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Abstract

Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate
hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent
species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus
after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identi-
fication of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found
BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these
viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the
first known report of a member of this group of viruses from a potential mammalian host.

INTRODUCTION

The genus Flavivirus within the family Flaviviridae, contains
positive-sense, single stranded, enveloped RNA viruses, many
of which are confirmed arboviruses that circulate between
haematophagous arthropods and vertebrate hosts. Several
well-known members of this genus are important human or
veterinary pathogens, including dengue virus (DENV) [1],
Zika virus (ZIKV) [2], yellow fever virus (YEFV) [3], Japanese-
encephalitis virus (JEV) [4], West Nile virus (WNV) [5] and
tick-borne encephalitis virus (TBEV) [6]. However, not all
Flavivirus spp. are arboviruses and the majority have not
been associated with clinical disease. Several species have no
known vector and are believed to circulate solely within their
vertebrate hosts (often rodents or bats) [7] whilst others are
insect specific [8].

In recent years numerous flaviviruses have been discovered,
including some from aquatic systems and some which may
circulate between marine arthropods and vertebrates [9, 10].
However, the majority of recognized flaviviruses are associated

with terrestrial arthropods and/or terrestrial vertebrate hosts.
Phylogenetic analysis of terrestrial members of the Flavivirus
genus places most viruses into four strongly supported clades,
comprising (1) mosquito-borne viruses (MBFVs), (2) tick-
borne viruses (TBFVs), (3) no-known vector viruses (NKVs)
and (4) insect-specific viruses (ISFVs) [11, 12]. The MBFV
clade is further separated into two sub-clades, one containing
Aedes-associated viruses and the other Culex-associated
viruses. However, several viruses that fall within the Aedes-
associated sub-clade currently have no recognized vertebrate
host, leading to the suggestion that they may represent ISFV-
like viruses that, like the true ISFV's, do not require vertebrate
hosts to circulate [12].

With its tropical climate and position within the Sundaland
hotspot of biodiversity [13], it is perhaps unsurprising that
many Flavivirus spp. have been detected in Malaysia. At least
four human pathogens are known to be present, including
DENYV, JEV, ZIKV and WNYV, although the latter has not been
associated with human disease in Malaysia [14]. In addition,
seven other flavivirus species have been detected in either
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Fig. 1. Map of Borneo with inset map of Kuching and environs, showing rodent sampling sites (maroon circles), with the site where the

BKWV was detected highlighted (black arrow pointing to yellow circle).

putative arthropod vectors or vertebrate hosts, including
several of veterinary significance, namely Tembusu virus
(TMUYV), duck Tembusu virus (DTMUV) and Sitiawan
virus (SV) [14]. Despite this, no novel flaviviruses have been
detected in Malaysian wildlife in recent years. Here we report
the identification of a novel flavivirus from a Muller’s giant
Sunda rat (Sundamys muelleri) detected during a study inves-
tigating the impact of urbanization on rodent-borne diseases.
We described the genome of this novel virus, its relationship
to other known flaviviruses and discuss its potential ecology.

METHODS
Collection of rodents

For a detailed description of rodent collection and
processing, see [15]. In brief, rodents were collected from
the city and environs of Kuching, Sarawak, Malaysia,
between September 2015 and April 2016. Sampling was
conducted at various locations along a ~25km long tran-
sect from Kuching city centre to the Mount Singai region
(Fig. 1). A total of 316 individuals primarily comprised of
two species were collected: Rattus rattus R3 (165 individ-
uals), Sundamys muelleri (100 individuals). Rodents were
humanely euthanized using isoflurane, and blood and organ
samples were collected and stored at =70 °C.

Sample preparation and Illumina sequencing

Serum samples were clarified prior to nuclease treat-
ment with RNase A (Thermofisher), Turbo DNA-free
(Thermofisher) and Benzonase (Sigma), followed by RNA
extraction using the QIAmp viral RNA mini kit (Qiagen).
Reverse transcription was performed using Superscript

III (Thermofisher) and K-8N primer (GACCATCTAGCG
ACCTCCACNNNNNNNN) [16], followed by treatment
with RNase H (NEB). Serum was then pooled, with each
pool containing samples from three to six individuals.
Second-strand cDNA synthesis was performed on the pools
using Klenow DNA polymerase (NEB). This was followed
by a low cycle PCR using Platinum Taq polymerase (Ther-
mofisher) and K primer (GACCATCTAGCGACCTCCAC)
[16]. A detailed protocol is available on request. Following
DNA quantification, pools were prepared for Illumina
sequencing using the Nextera XT library preparation kit
(Illumina) and sequenced on an Illumina MiSeq using a
MiSeq reagent kit V3 600 cycle cartridge (Illumina).

