, κ > 0, and such σ, in backward time N(β,ū1,σ,δ,κ) approaches an equilibrium,
since M(β,ū1,σ,δ,κ) is foliated by the unstable manifolds of equilibria. That equilibrium cannot
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be the origin because it is easy to see that the unstable manifold of the origin lies in the
invariant set u2 = v2 = 0.

We have proved:

Theorem 3.3. For fixed (β, ū1), and small δ ≥ 0 and κ ≥ 0, there is a speed σ =
σ(β, ū1, δ, κ), with σ(β, ū1, δ, 0) = σ1(β, ū1, δ), such that the gasless combustion model (1.1)–
(1.2) has a traveling wave of speed σ with the following properties:

(1) For κ > 0 and δ = 0, the wave connects a burned state (u∗1, 0, 0, 0) to the unburned
state (0, 0, 1, 0). The combustion temperature u∗1 is positive, and u∗1 →

1
β
as δ → 0.

(2) For κ > 0 and δ > 0, the wave connects a burned state (0, 0, u∗2, 0) to the equilibrium
(0, 0, 1, 0). The unburned reactant concentration u∗2 is positive, and u

∗
2 → 0 as δ → 0.

The function σ(β, ū1, δ, κ) is smooth. For small δ ≥ 0 and κ ≥ 0, there are no other traveling
waves with speed near σ0(β, ū1).

Remark 3.4. There is considerable numerical evidence, such as Figure 2.1, showing that for
δ positive and small, there is a traveling wave with speed near zero. So far as we know, there
is no theoretical analysis of the asymptotic behavior of this wave as δ → 0 with (β, ū1, κ)
fixed.

4. Stability of the traveling waves

For δ = 0, we refer to [8] for κ = 0 and to [6] for κ > 0, although the proof given below
would work for δ = 0 as well with small changes.

Theorems 3.14 and 3.16 of [10] allow one to conclude the stability results sketched in the
introduction, once one has checked that the nonlinear term has the correct form and verified
some spectral conditions in various spaces. In this section we do the verifications and state
the conclusions. The weighted spaces that are used depend on the rate of approach of the
traveling wave to its end states, so we check that as well.

Fix (β, ū1, δ, κ) with δ > 0. Let (u1∗, u2∗)(ξ) be a solution of (3.3)-(3.4), with σ =
σ(β, ū1, δ, κ), and with boundary values given by (3.14) when κ = 0 and by (3.22) when
κ > 0.

In order to study the stability of this traveling wave using the theory of [10], we must first
shift its left state to the origin.

To do this, let z2 = u2 − u∗2. The PDE system (3.1)–(3.2) becomes

∂tu1 = ∂ξξu1 + σ∂ξu1 + (u∗2 + z2)ρ(u1 − ū1)− δu1, (4.1)

∂tz2 = κ∂ξξz2 + σ∂ξz2 − β(u∗2 + z2)ρ(u1 − ū1). (4.2)

We write (4.1)–(4.2) as Yt = DYξξ + σYξ +R(Y ) with

Y =

(

u1
z2

)

, D =

(

1 0
0 κ

)

, R

(

u1
z2

)

=

(

(u∗2 + z2)ρ(u1 − ū1)− δu1
−β(u∗2 + z2)ρ(u1 − ū1)

)

.

Note that R(0, z2) ≡ 0 but R(u1, 0) is not identically 0. One of these conditions is needed
to use the results of [10].

