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Abstract 

The Equine Transeva Technique (ETT), is a novel electrotherapy, which utilises pulsating current 

electrotherapy to target sensory and motor neurons. The technique may facilitate increased 

circulation and correction of musculoskeletal issues and injuries, such as tendon and ligament tears 

and muscle atrophy. Despite the importance of understanding the impact of ETT on horses, no 

current scientific research exists in this area. This preliminary study investigated the effects of 

ETT on the musculoskeletal system of the horse, specifically within the Gluteus superficialis (GS). 

Using surface electromyography, muscle workload was measured in 11 sound and healthy horses 

of varying breeds and disciplines within the inclusion criteria. Integrated electromyography 

(iEMG) calculated the percentage change in maximal contractions before and after ETT treatment 

during one minute trials at 30 second intervals. An ANCOVA determined if these constituted 

significant changes (Bonferroni adjusted alpha: P≤ 0.02). Significant differences in muscle 

workload were found on the left side between pre and post treatment readings across trials 

(P≤0.02), however no significant changes occurred for the right side. The  majority of horses (82%; 

n=9) experienced bilateral changes, with 78% of these (n=7) exhibiting a negative change in 

muscle worload recorded from the pre treatment condition, which may indicate muscular 

relaxation. The results suggest ETT may have some effect on muscle workload in the athletic 

horse, however further research is needed to confirm the effects observed. Future studies should 

include randomising the side which is treated first, a larger sample size, expansion of temporal 

variables and consideration of a longitudinal study to determine if these trends accrue over multiple 

maintenance-purposed treatments. 

Keywords: Electromyography, Equine Therapy, Equestrian Sport, Neuromuscular Physiology 

No conflicts of interest apply to this work. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hartpury University Repository

https://core.ac.uk/display/429305162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1 

Introduction  1 

The Equine Transeva Technique (ETT) is a method of electrotherapy utilising a high voltage 2 

current which is used to treat various musculoskeletal issues and injuries, such as muscle atrophy 3 

and pathology within the tendons and ligaments in humans (Arnold, 2016).  This technique was 4 

first used in horses in the 1980s and is becoming more widespread as an adjunct treatment to 5 

maintain the current level of performance in the equine athlete, however this is not evidenced in 6 

scientific literature; despite the use of ETT within equestrianism, limited studies have investigated 7 

the short and long-term impact of the technique. The ETT machine produces twin peak 8 

monophasic waveforms that are reported to stimulate the sensory and motor neurons within soft 9 

tissue structures and in turn facilitate increased circulation (Arnold, 2016). The modality is thought 10 

to allow a higher voltage to be used compared to models such as Transcutaneous Electrical Nerve 11 

Simulation (TENS), which is believed to produce a more forceful current, however this is also 12 

currently unfounded due to the lack of research into ETT. Cyclic contraction and rest periods target 13 

sensory and motor neurons, communicating with the brain and spinal cord, to react via the motor 14 

circuits, which are responsible for locomotion (Kanning et al., 2010; Sandoval et al., 2010).  15 

An ETT treatment consists of an electrical impulse emitted by ETT through the positively charged 16 

hand piece, creating rhythmic muscular contractions with the aim of normalising muscular tone. 17 

The use of ETT in a rehabilitation programme is similar to other electrotherapy methods in that 18 

the treatment is concentrated around the identified lesion or injury (Tabor et al., 2020). When 19 

muscle deteriorates, or wastage occurs such as that seen in  muscle pathologies (Tabor and 20 

Williams, 2018) it is commonly associated with a decreased cross-sectional area (Kouw et al., 21 

2019; Mukund and Subramaniam, 2020) and in humans, this has been correlated with pain (Hides 22 

et al., 1996). The presence of pain can alter movement patterns and induce loss of performance 23 

