
Analysis and Manipulation of Android
Apps and Malware in Real-Time

Salahuddin Khan
Information Security Department

Royal Holloway, University of London

A thesis submitted for the degree of

Doctor of Philosophy

2018

Declaration of Authorship

I, Salahuddin Christopher Jules Khan, hereby declare that this thesis and the
work presented in it is entirely my own. Where I have consulted the work
of others, this is always clearly stated.

Signed:

Date:

2

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor
Lorenzo Cavallaro, for his continuous support of my Ph.D including his
patience and motivation through very stressful times.

Besides my supervisor, I would like to thank Dr Laura Christie for her guid-
ance and Dr Rebecca Thomas for her mentorship.

I thank the ISG department, in particular, Professor Carlos Cid and Profes-
sor Rainer Dietmann for their sustained support.

Most importantly, I thank my wife, Samira, for her immeasurable support,
encouragement and love, without which my PhD would not have been pos-
sible.

Thank-you Mom and Dad for believing in me and for making me the person
I am today. You are both sorely missed.

3

Abstract

The number of apps in the Google Play store (∼3 million) necessitates an
automated approach towards analysis for security threats. Such analysis re-
lies on the ability to fully comprehend, and potentially modify, the actions
being taken by a given app, whether low-level (system call) or high-level
(services such as SMS or Location). Therefore, this thesis seeks to deter-
mine how accurate and scalable methods for the analysis and manipulation
of Android apps/malware can be constructed that transcend the significant
changes to the Android system through each release.

First, the author describes the potential of utilising a system call only based
approach to reconstructing both low-level and high-level behaviours. A
novel method for automatically reconstructing system call information in
a version-agnostic manner is presented, as is the robust, scalable and exten-
sible framework that enables real-time reconstruction, analysis and manip-
ulation of low-level and high-level operations using this approach. While
prior work does explore utilising a system call based approach it is a prim-
itive implementation supporting a single version of Android and requiring
significant manual effort. While this approach permits automatic system
call reconstruction it cannot reconstruct Binder ICC and Android objects.

Next, the author explores a novel approach for reconstructing Binder ICC
and Android objects through static analysis of the Android framework source
code. This approach precisely determines the relationship between Binder
interfaces and Android objects, permitting automatic generation of recon-
struction code to correctly and efficiently reconstruct Binder ICC in real-
time, integrating the automatically generated code into the framework.

The author demonstrates the efficacy of this design by building an infor-
mation leakage detection plug-in that uses differential analysis to detect
leakage of sensitive information. This plug-in is further extended to test
anti-evasion techniques.

4

Analysis and Manipulation of Android Apps and Malware in Real-Time

Finally, the author discusses utilising the approach in other ways, including
automatically constructing Berkeley Packet Filter support for on-device
analysis.

5

Contents

1 Introduction 19
1.1 Motivation . 26
1.2 Thesis Contributions . 26

2 Background and Related Work 29
2.1 Introduction . 29
2.2 Malware Analysis Techniques . 32

2.2.1 Static Analysis . 32
2.2.2 Dynamic Analysis . 33
2.2.3 Hybrid Analysis . 33

2.3 The Android Emulator . 33
2.4 Related Work . 34

2.4.1 Dynamic Analysis . 35
2.4.2 Static Analysis . 36
2.4.3 Information Leakage . 37
2.4.4 Anti-Evasion . 38

3 Efficient Version-Agnostic Automatic System Call Introspection for Android 40
3.1 Introduction . 40
3.2 Design . 43

3.2.1 Plug-in Manager . 46
3.2.2 The CopperDroid v2 Plug-in 47

3.3 CopperDroid v2 Initialization . 47
3.4 Platform Initialization . 49
3.5 System Call Introspection . 49
3.6 Automatic System Call Reconstruction 51

3.6.1 Generating System Call Information 52
3.6.2 Determining System Call Parameter Direction 53

6

Analysis and Manipulation of Android Apps and Malware in Real-Time

3.6.3 Determining Parameter Types 53
3.6.4 Accessing Guest Data . 54
3.6.5 System Call Reconstruction Code Generation 55

3.7 Serialisation of System Call Data . 57
3.8 CopperDroid v2 Viewer . 57
3.9 Binder ICC Reconstruction . 61

3.9.1 Introduction . 61
3.9.2 The Binder Protocol . 63
3.9.3 Parsing The Binder Protocol 73
3.9.4 Extracting Interface Call Information 75
3.9.5 Serialising Binder Information 76

3.10 Summary . 76

4 Efficient Version-Agnostic Automatic Interface Introspection for Android 78
4.1 Introduction . 78
4.2 Static Analysis of the Android Framework 81
4.3 Abstract Syntax Tree Structure . 81
4.4 CopperDroid v2 Compiler Design . 82

4.4.1 Type System and System Dependency Graph 83
4.5 Unmarshaling Android Interfaces . 86
4.6 Interface Code Slicing . 89
4.7 Interface Code Generation . 96
4.8 Android Object Code Slicing . 96

4.8.1 Overview . 96
4.8.2 Constructing Android Objects 97
4.8.3 Splicing Code into Android Objects 103

4.9 Abstract Syntax Tree Transformation 104
4.9.1 Transforming Java enum’s to C++ 105

4.10 Type Translation . 106
4.10.1 Binder Interface Types . 106
4.10.2 Array Types . 107
4.10.3 Hash Table Types . 107

4.11 Code Generation . 107
4.12 Evaluation . 109
4.13 Summary . 110

7

Analysis and Manipulation of Android Apps and Malware in Real-Time

5 Integrating CopperDroid v2’s Components 111
5.1 Introduction . 111
5.2 Classes that Provide Parity with Java 111

5.2.1 The javaString Class . 112
5.2.2 The Object Class . 113
5.2.3 The TypedArray/TypedObjectArray Classes 114
5.2.4 The HashMap/ObjectValueHashMap Classes 115

5.3 Plug-in Code Generation . 115
5.4 Evaluation . 116

5.4.1 Behaviours . 117
5.4.2 Performance . 117
5.4.3 Extensibility . 122
5.4.4 Use Cases . 122
5.4.5 Limitations . 125

5.5 Summary . 125

6 Information Leakage Detection 127
6.1 Introduction . 127
6.2 Overview . 129

6.2.1 Sources of Non-determinism 130
6.2.2 Sensitive Information Sources 131
6.2.3 Sinks . 131

6.3 Approach . 132
6.3.1 Telephony related information 134
6.3.2 Location Information . 135
6.3.3 Contacts and SMS . 136
6.3.4 Tracking System State . 139

6.4 Controlling Sources of Non-determinism 140
6.4.1 Randomly Generated Values 140
6.4.2 Timing Values . 141
6.4.3 System Related Data . 142

6.5 Detecting Information Leakage . 143
6.6 Evaluation . 146

6.6.1 Experiment Setup . 146
6.6.2 Datasets . 148
6.6.3 Identifying Potentially Leaking Apps 148

8

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.6.4 Results . 149
6.6.5 Record/Replay challenges . 150

6.7 Summary . 151

7 Anti Evasion for Malware Analysis 152
7.1 Introduction . 152
7.2 Evasive Techniques Malware Utilise 153

7.2.1 Static Heuristics . 154
7.2.2 Dynamic Heuristics . 154
7.2.3 Virtualisation Heuristics . 155

7.3 Anti-Evasion built upon CopperDroid v2’s plug-in infrastructure 156
7.4 Summary . 160

8 Discussion 162
8.1 Introduction . 162
8.2 CopperDroid v1 versus CopperDroid v2 162

8.2.1 CopperDroid v1 . 162
8.2.2 CopperDroid v2 . 163

8.3 Supporting On-Device Execution . 164

9 Conclusions and Future Work 168
9.1 Future Work . 169

A Detailed Source Listings 170
A.1 CopperDroid v2 Configuration File Format 170
A.2 CopperDroid v2 Source Listings . 172

A.2.1 Chapter 3 Source Code . 172
A.2.2 Chapter 4 Source Code Listings 180
A.2.3 Chapter 5 Source Code Listings 191

B Additional Figures 195

Bibliography 199

9

List of Figures

2.1 Communication between apps and services on Android 30
2.2 Android Architecture . 31

3.1 CopperDroid v2 Architecture . 43
3.2 CopperDroid v2 Design . 45
3.3 CopperDroid v2 Serialisation File Structure 58
3.4 Lollipop 5.1.1 openat and read of /system/build.prop 60
3.5 Lollipop 5.1.1 Options Dialog showing several interfaces and methods . 61
3.6 Sequence of an app call to IActivityManager getIntentSender and cor-

responding reply . 65
3.7 An example of a Binder transaction that registers a pending Intent with

the IActivityManager that is later used for notification 67
3.8 An example of a Binder reply that receives the information correspond-

ing to the PendingIntent registered with the IActivityManager 67
3.9 Parceling of a call . 72
3.10 Breakdown of a Binder Transaction 74

4.1 High-level representation of class relationships with vertices (methods/-
fields) and edges (field access/method call) 85

4.2 High-level representation of class relationships with vertices (methods/-
fields) and edges (field access/method call) included due to an interface
accessing one of the classes. 87

4.3 Slicing of code and data for an Intent object. 88
4.4 Object Builder Hierarchy for Uri.java 99
4.5 Class Traversal for Uri.java . 100
4.6 Abstract Syntax Tree Transformation for the Uri::Part example shown

in the previous section . 105

5.1 Automatically generated plug-in boilerplate directory/file layout 116

10

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.1 App Process and Thread identification through event analysis 144

B.1 Binder Transaction with inline reply 195
B.2 Binder inline reply . 196
B.3 Binder Transaction with out-of-line reply 196
B.4 Binder out-of-line reply . 197
B.5 Command operations with write_size and write_consumed . . 198
B.6 Return operations with read_size and read_consumed 198

11

List of Tables

1.1 Number of system calls per Android version. 23
1.2 Number of interfaces and calls per Android version. 23
1.3 Number of objects and methods per Android version. 24