Let z2∗(ξ) = u2∗(ξ) − u∗2. Then Y∗(ξ) = (u1∗, z2∗)(ξ) is an equilibrium solution of (4.1)–
(4.2), with Y∗(−∞) = Y− = (0, 0) and Y∗(∞) = Y+ = (0, 1− u∗2).
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4.1. Rate of approach of Y∗(ξ) to end states. Recall the numbers λ±(σ, δ) given by
(3.20). For κ = 0, (3.20) implies that there is a number K > 0 such that

for ξ ≤ 0, ‖Y∗(ξ)‖ ≤ Keλ+(σ,δ)ξ , (4.3)

and
for ξ ≥ 0, ‖Y∗(ξ)− Y+‖ ≤ Keλ−(σ,δ)ξ . (4.4)

In the case κ > 0, the traveling wave equation is (3.23)–(3.26), and the eigenvalues of the
linearization at any equilibrium are λ±(σ, δ), 0, and −σ

κ
. For small κ > 0,

−
σ

κ
< λ−(σ, δ) < 0 < λ+(σ, δ) (4.5)

Therefore for small κ > 0 we have (4.3), and, because the traveling waves constructed in
Subsection 3.3 lie in the normally attracting invariant manifold of that subsection, we have
(4.4).

4.2. Linearization. The linearization of (4.1)–(4.2) at Y∗(ξ) is

Ỹt = LỸ = DỸξξ + σỸξ +DR(Y∗(ξ))Ỹ .

Note that DR(Y±)Ỹ = diag(−δ, 0)Ỹ , so the linearization of (4.1)–(4.2) at the constant
solutions Y± is just

Ỹt = L±Ỹ = DỸξξ + σỸξ + diag(−δ, 0)Ỹ .

Thus L− = L+.
We shall refer to “L on L2” when we should more properly say “the operator defined by

L on L2(R), with its natural domain,” etc.
The spectrum of L± on L2 (and hence on H1 or on BUC, the space of bounded uniformly

continuous functions with the sup norm) can be computed by Fourier transform. It is the

union of two curves, {λ = θ + iω : θ = −
(

ω
σ

)2
− δ}, which is the spectrum of ∂ξξ + σ∂ξ − δ,

and {λ = θ + iω : θ = −κ
(

ω
σ

)2
}, which is the spectrum of κ∂ξξ + σ∂ξ. The right-hand

boundary of this set of two curves is the right-hand boundary of the essential spectrum of L
on L2 or H1 or BUC.

4.3. Weighted spaces. Given α = (α−, α+) ∈ R2, let γα(ξ) be a smooth positive func-
tion that equals eα−ξ for ξ ≤ −1 and equals eα+ξ for ξ ≥ 1. As in the Introduction, let
E0 denote H1 or BUC, with norm (the unweighted norm) ‖ ‖0. Let Eα denote the corre-
sponding weighted space with weight function γα: u ∈ Eα if and only if γα(ξ)u(ξ) ∈ E0, and
‖u‖α = ‖γα(ξ)u(ξ)‖0. (This definition of Eα is a little more general than that used in the
Introduction.)

The previous subsection shows that on E0 the essential spectrum of L touches the imaginary
axis. On the other hand, we have the following result, which is needed to use the theory of
[10].

Lemma 4.1. Consider the system (4.1)–(4.2) with δ > 0 and κ ≥ 0 small, and σ =
σ(β, ū1, δ, κ). Suppose 0 < α− < λ+(σ, δ) and 0 < α+ < −λ−(σ, δ). Then the essential
spectrum of L on Eα is contained in a half-plane Reλ ≤ −ν < 0.

The proof of the lemma is a calculation. The operator L on Eα is similar to the operator
γαLγ

−1
α on E0, and hence has the same spectrum. The latter is given by

L̂W = γαLγ
−1
α W. (4.6)
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Setting ξ = ±∞ in (4.6) yields

L̂±W =

(

∂ξξ + (σ − 2α±)∂ξ + (α2
± − σα± − δ) 0

0 κ∂ξξ + (σ − 2κα±)∂ξ + (κα2
± − σα±

)

W.