(Scheven, 2010). While electrotherapy can be useful in such cases, the presence of pain should 24 

always be evaluated by a veterinarian prior to treatment to identify indications or contraindications 25 

present (Adair and Phillips, 2018).  26 

Evidence surrounding therapies for equine musculoskeletal conditions, including altered muscular 27 

function and muscle atrophy is limited, however translation of research that has been conducted 28 

on human subjects can assist clinical reasoning when selecting appropriate interventions for 29 

treatment in horses (Tabor, 2018). Current knowledge of ETT is sparse, with little known about 30 

the precise mechanics of ETT or how the technique impacts muscle physiology. Previous case 31 

studies on South African racehorses have reported that ETT is successful in treating soft tissue 32 

injuries, including muscle, tendon and ligament lesions (Arnold, 2016). Because this has not been 33 

objectively validated, there is a need for investigation surrounding how this therapeutic method 34 

impacts the musculoskeletal structures. With the spread of the technique and its arrival into the 35 

equine electrotherapy market, this investigation focused on identifying what effect, if any, the 36 

technique has on one of the main hindlimb locomotor muscles responsible for power generation 37 

and contractile force (Leisson, Jaakma and Seene, 2008).  38 

This study aimed to evaluate if ETT increases motor neuron activity in the horse and determine 39 

the duration of any effects observed, using integrated electromyography (iEMG). We hypothesised 40 

that the muscular workload would vary substantially between horses, but that changes would occur 41 

between pre and post treatment trials. 42 

 43 
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Methods 44 

Ethical approval for the study was granted by the Hartpury Ethics Committee. 45 

Subject Criteria  46 

Data were collected from 11 horses (mean age: 10.8 ± 3.1 years, mean height: 164.4 ± 4.1cm, sex: 47 

6 mares, 5 geldings, of various breed). Horses included met strict inclusion and exclusion criteria 48 

in order to increase the validity and reliability of results within subjects (Table 1) (Nankervis et 49 

al., 2015). This allowed increased accuracy in comparison of horses due to  similar fitness levels 50 

and body composition (Huber et al., 2011). The horses had no clinical signs of pain and consent 51 

for participation was gained as required by the UK Veterinary Surgeons Act (Exemptions) Order 52 

2015. Horses were previously habituated to the ETT technique having undergone a minimum of 53 

one ETT treatment in the last 12 months, but not within the six weeks prior to this study 54 

(Petropoulos et al., 2014). 55 

 56 

Table 1: Inclusion and exclusion criteria for participants 57 

Inclusion Exclusion 

Minimum of 1 ETT treatment in the last 12 

months, but not within the 6 weeks prior to the 

study 

Pain or lameness 

Sound/Pain free Significant muscular atrophy in hindquarters 

152.4-182.9cm in height No exposure to ETT in last 12 months 

Mare or Gelding Any previous neurological diagnoses 

7-20 years of age (ideal 10-15) Not in regular exercise (less than 3 sessions per 

week) 

In regular exercise (minimum 3x/week) Less than 152.4cm or over 182.9cm in height 

 Less than 7 years of age or over 20 years of age 

 58 

Subject Preparation  59 

Horses were restrained with a halter and either placed into secure cross ties or tied in an enclosed 60 

stable depending on which method was used in the horse’s normal environment (Jonckheer-61 

Sheehy and Houpt, 2015) (Myers, 2005). The horse was required to be standing square, with a 62 

neutral head and neck position (Alvarez et al., 2006). In order to prevent factors that may influence 63 

muscle movement, stimuli around the horse i.e. distracting sounds and peers were removed as 64 

much as possible (von Borstel et al., 2010). The practitioner stood at the caudal end of the horse 65 

and the researcher stood at the cranial end of the horse during data collection trials to monitor any 66 
movement that might compromise the data. A single researcher placed one surface 67 

electromyography sensor (sEMG), to minimise variance of placement, using the tuber coxae, tuber 68 

sacrale and tuber ischii as bony landmarks to locate the belly of the left and right GS (Williams et 69 

al., 2013). A chalk outline of the muscle was then drawn based on anatomical landmarks in relation 70 

to the belly of the muscle to ensure correct placement (Zaneb et al., 2009). The determined sensor 71 

location was shaved to 0 mm hair length using a disposable razor, and a 70% isopropyl alcohol 72 

skin wash was applied with a cotton pad to the shaved area and allowed to evaporate before 73 
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attaching the sensors (De Luca et al., 2010; Williams, 2018). The sensor was aligned with the 74 

muscle fibre direction, positioning the arrow towards the hock (Zsoldos et al., 2018) and secured 75 

using the system’s own adhesive backing. All sEMG data collection and analysis were conducted 76 

in line with Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM) 77 

guidelines (SENIAM, 2020).  78 

Data Collection Trials  79 

Data were collected using one sensor on each GS from the Delsys, Trigno™ sEMG system 80 