3.1 System calls without context. 42
3.2 System calls with process name, process ID and thread ID correctly

determined. 48
3.3 Different formats of SYSCALLS.TXT entries across versions illustrated

by read system call . 52
3.4 Mapping of C types to Protobuf types 55
3.5 System calls that includes the system call names and parameters. 56
3.6 Packed representation of types within a Parcel 73

4.1 The types of transformations used to convert the Java code for interfaces
and objects into equivalent C++ code 104

4.2 System calls with full context further described in Listing 4.12. 108

5.1 Excerpt of the behaviour breakdown on the (potentially) benign apps
and known malware (source: AndroZoo [1]). 118

5.2 Overall Benchmark score for Disk and 2D Graphics performance (10 runs)119
5.3 Performance benchmarks for disk read/write operations 120
5.4 Performance benchmarks for 2D graphics operations 120
5.5 Micro-benchmarks Binder operations (15k runs) 121
5.6 Micro-benchmarks µs breakdown for Binder operations (15k runs) . . . 121

6.1 Comparison of different approaches including the plug-in described in
this chapter [17] . 149

7.1 Static values that malware can query to detect an emulated environment
[84] . 155

12

Analysis and Manipulation of Android Apps and Malware in Real-Time

7.2 Build.Host values for different environments [84] 155

8.1 Comparison of qualitative properties of CopperDroid v1 versus v2 . . . 164
8.2 Performance comparison between CopperDroid v1 versus v2 164

13

List of Algorithms

4.1 Parsing transaction case statement to build transaction unmarshaling code
and reply marshaling code . 93

4.2 Parsing interface method code to build transaction marshaling code and
reply unmarshaling code. 93

4.3 Android object slicing for unmarshaling and marshaling. 103

14

List of Listings

3.1 Determining thread info address using the current stack pointer 48
3.2 Binder ioctl Buffer data . 56
3.3 Portion of the Google protobuf definition file for system call events . . 58
3.4 binder write read structure . 63
3.5 Binder command protocol (code omitted for brevity) 63
3.6 Binder return protocol (code omitted for brevity) 64
3.7 Interface onTransact method prototype 68
3.8 Binder Transaction Data used in Binder IPC 69
3.9 Flat Binder Object used for referencing data specific to either the client

or server . 69
3.10 IActivityManager getIntentSender call parameters 70
3.11 IActivityManager getIntentSender reply data 70
3.12 Sample showing creation of PendingIntents which are used in a SMS

sendText call . 71
3.13 Parcel from a calling sendText on the ISms interface 71
3.14 IInterfaceDataExtractor interface . 76
4.1 Fixed transaction codes used by native code 79
4.2 StartActivity transaction case statement in IActivityManager 80
4.3 IActivityManager stopServiceToken interface method 83
4.4 IActivityManager onTransact stub method case statement for the get-

IntentSender method (code omitted for brevity). 90
4.5 IActivityManager proxy with getIntentSender method (code omitted or

edited for brevity). 91
4.6 IDataExtractor interface which is invoked to extractr the transactions

and replies for a given message . 94
4.7 IInterfacePlugInTransactionData interface for supporting plug-ins mod-

ifying transactions and replies . 95
4.8 Number of instances of Builder nested classes in KitKat and Oreo . . . 98

15

Analysis and Manipulation of Android Apps and Malware in Real-Time

4.9 Nested Part class with inline initialisation and a super call 101
4.10 Nested Part class declaration in header 102
4.11 Nested Part class with out-of-line static field inialization and base class

constructor invocation . 102
4.12 Reconstructed Binder interface call for the ILocationListener.onLocationChanged()

method . 109
5.1 ComponentName Java constructor with Parcel input 112
5.2 ComponentName C++ constructor with Parcel input 113
5.3 Python plug-in code for introspecting and manipulating ICC-related ob-

jects. 123
5.4 Python example that swaps the sentIntent and deliveryIntent (ellipsis

denote code omitted for brevity) . 124
5.5 Python example which changes an Intent’s action (ellipsis denote code

omitted for brevity) . 124
6.1 Sample JSON configuration file for the baseline properties 132
6.2 Plug-in code to modify DeviceId . 134
6.3 ILocationListener onLocationChanged() callback 135
6.4 GetContentProvider call . 137
6.5 Get Content Provider reply . 137
6.6 Reference Content Provider . 138
6.7 Tracking package installation . 139
6.8 Tracking processes through clone . 140
6.9 Read system call controlling the values returned from the /dev/urandom

device . 141
6.10 Modification of gettimeofday system call data 142
6.11 Handler for getpid() system call . 142
6.12 IActivityManager getMemoryInfo() reply handler 143
6.13 Portion of location leak detection configuration showing the flags to

check for this iteration . 145
6.14 Configuration for redirecting reads to the host for the preptool configu-

ration . 146
6.15 Default rules . 147
6.16 com.menueph.util.funtorch leaking device ID 149
7.1 Support for redirecting existing files to the host for modifying static

information . 157

16

Analysis and Manipulation of Android Apps and Malware in Real-Time

7.2 Plug-in configuration modifying all the necessary properties accessed
through the Telephony Manager . 158

7.3 ITelephony getNetworkType method handler in the plug-in for modify-
ing the network type . 158

7.4 Modified KitKat build.prop made to resemble that of an actual device159
7.5 Android/Pincer.A malware emulator detection source 159
7.6 Change to android modem.c to return a different network name 160
7.7 Dendroid Emulator Detection Source 160
8.1 Mock-up of language describing relationship between interface method

and Parcel for the getIntentSender method call 166
8.2 Mock-up of language describing relationship between interface method

and Parcel for the getIntentSender method reply 167
A.1 Google Protobuf definition file for CopperDroid v2 to support multiple

versions with a single core plug-in. 170
A.2 Interface for accessing guest memory and state. 172
A.3 The IPluginManager interface which a plug-in invokes to register itself . 172
A.4 Method which a plug-in must have in order to be initialised after being

loaded . 172
A.5 An Interface that plug-ins implement for system call entry/exit. 172
A.6 Configuration file for Android KitKat 4.4.2 173
A.7 Initialization routine for initializing a given platform such as KitKat or

Nougat. 173
A.8 ISysCalls interface for version agnostic system call inspection. 174
A.9 ParseSysCalls which uses the bionic utilities SysCallsTxtParser and unistd.h

scanner to produce the system call table 174
A.10 Abstract interface for a functor that can be passed to a function allowing

copy to or from a guest . 174
A.11 Functor implementations that perform a copy from or to a guest 175
A.12 Excerpt of bytes class illustrating copying data to/from guest 175
A.13 Entry stub for the open system call 176
A.14 Class that encapulates the open system call enabling Python and C++

plug-ins to inspect and alter parameters 177
A.15 KernelObject base class . 177
A.16 BinderObject tracking transactions and replies 178
A.17 ioctl serialisation structure with Binder support 179

17

Analysis and Manipulation of Android Apps and Malware in Real-Time

A.18 IActivityManager extractor showing the getIntentSender transaction un-
marshaling code . 180

A.19 Generated class for getIntentSender transaction handling permitting mod-
ification through plug-ins (code omitted for brevity). 181

A.20 IActivityManager extractor showing the getIntentSender reply (code omit-
ted for brevity). 182

A.21 Generated class for getIntentSender reply handling permitting modifi-
cation through plug-ins (code omitted for brevity). 183

A.22 CInterfaceTranslator::ExtractCase method which analyses a specific trans-
action case statement and produces the necessary code 184

A.23 CInterfaceTranslator::AnalyzeEdges method 184
A.24 CInterfaceTranslator::Commit method for generating interface marshal-

ing code (plug-in code generation excluded for brevity) 185
A.25 Android Location Object class declaration 185
A.26 Android Location Object class implementation 186
A.27 SupplicantState Java enum with methods 186
A.28 Equivalent SupplicantState C++ class with enum and code . . . 187
A.29 Code that builds the valueOf method 188
A.30 CObjectBuilder::GenerateTypeHash() method for generating the class

ID for a given class . 188
A.31 InstanceOf example for the ComponentInfo class 189
A.32 CObjectTranslator::BuildObjects method for generating the header and

source files for a given Java source file 189
A.33 Truncated javaString class definition 190
A.34 TypedArray class . 191
A.35 TypedObjectArray class . 191
A.36 Interface method generated class pybind11 bindings 192
A.37 Generated Python plug-in code for invoking IActivityManager methods 192
A.38 Generated Python plug-in code . 193
A.39 Generated Python plug-in code for invoking IActivityManager methods 193
A.40 Generated Python plug-in routines for interface methods 194

18

Chapter 1

Introduction

There are approximately 2.6 billion smartphones worldwide, 88% of the which are run-
ning Android [76] [85]. The Google Play Store [38] hosts almost 3 million Android
apps and saw first-time app installs of nearly 64 billion last year. Revenue from Google
play was approximately $20.1 billion in 2017 [20]. Furthermore, Google removed
700,000 apps from the Google Play store in 2017 for violating its policies [6]. Some of
these removals where due to apps mimicking others already on the store (approximately
250,000), while others violated the policies in others ways. An undefined yet significant
portion of these removed apps contained malware [6].

Despite safeguards, malware continues to be found on app stores, including the
Google Play Store. For instance, the HummingBad and related HummingWhale mal-
ware [12] [47] netted the authors’ approximately $300,000.00 every month through Ad
fraud at its peak. After Google removed infected apps from the Google Play Store it
reappeared in other apps. HummingBad/HummingWhale also download and run addi-
tional apps and malware on an infected device. They further utilise a plug-in infrastruc-
ture developed by the Chinese security vendor Qihoo 360 known as DroidPlugin [61].
This plugin infrastructure allows the malware to download other APKs and run them
without having to install them or root the device.