The spectrum of L̂− on E0 is the union of two curves,

{λ = θ + iω : θ = −

(

ω

σ − 2α−

)2

+ (α2
− − σα− − δ)},

which is the spectrum of ∂ξξ + (σ − 2α−)∂ξ + (α2
− − σα− − δ), and

{λ = θ + iω : θ = −κ

(

ω

σ − 2α−

)2

+ (κα2
− − σα−)},

which is the spectrum of κ∂ξξ + (σ− 2κα−)∂ξ + (κα2
− − σα−). An analogous result holds for

the spectrum of L̂+ on E0.
From the choice of α± in the lemma, we have

0 < α− < λ+(σ, δ) = −
σ

2
+

(

σ2

4
+ δ

)
1

2

, (4.7)

0 < α+ < −λ−(σ, δ) =
σ

2
+

(

σ2

4
+ δ

)
1

2

. (4.8)

If κ > 0, (4.5) implies

α− < λ+(σ, δ) < −λ−(σ, δ) <
σ

κ
and α+ < −λ−(σ, δ) <

σ

κ
. (4.9)

Therefore κα2
− − σα− < 0 and κα2

+ − σα− < 0. Of course these statements are also true
when κ = 0. Therefore:

(1) The spectrum of L̂− on E0 lies in Reλ ≤ −ν− = max(α2
−−σα−− δ, κα2

− −σα−) < 0.

(2) The spectrum of L̂+ on E0 lies in Reλ ≤ −ν+ = max(α2
+−σα+− δ, κα2

+ −σα+) < 0.

The lemma follows.

4.4. Results. Our stability result is:

Theorem 4.2. Consider the system (4.1)–(4.2) with δ > 0 and κ ≥ 0 small, and σ =
σ(β, ū1, δ, κ). Let α− and α+ be chosen as in Lemma 4.1. Let α = (α−, α+) and let η =
(0, α+). Assume in addition that the Evans function for the traveling wave Y∗(ξ) has no
zeros in the half-plane Reλ ≥ 0 other than a simple zero at the origin. Suppose Y 0 ∈ Y∗+E2

η

with ‖Y 0−Y∗‖η small, and let Y (t) be the solution of (4.1)–(4.2) in Y∗+E2
η with Y (0) = Y 0.

Then:

(1) Y (t) is defined for all t ≥ 0.

(2) Y (t) = Ỹ (t) + Y∗(ξ − q(t)) with Ỹ (t) in a fixed subspace of E2
η complementary to the

span of Y ′
∗ . Let Ỹ (t) = (ũ1(t), z̃2(t)).

(3) ‖Ỹ (t)‖η + |q(t)| is small for all t ≥ 0.

(4) ‖Ỹ (t)‖α decays exponentially as t→ ∞.
(5) There exists q∗ such that |q(t)− q∗| decays exponentially as t→ ∞.

(6) There is a constant C independent of Y 0 such that ‖z̃2(t)‖0 ≤ C‖Ỹ 0‖η for all t ≥ 0.
(7) ‖ũ1(t)‖0 decays exponentially as t→ ∞.
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This theorem follows from Theorem 3.14 in [10]. The hypotheses of that theorem are
verified by Lemma 4.1 and the following observations:

(1) R(0, z2) ≡ 0 (noted at the end of Subsection 4.1).
(2) The operator κ∂ξξ + σ∂ξ on E0 generates a bounded semigroup.
(3) The operator ∂ξξ + σ∂ξ − δ on E0 has its spectrum contained in Reλ ≤ −δ < 0.

We remark that for a fixed δ > 0, if the Evans function condition in Theorem 4.2 holds
for κ = 0, then it holds for small κ > 0. The analogous fact for δ = 0 is proved in [7]. The
proof for δ > 0 is similar but easier.

Theorem 3.16 in [10] implies some additional conclusions when κ > 0 in Theorem 4.2.
Consider the Banach space E0 ∩ L1(R) with the norm ‖u‖E0∩L1(R) = max{‖u‖E0, ‖u‖L1(R)}.
Suppose Y 0 ∈ Y∗ + (Eη ∩ L

1(R))2 with ‖Y 0 − Y∗‖η and ‖Y 0 − Y∗‖L1 sufficiently small, and
as in Theorem 4.2 let Y (t) be the solution of (4.1)–(4.2) in in Y∗ + E2

η with Y (0) = Y 0. Let

h(t) = min(1, t−
1

2 ). Then for fixed κ > 0 and for all t ≥ 0:

(1) Y (t) ∈ (Eη ∩ L
1(R))2.

