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Abstract

Low dimensional ODE approximations that capture the main characteristics of SIS-type

epidemic propagation along a cycle graph are derived. Three di�erent methods are shown

that can accurately predict the expected number of infected nodes in the graph. The �rst

method is based on the derivation of a master equation for the number of infected nodes. This

uses the average number of SI edges for a given number of the infected nodes. The second

approach is based on the observation that the epidemic spreads along the cycle graph as a

front. We introduce a continuous time Markov chain describing the evolution of the front.

The third method we apply is the subsystem approximation using the edges as subsystems.

Finally, we compare the steady state value of the number of infected nodes obtained in the

di�erent ways.
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1 Introduction

Epidemic processes running on large networks attracted considerable interest in the last decade
[1, 4, 6, 7]. Assuming a simple dynamics at the node level such as the SIS-model, when nodes
can be susceptible or infected, leads to a stochastic process where the structure of the network
will have an impact on how the infection spreads over the network. The mathematical model
describing the process is a continuous time Markov chain with extremely large state space (2N ,
where N is the number of nodes in the network), leading to the master equations that form
a system of linear ordinary di�erential equations (consisting of 2N equations) [10]. Several
dynamical processes running on networks lead to the same kind of mathematical model, for
example other epidemic dynamics, such as SIR (susceptible-infected-recovered) dynamics, spread
of opinions through a population, propagation of neuronal activity on a neural network. Many
models are studied in the monograph [1], the binary-state dynamics is investigated in [5]. The
common feature of these models is that a graph with N nodes is given, and the nodes can be
in one of M states. The transition between these states is described by independent Poisson
processes, the transition rates of which are determined by the state of the neighbouring nodes.
Hence the mathematical model is a continuous time Markov chain leading to the master equations
that form a linear system of MN equations. Solving these even numerically is impossible for the
typical values of N simply due to the large number of equations. Two di�erent approaches are
used to overcome this di�culty. On one hand, the Monte-Carlo simulation of the stochastic
process is carried out to get the average number of nodes in a given state as a function of time.
On the other hand, several low-dimensional ODE systems have been derived as approximate
models that can capture the exact dynamics in terms of the expected values of some well-de�ned
quantities, such as the average number of nodes or edges in a given state. One of the most
important mathematical questions is to establish a relation between the network structure and
the dynamical behaviour of the ODE system describing the process. For random graphs [2]
that can model complex networks, mean-�eld and pair-wise approximation models have been
derived as low-dimensional approximations, see e.g. [5, 6]. In these approximating models
some structural properties of the network, such as the average degree of the nodes, the degree
correlation and the clustering of the network can be re�ected by certain parameters. However,
if the network has a special structure, i.e. it cannot be described as a random graph, then
the use of the above parameters is not su�cient. Moreover, the performance of the mean-�eld
and pair-wise approximations is strongly based on the randomness of the network, see Figure
1 below. This Figure shows that even in the simplest case, when the average degree is n = 2,
the graph is a cycle graph and the SIS dynamics is considered, these approximations fail to
predict the average number of infected nodes. In this paper our aim is to introduce and compare
di�erent low-dimensional ODE approximations when the network is given by a cycle graph and
the process is the SIS dynamics.

The structure of the paper is as follows. In Section 2 we introduce the exact mathematical
model, present the algorithm of the Monte-Carlo simulation and the well known low dimensional
ODE approximations. In Section 3 we derive an approximating master equation, for which the
state space consists of N+1 elements compared to the full state space with 2N states. In Section
4 a new approach is applied that is based on the observation that the epidemic spreads along the
cycle graph as a front. We introduce a continuous time Markov chain describing the evolution
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of the length of the front and use this to get the number of infected nodes. In Section 5 we
apply the subsystem approximation [9] using the edges as subsystems. Finally, in the concluding
section the performance of the di�erent approximations is compared to simulation.

2 SIS epidemic on networks: master equation, simulation and

known approximations

In this Section we introduce the mathematical model that will be dealt with in the paper, then
the algorithm of the Monte-Carlo simulation and the widely used ODE approximations will
be presented brie�y. The SIS type dynamics [3] is considered on a network with N nodes.
The network is given by a graph with N nodes and bi-directional edges and without self-loops.
The dynamics of the process has two key stages: transmission of the disease and recovery of
infectious individuals. Infection is transmitted at rate τ across every (S, I) edge. Infectious
individuals recover at rate γ. Upon recovery, infectious individuals become susceptible again.
Both infection and recovery are modelled as independent Poisson processes. This means that in
a short time interval δt, a susceptible individual with k infectious neighbours becomes infected
with probability 1 − exp(−kτδt), and an infectious individual recovers with probability 1 −
exp(−γδt), independently of the state of its neighbours. The state space is the set {0, 1}N and
the process can be given by a continuous time Markov chain on this state space. The master
equation, forming a system of 2N linear ODEs, is formulated in the next subsection based on
our results in [10]. Solving this system of ODEs is impossible due to the large number of
equations. Therefore other approaches are applied to study the process. The �rst one is to apply
Monte-Carlo simulation that will be presented in Subsection 2.2. Another possibility is to derive
nonlinear ODE approximations of the master equation that will be shown in Subsection 2.3.