Thus far many millions of users have downloaded malware from the Google Play
Store (HummingBad alone affected over 10 million users). The sheer number of appli-
cations necessitates an automated approach to analysis [47]. Although the Google Play
Store is policed by the Google Bouncer it is clear that malware is still able to bypass
this safeguard and make onto the store and eventually infect user’s devices [58].

The path to profit for mobile malware is typically shorter than that for desktop mal-
ware (where stealing financial information or extorting money through ransomware is
more likely). For instance, a mobile device can be used for calling premium phone
numbers, sending SMS messages and other tasks. It could also collude with desktop

19

Analysis and Manipulation of Android Apps and Malware in Real-Time

malware to defeat 2-factor authentication over SMS [48]. While users have become
more cautious when downloading unknown software on desktop systems, they expect
an official store to be safe and the available apps to be trustworthy.

Android apps are generally written in Java, although they can include native code
written in C++. Prior to Android Lollipop (version 5.x), apps Java code runs in an
instance of the Dalvik Virtual Machine (DVM), however, apps running on Android
Lollipop and later are compiled into native code during installation. Apps run within
a sandbox environment and are isolated from other apps and the various services that
Android provides. These services perform high-level tasks, such as sending SMS mes-
sages or providing location and contact information. Apps are only able to utilise these
services using an interprocess communication (IPC) mechanism known as Binder.

Current approaches to malware analysis on Android are either static (wherein mal-
ware is examined at a binary level but not executed) or dynamic (where malware is
executed and its behaviours captured and analysed). Dynamic analysis is able to catch
runtime behaviours that can be obfuscated through encryption or using Java reflection
as well as code that is downloaded and executed, not unlike the DroidPlugin example
mentioned earlier. While static analysis has the potential to examine every code path in
a given app, it can be thwarted using a variety of techniques [74]. Similarly, dynamic
analysis may not execute the pertinent code paths and hence miss important behaviours.
Other approaches have attempted to combine the two in order to use the strengths and
mitigate their weaknesses, which is known as hybrid analysis.

A significant portion of dynamic application analysis research on Android focuses
on the Dalvik VM, by instrumenting, modifying or tracing its instructions [88] [23]
[11] [73]. The introduction of the Android Runtime (ART) in Android 5.x (Lollipop)
has improved the performance of apps, as they are compiled into native code during
installation. However, since the Dalvik VM is no longer present and apps execute as
native code, further research on Android needs to look to solutions that are not reliant
on the application runtime environment. TaintART [77] is one example that implements
dynamic taint tracking on Android Lollipop (5.x) and later by modifying the ahead of
time (AOT) compiler. While this provides taint tracking for apps running on Android
Lollipop and later, it does not provide a general model that supports research on Android
regardless of the runtime environment.

In order to analyse a given app for potentially malicious behaviour, it is necessary
to understand all of the components of each operation performed the app. For system
calls, this is generally simple, for example a write system call will include a buffer
of the data to write, a sendto system call will similarly contain a buffer of the data

Chapter 1 20

Analysis and Manipulation of Android Apps and Malware in Real-Time

to send. For high-level operations such as interprocess communication between apps,
knowing which service the app is calling, what it is requesting and the parameters for
that request all need to be determined. In the context of this thesis (and other related
papers), building the context (including the meaning of parameters in system calls and
in IPC) related to a given operation is called reconstruction and it applies to both low-
level and high-level operations.

With the ever increasing number of apps on the various Android app stores and the
associated risk of malware, it is imperative that the analysis of Android apps remain
viable on current versions. As mentioned earlier, analysing low-level and high-level
behaviours requires the ability to reconstruct the operations performed by a given app.
Approaches to this have either modified the Android image (Dalvik VM or Android
Runtime), analysed Dalvik instructions or used a system-call centric approach. Modi-
fying the Dalvik VM in order to support analysis requires significant effort and must be
repeated for every version, furthermore, the Dalvik VM is no longer present on Android.
For the same reason, tracing Dalvik instructions is no longer viable.

Therefore of the different approaches, only a system call based approach is able to
transcend Android versions regardless of the app runtime. However, achieving this re-
quires in-depth details of system calls and their parameters as well as Binder interfaces,
call parameters and Android objects. The number of system calls, Binder interfaces
and Android objects continues to increase for every new version (detailed later in this
chapter). Thus reconstructing system calls and Binder interface calls across versions
requires an automated approach to obtaining the information relating to each.

A key challenge in analysing apps on any system is that apps are essentially a black-
box and only through determining what actions those apps perform, can one hope to
make decisions regarding them. Doing so on Android requires having the requisite
understanding of all system calls as well as a method for understanding Binder ICC.
System calls are fairly simple to understand as the parameters are fixed in their type.
For example, a read system call will always have the same number of parameters,
including a file descriptor, an output buffer and a buffer length. The contents of the read
can always be determined through simply accessing the output buffer after the read has
completed. Binder ICC, however, varies depending on the interface being called and
the specific method being invoked. Furthermore, the Android objects vary in length and
can be one of more than 11,000 objects (depending on the call in question).

The challenge in reconstructing Binder ICC on Android is to determine a mecha-
nism through which any given interface call and associated objects can be restored into
a form that can be intelligently analysed (reconstructed in the context of this thesis).

Chapter 1 21

Analysis and Manipulation of Android Apps and Malware in Real-Time

In order to do so, it becomes necessary to determine the precise relationship between
Binder interfaces and Android objects. How the author achieves this is described in
Chapter 4.

The goal of the research performed for this thesis is to determine a mechanism
through which apps can be analysed and to demonstrate the results of the research
through the development of a system that enables such analysis.

Chapter 3 and Chapter 4, describe how the author approaches the challenge of au-
tomatically constructing an analysis framework for both low-level and high-level oper-
ations that is version agnostic. This includes describing how the system is implemented
by the author towards this end. It is important to note that the implementation described
is only one method through which this can be achieved. A key insight, that only Binder
interfaces and their intersection with Android objects is required to reconstruct Binder
ICC, can be applied in multiple forms including to construct Berkeley Packet Filters
for such analysis. This is discussed in more detail in Chapter 8.

Any software, or portion thereof, has two sources of truth, one is the executable
code and the other is the source code. While some research analyses the executable
code, such as the Soot Framework, source code provides more context, since field and
variable names are fully accessible, in addition to the control flow. It is for this reason
that the research undertaken for this thesis focussed on static analysis of the Android
framework source as doing so ensures that all context is fully captured.

New versions of Android introduce new system calls, Binder interfaces and An-
droid objects. The number of system calls on Android has grown from 171 in Froyo
(version 2.2.3) to 200 in Oreo (8.0.0). Furthermore, some have been replaced with
different versions, for instance dup2 with dup3. Table 1.1 describes the system call
changes from Android Froyo (2.2.3) through Oreo (8.0.0). Android does not change
the kernel for every release and thus the system calls can remain static across multiple
releases. Chapter 3 describes the method utilised in reconstructing system calls across
Android versions.

Similarly, the number of Binder interfaces and Android objects also varies per ver-
sion, with interfaces being added and others being deprecated. Table 1.2 illustrates
the growth in interfaces and their associated calls across versions. Although interfaces
are removed over time, in reality this number remains small <40 from Froyo to Oreo.
For example, IUrlRendererCallback is present in Froyo through Gingerbread, but is
removed in Jellybean. However, in general, interfaces are not removed but rather docu-
mented as deprecated (to ensure compability apps developed for earlier versions).

Chapter 1 22

Analysis and Manipulation of Android Apps and Malware in Real-Time

Version Total Added Removed
Froyo 2.2.3 (baseline) 171 0 0
Gingerbread 2.3.2 174 4 1
Gingerbread 2.3.7 174 0 0
Jellybean 4.1.1 195 21 0
Jellybean 4.2.2 199 4 0
KitKat 4.4.2 205 6 0
Lollipop 5.0.2 200 29 34
Lollipop 5.1.1→ Oreo 200 0 0

Table 1.1: Number of system calls per Android version.

Version Interfaces Calls
Froyo 2.2.3 118 1186
Gingerbread 2.3.2 129 1345
Gingerbread 2.3.7 130 1369
Jellybean 4.1.1 165 1867
Jellybean 4.2.2 179 1927
KitKat 4.4.1 233 2438
Lollipop 5.0.2 342 3698
Lollipop 5.1.1 350 3790
Marshmallow 6.0.1 372 4235
Nougat 7.0.0 397 4285
Nougat 7.1.0 429 4847
Nougat 7.1.1 430 4857
Nougat 7.1.2 431 4865
Oreo 8.0.0 506 5149

Table 1.2: Number of interfaces and calls per Android version.

The Android objects and their methods similarly increase for each version, as can
be seen in Table 1.3. Reconstructing high-level operations (including Binder IPC) using
virtual machine introspection across Android versions requires the ability to reconstruct
interfaces and objects based on the contents of the marshaled data. Through observation
of the marshaled data along with visual inspection of the Android interface and object
code, the author intuited that reconstruction of interfaces and objects may be achieved
by leveraging those portions directly involved in interface/object marshaling.

The research undertaken and described in this thesis seeks to determine a mechanism
through which system calls, Binder IPC interfaces and associated Android objects can
be seamlessly reconstructed. In so doing, it also establishes a clear relationship between
Binder interfaces and the Android objects with which they interact. The resultant model
is critical it determining only those components of a given object that are pertinent to

Chapter 1 23

Analysis and Manipulation of Android Apps and Malware in Real-Time

Version Objects Methods
Froyo 2.2.3 3467 38581
Gingerbread 2.3.2 3476 39351
Gingerbread 2.3.7 3575 40646
Jellybean 4.1.1 5175 59450
Jellybean 4.2.2 5530 63292
KitKat 4.4.1 5506 61840
Lollipop 5.0.2 7455 87838
Lollipop 5.1.1 7501 89117
Marshmallow 6.0.1 8311 98014
Nougat 7.0.0 9859 115252
Nougat 7.1.0 10069 118450
Nougat 7.1.1 10077 118695
Nougat 7.1.2 10083 118906
Oreo 8.0.0 11694 134955

Table 1.3: Number of objects and methods per Android version.

reconstructing Binder IPC and, as a result, high-level behaviours.
The novel approach taken in this thesis utilises static analysis of the Android frame-

work source code to construct a model that is used in the automatic generation of code
that enhances dynamic analysis of Android apps and malware. The automatically gener-
ated code further makes it possible to manipulate operations carried out by apps/malware
in real-time, thereby offering the ability to explore different aspects of apps/malware and
potentially discover further properties. The results of this approach can be seen in [78],
which was published at the NDSS conference in 2015 and [21], published at IEEE Se-
curity & Privacy conference in 2016.