(2) There is a constant C independent of Y 0 such that

‖z̃2(t)‖L1 ≤ Cmax
(

‖z̃02)‖L1, ‖Ỹ 0‖α

)

and ‖z̃2‖L∞ ≤ Ch(t)max
(

‖z̃02‖L1, ‖Ỹ 0‖η

)

.

(3) ‖ũ1‖L1 decays exponentially as t→ ∞.

5. Evans function

We continue to assume that δ > 0 and κ ≥ 0 are small, so that (4.4) and (4.5) hold, and
that α− and α+ are chosen as in Lemma 4.1.

5.1. Definition. For fixed (β, ū1, δ, κ) with κ > 0, we write the traveling wave system (3.23)–
(3.26) as Xξ = F (X, σ). Let X∗(ξ) = (u1∗, u

′
1∗, u2∗, u

′
2∗)(ξ), with velocity σ∗ = σ(β, ū1, δ, κ),

and let B(ξ) = FX(X∗(ξ), σ∗). (The prime denotes derivative with respect to ξ.)
The complex number λ is an eigenvalue of L on Eα with eigenfunction Ỹ provided Ỹ ∈ E2

α

and λỸ = LỸ . This second-order linear differential equation can be written as the first-order
system on R

4

Xξ = (B(ξ) + λC)X, (5.1)

with C a constant matrix. IfX is a solution of (5.1) in E4
α, then the first and third components

of X give a solution Ỹ of Ỹt = LỸ in E2
α; and every such solution of Ỹt = LỸ arises this way.

Recall the numbers −ν± < 0 defined in the proof of Lemma 4.1. For Reλ ≥ −1
2
ν−, (5.1)

has linear independent solutions X1(ξ, λ) and X2(ξ, λ) such that eα−ξX i(ξ), i = 1, 2, is
bounded for ξ ≤ 0. (For Reλ > 0 these two solutions decay at the left; to extend them to
Reλ ≥ −1

2
ν− we must allow them to grow slowly at the left.) Similarly, for Reλ ≥ −1

2
ν+,

(5.1) has linear independent solutions X3(ξ, λ) and X4(ξ, λ) such that eα+ξX i(ξ, λ), i = 3, 4,
is bounded for ξ ≥ 0. By a theorem of Kato [14], these solutions may be chosen to depend
analytically on λ. The Evans function D(λ) is defined for Reλ ≥ max(−1

2
ν−,−

1
2
ν+) by

D(λ) = det
(

X1(0, λ), . . . , X4(0, λ)
)

.

It is 0 if and only if λ is an eigenvalue of L on Eα.
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5.2. Derivative at λ = 0. Two general facts about the Evans function are (1) D(0) = 0
because the derivative of the traveling wave is an eigenfunction of L for the eigenvalue 0,
and (2) nonzero derivative of the separation function used to construct the traveling wave
implies dD

dλ
(0) 6= 0. In this subsection we sketch the argument for the present situation.

For δ ≥ 0 and κ > 0 small, alongX∗(ξ), the two-dimensional tangent spaces toM(β,ū1,σ∗,δ,κ)

(defined in Subsection 3.3) and to the stable manifold of (0, 0, 1, 0) have just a one-dimensional
intersection. Then the X i(ξ, 0) span a space of dimension 3, and they can be chosen so that
X1(ξ, 0) = X3(ξ, 0) = X ′

∗(ξ), which we assume. Hence up to scalar multiplication there
is a unique solution ψ∗(ξ) in E4

(−α+,−α−) of the adjoint equation ψξ = −B(ξ)⊤ψ. We have

ψ∗(ξ)
⊤X i(ξ, 0) = 0 for i = 1, . . . , 4, and, according to [19], up to a nonzero multiple,

dD

dλ
(0) =

∫ ∞

−∞

ψ∗(ξ)
⊤CX ′

∗(ξ) dξ. (5.2)