2.1 Master equation

The 2N elements of the state space can be grouped into N + 1 subsets as follows: Sk is the set
of

(
N
k

)
states with k number of Is. The elements of the class Sk are denoted by Sk

1 ,Sk
2 , . . . ,Sk

Nk
,

where Nk =
(
N
k

)
. The l-th element of state Sk

j will be denoted by Sk
j (l), thus Sk

j (l) = S if in the

state Sk
j the l-th node is in state S, and Sk

j (l) = I if in the state Sk
j the l-th node is in state I.

Let us denote the probability of the system being in state Sk
i at time t by XSk

i
. Let

Xk := (XSk
1
, XSk

2
, . . . , XSk

Nk

)T

be an Nk-dimensional vector for k = 0, 1, . . . , N . The master equation takes the form

Ẋk = Ak−1Xk−1 +BkXk + Ck+1Xk+1, k = 0, 1, . . . , N,

where A−1 and CN+1 are zero matrices, see [10]. The entries in Ak are responsible for the
infection process, while those in Ck determine recovery. Their exact formulation can be found in
[10]. The matrix Bk is diagonal, with main diagonal −(ek−1Ck + ek+1Ak) where ek = (1, . . . , 1)
is an Nk dimensional vector, every coordinate of which is 1. The master equation can be written
in matrix form as

Ẋ = PX, (1)
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where

P =



B0 C1 0 0 0 0
A0 B1 C2 0 0 0
0 A1 B2 C3 0 0
0 0 A2 B3 C4 0
...

... . . . . . . . . . . . .
0 0 0 0 AN−1 BN


.

We emphasize that even to formulate this matrix for a given graph is far from obvious from the
algorithmic point of view since for a graph with N nodes this is a 2N -by-2N matrix.

2.2 Monte-Carlo simulation

Here we brie�y present the exact algorithm of the simulation, since our approximating results
will be compared to simulation ones. Let us denote the adjacency matrix of the graph by A and
the states of the nodes at time t by x(t) ∈ {0, 1}N . The k-th coordinate of the state vector xk(t)
is equal to 1 if the k-th node is infected, and it is 0 when the node is susceptible. Introducing the
notation x ∗ y = (x1y1, x2y2, . . . , xNyN ) for two N -dimensional vectors x and y, the coordinates
of Ax(t) ∗ (e − x(t)) yield the number of infected neighbours of S nodes and they are zero for
I nodes. In each step of the Monte-Carlo simulation a susceptible node can become infected or
an infected one can become susceptible. In order to decide at which nodes happen transition a
vector r ∈ [0, 1]N containing random numbers is generated. The condition for the change in the
k-th node in the time interval t+∆t can be given in the form

rk < (Ax(t) ∗ (e− x(t))τ + x(t)γ)k ∆t,

where ∆t is chosen to be su�ciently small. Let us introduce the vector v ∈ {0, 1}N , the k-th
coordinate of which is 1, if the above condition holds, that is

v =
1

2
(sign[Ax(t) ∗ (e− x(t))τ∆t+ x(t)γ∆t− r] + e) ,

where the sign function is used coordinate-wise. Clearly, at the node k a change takes place in
the time interval [t, t+∆t] if and only if vk = 1. Thus, after the small time ∆t the state vector
becomes

x(t+∆t) = x(t) + v ∗ (e− 2x(t)), (2)

since the coordinates of e − 2x(t) are +1 or −1 when the corresponding nodes are susceptible
and infected, respectively.

Then starting from an initial state vector x(0) the state vectors at the times ∆t, 2∆t, . . .M∆t
can be determined by (2). Once this algorithm is carried out then it is repeated several times
and the average of the state vectors is taken as an approximation of the process.

2.3 Mean-�eld and pair-wise approximations

Concerning the SIS epidemic on a network the quantity of main interest is the expected value
of infected nodes at a given time t, that is denoted by [I](t). It was generally accepted that this
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function satis�es the di�erential equation

[İ] = τ [SI]− γ[I], (3)

where [SI] denotes the expected value of the SI edges. It was proved rigorously in [10] that
this di�erential equation holds for an arbitrary graph. Obviously, this is not a proper di�erential
equation for [I], because [SI] is also an unknown quantity. To close the di�erential equation we
need to express [SI] in terms of [I]. There is no exact relation between these two quantities,
even for simple graphs, therefore approximating closure relations are used. For a regular random
graph, for which every node has the same degree, denoted by n, a simple heuristic combinatorial
argument yields the following approximate closure relation

[SI] ≈ n

N − 1
(N − [I](t))[I](t).

Using this relation we get the mean-�eld equation

˙̃I = τ
n

N − 1
Ĩ(N − Ĩ)− γĨ (4)

as an approximating di�erential equation, with the new approximate function Ĩ. To see the
accuracy of this approximation, it is usually compared to the Monte-Carlo simulation in the lit-
erature. In the case of a completely connected graph the above relation performs well, while for a
cycle graph its accuracy is poor. For regular random graphs it gives a much better approximation
as it is shown in Figure 1.