Sequence analysis

Assembly of the novel flavivirus genome was performed by
first trimming raw reads using a sliding window approach
(window size of 10 and quality of above 15), and an eight
base pair hard trim from the leading and trailing bases
using Trimmomatic [17]. Only reads greater than 30bp
were retained for assembly. Metagenomic assembly was
performed using quality trimmed reads with the assem-
bler Megahit [18]. Assembled contigs were annotated using
Diamond against the non-redundant database [19]. A single
contig of 10867 nucleotides with sequence homology to
flavivirus genomes was identified, and the 3" and 5’ ends of
the contig manually inspected/trimmed.

Open reading frames (ORFs) were identified using the
genome browser tool Artemis [20]. Putative peptides,
cleavage sites, cysteine residues and other significant regions
were detected manually by comparison to the genomes of
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closely related flaviviruses, with particular reference to
Barkedji virus (BJV) [21]. Potential N-glycosylation sites
were calculated using the program NETNGLYC 1.0 (http://
www.cbs.dtu.dk/services/NetNGlyc/).

Phylogenetic analysis

A multiple sequence alignment comprising the complete
polyprotein sequence of BKWYV and representative members
of the Flavivirus genus was created using MAFFT v7.388 [22]
(N=71). Ambiguously aligned residues were removed using
GBLOCKS [23], resulting in an alignment 2297 amino acids
in length. A maximum likelihood phylogenetic tree was esti-
mated using IQ-TREE [24] and the Le and Gascuel model of
amino acid substitution with six categories of rate variation
(LG+R6), as determined by ModelFinder [25]. Nodal support
was calculated using 1000 ultrafast bootstrap replicates and
UFBoot2 [26], implemented in IQ-TREE. The resultant tree
was visualized using FigTree v1.4.4 [27] and rooted using
Tamana bat virus (AF285080) as an outgroup.

Molecular screening for novel flavivirus

The spleens and serum from all captured rodents (N=316)
were screened for novel flavivirus RNA. RNA was extracted
from each sample using the RNeasy mini kit (Qiagen) and
reverse transcribed using random hexamers and Superscript
I (Thermofisher). Primers targeted specifically to a 603nt
portion of the NS22B/NS3 region of the novel flavivirus were
designed using the sequence obtained from the Illumina
data (OBK_4571F: CTAGAAGTTGGCAACGGTCAG;
OBK_5173R: GATGGTGGTCTAATACAGTG). PCRs were
conducting using AmpliTaq Gold 360 (Thermofisher) and the
following protocol: 95 °C for 2 mins; 40 cycles of 95°C for 30,
48°C for 30, 72°C for 1 min; 72°C for 7 mins.

RESULTS

Identification and genome characterization of Batu
Kawa virus

During metagenomic analysis of pooled rodent sera, one
long contig (>10kb) was found to have significant sequence
identity to several flaviviruses, which was confirmed to
be a novel virus following interrogation of the complete
GenBank database using BLAST (completed 01 July 2020).
Further processing determined the near complete genome
to be 10867, which includes the complete coding region
(10392 nt) but lacks the extreme 5’ and 3’ untranslated
regions (UTRs) (GenBank accession no. MT762108). The
deduced complete polyprotein of the novel virus is 3464
aa in length and is comprised of the three structural (C,
prM/M, E) and eight non-structural (NS1, NS2A, NS2B,
NS3, NS4A, 2K, NS4B, NS5) flavivirus proteins. Putative
cleavage site analysis suggests that the viral serine protease
is most likely involved in the cleavage of C/anchored capsid
(anchC), prM/M, NS2A/NS2B, NS2B/NS3, NS3/NS4A,
NS4A/2K and NS4B/NS5, whilst anchC/prM, M/E, E/NSI,
NS1/NS2A and 2K/NS4B are most likely cleaved by host

proteases. Each of the putative proteins are comparative in
size to those from related flaviviruses (Table 1).