Let us further assume that the derivative of the separation function used in subsection
3.3 with respect to σ is nonzero at (β, ū1, σ

∗, δ, κ). (Subsection 3.3 shows that this is true
for small δ ≥ 0 and small κ > 0.) Up to a nonzero multiple, its value at σ∗ is given by the
Melnikov integral

M =

∫ ∞

−∞

ψ∗(ξ)
⊤Fσ(X∗(ξ), σ∗) dξ, (5.3)

which is therefore nonzero. It is easy to check that

CX ′
∗(ξ) = −Fσ(X∗(ξ), σ∗).

Since M is nonzero, it follows that dD
dλ
(0) 6= 0, so 0 is a simple zero of the Evans function.

Formula (5.2) is correct despite the 0 eigenvalues at the end states; see [8]. Also, (5.3)
is indeed the derivative of the separation function despite the 0 eigenvalues, because the
manifolds being connected (the line of equilibria (0, 0, u2, 0) and the equilibrium (0, 0, 1, 0))
are independent of σ; see [20] for a similar case.

A similar discussion holds for κ = 0.

5.3. Numerics for κ = 0. For fixed (β, ū1, δ) and κ = 0, the traveling wave system is
(3.15)–(3.17). Following the previous subsection, we write the traveling wave as X∗(ξ) =
(u1∗, u

′
1∗, u2∗)(ξ). In our numerics we take ū1 = 0. Then the complex number λ is an

eigenvalue of L on Eα provided the the following first-order system has a solution in E3
α:

Xξ = (B(ξ) + λC)X =





0 1 0
λ− u2∗(ξ)ρ

′(u1∗(ξ)) + δ −σ −ρ(u1∗(ξ))
β

σ
u2∗(ξ)ρ

′(u1∗(ξ)) 0 λ
σ
+ β

σ
ρ(u1∗(ξ))



X (5.4)

The eigenfunction Ỹ is given by the first and third components of X .
We have

(B(±∞) + λC) =





0 1 0
λ+ δ −σ 0
0 0 λ

σ



 .

The eigenvalues are

λ

σ
and µ±(σ, δ, λ) = −

σ

2
±

(

σ2

4
+ λ+ δ

)
1

2

.
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For Reλ ≥ max(−1
2
ν−,−

1
2
ν+), (5.4) has linear independent solutionsX

1(ξ, λ) andX2(ξ, λ)

such that eα−ξX i(ξ, λ), i = 1, 2, is bounded for ξ ≤ 0; they correspond to the eigenvalues
λ
σ
and µ+(σ, δ, λ), which have real part small negative or larger. Similarly, (5.4) has, up to

scalar multiplication, a unique solution X3(ξ, λ) such that eα+ξX3(ξ) is bounded for ξ ≥ 0.
It corresponds to the eigenvalue µ−(σ, δ, λ), which has a large negative real part. These
solutions can be chosen to depend analytically on λ. The Evans function D(λ) is defined for
Reλ ≥ max(ω−, ω+) < 0 by

D(λ) = det
(

X1(0, λ), X2(0, λ), X3(0, λ)
)

.

It is analytic, and it is 0 if and only if λ is an eigenvalue of L on Eα. The algebraic multiplicity
of λ as an eigenvalue of L equals its multiplicity as a zero of D.

Up to scalar multiplication, there is unique solution ψ(ξ, λ) of the adjoint equation ψξ =
−(B(ξ)+λC)⊤ψ such that e−α+ξψ(ξ) is bounded on ξ ≤ 0. It corresponds to the eigenvalue
−µ−(σ, δ, λ) of −(B(±∞) + λC)⊤, which has a large positive real part. The Evans function
can be equivalently defined asD(λ) = ψ(0, λ)⊤X3(0, λ). (More commonly, one uses λ̄ instead
of λ in the definition of the adjoint equation, and ψ̄(0, λ)⊤X3(0, λ) in the definition of the
Evans function, but the two definitions of the Evans function are equivalent.)