The approximation in (4) is based on a relation between [SI] and [I]. Another approach to
close the di�erential equation (3) is to derive an equation for [SI]. This leads to the well known
pair approximations, for a review see [7]. It has been proved in [11] and, by using a di�erent
approach, in [9] that for an arbitrary graph the following di�erential equations hold

˙[I] = τ [SI]− γ[I], (5)
˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]), (6)
˙[II] = −2γ[II] + 2τ([ISI] + [SI]), (7)
˙[SS] = 2γ[SI]− 2τ [SSI], (8)

where [II] and [SS] denote the expected values of II and SS pairs, [SSI] and [ISI] denote
the expected values of these types of triples. This system is still not closed, but using again a
heuristic combinatorial consideration an approximate relation can be derived for the expected
value of this triples, in terms of the expected value of the pairs. These formulas are called
moment closure approximations and take the form [7]

[SSI] ≃ n− 1

n

[SS][SI]

[S]
, [ISI] ≃ n− 1

n

[SI]2

[S]

using that [IS] = [SI]. Substituting these formulas into system (5) - (8) we get a closed system,
that is called the pair approximation model. The comparison of the results obtained by this
approximation and by simulation is shown in Figure 1 for a regular random graph and for the
cycle graph.
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3 Master equation for the number of infected nodes

In this Section we show a new approach to reduce the size of system (1) from 2N to N +1. This
can be achieved by introducing a new Markov chain with state space {0, 1, . . . , N}. Let xk(t)
denote the probability that there are k infected nodes at time t (with a given initial state that
is not speci�ed at the moment). Assuming that starting from state k the system can move to
either state k− 1 by recovery, or to state k+1 by infection, the master equations of the Markov
chain take the form

ẋk = ak−1xk−1 − (ak + ck)xk + ck+1xk+1, k = 0, . . . , N. (9)

It is known [10] that for a completely connected graph with N nodes system (1) reduces to
(9) with coe�cients

ak = τk(N − k), ck = γk for k = 0, . . . , N and a−1 = cN+1 = 0, (10)

by de�ning xk = ekXk, i.e. xk is the sum of the coordinates in Xk.
For homogeneous random graphs, where every node has n(< N) links to other nodes in the

network, the state space is much larger, because the above reduction, based on the symmetry
of the complete graph, cannot be carried out. However, (9) can be used as an approximating
system with the transition rates

ak = τnk
N − k

N − 1
, ck = γk for k = 0, . . . , N with a−1 = cN+1 = 0. (11)

These coe�cients cannot be derived by using the lumping technique introduced in [10], hence
(9) is not an exact system for homogeneous random graphs.

In the case of a cycle graph, which is a regular graph with nodes of degree 2, the above choice
of the coe�cients fails to work, the infection rate ak is overestimated by the above formula. In
this section we show two new approximating formulas for ak that perform signi�cantly better
numerically in the cases we consider.

In order to derive the reduced system (9) from the full system (1) we lump the states in class
Sk together for k = 0, 1, . . . , N . Let us consider the master equation

Ẋk = Ak−1Xk−1 +BkXk + Ck+1Xk+1

belonging to the states in class Sk and take the sum of the equations in this system. Then for
the new probabilities

xk = ekXk = XSk
1
+XSk

2
+ . . .+XSk

Nk

we get
ẋk = ekAk−1Xk−1 + ekBkXk + ekCk+1Xk+1.

Since in every coloumn of Ck+1 there are k + 1 entries that are equal to γ and the other entries
are zeros (see [10]) we have ekCk+1 = (k + 1)γek+1, hence

ekCk+1Xk+1 = (k + 1)γek+1Xk+1 = (k + 1)γxk+1.
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Moreover, we also know from [10] that ekAk−1 = τ ·NSI(Sk−1), where

NSI(Sk−1) = (NSI(Sk−1
1 ), NSI(Sk−1

2 ), . . . , NSI(Sk−1
Nk

))

and NSI(Sk−1
j ) is the number of SI edges in the state Sk−1

j . Hence the above di�erential equation
for xk takes the form

ẋk = τ ·NSI(Sk−1)Xk−1 + ekBkXk + (k + 1)γxk+1.

Since our goal is to derive the reduced system (9) we have to �nd a coe�cient ak for which

τ ·NSI(Sk)Xk = akxk

holds in exact or at least in approximating sense. Let us consider �rst the simplest case of a
complete graph. Then in state Sk

j the number of SI edges is k(N − k) , for any j = 1, 2, . . . , Nk,
implying

NSI(Sk) = k(N − k)ek. (12)

Hence using that xk = ekXk we obtain

NSI(Sk)Xk = k(N − k)ekXk = k(N − k)xk,

yielding ak = τk(N − k) as it was given in (10). For an arbitrary graph the number of SI edges
in the states Sk

j are di�erent for di�erent values of j. Hence instead of (12) we can have only an
approximating equation

NSI(Sk) ≈ eSI(k)ek, (13)

with a suitably chosen arti�cial parameter eSI(k) that will be referred to as average number of
SI edges for the states with k infected nodes. Then repeating the above derivation we arrive to
(9) with

ak = τeSI(k). (14)

In the next two subsections we show two di�erent methods to derive theoretical formulas for the
average number of SI edges eSI(k).