The static analysis of the Android framework Java source generates code that inte-
grates directly into the CopperDroid v2 code base and provides real-time reconstruction
and manipulation of complex Android objects. As a purely system call based solution,
CopperDroid v2 enables reconstruction and manipulation of operations performed by
both Java and native code. Furthermore, the reconstructed objects are shared with
plug-ins that can query and even modify them in real-time.

While the work described in this thesis leverages the abstract syntax trees (ASTs)
of the Android framework source code directly to automatically generate reconstruc-
tion code (as described in Chapter 4), that is only one possible research outcome. The
author also considered designing a new language that explicitly captured the relevant in-
formation required to reconstruct Binder IPC interfaces and Android objects (including
control flow) so that the resultant model can be applied for different purposes. This is

Chapter 1 24

Analysis and Manipulation of Android Apps and Malware in Real-Time

further described in Section 8.3 (in Chapter 8).
The potential this allows for further research is demonstrated through the use of a

plug-in infrastructure to build an information leakage detection plug-in that performs
multiple sequential executions modifying only one datum each time while controlling
critical properties of the system. A second example demonstrates building on the infor-
mation leakage plug-in to alter the properties of the emulator (for anti-evasion) thereby
exposing evasive malware.

The problem of achieving real-time analysis and manipulation of Android apps and
malware motivates the central research thesis of this disseration:

The Android Source code contains all the information necessary for recon-

structing high-level behaviours from low-level system calls with sufficient

semantics to perform malware classification, information leakage detection

and other research.

The thesis statement provides the basis for building a model to test its hypothesis. As
the source code of any system is a source of truth for that system, it should, intuitively,
provide insight into the system. The level of insight varies depending on the depth of
analysis performed on the system. However, one can theorize that if a given system is
completely understood, then any action performed on that system should similarly be
understood and could be broken down into its components. For example, if a given pro-
gram adds two numbers together and returns the result, then anyone understanding this
and seeing the input values can always correctly determine the output value. Similarly,
even though there are several hundred system calls and many thousand Binder inter-
faces and Android objects, if one is able to correctly analyse each of these components
and determine precisely how they interact then reconstructing such operations should be
no different from determining the output of the addition program mentioned earlier.

The research carried out in this thesis therefore focuses on analysis of the Android
source code and in so doing produces the necessary context required to fully reconstruct
system calls and Binder interprocess communication. This research is realised in the
form of a robust and highly scalable analysis framework known as CopperDroid v2.
There are several different components that form this framework, most of which (94%)
is automatically generated as a direct result of the analysis. This dissertation describes
the design of each component of the framework as well as how they integrate to realise
this goal. In addition, this framework is evaluated with regards malware classification,
information leakage detection, anti-evasion techniques as well as the amount of effort
required to build further research using this framework.

Chapter 1 25

Analysis and Manipulation of Android Apps and Malware in Real-Time

1.1 Motivation

The introduction of the Android Runtime (ART) has significantly hindered dynamic
analysis research on the Android platform. The majority of existing dynamic analysis
platforms rely on the Dalvik runtime, which is obsolete as of Android Lollipop. The
number of Android devices continues to grow, as does the number of apps available for
download.

Mobile malware is continuing to be a very lucrative opportunity for unscrupulous in-
dividuals and the threat is only likely to increase. Existing solutions are either no longer
relevant due to the removal of the Dalvik runtime or are unable to scale sufficiently in
both performance and functionality to meet the needs imposed by an ever-increasing
application base. Furthermore, many of the solutions currently in existence are not ex-
tensible and thus don’t provide a base on which further research can be built.

The author therefore seeks to close this gap by overcoming not only any performance
issues but also those hindering extensibility and further research.

1.2 Thesis Contributions

To overcome such limitations, the author proposes CopperDroid v2, a VM-based dy-
namic analysis framework to seamlessly reconstruct Android apps’ behaviours. Besides
reconstructing generic system call behaviours, the solution is rooted in the key observa-
tion that the Android framework contains all the code and data to enable a correct and
efficient reconstruction of ICCs behaviors along with their arguments (interfaces and
objects).

To this end, the author relies on static backward and forward slicing of the entire
Android framework to automatically build the class hierarchy of ICC-related interfaces
and objects and identify all and only the Java statements that are responsible for their
marshaling and unmarshaling. The author constructs an abstract syntax tree to then
automatically generate C++ code, which is included in the codebase of CopperDroid v2
to reconstruct Android apps’ behaviours at runtime with a negligible overhead.

To facilitate the quick development of new analyses, the author further enhances
CopperDroid v2 with a Python and C++ plug-in interface along with automatically-
generated Python and C++ plug-in boilerplate code for both system calls and inter-
component communications. This enables direct access to the automatically recon-
structed Android objects, thereby allowing modification of inter-component commu-
nications in real-time.

Chapter 1 26

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author’s design supports a seamless automatic generation of code to reconstruct
Android behaviours across different Android versions (from Froyo to Oreo) with a neg-
ligible overhead, reporting micro-benchmarks of 7–12.22% and 35–85µs for the re-
construction of complex ICCs and ICC-related resources. In addition, the static pro-
gram analysis enables the introspection and manipulation of system calls, including
ICC requests as well as replies, de-facto providing a more accurate and diverse set of
behavioural reconstruction than the state-of-the-art [78], enabling realistic analyses of
Android apps.

Therefore, the author makes the following contributions:

1. Determines and describes the precise relationship between Binder interfaces and

Android objects (including their methods and fields).

2. Constructs a model that can be applied to Binder interfaces and Android objects

to extract only those portions necessary in Binder IPC.

3. Applies this model in order to perform static analysis on the Binder interface

and Android framework source code and enable precise slicing of interfaces and

objects for reconstruction.

The author realises these contributions through the design and implementation Cop-
perDroid v2, a VM-based dynamic analysis solution for reconstructing system calls,
ICCs, and ICC-related resources of apps through static program analysis of the entire
Android framework. Applying the model, as per the contributions, enables automatic
generation of version-specific Android C++ code that is included in the code base of
CopperDroid v2 for seamless reconstruction of Android apps’ behavioural profiles. In
addition to reconstruction, the automatically generated code also enables manipulation
of system calls and Binder ICC in real-time.

CopperDroid v2is further extended through the implementation of a plug-in infras-
tructure that exposes unmarshaled system call and Binder ICC data to plug-ins thus
enabling real-time analysis and manipulation of these operations. Additionally, Cop-
perDroid v2 simplifies the construction of new analysis tasks through the automatic
generation of Python and C++ plug-in boilerplate code. This in turn supports the
quick development of analyses that monitor or manipulate system calls or ICC payloads,
de-facto facilitating complex analyses, such as information leakage detection, anti-VM
evasion, and ICC-based fuzzing in real-time.

Chapter 1 27

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author further demonstrates that CopperDroid v2 is low-overhead and more ac-
curate than the state-of-the-art unmarshaling Oracle—which is hindered by its design—
in recreating behavioural profiles, while keeping manual engineering efforts to a bare
minimum through the evaluation on more than 4,500 benign and malicious apps.

An information leakage detection plug-in, utilising differential analysis, is described
and demonstrates the ease with which system calls and ICC manipulation can be achieved
using the plug-in infrastructure. The plug-in is then extended to enable anti-evasion sup-
port for the purposes of detecting evasive malware within an emulated environment.

Chapter 1 28

Chapter 2

Background and Related Work

2.1 Introduction

In traditional operating systems, such as Windows and Linux, operations are generally
performed via system calls, although some high-level abstraction such as the Win32
API may be present (in the case of Windows). Some language features also abstract
the underlying system call (for example ofstream in C++ or FileOutputStream
in Java). Actions performed using these higher-level API’s still result in one or more
system calls being invoked. Furthermore, these actions take place in the context of the
calling user and process.

Mobile operating systems, such as iOS, Windows Phone and Android, however,
run applications within a sandbox environment and provide high-level services for apps
such as Location, Contacts and Telephony operations are managed through services
hosted in external processes. Programs written on these platforms utilise a Software
Development Kit (SDK) in order to access these services. For Windows Mobile they
currently use the Universal Windows Platform (UWP) API, on iOS the iOS SDK
and on Android, the Android Software Development Kit (SDK) [36]. In the case of
Android, the services that manage these features (hosted in external processes) are ac-
cessed via an interprocess communication mechanism known as Binder ICC/IPC [62].
Certain operations, such as an app reading from/writing to files, still use system calls
directly.

Android applications1 are written mostly in Java, but can include C++ native code
for performance and Intellectual Property Rights (IPR) protection. Android apps are
written using the Application Programming Interface (API) provided by the Android
Software Development Kit (SDK) [36]. Apps are written using the Android SDK to

1Application and app are used interchangeably throughout this thesis

29

Analysis and Manipulation of Android Apps and Malware in Real-Time

Kernel space

Client process address space

Runtime (Dalvik VM/ART)

Native

Application

System services (Proxy)

Native libs (libcrypto, …)

System services (Native Proxy)

Binder Framework

Server process address space

Runtime (Dalvik VM/ART)

Native

Application

System services

Hardware libraries

Native system services

Binder Framework

Binder Driver Hardware (/dev/…)

1 6 5 2 3 4

Figure 2.1: Communication between apps and services on Android

access the Android Framework for UI, accessing Content Providers, Location and other
services. Each app runs with a unique user and group ID [2]. Although the services
appear (to the apps) to be in the same process space, since they call methods on object
in their address space, in reality these services —daemon-like UNIX processes that
provide features such as sending a text message, accessing sensors, drawing UIs, and
sending intra- and inter-thread messages— also run in their own sandbox (in a separate
process). This can be see in Figure 2.1.