Several regions conserved within the flaviviruses were
identified in the genome and putative protein sequences of
the novel virus. A conserved region of nine peptides in the
prM protein, critical for flavivirus particle assembly, was
present in the form ERDDIDCWC, identical to that found
in BJV [21, 28, 29], whilst in Nhumirim virus (NHUV),
this motif exists as DRDDIDCWC. A highly conserved
sequence identical to that usually found in mosquito-
borne flaviviruses (DRGWGNGCGLFGK) and thought
to be homologous to the putative fusion peptide, was also
detected in the E protein at positions 98-110. However, the
integrin-binding motif, which is present in the E protein of
several members of the JEV serogroup, was not present and
instead was replaced with MGE at aa positions 390-392.
In the NS1 protein of the novel virus, the corresponding
site to Proline-250, which is implicated in neuroinvasive-
ness in JEV serogroup members [30], could be determined
at position P-248, as also found in BJV (Fig. 2). Evidence
of ribosomal frameshifting in the form of slippery hepta-
nucleotides, as found in the NS2A/NS2B region for other
flaviviruses (i.e. ‘YCCUUUU’ in JEV serogroup viruses;
‘GGAUUUY’ in insect-specific viruses) was not identi-
fied in the novel virus [31, 32]. Several conserved residues
within the putative viral serine protease region [33] were
identified in the NS3 protein, including the proposed cata-
lytic triade (H-47, D-75, S-135), three of the five putative
substrate-binding residues (Y-150, N-152, G-153) and
the ultra-conserved residues of serine proteases (G-133,
S-135, G-136, G-148, L-149, G-153). The RNA helicase
motif DEAH at positions 285-288 was also conserved
in the NS3. In the NS4A protein, the motif required for
successful cleavage of protein 2K [34], is represented by the
motif PDAE (positions 120-123) and the flavivirus-typical
RNA-dependent RNA polymerase motif (residues G-666,
D-667, D-668 [35];) is present in the NS5 protein.

Cysteine residues typical for flaviviruses were found in
several proteins, including prM (six at positions 124, 135,
143, 156, 158, 170), E (12 at positions 3, 30, 60, 74, 92, 105,
116, 121, 190, 294, 311, 342) and NS1 (12 at positions 4,
15,55, 141, 177, 221, 278, 289, 310, 311, 314, 327) proteins
(Fig. 2). Cysteine residues were also identified in other
proteins, including NS3 (nine, including six conserved across
three or more viruses) and NS5 (16, including 12 conserved
across four or more viruses). Potential N-glycosylation sites
were also found in several proteins, including the prM (two,
at positions 31 and 85), NS1 (three likely at positions 129,
205 and 282 and two possible at positions 94 and 288),
NS2A (two at positions 48 and 167), NS3 (two at positions
66 and 499), NS4A (three likely at positions 25, 65 and 218
and one possible at position 21) and NS5 (five likely at posi-
tions 215, 235, 341, 654 and 856 and one possible at position
894). Two of the N-glycosylation sites predicted in the NS1
of the novel flavivirus (at positions 129 and 205) correspond
to two of the three N-glycosylation sites (N-130, N-175 and
N-207) that have been linked to neuroinvasiveness in the
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Fig. 2. Comparison of the NS1 region of BKWV, BJV and NHUV to representatives of the MBFVs (WNV) and ISFVs (Culex flavivirus).
Conserved cysteine residues are shown as grey lines, probable N-glycosylation sites as solid blue arrows, possible N-glycosylation sites
as dashed blue arrows, proline-250 as a solid red arrow, and possible ribosomal frameshift locations as dashed black arrows.

JEV serogroup of viruses [36]. In comparison, only one of
these sites (at position 205, corresponding to N-207) was
predicted to be glycosylated in both BJV and NHUV [21]
(Fig. 2). No N-glycosylation sites were identified in the E
protein, with the highly conserved N-glycosylation site NYS
(aa 154-156) of the JEV serogroup, replaced by DTS.

Although the extreme termini of the 5" and 3" UTRs of
BKWYV could not be resolved, 400 nucleotides of the 3’ UTR
were determined. Within this region the highly conserved
flavivirus sequences CS1 and CS2 [37, 38] were identified
in the forms AGCATATTGACACCAGGGAAAGAC and
GGACTAGTGGTTAGAGGAGACCC at 341 and 294
nucleotides from the 3’ end of the polyprotein sequence,
respectively.

Phylogenetic and sequence analysis of Batu Kawa
virus

Pairwise analysis of the complete polyprotein found that the
novel virus is most similar to NHUV (62.6 and 62.5%) and
BJV (62.2 and 62.4%), at both the nucleotide and amino
acid levels, respectively. The novel virus also clusters closely
with these two viruses in our phylogenetic tree and falls
more broadly within the larger group of ‘insect specific-
like’ flaviviruses, that have not yet been associated with a
vertebrate host (Fig. 3). Based on the ICTV demarcation
criteria for flaviviruses (https://talk.ictvonline.org/ictv-
reports/ictv_online_report/positive-sense-rna-viruses/
w/flaviviridae/360/genus-flavivirus) [39], these sequence

identities, geographic location, and species in which the
novel virus was detected, together indicate that this virus
should be considered a novel species with the proposed
name Batu Kawa virus, and abbreviation BKWV.