3.1 Approximation of the expected value of the SI edges by state weighting

The main idea here is to express eSI(k) as a weighted average for the states in class Sk as

eSI(k) =

Nk∑
j=1

NSI(Sk
j ) · wkj , k = 0, . . . , N, (15)

where wk is an Nk dimensional vector of weights, and the sum of the weights is 1, i.e.
∑Nk

j=1wkj =
1.

The simplest choice for wk is using equal weights, that is wkj = 1/Nk for all j = 1, 2, . . . , Nk.
If the graph is regular, i.e. all nodes have the same degree n, then simple combinatorial arguments
show that this equal weighting leads to the coe�cients given in (11). Thus we have the following
proposition.

7



Proposition 1 Let us assume that the graph is regular, i.e. all nodes have the same degree n.
If all the weights are equal, that is wkj = 1/Nk, then

eSI(k) =
1

Nk
·
Nk∑
j=1

NSI(Sk
j ) =

n

N − 1
· k · (N − k). (16)

According to our numerical investigation, for random regular graphs the results obtained from
the master equation (9) with coe�cients (11) are in good agreement with simulation. However,
for a cycle graph the performance of (9) is much worse, showing that the choice of equal weights
does not catch the real situation, see Figure 2. The reason of that can easily be seen intuitively.
Namely, those states in Sk where the infected nodes are in one group are much probable than
those where the infected nodes are scattered along the cycle graph.

Now we show a better performing weighting based on the leading eigenvector corresponding
to the quasi steady state. The leading eigenvector of P in system (1) is (1, 0, . . . , 0)T belonging
to the leading eigenvalue λ0 = 0. This eigenvector corresponds to the steady state when all nodes
are of type S. The solution converges to the steady state, however, it takes extremely long time
to get close to this steady state [8]. Therefore the second eigenvalue of P , denoted by λ1, plays
an important role in the long time behaviour of the system, that is it corresponds to the quasi
steady state. We note that this eigenvalue is also close to zero, which is the reason of the fact
that the corresponding eigenvector, v1, yields a quasi steady state.

Instead of �nding the second eigenvalue of P we approximate v1 by the leading eigenvector
of

P̃ =


B1 C2 0 0 0
A1 B2 C3 0 0
0 A2 B3 C4 0
... . . . . . . . . . . . .
0 0 0 AN−1 BN

 ,

that is obtained from P by omitting the �rst row and �rst coloumn and then modifying the
matrix B1 to get a diagonal matrix with main diagonal −e2A1. This ensures that the sum of
the entries in every coloumn is zero. Then zero is an eigenvalue of P̃ and its corresponding
eigenvector u gives a good approximation of v1 once the �rst coordinate of v1 is omitted. This
approach can also be interpreted as the state S0, when all nodes are of type S, is omitted from
the state space. The steady state of this new Markov process is the quasi steady state of the
original one. Now the eigenvector u will determine the weights in eSI(k).

Proposition 2 For an arbitrary graph let us construct the matrix P in the master equation (1)

and let P̃ be given as above. Let u be the eigenvector of P̃ belonging to the eigenvalue 0, and let

uk be the part of u belonging to the states in class Sk. That is u = (u1, u2, . . . , uN )T and uk has

Nk entries. Let wk be the vector of weights given by uk, that is

wk =
uk
ekuk

, k = 1, . . . , N.

If eSI(k) is given by (15), then for all k = 1, . . . , N − 1 we have

eSI(k) = (k + 1) · γ
τ
· ek+1uk+1

ekuk
.
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Proof The eigenvector equation P̃ u = 0 can be written as

B1u1 + C2u2 = 0,

A1u1 +B2u2 + C3u3 = 0,

A2u2 +B3u3 + C4u4 = 0,

...

AN−1uN−1 +BNuN = 0.

The sum of the entries in every coloumn is zero, hence for k = 2, . . . , N − 1 we have ekBk =
−(ek−1Ck + ek+1Ak), moreover, e1B1 = −e2A1 and eNBN = −eN−1CN hold for k = 1 and
k = N . Let us multiply the k-th equation of the above system by ek and substitute these
expressions for ekBk. This leads to

−e2A1u1 + e1C2u2 = 0,

e2A1u1 − (e1C2 + e3A2)u2 + e2C3u3 = 0,

...

eNAN−1uN−1 − eN−1CNuN = 0.

Adding the �rst k equations we get

ekCk+1uk+1 = ek+1Akuk.

Now we can make use of formulas ek−1Ck = kγek and NSI(Sk) = 1
τ · ek+1Ak that were already

used in the beginning of this section and were �rst proved in [10]. Using the �rst one the above
equation takes the form

(k + 1)γek+1uk+1 = ek+1Akuk,

then using the second one

eSI(k) = NSI(Sk) · wk =
1

τ
· ek+1Ak ·

uk
ekuk

=
1

τ
· (k + 1)γek+1uk+1

ekuk
= (k + 1) · γ

τ
· ek+1uk+1

ekuk
.