Communication with these services heavily relies on a well-defined inter-component
communication mechanism2 known as Binder [62], which is accessed through an ioctl
system call. The Android (Java API) Framework can be seen in Figure 2.2 (in olive and

2The terms inter-component communications, inter-process communications, and Binder transactions
are used interchangeably in this thesis.

Chapter 2 30

Analysis and Manipulation of Android Apps and Malware in Real-Time

Linix Kernel

System App

Dialer Email Calendar Camera ….

Java API Framework

Content Providers

View System

Managers

Activity Location Package Notification

Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Libc

Media Framework OpenGL ES ….

Android Runtime

Dalvik (DVM) / Android Runtime (ART)

Core Libraries

Hardware Abstraction Layer (HAL)

Audio Bluetooth Camera Sensors ….

Drivers

Audio Binder IPC Display

Keypad Bluetooth Camera

Power Management

Shared Memory USB WIFI

Figure 2.2: Android Architecture

green) along with the rest of the components of the Android system. Apps utilise either
the Dalvik VM (prior to Lollipop) or the Android Runtime (Lollipop and later). As
apps execute they interact with the framework utilising API calls written to the SDK, if
a given API call accesses a service then this communication will happen via Binder.

Binder itself is accessed via the ioctl system call to the /dev/binder device
[62]. In [71], Fattori et al. demonstrate that it is possible to reconstruct high-level
operations from introspection of low-level system calls, including the Binder ioctl.
The author of this thesis further expanded on the work described in [71] building a
version agnostic dynamic analysis solution known as CopperDroid v2.

Prior to the Android version codenamed Lollipop (2014), apps were executed in an
instance of the Dalvik VM, a Java-like virtual machine. Many analysis tools modified

Chapter 2 31

Analysis and Manipulation of Android Apps and Malware in Real-Time

the Dalvik VM and used their own modified version to analyse apps for information
leakage and other (potentially) malicious behaviours [23] [69] [88]. However, as of An-
droid Lollipop, apps are compiled into native code at installation time and use the An-
droid runtime (ART) instead, which reduces the overhead introduced by the execution
of bytecode [77]. A side-effect of ART is that Dalvik VM based analysis is no longer
possible. This appears to have had an impact on Android security research resulting in
fewer papers at recent security conferences. The work contained in this thesis attempts
to overcome the difficulty caused by the shift to ART and enable further research on
current Android versions.

2.2 Malware Analysis Techniques

Malware analysis today utilises static analysis, dynamic analysis or a combination of
both, known as hybrid analysis. Static and dynamic analysis both have their strengths
and weaknesses and hybrid analysis attempts to combine the strengths of each form in
order to overcome the weaknesses.

2.2.1 Static Analysis

Static analysis works by analysing a given app without executing it. This theoretically
enables the analysis of all code paths within a given app, however, it can also be defeated
by inserting complex tasks such as encryption, cryptographically secure hashing. It is
also not able to analyse code that uses obfuscation techniques such as Java reflection
or relies on code that is downloaded and used only when the program actually executes.
Sharif et al. [74] describe a mechanism for hindering static analysis of malware through
conditional code obfuscation. Techniques previously used for obstructing static analysis
of malware on traditional desktop operating systems still apply for mobile malware, in-
cluding encryption, polymorphism and others. Furthermore, there are legitimate reasons
for obfuscating and encrypting Android apps in order to protect intellectual property
rights and other potentially valuable data.

There are tools that exist today for this very reason to stop Android apps from being
decompiled and repackaged, one such tool is DexGuard [41]. As of Android Jellybean
(version 4.1), the Google Play Store encrypts all paid apps and even installs them
using the encrypted APK [40] [22]. Furthermore, [60] describes the limits of static
analysis and describes how binary code can be obfuscated at a binary level to defeat
static analysis tools. While the paper is focused on Windows and Linux programs,

Chapter 2 32

Analysis and Manipulation of Android Apps and Malware in Real-Time

one could also envision a version that includes native code in an Android app that is
obfuscated in a similar manner.

2.2.2 Dynamic Analysis

In contrast, dynamic analysis works by executing a given app and analysing the oper-
ations that it performs while running [7] [19]. Doing so makes it possible to analyse
code that is downloaded as well as code that is obfuscated since the interaction with
the system will be similar regardless of whether or not code is obfuscated. However,
dynamic analysis may miss certain behaviours simply because it is unlikely to execute
all the code in the app. Using stimulation techniques it is possible to overcome this to
elicit otherwise hidden behaviours as described in [78].

2.2.3 Hybrid Analysis

Hybrid malware analysis seeks to build on the strengths of these two approaches while
minimizing the weaknesses of each. SmartDroid [16] utilises static analysis of a mobile
app in order to determine how activities switch and what functions may be invoked
(using function call graphs). SmartDroid then utilises dynamic analysis to traverse those
paths in an attempt to trigger malware behaviours.

2.3 The Android Emulator

There is an inherent difference between full-system virtualisation and full-system emu-
lation. Although both virtualisation and emulation result in a full-system including pe-
ripherals being made available to the guest operating system, how each achieves this is
fundamentally different. Products such as VMWare, VirtualBox and Windows Hyper-
V are all full system virtualisation solutions and make use of hardware specific features
to support this virtualisation (often running with a higher-privilege level than even the
host operating system). These provide a virtualised environment wherein a guest op-
erating system and all its programs can execute without adversely affecting the host.
The guest operating system and programs all execute code that is native to the CPU,
generally x86/x86-64 code. Executing code from a different CPU architecture is not
possible.

Full system emulators, however, such as the Quick Emulator (QEMU) [8], emulate
the target environment and can execute code with a different CPU architecture from
that of the host. For example, QEMU supports x86, x86-64, MIPS, ARM, PowerPC

Chapter 2 33

Analysis and Manipulation of Android Apps and Malware in Real-Time

and other CPU architectures running on an x86 host. Emulation is achieved through
real-time translation from one instruction set to another (for example ARM to x86).
Emulators don’t require any hardware support in order to function, however, they run
slower than virtualisation as every instruction has to be translated from the guest CPU
to the equivalent host CPU instruction(s).

The Android emulator is based on the QEMU emulator with support added for An-
droid devices, including sensors, modems and battery support. Its primary function is
to enable developers to test and debug their applications directly from their desktop sys-
tems. To this end, the emulator can also simulate phone calls, incoming or outgoing
SMS messages, location, rotation and other features necessary for the development and
testing of applications [33]. This emulated environment has also proven useful for mal-
ware analysis since, being open source, it can be modified to support virtual machine
introspection. For instance, Google Bouncer, DroidScope, Andrubis and others make
use of the Android emulator in order to analyse apps for malware [58], [88], [55].

2.4 Related Work

The research described in this thesis covers several areas, including systems that perform
dynamic analysis of Android apps/malware, static analysis of the Android framework,
information leakage detection and anti-evasion mechanisms to elicit behaviours in eva-
sive malware. While there has been prior work in these areas, the novel approach taken
in this thesis provides a model that enables high-performance, portable and extensible
version agnostic analysis/manipulation of Android apps and malware.

Malware research and analysis on traditional operating systems such as Windows or
Linux utilises a system call based approach as all interesting actions on these operating
systems occur through system calls. System calls on ARM use the swi instruction, with
a system call number in r7 and parameters being passed in through r0-r5 (and the
return value in r0). For other processor types, such as x86 or amd64, a similar model
is used with the sysenter and sysret. In the absence of an analysis system, any
currently executing app is effectively opaque with regards actions the app performs. The
research undertaken in this thesis seeks to make the actions apps perform transparent so
that their behaviours can be reconstructed and analysed.

Reina et al. [71] demonstrate that a purely system call based approach (similar to
that used in traditional desktop operating systems) can provide details about high-level
operations on Android. A system call based approach has the potential to work re-
gardless of the application runtime environment, however, the work described in the

Chapter 2 34

Analysis and Manipulation of Android Apps and Malware in Real-Time

paper excludes certain interfaces critical to the functioning of Android apps, such as
IActivityManager and IServiceManager. While this research demonstrates
that both low-level and high-level operations can be reconstructed using system calls
alone, it fails to handle several core interfaces. Furthermore, while this can determine
the simple parameters, such as strings and integers, in Binder calls, complex parame-
ters such as Location, Uri or Intent objects cannot be reconstructed. With the
reconstruction of Binder incomplete, much pertinent information remains opaque.

Tam et al. [78] demonstrate that building on this research and augmenting the Binder
IPC reconstruction with an unmarshaling Oracle, enables the full reconstruction of both
low-level and high-level operations. The unmarshaling Oracle reconstructs complex
Android objects, such as Intent and Uri. However, while state of the art, it utilises
Java reflection for reconstructing complex objects and is prohibitively expensive with
regards performance. Thus the Oracle cannot be invoked in real-time and is therefore
unable to support manipulation of unmarshaled objects as the overhead results in An-
droid watchdog timers firing.

The following sections describe the different approaches that prior work has utilised
for dynamic analysis in addition to static analysis related to that utilised in this thesis.
The related static analysis research described entails program analysis in general and
has not been applied to Android prior to that carried out for the purposes of this thesis.

2.4.1 Dynamic Analysis

Although there are existing analysis platforms for Android, none provides a similar level
of portability, extensibility and performance as CopperDroid v2.