For the traveling wave we use linear approximations on (−∞,−k] and on [k,∞), and a
numerically computed approximation on [−k, k].

To approximate D(λ), choose −kℓ < 0 < kr. Let X(kr) = (1, µ−, 0), which is the eigen-
vector of B(±∞) + λC for the eigenvalue µ−, and solve Xξ = (B(ξ) + λC)X backward to
obtain X(0); let ψ(−kℓ) = (λ + δ, µ−, 0), which is the eigenvector of −(B(±∞) + λC)⊤ for
the eigenvalue −µ−, and solve ψξ = −(B(ξ) + λC)Tψ forward to obtain ψ(0). Then D(λ)
is approximately ψ(0)⊤X(0). One computes D(λ) on an appropriate large closed curve Γ
that surrounds 0. From the analyticity of D, if the winding number is 1, the only zero of
the Evans function inside Γ is 0. This is numerical evidence that the only zero of the Evans
function in Reλ ≥ 0 is 0.

A drawback of this approach is that computed values of D(λ) have enormous modulus
(because of the exponential growth of X(ξ) and ψ(ξ)), and the curve D(λ) can exhibit
numerous twists (because of the behavior of the imaginary parts of X(ξ) and ψ(ξ) as they

change enormously). To correct these effects, one can first define X̃(ξ) = e−µ−(ξ−kr)X(ξ), let
X̃(kr) = (1, µ−, 0), note that X̃ξ = (B(ξ) + λC − µ−I)X̃, and solve this equation backward

to obtain X̃(0). Similarly, one can define ψ̃(ξ) = eµ−(ξ+kℓ)ψ(ξ), let ψ̃(−kℓ) = (λ + δ, µ−, 0),

note that ψ̃ξ = (B(ξ)+λC+µ−I)
⊤ψ̃, and solve this equation forward to obtain ψ̃(0); finally

one defines D̃(λ) to be ψ̃(0)⊤X̃(0). Since D̃(λ) = eµ−(kr+kℓ)D(λ), the two functions have the
same winding number about 0 on Γ.

We now show some computational results with (β, ū1, κ) = (1, 0, 0).
The computed curve in the δσ-plane for which traveling waves exist is shown in Figure

5.1.
For point A in Figure 5.1, we computed D̃(λ) on several curves consisting of a right half-

circle centered at z0 = −0.01, together with the vertical diameter of that circle. The numbers
kℓ and kr were increased until the desired precision was achieved. Figures 5.2 and 5.3 show
the images when the radius is 1 and 100 respectively. The winding number about 0 is 1 in
both cases.

For point B in Figure 5.1, the image of the same curve with radius 1 is shown in Figure
5.4. The winding number is 2, because the Evans function has a positive real root. The new
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Figure 5.1. For the system (1.1)–(1.2) with (β, ū1, κ) = (1, 0, 0), pairs (δ, σ)
for which traveling waves exist. Compare Figure 2.1.
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Figure 5.2. For point A in Figure 5.1, the image of D̃(λ) on a right half-circle
of radius 1 centered at z0 = −0.01.
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Figure 5.3. For point A in Figure 5.1, the image of D̃(λ) on a right half-circle
of radius 100 centered at z0 = −0.01.
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root, which causes instability of the traveling wave, crosses the imaginary axis into the right
half-plane at the turning point of the curve in Figure 5.1.
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Figure 5.4. For point B in Figure 5.1, the image of D̃(λ) on a right half-circle
of radius 1 centered at z0 = −0.01.
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Appendix A. Normally hyperbolic invariant manifolds

The tangent space of Rn+m at p ∈ Rn+m, TpR
n+m, is just a copy of Rn+m, but the vectors

in Rn+m are thought of as having tails at p. An element of TpR
n+m is just a pair (p, v)

with v ∈ Rn+m. The tangent bundle of Rn+m, TRn+m, is the union of the spaces TpR
n+m

over all p. More precisely, TRn+m = Rn+m × Rn+m; an element of TRn+m is just a pair
(p, v). If N is a subset of Rn+m, TRn+m|N is the union over all p ∈ N of the TpR

n+m, i.e.,
TRn+m|N = N × Rn+m.