�
Let us now apply this proposition to cycle graphs with N = 5 and N = 10 nodes, in order

to reduce their master equation to equation (9). In the case N = 5 we get

eSI(1) = 2,

eSI(2) = 3 · γ
τ
· 2τ(3γ2 + 8τγ + 6τ2)

γ(9γ2 + 21τγ + 14τ2)
,

eSI(3) = 4 · γ
τ
· τ(3γ

2 + 10τγ + 8τ2)

2γ(3γ2 + 8τγ + 6τ2)
,

eSI(4) = 2.
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Substituting these values into (14) we get the coe�cients in the master equation (9). It can be
proved that for any value of N we can express eSI(k) as

eSI(k) = (k + 1) · 1
r
· pk(r)
qk(r)

,

where pk and qk are polynomials and r = τ
γ . However, the eigenvector u is used during the

calculation, hence it is computationally impossible to determine the polynomials for large N .
We developed an algorithm that computes the coe�cients of the polynomials, and implemented
it in MATLAB. Using this code the coe�cients eSI(k) and hence ak were determined for a cycle
graph with N = 10 nodes. (The formulas are too long to be presented here.) Then the solution of
the master equation (9) was compared to the solution of the exact system (1), which consists of
210 equations, see Figure 3. The number of infected nodes in the steady state is given accurately
by the approximating system (9), since the coe�cients eSI(k) were determined by the eigenvector
corresponding to the steady state. This also explains why the approximation is less accurate in
the initial stage of the spread of the epidemic.

3.2 Approximation of the expected value of the SI edges by combinatorial

arguments

In the previous subsection the derivation for eSI(k) was based on the eigenvector correspond-
ing to the quasi steady state. Now, we concentrate more on the expanding stage of the epidemic
and start from the observation that the infected nodes form a more or less connected group along
the cycle graph with a few possibly susceptible nodes in it. This observation is based on the fact
that at the initial instant the infected nodes are localized to a few nodes close to each other.
The number of susceptible nodes inside the group is determined by the balance of reinfection
and recovery, that is τeSI(k) = γk holds, where eSI(k) denotes the number if SI edges inside
the group, and k is the number of infected nodes. This implies that eSI(k) depends linearly on
k and the slope of this linear function is γ/τ . Moreover, it is obvious that for one infected node
the number of SI edges is 2, that is eSI(1) = 2, leading to

eSI(k) = 2 +
γ

τ
(k − 1) and ak = τ(2 +

γ

τ
(k − 1)). (17)

In the second stage of the epidemic spread, when the number of infected nodes gets closer to
the steady state the balance of reinfection and recovery is violated. In this stage eSI(k) is more
accurately approximated by (16) with n = 2, which is based on the assumption that there is a
large group of infected nodes with susceptible ones scattered randomly. Hence we have

ak = τ
2

N − 1
· k · (N − k),

when k > k0, where k0 is given by the intersection point of this parabola and the above line, i.e.

2 +
γ

τ
(k0 − 1) =

2

N − 1
· k0 · (N − k0).
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In Figure 4 we plotted eSI(k) in terms of k as it is given by (16) and (17) and also as it is measured
from simulation, see the left panel. (More exactly, the average number of SI edges as a function
of the expected value [I] is measured from simulation. This causes that the theoretical curve in
the right panel does not �t simulation well, that is explained in more detail in the Concluding
section.) In the right panel of the �gure the expected value of the number of infected nodes is
plotted from simulation and as it is obtained from the master equation (9) with coe�cients given
in (16) and in (17).

4 Master equation for the length of the front

In this section a new approach is applied that is based on the observation that the epidemic
spreads along the cycle graph as a front if at the initial instant the infected nodes are localized
to a few nodes close to each other, that will be assumed in the following. First, we consider
the front as a connected part of the cycle graph full of infected nodes. The front propagates
at its two ends, by infecting a new node, or the end points can recover. The recoveries inside
the front will be accounted for in a di�erent way later. We introduce a continuous time Markov
chain describing the evolution of the length of the front. The state space of this Markov chain
is the set {1, . . . , N}. (The front of length 0 is neglected since those simulations, for which the
epidemic does not spread (i.e. the initial infected node recovers before infecting its neighbours)
are discarded.) Let us denote by qk(t), k = 1, . . . , N the probability that the length of the front
at time t is k, meaning that the largest distant between two infected nodes is k. The system can
move from state k either to state k − 1 by recovery at the two end points of the front with rate
2γ, or to state k + 1 by infection with rate 2τ (as it was mentioned above, the recovery of the
inner points will be considered later). The master equations can be then formulated as follows.

q̇1(t) = −2τq1(t) + 2γq2(t),

...

q̇k(t) = 2τqk−1 − 2(τ + γ)qk(t) + 2γqk+1(t),

...

q̇N (t) = 2τqN−1 − 2γqN (t).