DroidScope [88] is framework that enables the development of dynamic analysis
tools for Android apps and malware. It uses an out-of-the-box approach (much like
CopperDroid v2) by instrumenting the Android emulator but certain modes of opera-
tion (for instance taint tracking) can incur significant overhead. Furthermore, it uses
2-level virtual machine introspection (VMI) [30] to determine information about the
currently executing system and exposing this to plug-ins via a series of hooks and APIs.
DroidScope plug-ins can leverage these hooks and APIs to perform different levels of
analysis such as system calls, single instruction tracing or taint tracking. However, as
DroidScope is reliant on the Dalvik VM tracing, the introduction of ART renders it
moot. In addition, while it is invoked for system calls, it does not provide any introspec-
tion into the parameters of those system calls.

Therefore, DroidScope without the Dalvik support does not achieve much more than
the CopperDroid v2 plug-in manager that is integrated into QEMU. CopperDroid v2, by

Chapter 2 35

Analysis and Manipulation of Android Apps and Malware in Real-Time

comparison, performs all dynamic analysis seamlessly through automatically generated
system call and Binder reconstruction code and therefore does not require a 2-level VMI
approach. Plug-ins are invoked as operations occur without requiring them to manage
disparate contexts.

AppsPlayground [69] is an automatic dynamic analysis system for Android, provid-
ing taint tracing and kernel level system call inspection. It relies on TaintDroid [23] for
taint tracking and is built upon the Dalvik VM. Furthermore, it is not extensible so even
if it could be made to work on current Android versions, it does not provide a means for
building on the information it provides.

CopperDroid v1 [71] uses a system call based approach to reconstruction and has
support for AIDL-defined Binder interfaces. While taking an innovative approach using
a modified AIDL-parser to generate Binder reconstruction code in Python, it is not
able to reconstruct Java based interfaces. This results in it missing critical interactions
between apps and interfaces that form the core of the Android framework (such as
IActivityManager and IServiceManager).

Furthermore, CopperDroid v1 is unable to unmarshal complex Android objects
without assistance and this is provided by an unmarshaling Oracle. The Oracle is imple-
mented in Java and utilises Java reflection to reconstruct complex objects, resulting
in extremely poor performance (on the order of seconds for such reconstruction). In
addition, the Oracle runs as a service in an standard Android emulator instance with
CopperDroid v1 communicating with it via TCP, which adds additional overhead. The
Oracle is therefore only utilised for offline analysis in post-processing of the results of a
given app execution.

In contrast, the static analysis performed by the CopperDroid v2 compiler results in
C++ unmarshaling code that is integrated directly into CopperDroid v2 resulting in µs
level performance for unmarshaling entire interface method calls and replies. The auto-
matically generated code also enables real-time manipulation of system calls, interface
method parameters and complex objects through plug-ins providing the ability to build
further research on top of CopperDroid v2.

2.4.2 Static Analysis

As far as the author is aware, there is currently no body of work that statically analyses
the Android Framework in order to enhance dynamic analysis of Android applications
by producing unmarshaling code automatically. Edge Miner [11] does statically analyse
the Android Framework, however it uses the analysis to generate API summaries to-
wards understanding implicit control flow transitions for information leakage detection.

Chapter 2 36

Analysis and Manipulation of Android Apps and Malware in Real-Time

Program slicing was first proposed in 1979 to aid in debugging, program mainte-
nance and other tasks [87]. Slicing in the traditional context generally results slices
being computed for a given program variable as it relates to the variables flow through
the program. The original idea stems from the fact that seasoned developers intuitively
follow a single variable through a debugger to understand how the program is affecting
it, in order to isolate a problem [86]. Many other slicing techniques have since been
introduced including those more suited to object oriented software [87]. Liang and Har-
rold propose performing object slicing based on a system dependency graph [53] as this
is able to capture more of the context than earlier works. While most focus on single
fields or variables in a given object, the author requires slicing as it relates to marshaling
and unmarshaling. Thus, while the author uses a system dependency graph, program
slicing is performed not on the basis of a given field in a class, but rather in terms of
how every field and method in a class relate to the marshaling and unmarshaling of the
class. This is determined which members of a given class are accessed by interfaces in
the course of interface method invocations.

2.4.3 Information Leakage

There are different approaches to detecting the leakage of sensitive information. The
first of these is static taint analysis which analyses a given app without executing its
code. AndroidLeaks uses static taint analysis to locate sources of sensitive information
and uses tainting to determine if the data can reach a sink resulting in transmission to
the network [31]. However, it uses a coarse grained approach to tracking tainting at
the object level as opposed to at the field level. FlowDroid implements a more precise
method that works at the field and variable level, avoiding false positives by determining
when a variable is tainted so that accessing a sink prior to being tainted doesn’t result
in a false positive [4]. Edge Miner analyses the entire Android framework to determine
implicit control flow transitions [11].

Static taint analysis can be thwarted by using Java reflection to access sensitive
information without the analysis system being aware and hence avoiding being tainted.

Dynamic taint analysis tracks information flow from sources to sinks, however, it
does so by actually executing the app and analysing it at runtime. TaintDroid [23] mod-
ifies the Dalvik interpreter and implements variable level taint tracking. AppFence [42]
modifies TaintDroid by adding support for obfuscation and encryption. AppsPlay-
ground [69] is a dynamic analysis system that performs security analysis of Android
apps but uses TaintDroid for tracking information leakage. All of these approaches rely

Chapter 2 37

Analysis and Manipulation of Android Apps and Malware in Real-Time

on the Dalvik VM and therefore cannot be used on Android Lollipop and later versions.
Additionally they cannot detect leaks in native code.

The Android Runtime (ART) compiles Java apps into native code upon installa-
tion. TaintART [77] replaces the ART compiler with one that implements taint analysis
in native code using a similar model to TaintDroid. Although this addresses the change
in the runtime, leaks originating from app native code written in C++will not be tracked.

Another approach works by analysing data at the network level to determine if sensi-
tive information is being leaked. Some, such as AntMonitor [51], PrivacyGuard [75] and
HayStack [70], perform on-device analysis by using the built-in VPNService present in
Android. These then scan the network traffic for hard coded identifiers or the user’s pri-
vate information and therefore cannot detect leaks if the data is obfuscated or encrypted.
ReCon [72] also uses a VPN approach and can handle simple forms of obfuscation, but
not encryption that is performed within the app.

AGRIGENTO [17] uses a black-box differential analysis based approach while con-
trolling sources of non-determinism (random values, timing values, system values, en-
crypted values and patching JavaScript code). It establishes a baseline by executing
an app while controlling non-determinism and capturing network (HTTP and HTTPS)
traffic. Subsequent runs change a single piece of sensitive information each time, cap-
turing the network traffic and comparing it to the traffic captured before. AGRIGENTO
uses a risk analysis based approach to attempt to mitigate cases where non-determinism
is affected by a source out of its control by executing it as many times as needed to
determine which traffic changes even if all other data remains the same.

2.4.4 Anti-Evasion

Google Bouncer [58] is a dynamic analysis platform for detecting malicious behaviour
in apps submitted to the Google Play Store. Not much is known about it except what
has been determined by apps submitted for the express purpose of fingerprinting the
environment. While it does modify some sensitive information (presumably for anti-
evasion), such as the network operator, phone number and device ID other properties
are unchanged.

AppsPlayground [69] is a dynamic analysis based system for performing security
analysis of apps using the Android emulator. It modifies the phone number, IMEI,
IMSI, Android ID and others in order to evade detection. It further modifies the
build.prop file within the emulator to mimic a real device.

Chapter 2 38

Analysis and Manipulation of Android Apps and Malware in Real-Time

Details of the implementation are not published making it difficult to perform any
comparison, however, implementing the same feature set using a Python plug-in built
on top of CopperDroid v2 requires very little effort.

Chapter 2 39

Chapter 3

Efficient Version-Agnostic Automatic
System Call Introspection for Android

3.1 Introduction

This chapter describes CopperDroid v2, as designed and implemented by the author, and
provides the context required for understanding how the hand-written and automatically
generated code are integrated to produce deep inspection of apps running on Android.
It further describes the static analysis based on the bionic utilities which generates basic
system call reconstruction code. In addition, the fixed portions of Binder IPC via the
ioctl to the /dev/binder device, are also covered including how they integrate
with code generated through static analysis of the Android Framework, described in
Chapter 4.

System calls are the core mechanism through which programs communicate with
the operating system on which they are running, whether that is Windows, macOS or
Linux. System calls let apps access local files or devices (open, read, write, ioctl
and close), get the current time (gettimeofday) as well as send and receive data
across the network (sendto, recvfrom etc). Every operating system has its own set
of system calls and new versions often add system calls. Android is a mobile operating
system that runs on top of a Linux kernel. All interactions that occur between apps
running on Android and the operating system or other apps and services is accomplished
through system calls [71].

The Linux kernel used by Android continues to provide additional system calls with
each new release. Therefore, analysing apps on Android requires inspection of the sys-
tem calls available for a given version. As new Android versions are released, Google
drops support for older versions with the net effect that newer apps no longer need to

40

Analysis and Manipulation of Android Apps and Malware in Real-Time

target those earlier versions. Thus, if the analysis tools are not able to seamlessly exe-
cute on later versions, then Android malware simply needs to raise the lowest version
they support in order to avoid being analysed on older platforms. Since Android is an
open source platform, the system calls it supports for each version can be determined
through simple static analysis of the bionic utils [32], described in 3.6.

CopperDroid version 1 as described in [71] demonstrates that a system call based
approach along with deep inspection of ioctl calls related to Binder enables the recon-
struction of high-level behaviours (both malicious and benign) on unmodified Android
images. CopperDroid version 1 is limited to Froyo 2.2.3 and relies on the Remote Serial
Protocol (RSP) debug protocol to communicate with the Android emulator [33] (built
on top of QEMU [8] as described in Section 2.3) via its GNU Debugger (GDB) stub.
Reliance on the RSP debug protocol combined with a Python implementation of Cop-
perDroid v1 results in significant performance issues and cause watchdog timers to fire
on later Android versions, thereby making it infeasible as a long term solution.