Now let N be a smooth submanifold of Rn+m of dimension m. TpN is just the m-
dimensional subspace of TpR

n+m consisting of vectors tangent to N at p. The tangent
bundle of N , TN , is the union over all p ∈ N of the spaces TpN . More precisely,

TN = {(p, v) ∈ R
n+m × R

n+m : p ∈ N and v is tangent to N at p}.

TN is a subbundle of TRn+m|N . In general to define a k-dimensional subbundle B of
TRn+m|N , choose, for each p ∈ N , a k-dimensional subspace Bp of R

n+m; then B = {(p, v) :
p ∈ N and v ∈ Bp. The subspace Bp must depend smoothly on p, i.e., B must be a smooth
submanifold of TRn+m of dimension k +m. Each space Bp is a fiber of B, and the division
of B into fibers is called a fibration.

Let B and C be two subbundles of TRn+m|N . We write TRn+m|N = B ⊕ C if for each
p ∈ N , TpR

n+m = Bp ⊕ Cp. This is called a splitting of TRn+m|N .
If g : Rn+m → Rn+m is a smooth function, then its derivative at p, Dg(p) is an (n+m)×

(n+m) matrix that induces a linear map from TpR
n+m to Tg(p)R

n+m, given by Dg(p)v = w.
Let ṗ = f(p) be a differential equation on Rn+m (dot is derivative with respect to t),

and let φt be the flow (i.e., φt(q), with q fixed, is the solution of the initial value problem
ṗ = f(p), p(0) = q).

Let N be a compact submanifold or submanifold with boundary of Rn+m that is inflowing
invariant under ṗ = f(p), i.e., at points p on the boundary, f(p) points into the interior of
N . N is called a normally hyperbolic invariant manifold if there is a splitting TRn+m|N =
S⊕U⊕TN , such that under Dφt, as t increases, all vectors in S shrink at a faster exponential
rate than any vector in TN , and as t decreases, all vectors in U shrink at a faster exponential
rate than any vector in TN . There are less restrictive definitions, but this one suffices for
our purposes. The spaces Sp (respectively Up) are called stable (respectively unstable) fibers.

The requirement that N be inflowing invariant is easily relaxed; for example, one has
normally invariant manifolds of equilibria. We will ignore this technicality.
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Normally hyperbolic invariant manifolds have stable and unstable manifolds with flow-
preserved fibrations, and the whole structure persists under perturbation. This structure is
most easily described in local coordinates.

Let ṗ = f(p, ǫ) be a differential equation on Rn+m with parameter ǫ, and let φt
ǫ be the

flow (i.e., φt
ǫ(q), with ǫ and q fixed, is the solution of the initial value problem ṗ = f(p, ǫ),

p(0) = q). LetN0 be a normally hyperbolic invariant manifold for ṗ = f(p, 0) of dimensionm,
and suppose the fibers of S (respectively U) have dimension k (respectively l), with k+l = n.
Near a point of N0 one can choose ǫ-dependent Fenichel coordinates p = (x, y, z, ǫ) ∈ Rk ×
R

l × R
m × R such that, for small ǫ, ṗ = f(p, ǫ) becomes

ẋ = A(x, y, z, ǫ)x, (A.1)

ẏ = B(x, y, z, ǫ)y, (A.2)

ż = h(z, ǫ) + xTC(x, y, z, ǫ)y; (A.3)

the matrices A and B are k × k and l × l respectively, and C is an m-tuple of k × l re-
spectively. One cannot assume that A(0, 0, z, 0) has eigenvalues with negative real part or
that B(0, 0, z, 0) has eigenvalues with positive real part, since the exponential convergence
of vectors under the linearized flow need only occur as t → ±∞. Nevertheless, this is true
in the examples below.