(Boston, MA, USA). An initial bilateral sEMG reading, lasting 60 seconds, was recorded to 81 

ascertain each horse’s pre treatment muscle activity allowing data to be normalised to the 82 

maximum contraction (Hanon et al., 2005). This was repeated with a 30 second break in between 83 

each trial to gain a total of three 60 second trials and if the horse moved prior to the 60 second 84 

mark, the timer was restarted in order to form the true static baseline. The horse then underwent a 85 

15-minute ETT treatment on the left hindquarter with the sensors remaining in situ for the duration 86 

of the treatment to achieve a prompt recording immediately following treatment (Figure 1). The 87 

practitioner moved the hand piece, which served as the electrode, over the area. As per the ETT 88 

equipment requirements, and completion of an electrical circuit and thus conductivity, was 89 

established via a second electrode at the withers (a metal plate underneath a by a saline soaked 90 

towel). A saline wash was applied to the area of treatment (GS) however this was avoided in the 91 

region of the sEMG sensor. A trial recording was then taken from the left sensor immediately after 92 

the treatment, giving the therapist a 15 second countdown to remove the machine and immediately 93 

begin the sEMG recording (Williams et al., 2013). Two additional left side trials were conducted 94 

with 30 second intervals between 60 second recordings. An identical process was then conducted 95 

on the right GS including treatment and data collection trials.  96 

Figure 1: Experiment set up during treatment between pre-treatment and post-treatment trials. In this 97 
image, the therapist is treating the hindquarter with the handheld device which is connected to the metal 98 
plate on the wither; the sEMG sensor can be seen above the practitioner’s hand. 99 

Data Processing  100 

The raw EMG traces were exported into Delsys EMG Works™ Version 4.3.2 for analysis. An 101 

initial bandpass filter embedded in the processing software (www.delsys.com/emgworks) was 102 

applied to the data to remove noise (5-420Hz) which could alter the processing and analysis (De 103 

Luca et al., 2010). Any trials not reaching 60 seconds or having clear abnormalities as detailed in 104 

the inclusion criteria (Table 2) were securely discarded (Walker et al., 2014). Visual assessment 105 

identified the first eight consecutive peaks representing the onset and offset of muscle activity, and 106 

these were isolated and quantified, an approach which has been validated by Zsoldos et al (2010) 107 

for the purpose of identifying muscle activity within repeated measures. To allow for further 108 

comparison between trials, integration of the full wave rectified signal (iEMG) was performed to 109 

determine the percentage of difference to maxima for contractions (Hug, 2011; Delsys®, 2013). 110 

The same process was then repeated for post treatment trials, (Hug, 2011). Amplitude minima, 111 

amplitude maxima and amplitude mean of the first eight peaks of each trial were measured and 112 

recorded in MS Excel 2019 (Microsoft, Redmond, WA, USA) prior to statistical analysis. 113 

Median±IQR and the percentage change from pre to post treatment trials GS were calculated. 114 

 115 

 116 

 117 
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 118 

Table 2: Data inclusion and exclusion criteria 119 

 120 

Data Inclusion Criteria Data Exclusion Criteria 

Horse standing square during collection Hind legs uneven during collection 

Neutral head and neck positioning during 

collection 

Head and neck position elevated or drastically 

lowered 

60 seconds of recorded data for each trial  Movement during collection 

 Electrode not flush with skin or adhesive 

comes loose during or immediately after 

collection 

 Horse exhibits anxious behaviour during 

collection 

 121 

Statistical Analysis  122 

Data were analysed using Statistics for Social Scientists (SPSS, Version 26; Chicago, IL, USA). 123 

Data met non-parametric assumptions in a Kolmogorov-Smirnov test (P≤0.05)(Liang, Fu and 124 

Wang, 2019; Yilmaz, 2019) therefore a series of Wilcoxon Signed Rank analyses determined if 125 

significant differences occurred from pre-treatment (PreTx) to post-treatment (PostTx) values in 126 

peak iEMG contractions, for individual horses and across the cohort (van Doorn et al., 2020). Due 127 

to the potential for type I errors or false positives, given the sample size and repeated trials, a post 128 

hoc Bonferroni correction was applied resulting in a revised significance of P≤0.02 (Chan et al., 129 