CopperDroid v2 as described in this thesis shares the name and also utilises system
call based analysis, however, the similarity ends there. Rather than significantly mod-
ify the Android emulator (as was done with CopperDroid v1), the author of this thesis
uses a modular approach, adding a plug-in manager to QEMU and implementing Cop-
perDroid v2 as a plug-in. The plug-in interface that is exposed from QEMU invokes
plug-ins for every system call entry and exit (in addition to initialisation/shutdown of
the emulator). Each system call entry and exit includes a context that enables to plug-in
to query guest registers in addition to reading from or writing to guest memory. Both
the plug-in manager (residing in QEMU) and the CopperDroid v2 plug-in are imple-
mented in C++. The plug-in approach requires significantly less modification to QEMU
enabling faster adoption of newer emulators1. Futhermore, a plug-in approach is used
to simplify execution in other environments, including on a device. The plug-in uses
an abstract interface to access information regarding system call information (including
parameters) and to read/write memory in the currently executing process. Thus, a driver
or process can implement the plug-in manager interface and invoke the CopperDroid v2
plug-in for system calls thus having CopperDroid v2 analyse a given app in real-time.
Since CopperDroid v2 itself supports plug-ins, a C++ plug-in can perform additional
analysis include policy enforcement or on-device malware detection. The latter could
similarly be attained through automatically generating Berkeley Packet Filter support.
This is discussed further in Chapter 8.

1Since the initial implementation the author has had to move to newer emulators on two occasions,
both times requiring less than 30 minutes to complete the work.

Chapter 3 41

Analysis and Manipulation of Android Apps and Malware in Real-Time

Process Name Process Id Thread Id Thread Info System Call Parameter 1 Parameter 2 Parameter 3 Return Value
?? ?? ?? 0xe03ac000 5 0xa68f3cf0 0x00020002 38
...
?? ?? ?? 0xe03ac000 54 38 0xc0186201 0xa68f3cf0 0
...‘

Table 3.1: System calls without context.

While CopperDroid v2 performs dynamic analysis of apps and services executing
within an instance of the Android emulator, any version specific code that CopperDroid
v2 needs to operate is entirely automatically generated. The publication [78] combined
the results of CopperDroid v1 as well as CopperDroid v2. The latter, CopperDroid
v2 (developed entirely by the author of this thesis), was used for testing execution on
Android Lollipop as mentioned in the publication. Furthermore, the reconciling of the
PendingIntent return value was also achieved using CopperDroid v2.

As part of its operation, CopperDroid v2 collects the details of all system calls oc-
curring in every process running in the Android instance. To reduce the size of the data
collected prior to running a specific app sample, only system calls that affect file de-
scriptors are tracked (open, openat, close, socket, pipe, fork, clone, dup,
dup2, fcntl etc.). System calls that affected file descriptors are tracked at all times
in order to ensure that any descriptors to the /dev/binder device are tracked across
processes clones, forks and descriptor duplication (dup/dup2/dup3). Additionally, an-
other research project built on CopperDroid v2 and needed to track file descriptors for
all files accessed on the system (from boot), which can only be achieved if descriptors
are tracked from startup. Once the given sample is installed, capturing of all system
calls is enabled and the app in question is executed.

To illustrate the challenge in reconstructing system calls and Binder ICC across ver-
sions, Table 3.1 provides an example of system calls captured with little to no context.
The reason for the lack of context is due to the fact up to this point, the author hasn’t de-
scribed the necessary mechanisms for interpreting the data present within a given system
call. The current information defined in this table (system call numbers, parameters and
return value) is standard for all system calls on ARM processors as is the method for de-
termining the Thread Info address on Linux kernels. This chapter and Chapter 4 revisit
this table, illustrating how each advancement enables greater context, with Chapter 6
illustrating modification of a portion of a specific system call’s data.

Serialisation of the data is managed using a two-stage serialisation process to min-
imise the overhead of inspecting any given system call. The first stage is a lightweight
serialiser that simply adds the data for each system call to a std::queue protected by
a lock. Second stage serialisation is either managed at the end of a given analysis, with

Chapter 3 42

Analysis and Manipulation of Android Apps and Malware in Real-Time

all data being kept in memory, or periodically on a separate thread of execution (using
POSIX threads). The latter occurs based on a timeout (using seconds) or if a memory
threshold is reached.

3.2 Design

 QEMU

Plug-in Manager

CopperDroid v2 Plug-in

Android

User mode (PL 0)

Kernel mode (PL 1)

App App

Dalvik / Android
Run Time

Android / Linux Kernel

Android

User mode (PL 0)

Kernel mode (PL 1)

App App

Dalvik / Android
Run Time

Android / Linux Kernel

Android

User mode (PL 0)

Kernel mode (PL 1)

App App

Dalvik / Android
Run Time

Android / Linux Kernel

Android version specific shared object
(currently Froyo through Oreo)

System call extractors

Binder interface & object
extractors

System call entry/exit
handler

(Optional)
Embedded Python or C++

plug-in for
 real-time analysis and/or

modification

TRANSACTION/REPLY

IOCTL to /dev/binder

IPC

swi
(user --> kernel)

Software interrupt
instruction
(PL0 -> PL1)

Binder Protocol
handler

cpsr_write
(kernel --> user)

Current program
status register

write (PL1 -> PL0)

2

1

3

4

5

6

7

8

Figure 3.1: CopperDroid v2 Architecture

CopperDroid v2 has a modular design with interlocking pieces. This is important as
it greatly simplifies supporting multiple versions of Android (currently Froyo through
Oreo) seamlessly.

The Android emulator (QEMU) is modified to support a plug-in manager that pro-
vides an abstract interface invoked for system call entry/exit. An additional abstract

Chapter 3 43

Analysis and Manipulation of Android Apps and Malware in Real-Time

interface enables the CopperDroid v2 plug-in to query virtual CPU register information
as well as read from/write to guest memory (see Figure 3.2).

On the ARM platform system calls are handled via the software interrupt (swi)
instruction, which transitions from privilege level 0 (User mode) to privilege level 1
(Kernel mode) invoking the Android/Linux Kernel to handle the system call and then
returning via the cpsr_write instruction from privilege level 1 back to privilege level
0. The plug-in manager in QEMU is invoked for each of these transitions and in turn
invokes the CopperDroid v2 plug-in for system call entry and exit. The design of the
abstract interface as implemented in the plug-in manager supports running on the x86 or
MIPS platforms too, however, the current implementation of CopperDroid v2 runs on
the ARM 32-bit platform.

The core functionality in CopperDroid v2 is implemented in a plug-in that connects
to and utilises the interfaces provided by the plug-in manager. The CopperDroid v2
plug-in tracks processes, threads, kernel objects (such as devices and files) and analyses
the fixed ioctl structures of the Binder protocol. The reconstruction of system call
information is achieved with the help of the Android bionic utilities [32], while the in-
terface and object reconstruction is accomplished through static analysis of the Android
framework to automatically generated reconstruction code (described in Chapter 4). The
code generated for system call and textsfBinder IPC reconstruction is hosted in an An-
droid version specific shared object that is loaded by the CopperDroid v2 plug-in during
initialisation. This shared object provides an interface for system call reconstruction and
a second for Binder IPC reconstruction.

This design allows the core management functionality (process/thread/kernel objects
etc.) to be shared across all Android versions while simultaneously enabling per-version
reconstruction of system calls and Binder IPC.

The dynamically loadable module (shared object) built for each supported Android
version consists of approximately 30 lines of hand-written code (see Figure 3.2) for ini-
tialisation (described later in this chapter). The remaining code, >100,000 lines of code
per Android version, is automatically generated through static analysis of different ar-
eas of the Android source and is used to produce system call reconstruction and Binder
interface/object marshalers/unmarshalers in C++ automatically during the build process.

Furthermore, the CopperDroid v2 plug-in itself supports plug-ins, written in either
Python or C++, that are invoked for system calls and Binder operations and are pro-
vided with the fully reconstructed data extracted by CopperDroid v2. Plug-ins to Cop-
perDroid v2 can operate on this data and make changes to system calls, Binder interface

Chapter 3 44

Analysis and Manipulation of Android Apps and Malware in Real-Time

calls and complex Binder objects. The plug-ins are either hosted through the use of em-
bedded Python or, in the case of C++ plug-ins, natively as shared objects.

Supporting Python and C++ plug-ins enables complex analysis and modification
of system calls and Binder IPC in real-time, fueling the potential for further research
built on top of CopperDroid v2.

CopperDroid v2
Plug-in

Android version specific shared object (Froyo -> Oreo)Android version specific shared object (Froyo -> Oreo)

C++ & Python
Plug-in support

Binder interface &
object reconstructors

System call
handlers

Plug-in
Manager

All system
calls

IOCTL to
/dev/binder

Python
Plug-in

C++
Plug-in

Binder protocol
handler

Task Management

Kernel Object
Management

1

2 3

Figure 3.2: CopperDroid v2 Design

Figure 3.2 illustrates the design of CopperDroid v2. The plug-in manager (1 in the
figure), CopperDroid v2 plug-in (2 in the figure) including Task management, Kernel
Object Management (file descriptors for devices) etc. and the Binder protocol handler
are all hand-written. The Binder protocol handler is responsible for parsing the fixed
ioctl structures of the Binder protocol and is described in Section 3.9.

The Binder protocol has not changed in format in the last ten years. The only change
has been to normalize types to make supporting 64-bit platforms. Specifically types
such as void* to binder_uintptr_t, signed long to _u32 and size_t to
binder_size_t. These values are all 32-bit on 32-bit platforms and 64-bit on 64-bit
platforms. The version number has been 7 for the last ten years (for 32-bit), with a ver-
sion number of 8 being added for 64-bit platforms. Thus, a hand-coded implementation
for parsing the Binder protocol is sufficient for all the current versions (the protocol is
similarly unchanged in Android Pie). However, automatically implementing a parser
for this protocol is possible by utilising static analysis of the binder.h header file,

Chapter 3 45

Analysis and Manipulation of Android Apps and Malware in Real-Time

however, that is not in the scope of this thesis, and given stable nature of the protocol
thus far, is not a likely requirement.