We list some facts and terminology.

(1) For each ǫ, the subspaces y = 0, x = 0, and their intersection are invariant. For fixed
ǫ, the set {(x, y, z) | x = 0 and y = 0} (dimension m) corresponds to part of a nor-
mally hyperbolic invariant manifold Nǫ; the set y = 0 (dimension m+k) corresponds
to part of the stable manifold of Nǫ, W

s(Nǫ); and the set x = 0 (dimension m + l)
corresponds to part of the unstable manifold of Nǫ, W

u(Nǫ).
(2) If (x(t), 0, z(t)) is a solution in W s(Nǫ), then (0, 0, z(t)) is a solution in Nǫ; and if

(0, y(t), z(t)) is a solution in W u(Nǫ), then (0, 0, z(t)) is again a solution in Nǫ. Thus
each solution in W s(Nǫ) (respectively W

u(Nǫ)) approaches exponentially a solution
in Nǫ as time increases (respectively decreases).

(3) Given a point p = (0, 0, z0) in Nǫ, the stable (respectively unstable) fiber of p is the
set of all points (x, 0, z0) (dimension k) (respectively (0, y, z0) (dimension l)). For
each t, the time-t map of the flow takes fibers to fibers; in this sense, the fibration
is flow-invariant. Solutions that start in the stable (respectively unstable) fiber of
p approach the solution that starts at p exponentially at t increases (respectively
decreases).

Examples:

(1) A hyperbolic equilibrium is a hyperbolic invariant manifold of dimension 0.
(2) Suppose N0 is a compact manifold of equilibria of dimension m, and each equilibrium

in N0 has k eigenvalues with negative real part and l eigenvalues with positive real
part. Then N0 is a compact normally hyperbolic invariant manifold. The stable
(respectively unstable) fiber of a point p in N0 is just its stable (respectively unstable)
manifold. In (A.3), h(z, 0) ≡ 0.

(3) Fast-slow systems. Consider the system

ẇ = f(w, z, ǫ), (A.4)

ż = ǫg(w, z, ǫ), (A.5)
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with w ∈ Rn, z ∈ Rm, and 0 ≤ ǫ < ǫ0. System (A.4)–(A.5) is a fast-slow system; w is
the fast variable and z is the slow variable. The fast limit is (A.4)–(A.5) with ǫ = 0.
If 0 is a regular value of f , then {(w, z) : f(w, z, 0) = 0} is a manifold of dimension m
called the slow manifold. The slow manifold is the set of equilibria of the fast system.
Let N0 be a compact subset of the slow manifold that is a manifold with boundary of
dimension m. N0 is normally hyperbolic if there are numbers k and l with k + l = n

such that at each point (w, z) of N0, Dzf(w, z, 0) has k eigenvalues with negative real
part and l eigenvalues with positive real part. By the Implicit Function Theorem, N0

can be described as w = χ(z, 0). Then for ǫ > 0 small there is a normally hyperbolic
invariant manifold Nǫ near N0, given by w = χ(z, ǫ).

The name “geometric singular perturbation theory” comes from the fact that after a
rescaling of time, (A.4)–(A.5) can be rewritten as

ǫẇ = f(w, z, ǫ), (A.6)

ż = g(w, z, ǫ), (A.7)

which is a singularly perturbed system.
In Example 3, Nǫ is given by an expansion w = χ0(z) + ǫχ1(z) + . . ., and the system

restricted to Nǫ, with coordinate z, is given by

ż = ǫg(χ0(z) + ǫχ1(z) + . . . , z, ǫ) = ǫg(χ0(z), z, 0) +O(ǫ2). (A.8)

Thus, after division by ǫ, system (A.4)–(A.5) restricted to Nǫ is given by ż = g(χ0(z), z, 0)+
O(ǫ). The differential equation ż = g(χ0(z), z, 0) is called the slow equation.
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