(18)

Once this system is solved the expected value of the length of the front can be determined as
m(t) =

∑n
k=1 kqk(t). Now, let us consider the recovery of the nodes inside the front. Based

on simulation results we can claim that the expected value of the number of infected nodes is
proportional to the length of the front, that is there is a constant α, such that

[I](t) = αm(t). (19)

This can be explained by the fact that inside the front a certain part of the infected nodes
recovers. The recovery of infected nodes and the reinfection of susceptible nodes is in steady
state inside the front, yielding that τ [SI] = γ[I], where [SI] is the average number of SI edges
inside the front. The simplest approximation of [SI] in terms of [I] is [SI] = 2[I](m − [I])/m,
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where m is the length of the front. Then equation τ [SI] = γ[I] yields

[I](t) =
(
1− γ

2τ

)
m(t),

that is α = 1− γ
2τ . As we will see in Section 5 the constant α can be determined more accurately,

by simply saying that α = Is/ms, where Is is the steady state value of [I] obtained by solving
(25) and ms is the steady state value of m that will be determined below. For example, in the
case of τ = 5, γ = 1 we get 1 − γ

2τ = 0.9, while α = Is/ms = 0.88. We note that the steady
state Is can also be obtained by determining the equilibrium of the pair approximation (5) - (8).
Thus the theoretical curve in Figure 5 is obtained as follows. First, we solved (18), then the
expected value of the length of the front was determined as m(t) =

∑n
k=1 kqk(t), and �nally [I]

was computed from (19) with α = Is/ms.
Starting from system (18) we can determine the stationary value of the front length analyt-

ically. The largest eigenvalue of the matrix in the right hand side of system (18) is zero, the
remaining eigenvalues have negative real part. Hence the steady state of the system is determined
by the eigenvector u belonging to the zero eigenvalue. It is determined by system

−2τ 2γ 0 . . . 0
2τ −(2γ + 2τ) 2γ 0 . . . 0

...
0 . . . 0 2τ −(2γ + 2τ) 2γ
0 . . . 2τ −2γ

 · u = 0.

Adding the �rst k equations we get that the coordinates of u satisfy −2τuk + 2γuk+1 = 0,
implying uk+1 = uk

τ
γ . Moreover, since u is a probability distribution, the sum of its coordinates

is 1, hence

1 =

N∑
k=1

uk = u1

N∑
k=1

(τ
γ

)k−1
= u1

(
τ
γ

)N − 1
τ
γ − 1

.

Thus the steady state is given by

uk = u1

(
τ

γ

)k−1

, u1 =

τ
γ − 1(
τ
γ

)N − 1
. (20)

This enables us to determine explicitly the expected value of the length of the front in the steady
state as follows.

ms =
N∑
k=1

kuk = u1 ·
N∑
k=1

k
(τ
γ

)k−1
=

1− (1 +N)
(
τ
γ

)N
+N

(
τ
γ

)N+1

((
τ
γ

)N
− 1

)(
τ
γ − 1

) ,

where we used that
N∑
k=1

kxk−1 =
1− (1 +N)xN +NxN+1

(x− 1)2
.

12



The above expression for ms can be easily transformed to

ms = N − γ

τ − γ
+O

((γ
τ

)N
)
.

The performance of this approximation is justi�ed by numerical simulation.
Now our aim is to derive a single (at least approximating) di�erential equation for m that

yields the length of the front without solving system (18) ofN ODEs. Di�erentiating the function
m we get

ṁ(t) =
n∑

k=1

kq̇k(t) = 2(τ − γ)
n∑

k=1

qk(t)+ 2τq1(t)− 2γqN (t) = 2(τ − γ)+ 2γq1(t)− 2τqN (t). (21)

Thus in order to derive a self-contained di�erential equation for m we need to express the
probabilities q1 and qN in terms of m. We will use the functional forms

q1 = L1(m), qN = LN (m).

Based on observations obtained by simulations these functions can be approximated by piece-wise
linear functions satisfying

L1(1) = 1, L1(h1N) = 0, LN (h2N) = 0, LN (N) = uN ,

where h1 and h2 are arti�cial parameters that can be estimated by using the simulation, and uN
is the steady state value of qN given in (20). That is

L1(m) =

{ m−1
1−h1N

+ 1, if 1 ≤ m < h1N,

0, if h1N ≤ m < N .

and

LN (m) =

{
0, if 1 < m < h2N ,
uN (m−h2N)

N−h2N
, if h2N ≤ m < N ,

Thus equation (21) takes the form

ṁ = 2(τ − γ) + 2γL1(m)− 2τLN (m). (22)

Using again (19) with α = Is/ms we obtain [I] as a function of time, and then it can be compared
to simulation. This comparison is shown also in Figure 5, with the parameter values h1 = 0.1,
h2 = 0.9 that were determined based on simulation.

5 Subsystem approximation at the level of pairs

In this section we apply the subsystem approach developed by Sharkey in [9] in the case of a
cycle graph. Now the state place consists of the possible states of each edge. If the k-th node is
in state A and the k + 1-th node is in state B, then we say the k-th edge (linking the k-th and
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the k + 1-th nodes) is in state AB. The probability that this edge is in state AB is denoted by

yk,k+1
AB , where AB can be IS, SI, SS or II. Obviously,

yk,k+1
IS + yk,k+1

SI + yk,k+1
SS + yk,k+1

II = 1 (23)

holds for k = 1, . . . , N , where the edge (N,N + 1) is by de�nition the edge (N, 1). Using the
general subsystem method in [9] the master equations for the probabilities of the states can be
written as