2020).  The Bonferroni adjustment was required due to aspects such as discipline, age and sex that 130 

cause an inherent variability between horses (North and Hoffman, 2017; Vermeulen et al., 2017). 131 

Reliability between trials was assessed using Cronbach’s Alpha (de Vet et al., 2017). Friedman’s 132 

analysis with post hoc Wilcoxon Signed rank analyses tested if differences occurred between trials 133 

across the cohort (significance: P<0.05) (Lopez-Vazquez and Hochsztain, 2019).  134 

Results 135 

Across the cohort, a reduction in muscle workload and maximum contraction occurred in (GS) 136 

responses after treatment (PostTx)(Left: 1.41 ± 0.02%; Right: 0.09 ± 0.2%); these changes were 137 

statistically significant on the left side (ANCOVA: P≥0.02). Reliability of repeated measurements 138 

within horses and across the cohort was poor (Cronbach’s Alpha coefficient: 0.33; P≤0.02). All 139 

data below are presented as medians ± interquartile range (IQR) unless otherwise stated. 140 

Cohort Results  141 

Across the cohort, horses recorded a reduction in normalised maximum dynamic contraction 142 

PostTx (0.02 ±5.81%) compared to PreTX trials, however this was only found to be significant on 143 

the left side (P≤0.02). Across the cohort, 64% of horses (n=7) exhibited a decrease in muscle motor 144 

neuron activity (MNA) from PreTx to PostTx trials on the left GS (PreTx: 9.52 ± 0.76; PostTx: 145 

6.83 ± 2.04). This percentage increased for the right GS, where 73% of horses recorded a decrease 146 

(n=8; PreTx: 9.82 ± 0.55; PostTx: 9.65 ± 0.54). The reported changes were bilateral in 82% of the 147 

horses (n=9), with 78% of these (n=7) exhibiting a negative change (Table 3). It should be noted 148 

that a high degree of variability was observed in muscle MNA, both within and between horses 149 

across the cohort, in the PreTx and PostTx trials.  150 
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Table 3: The mean percentage of difference in muscular workload within each horse from PreTx 151 

to PostTx trials. Laterality or handedness of difference in magnitude shows intra-horse side 152 

differences.  153 

Individual Horses  154 

GS MNA decreased sequentially across the three trials or decreased by trial three from pre 155 

treatment readings in all horses except horses four and six. This reduction occurred across all other 156 

subjects, but the magnitude of responses varied based on the individual (Table 3, Figure 2). A 157 

pattern of differences in muscle MNA occurred between each PostTx trial: Trial 1: 9.62 ± 3.11; 158 

Trial 2: 8.23 ± 2.38, a 14.4% reduction from trial one; Trial 3: 4.75 ± 3.85, a 42% reduction from 159 

trial two and a 51% reduction from trial one. Irrespective of these trends, there was no significant 160 

difference between the trials (Friedman's: P>0.05). 161 

Intra-Subject Trends 162 

Variation in stimulated muscle activity was observed across horses, with the majority of horses 163 

demonstrating a larger change on one side compared to the other. Horse one presented with the 164 

largest negative change out of the cohort from pre-treatment (PreTx) to post treatment (PostTx) on 165 

the right GS (5.81%) (Figure 2) and horse five exhibited the largest negative change on the left GS 166 

at 5.55%, however in this case the right side change was marginal at 0.03% (Table 1, Figure 2). 167 
Horse two showed the smallest percentage change on the right GS at 0.02%, but the left GS was 168 

the second highest negative change at 3.63% (Figure 2). While the majority of MNA percentage 169 

changes were bilaterally negative, in 64% of horses (n=7) one side differences were marginal 170 

(≤0.04%) and the other side experienced > 2% change (Table 1). Horse 11 was unique in that it 171 

showed nearly identical negative changes bilaterally, with the left presenting a -2.76% difference 172 

and the right a -2.9% difference from PreTx to PostTx. Horses 6 and 9 were the only individuals 173 

to both present bilateral positive changes (Table 3, Figure 2).  174 

Figure 2: Median Amplitudes PreTx and PostTx for horses one, two, five, six, nine and eleven. 175 