Molecular survey of Malaysian rodents for infection
with Batu Kawa virus

Only a single animal (MYR-097) was found to be positive by
BKWV-specific PCR for both spleen and serum. Subsequent
testing of other organs from this animal also found the kidney
to be positive, which was confirmed by sequencing. The posi-
tive animal belonged to the species Sundamys muelleri and
was collected in a green space on the edge of a village in a
suburban area (1.513° N, 110.270° E). Attempts to isolate
BKWYV in Aedes albopictus C636, Vero and BHK-BSR cells
from infected serum and tissues were unsuccessful.

DISCUSSION

Several flaviviruses, many of which are of medical and/or
veterinary importance, have been recorded from Malaysia
[14, 40], but this is the first report of a flavivirus detected in
wild rodents. As BRKWV was only detected in a single Muller’s
giant Sunda rat, it is unknown if this species represents the
natural host of this virus. However, detection of the virus in
multiple organs as well as serum does suggest a genuine infec-
tion in this animal. Muller’s giant Sunda rat is found across
parts of Peninsular and Island Southeast Asia [41], where it
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Fig. 3. Phylogenetic relationships of BKWV and representative flaviviruses (N=71) based on a trimmed alignment of the complete
polyprotein (2297 aa). Bootstrap values are indicated for nodes with 275% support. The position of the mosquito-borne viruses (MBFVs),
tick-borne viruses (TBFVs), no-known vector viruses (NKVs) and insect-specific viruses (ISFVs) are indicated.

shows some degree of adaption to urban areas [42, 43]. In this
study it was found across the transect, including in remnant
green patches within the urban centre of the city of Kuching
[15]. If this rodent species is a natural host of BKWYV, then
the opportunity exists for BKWV to co-circulate in regional
urban areas alongside dengue virus [44]. Several other flavi-
virus species have also been associated with rodents, but
none are closely related to BKWV and most belong either
to the TBFV or NKV clades [7, 45]. As BKWYV falls within a
subclade containing Flavivirus spp. with unknown vertebrate
hosts, no further conclusions can yet be drawn about this rela-
tionship. However, if this is the true vertebrate host of BKWV
itis possible that other species in this ISFV-like’ subclade also
circulate in vertebrates and are not mosquito-specific as has
been proposed [12].

By looking at the closest relatives of BKWYV, BJV and
NHUY, it may be possible to infer some information about
its vector. The former is named for the region where it was
originally identified in Senegal and appears to have a wide
geographic range, having since been identified in Culex
perexiguus mosquitoes in Israel and the United Arab Emir-
ates [21, 46], and (based on sequences available in GenBank)
in C. quinquefasciatus mosquitoes in Oman and Zambia. In

contrast, NHUV has only been detected once in C. chidesteri
from Brazil [47]. This suggests that BKWV most likely
utilizes a Culex sp. mosquito vector. Culex quinquefasciatus
mosquitoes were detected at the same site where the rodent
infected with BKWV was collected (data not published), but
further studies are needed to establish if this species is the
vector of BKWV.

Batu Kawa virus contains numerous conserved sequence
elements that are common to viruses within the genus
Flavivirus and to the MBFVs in particular (Fig. 2). These
include three putative markers in the NS1 protein that have
been related to neuroinvasiveness in JEV serogroup viruses,
namely Proline-250 (at position 248 in BKWV) and the
N-glycosylation sites N-130 and N-207 (at positions 129
and 205 respectively in BKWV) [30, 36]. In comparison,
position 129 was not predicted to be N-glycosylated in
the closest relatives of BKWYV, BJV and NHUYV, due to the
surrounding residues. However, the ribosomal frameshift-
stimulating motif responsible for the generation of the NS1’
protein, which has been experimentally associated with
neuroinvasiveness [48], was not present in either BKWYV,
BJV or NHUV. This suggests that BKWV is unlikely to pose
a public health threat.
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Although BKWYV clusters with BJV and NHUV in a well-
supported clade, it is clearly genetically distinct with both
nucleotide and amino acid sequence identities of <63% to
both viruses. Unfortunately, as attempts to culture this
virus in several cell lines were unsuccessful, further
characterization, including an assessment of its antigenic
relationships, could not be performed. However, as this is
the first flavivirus associated with rodents in Malaysia, and
the first one to be isolated from Muller’s giant Sunda rat,
we propose that BKWV fulfils the ICTV criteria needed to
designate it as a novel species within the Flavivirus genus
[39].

As BKWYV does not group closely with flavivirus species
known to be pathogenic for humans, it is unlikely that
this virus represents a zoonotic threat. However, it does
contain some markers that have been linked to neuroin-
vasiveness and is potentially hosted by a locally common
rodent species that is resident in urban areas. Therefore,
further studies on this virus, including additional isolation
attempts in other cell lines, would be warranted to fully
ascertain its biology, ecology and potential risk to human
and/or animal health.
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