ẏk,k+1
SI = −(γ + τ)yk,k+1

SI + γyk,k+1
II + τyk,k+1,k+2

SSI − τyk−1,k,k+1
ISI ,

ẏk,k+1
IS = −(γ + τ)yk,k+1

IS + γyk,k+1
II + τyk−1,k,k+1

ISS − τyk,k+1,k+2
ISI ,

ẏk,k+1
SS = γ(yk,k+1

SI + yk,k+1
IS )− τyk,k+1,k+2

SSI − τyk−1,k,k+1
ISS ,

ẏk,k+1
II = −(ẏk,k+1

SI + ẏk,k+1
IS + ẏk,k+1

SS ),

(24)

where yk−1,k,k+1
ABC denotes the probability that the triple k − 1, k, k + 1 is in state ABC. Note

that the last equation is the result of the property (23), thus it can be omitted.
To form a self-contained system of di�erential equations at the pair level we apply the Kirk-

wood closure for the probabilities of the triples [9]:

yk−1,k,k+1
ABC = yk−1,k

AB

yk,k+1
BC

yk,k+1
BC + yk,k+1

B¬C
=

yk−1,k
AB

yk−1,k
AB + yk−1,k

¬AB

yk,k+1
BC ,

where yk,k+1
B¬C denotes the probability that the k-th node is in state B, and the k + 1-th node is

not in state C and similarly, yk−1,k
¬AB denotes the probability that the k− 1-th node is not in state

A, and the k-th node is in state B.
yk,k+1
A¬B denotes the probability that the k-th node is in state A, and the k + 1-th node is not

in state B.
Substituting these closure relations into equations (24), we obtain

ẏk,k+1
SI = −(γ + τ)yk,k+1

SI + γyk,k+1
II + τyk,k+1

SS

yk+1,k+2
SI

yk+1,k+2
SI + yk+1,k+2

SS

− τ
yk−1,k
IS

yk−1,k
IS + yk−1,k

SS

yk,k+1
SI ,

ẏk,k+1
IS = −(γ + τ)yk,k+1

IS + γyk,k+1
II + τ

yk−1,k
IS

yk−1,k
IS + yk−1,k

SS

yk,k+1
SS − τyk,k+1

IS

yk+1,k+2
SI

yk+1,k+2
SI + yk+1,k+2

SS

,

ẏk,k+1
SS = γ(yk,k+1

SI + yk,k+1
IS )− τyk,k+1

SS

yk+1,k+2
SI

yk+1,k+2
SI + yk+1,k+2

SS

− τ
yk−1,k
IS

yk−1,k
IS + yk−1,k

SS

yk,k+1
SS .

(25)

We solved this system numerically by using a MATLAB ODE solver. The probabilities of
the pairs yk,k+1

II were obtained from yk,k+1
II = 1 − yk,k+1

SI − yk,k+1
IS − yk,k+1

SS . To calculate the
probabilities ykI at each node (ykI denotes the probability that the k-th node is infected), we

applied the formula ykI = 1
2(y

k−1,k
SI + yk,k+1

IS + yk−1,k
II + yk,k+1

II ). Then the expected value of the
number of infected nodes was determined by [I] =

∑n
k=1 y

k
I . The result is compared to simulation

in Figure 6. The method overestimates the speed of the spread of the disease, but gives a good
approximation for the ratio of the infected nodes of the total population in the steady state. The
steady state value Is was used in Section 4 to determine α in (19) as α = Is/ms.
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6 Conclusion

The goal of this paper was to derive low dimensional ODE approximations that capture the
main characteristics of SIS-type epidemic propagation along a cycle graph. This research is
motivated by the fact that usual ODE approximations, like the mean-�eld equation and the pair
approximation, fail to work for a graph with a special structure. We introduced three di�erent
methods to get the number of infected nodes as a function of time.

The �rst method is based on the derivation of a master equation for the number of infected
nodes. This uses eSI(k), the average number of SI edges for a given number, k, of the infected
nodes. In order to de�ne formulas for this quantity we introduced two di�erent methods. The
�rst method starts from the leading eigenvector of the matrix in the right hand side of the master
equation of the full system. Hence it is computationally demanding, since the dimension of this
vector is 2N . However, in exchange this gives very accurate approximations for small values of
N . On the other hand, a simple formula (17) was derived for eSI(k) based on combinatorial
arguments. This can be easily determined for large N , but it is less accurate. The accuracy of
this method can be increased if we measure eSI(k) as a function of k from simulation and then
derive a better approximating eSI(k) curve. The curve shown in the left panel of Figure 4 shows
the average number of SI edges as a function of the expected value [I], not as a function of the
exact number of infected nodes, k.

Our second approach was based on the observation that the epidemic spreads along the cycle
graph as a front. We introduced a continuous time Markov chain describing the evolution of the
length of the front. The state space of this Markov chain contained N elements, hence the master
equation can be solved for large values of N . This way we got a very accurate approximation
for the length of the front, but then the number of infected nodes was determined as a constant
multiple of the frontlength. The accuracy of the approximation depends on the accuracy of this
constant that is hard to estimate theoretically. We showed two di�erent estimations for the value
of this constant.

The third method we applied was the subsystem approximation using the edges as subsys-
tems. This can be carried out for large values of N since the number of equations is of order N .
This method gives a good approximation for the steady state but does not perform well in the
�rst stage of the spread of the epidemic.