 176 

 177 

Discussion  178 

Significant differences in muscle MNA were only identified on the left side between pre and post 179 

ETT treatment, however an overall trend for reduced MNA post treatment was observed. The 180 

primary proposition for this unilateral response is that the left side was treated first across the 181 

cohort, and the ETT may have had contralateral effects, leading to a smaller measured change 182 

within the right side (Minetto et al., 2018). Research has identified that contralateral exercise 183 

improved range of motion, which can be justified within the bilateral fascial connections (Fermin 184 

et al., 2018). This link may explain why the left side, which was treated first, showed significance 185 

after the Bonferroni adjustment and the right side did not if the effect of the treatment crosses the 186 

sagittal plane via the fascia (Scott and Swenston, 2009). Simultaneous measurement of both left 187 

and right hand sides of muscles would be beneficial in future studies to identify the full influence 188 

of the treatment.  189 

While statistical significance has provided a universal framework for researchers, when analysing 190 

determinants of performance, small changes can translate to functional differences being observed, 191 

Commented [J1]: table titles above them 
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despite no significant differences being recorded (Quintana, 2018). Therefore although 192 

significance differences in MNA were not present in all parts of this sample, the descriptive 193 

differences observed could be indicative of functional changes occurring in the muscle in response 194 

to ETT accordance representing minimum clinically important differences (MCID) (Copay et al., 195 

2007; Ruhdorfer, Wirth and Eckstein, 2015) and contributing to overall performance gains within 196 

the context of marginal gains theory (Quintana, 2018). The determinants of MCID are subjective, 197 

patient led responses which identify the smallest change that is considered worthwhile (Torrens, 198 

Guirro and Santana, 2016; Sedaghat, 2019). Due to the subjective nature of this measure, it is not 199 

possible to determine this in the horse apart from the view of the owner or rider, however it is a 200 

consideration in evaluating the controversial correlation between statistical significance and 201 

functional improvement (Guzik et al., 2019; Okoroha et ak., 2019).  202 

Marginal Gains Theory  203 

The marginal gains theory postulates that improvements in individual areas by just 1% can 204 

accumulate to a large improvement in performance (Hall, James and Marsden, 2012). Therefore 205 

with this approach, change may still be meaningful when unaccompanied by a significant visible 206 

outcome, as consistency comes from the aggregation of multiple marginal gains (Durrand, 207 

Batterham and Danjoux, 2014). This method has been widely accepted in biomedical science, 208 

relating marginal gains to enhanced recovery after an operation (Fleming et al., 2016; Khuddus, 209 

Truesdell and Kirtane, 2020; Leng and Mariano, 2020).  210 

Within this study, the horses underwent a full body treatment after data collection, but for the 211 

purposes of this study, only data from the GS was recorded. With significant effects being seen on 212 

the left side, marginal gains may be achieved through each treatment with the ETT; the aggregated 213 

effect in multiple muscles may result an improvement in functionality and overall performance 214 

(Nierenberg et al., 2015; Chapman et al., 2016; Liyanage, 2017). The majority of horses exhibited 215 

marginal changes in GS muscle MNA, either unilaterally or bilaterally within one 15 minute ETT 216 

treatment. The GS is only one muscle in a large interlinked system in the horse, it is possible that 217 

this change among multiple muscles produced during a full body treatment may contribute to 218 

functional changes (Leisson, Jaakma and Seene, 2008).  219 

 220 

Trends Observed  221 

One of the objectives in this study was to identify whether changes produced by the ETT were 222 

sustained for more than 60 seconds post treatment. PostTx trials recorded reductions in GS MNA 223 

lasting into trial three, which began at three minutes PostTx; however these decreases were not 224 

found to be significantly different to PreTx values.  The time period used here may not have been 225 

sufficient to provide a full picture of the effect of treatment, thus future research with a longer 226 

observation may exhibit effects lasting for more than four minutes as well as long term impact 227 

needed to substantiate beneficial results of treatment (Pool and Laubscher, 2016). A trend of right-228 

side laterality was observed in the subjects who competed in polo, who had greater changes in 229 

maximal contraction PostTX in the right GS, consistent with the common side of the rider’s swing 230 