As a comparison of the di�erent methods we computed the steady state value of the num-
ber of infected nodes in �ve di�erent ways: Monte-Carlo simulation, mean-�eld equation, pair
approximation, using master equation (9) with coe�cients given in (17) and �nally using the
subsystem approach by solving (25). The steady state values obtained by these methods are
given in Table 1 for di�erent values of τ (and �xing γ = 1). We can observe that the mean-�eld
equation and the master equation (9) yield similar results, the reason of which can be that both
models are given at the level of nodes and the closure is at the level of pairs. On the other hand,
the pair approximation and the subsystem approach yield also similar values, because both of
them are closed at the level of triples.

15



References

[1] A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks,
Cambridge University Press, Cambridge, 2008.

[2] Bollobás, B., Random graphs, Cambridge University Press, 2001.

[3] Brauer, F., van den Driessche, P. & Wu, J. Mathematical epidemiology, In Lecture Notes
in Mathematics, Springer-Verlag Berlin Heidelberg, 2008.

[4] L. Danon, A.P. Ford, T. House, C.P. Jewell, M.J. Keeling, G.O. Roberts, J.V. Ross, M.C.
Vernon 2011. Networks and the Epidemiology of Infectious Disease, Interdisciplinary Per-
spectives on Infectious Diseases 2011:284909 special issue "Network Perspectives on Infec-
tious Disease Dynamics".

[5] Gleeson JP, High-accuracy approximation of binary-state dynamics on networks, Phys. Rev.
Letters 107 (2011), 068701.

[6] T. House, M. J. Keeling, Insights from unifying modern approximations to infections on
networks, J. Roy. Soc. Interface 8 (2011), 67-73.

[7] M.J. Keeling, K.T.D. Eames, Networks and epidemic models, J. Roy. Soc. Interface 2

(2005), 295-307.

[8] Nåsell I., The quasi-stationary distribution of the closed endemic SIS model, Adv. Appl.
Probab. 28 (1996), 895 � 932.

[9] K. J. Sharkey, Deterministic epidemic models on contract networks: Correlations and unbi-
ological terms, Theor. Popul. Biol. 79 (2011), 115-29.

[10] Simon, P.L., Taylor, M., Kiss, I.Z., Exact epidemic models on graphs using graph automor-
phism driven lumping, J. Math. Biol. 62 (2010), 479-508.

[11] Taylor, M., Simon, P. L., Green, D. M., House, T., Kiss, I. Z., From Markovian to pairwise
epidemic models and the performance of moment closure approximations, J. Math. Biol.

(2012) DOI: 10.1007/s00285-011-0443-3.

16



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

 

MC simulation
mean−field
pair approximation

10 20 30 40 50 60 70 80
t

 

MC simulation
mean−field
pair approximation

Figure 1: The expected value of the infected nodes obtained from Monte-Carlo simulation, from
the mean-�eld approximation (4) and from the pair approximation (5) - (8). The comparison is
shown for a regular random graph (left panel) with N = 500 nodes, average degree n = 5, γ = 1,
τ = 5, and for the cycle graph (right panel) with N = 500, γ = 1, τ = 5.
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Figure 2: The expected value of the infected nodes obtained from Monte-Carlo simulation and
from the approximation (9) with coe�cients (14) given by (16). The comparison is shown for
the cycle graph with N = 500, γ = 1, τ = 5.
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Figure 3: The expected value of the infected nodes given by the exact master equation (1) (red),
by the approximating master equation (9) with coe�cients obtained by state weighting (light
blue) and with coe�cients given by equal weighting (dark blue), and by the mean-�eld equation
(4) (green), for a cycle graph with N = 10 nodes, γ = 1, τ = 5.
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Figure 4: The average number of SI edges in terms of [I], i.e. eSI(k) is shown in the left panel,
as it is obtained from simulation, from (16) and from (17), for a cycle graph with N = 100,
γ = 1, τ = 5. The right panel shows the expected value of the infected nodes given by simulation
and by the approximating master equation (9) with coe�cients given in (16) and in (17).
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Figure 5: The expected value of the infected nodes obtained from simulation (continous red line)
and from the length of the front m(t) using (19) with α = Is/ms. The length of the front is
determined in two di�erent ways: by solving (18) (dashed-dotted blue line) and by solving (22)
with h1 = 0.1, and h2 = 0.9 (dashed magenta line), for a cycle graph with N = 100, γ = 1,
τ = 5.
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Figure 6: The expected value of the infected nodes obtained from simulation and by solving (25),
for a cycle graph with N = 100, γ = 1, τ = 5.
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Table 1: Steady state value of the number of infected nodes for di�erent values of τ as it is
obtained in the following �ve di�erent ways: Monte-Carlo simulation, mean-�eld equation (4),
pair approximation (5) - (8), using master equation (9) with coe�cients given in (17) and �nally
using the subsystem approach by solving (25).

τ Steady state
MC simulation mean-�eld pair approximation master equation subsystem method

2 0.6127 0.7512 0.6666 0.7496 0.6667

5 0.8763 0.9005 0.8889 0.8999 0.8889

10 0.9445 0.9503 0.9474 0.95 0.9474
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