and the unilateral compensation and fitness (Brydon, 2016).  231 

Rehabilitation Versus Maintenance  232 
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Within this study all horses were required to have no clinical signs of pain and the participants 233 

were certified by the veterinarian to not be undergoing therapy for rehabilitation purposes which 234 

may have impacted the results (Khalilzadeh and Tasci, 2017). Treatment for the purpose of 235 

maintenance is likely to be used to sustain current performance capabilities, thus horses are already 236 

at an appropriate level of fitness and functionality (Goff, 2016; Tabor, 2018). While this may be 237 

true, the effect of high intensity exercise as seen in training and competition of the equine athlete 238 

often results in muscle fibre damage and associated soreness in the muscle (Hedayatpour, Izanloo 239 

and Falla, 2018). This may be observed in the changes seen in individuals who had just completed 240 

their competition season at the time of data collection, along with those who had been treated every 241 

six weeks for the past 12 months where only minor adjustments were needed. 242 

Limitations 243 

Due to the external nature of sEMG there was variability between each animal, as exhibited by the 244 

poor results of the Cronbach’s alpha (32.8%). This may result from the reduced reliability seen in 245 

EMG when used outside of temporal measures (Lowery, Stoykov and Kuiken, 2003; Felici, 2006). 246 

Factors that influence sEMG signal acquisition include body fat percentage, which may alter the 247 

ability of the signal to reach and return from the muscle effectively, giving skewed results (Felici, 248 

2006; Williams, 2018). Similarly, the fitness level and muscle fibre type are important 249 

considerations due to their individuality and influence on recruitment patterns and neuromuscular 250 

connectivity (George and Williams, 2013; Williams, 2018). Within the demographics of the horses 251 

included, there are differences in each of these factors such as muscle fibre type variations due to 252 

differences in disciplines (McLean and McGreevy, 2010; Williams, 2018). Equine and human 253 

research has shown that EMG signals are highly individual (Patterson-Kane and Firth, 2009; 254 

Williams et al., 2014; Williams, 2018), therefore a within-subjects design was applied, with each 255 

subject acting as their own control (pre-Tx reading) and data collected within a single session to 256 

limit their influence on the results.  The methods used optimised data quality (Felici, 2006), 257 

however it should be acknowledged that the use of one sensor on each muscle gives only a single 258 

snapshot of a limited cross section of muscle fibres. With the large size of the GS, the sensor must 259 

be placed with awareness of topographical specificity in order to avoid cross talk from other 260 

muscles and tendinous insertions (Williams, 2018). Although using only one sensor may have been 261 

a disadvantage, sEMG sensors do allow observation of more motor units than needle methods 262 

(Wijnberg et al., 2003). The goal of measuring changes in horses during maintenance treatments 263 

may have introduced a limitation due to the effect size likely being smaller and more difficult to 264 

identify than in a rehabilitation setting (Khalilzadeh and Tasci, 2017). The possible impact of 265 

laterality may suggest that randomising the order of treatment would yield more consistent results, 266 

whereas this study treated the left GS first on every individual. If laterality and contralateral effects 267 

were controlled for, differential effects from those observed in this study may be observed. 268 

Conclusion 269 

A reduction in motor neuron activity of the GS was found in 82% of horses after ETT treatment, 270 

however these changes were only significant on the left side. Due to this, the primary suggestion 271 

for future research is to randomise the side on which the treatment session begins and to assess the 272 

impact bilaterally throughout the entire duration of data collection. Future research should also 273 

consider the timeline of data collection in an effort to ascertain whether there are long term benefits 274 

and how long the effects of treatment are maintained in the muscle. It may be useful to narrow the 275 

participant criteria to further control for limiting factors such as discipline, timing of data collection 276 
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in reference to competition season, and body fat percentage. While inferences may be made as to 277 

how these data reflect the impact on the GS, further work studying the effects of ETT must consider 278 

the skeletal system as a whole. 279 
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Figure Legend: 

Figure 1-Page 3: Experiment set up during treatment between pre-treatment and post-treatment trials. 
In this image, the therapist is treating the hindquarter with the handheld device which is connected to the 
metal plate on the wither; the sEMG sensor can be seen above the practitioner’s hand. 

 

Figure 2- Page 6: Median Amplitudes PreTx and PostTx for horses one, two, five, six, nine and 

eleven. 

 