As mentioned earlier, the system call handlers and Binder IPC reconstruction code
is generated using static analysis and hosted in a version-specific shared object (3 in
Figure 3.2).

The static analysis is further used to automatically generator boilerplate plug-in code
(in both C++ and Python) for system calls as well as Binder IPC. Although the static
analysis used for system calls relies on the SYSCALLS.TXT parsing mentioned above
(described later in this chapter), Binder is handled using static analysis Android Frame-
work Java source code and is significantly more complex. This is described in detail
in Chapter 4.

3.2.1 Plug-in Manager

Introducing a plug-in manager to QEMU limits the scope of the changes required in
QEMU without any loss of functionality. Implementing the CopperDroid v2 plug-in us-
ing a set of abstract interfaces simplifies porting CopperDroid v2 to other environments,
such as a different emulator or even a physical device. Furthermore, modifying the Cop-
perDroid v2 plug-in does not require rebuilding the emulator each time. CopperDroid
v1 made significant modifications to QEMU and required a non-trivial amount of time
to support new emulator versions. Conversely, CopperDroid v2 can be ported to a new
emulator version in less than 30 minutes.

A plug-in context (IPlugInContext) is passed to the plug-in for every sys-
tem call entry and exit, permitting the plug-in to access registers and guest memory
and is defined in Listing A.2 (in Appendix A). The IRegisters interface abstracts
the underlying registers enabling a single plug-in context definition to support multi-
ple CPU architectures. When a plug-in is dynamically loaded, the plug-in manager
locates its initialisation routine (described in Listing A.4) and calls it, passing in the
IPluginManager interface shown in Listing A.3 thus enabling the plug-in to regis-
ter itself.

The CopperDroid v2 plug-in implements the IPlugInEvents interface (see List-
ing A.5) and, once registered, is invoked for every system call entry and exit. Registra-
tion occurs before any code is executed in the guest, so every system call is observed by
CopperDroid v2 from startup to shutdown.

Chapter 3 46

Analysis and Manipulation of Android Apps and Malware in Real-Time

3.2.2 The CopperDroid v2 Plug-in

As mentioned earlier, the CopperDroid v2 functionality is implemented as plug-in. This
is important for the following reasons:

• Reduces the cost of moving to a new emulator

• Supports running in new environments, possibly a different emulator or even on a
device

• Reduces the time required to rebuild and test CopperDroid v2 (only the plug-in
needs to be recompiled not the emulator)

System calls occur very frequently on any operating system and Android is no ex-
ception. Debugging any issues within the context of an emulator is an issue because
watchdog timers in Android fire almost immediately and have to be disabled in order
to single-step; disabling them can cause side-effects within the emulator. Additionally,
debugging a specific instance of a system call is almost impossible because of the fre-
quency at which these occur. The author of this thesis, therefore, built a test framework
to (minimally) simulate the emulated environment and perform specific system calls of
interest in order to debug the paths without issue.

3.3 CopperDroid v2 Initialization

Since CopperDroid v2 performs dynamic analysis for Android using virtual machine
introspection without modification to the guest, it needs to understand certain details
about the Android version that is executing within the emulator. This information is
provided in the configuration file passed to CopperDroid v2 during initialisation by the
plug-in manager. The configuration file uses a text-based Google Protocol Buffer
(protobuf2) file format [39]. The format is shown in Listing A.1 in Appendix A. The
configuration file for Android KitKat is shown in Listing A.6 as an example.

The offsets shown in the listing are used for obtaining the thread ID (TID), process
ID (PID) as well as the package or executable name of the currently executing program
using the thread info address obtained through the current stack pointer (shown in List-
ing 3.1).

2Protocol Buffer and protobuf are used interchangeably in this thesis.

Chapter 3 47

Analysis and Manipulation of Android Apps and Malware in Real-Time

Process Name Process Id Thread Id Thread Info System Call Parameter 1 Parameter 2 Parameter 3 Return Value
com.example.binderdemo 1504 1504 0xe03ac000 5 0xa68f3cf0 0x00020002 38

...
com.example.binderdemo 1504 1504 0xe03ac000 54 38 0xc0186201 0xa68f3cf0 0

...

Table 3.2: System calls with process name, process ID and thread ID correctly deter-
mined.

...
uint64_t ThreadInfoAddress = Context->GetRegisters()->r(sp,0) & ˜(GetConfiguration()->

GetKernelStackSize()-1);
...

Listing 3.1: Determining thread info address using the current stack pointer

The kernel stack size is also present in the configuration file definition and is implic-
itly defaulted to 8 kilo-bytes. It can be explicitly defined if it changes for a given version
or platform (for example 64-bit rather than 32-bit).

The values obtained from the configuration enable the CopperDroid v2 plug-in to
load the platform specific shared object (for example, kitkat4 4 2.so in Listing A.6
in Appendix A) and initialize it. The PlugInInformation section results in the
shared object initializing a Python or C++ plug-in (if specified). If InvokePlugIn
is false, the plug-in will not be loaded.

The offsets provided in the file are used internally within the core CopperDroid v2
code to obtain the process ID (PID), thread ID (TID) and name of the program initiating
the system call (described in Section 3.5). The method for accessing this information is
the same across Android versions, it is only the offsets that can differ.

With the process name, process ID and thread ID identified, some information miss-
ing in Table 3.1 can be included, as can be seen in Table 3.2.

After emulator startup the CopperDroid v2 plug-in will only analyse system calls
that affect certain system state unless other requested. For example, file descriptors can
be forked into processes even though the name is only provided during an open/openat
call. Therefore, from startup, CopperDroid v2 will monitor open, openat, close,
dup, dup2, dup3, fork, clone (where a new process is created) and fcntl (where
a handle is duplicated) system calls. This is done within CopperDroid v2 to ensure
that /dev/binder descriptors are tracked correctly, however, it’s required to permit
plug-ins to CopperDroid v2 to track state as well.

CopperDroid v2 relies on knowing which descriptors refer to /dev/binder in
order to ensure that Binder IPC is interpreted correctly. ioctl codes are only unique
within a given device and during early testing of CopperDroid v2 the author discovered
an ioctl to a different device with a code identical to the BINDER_WRITE_READ
ioctl code (described in Section 3.9). CopperDroid v1 only checks the ioctl code

Chapter 3 48

Analysis and Manipulation of Android Apps and Malware in Real-Time

and misinterprets the buffer provided, whereas CopperDroid v2 only treats ioctl to
the /dev/binder device as Binder related.

The CopperDroid v2 plug-in provides a TCP/IP interface for receiving instructions.
Therefore, during a given analysis run, a message will be sent to the CopperDroid v2
plug-in through TCP/IP interface to start capturing all system calls, at which point
every system call will be inspected. The configuration file can also request this to be-
gin from startup and in that case every system call from startup to shutdown is fully
inspected. CopperDroid v2 supports a variety of commands over TCP/IP including
some that are passed through to Python or C++ plug-ins. These include commands to
switch scenarios or serialise the captured information to disk.

3.4 Platform Initialization

As mentioned earlier in this chapter, CopperDroid v2 supports running multiple An-
droid versions with the same core code base, with all version specific code is imple-
mented in per-version shared objects. Therefore, during initialisation the shared object
for the specific version is loaded and its InitializePlatform function is called,
passing along the configuration mentioned in Section 3.3. A plug-in configuration file
for the Python or C++ plug-in is also provided. An output parameter is set to the ver-
sion specific system call handler routines (exposed via the ISysCalls interface and
automatically generated as part of the build process) to permit the core CopperDroid v2
code to invoke the interface for every system call entry and exit. This is permits the core
CopperDroid v2 code to remain version-agnostic.

3.5 System Call Introspection

As mentioned earlier in this chapter, the modified QEMU used for CopperDroid v2
intercepts the swi instruction and invokes the plug-in manager, which in turn calls
the EnterSyscallEvent() method on the IPlugInEvents interface (see List-
ing A.5 in Appendix A) in the CopperDroid v2 plug-in before returning to QEMU to
actually switch modes and execute the system call. Returning from the kernel mode to
user-mode (via the cpsr_write instruction) invokes the plug-in manager which calls
the ExitSyscallEvent() method in the CopperDroid v2 plug-in prior to returning
from the system call.

The ISysCalls interface (see Listing A.8 in Appendix A) is of key importance
in keeping CopperDroid v2 version agnostic. Newer versions may have different sys-

Chapter 3 49

Analysis and Manipulation of Android Apps and Malware in Real-Time

tem calls that alter state and hence need to be tracked, for instance, Lollipop intro-
duced the dup3 system call which duplicates a given file descriptor. As Section 3.3
mentions, CopperDroid v2 needs to be aware of any file descriptors that reference the
/dev/binder device to correctly handle Binder IPC. Therefore the core Copper-
Droid v2 plug-in calls the IsTrackedSystemCall method on the ISysCalls in-
terface to determine if a given system call should be inspected when full inspection is
not active.

As outlined in Section 3.2, shared objects are automatically generated for every sup-
ported Android version. The shared object includes an implementation of the
ISysCalls interface with the CallEntryStub() method being invoked for every
system call entry and the CallExitStub() method for system call exit.

The CallEntryStub routine obtains the necessary information about the cur-
rently executing task in the guest (PID, TID and name) and invokes an entry stub of
the format shown on line 1 at the top of Listing A.8 (in Appendix A). The relevant
stub is a static method in the class that has an entry in an unordered_map with the
system call number being the key. When a given system call occurs, the corresponding
stub is invoked and allocates a SystemCallEvent that stores the parameters, task
information and other relevant data.

Most system calls return to the caller, however, some such as exit or exit_group
do not return to the caller and hence don’t have an exit stub. For those that do return
(which is the majority), the system call event information (SystemCallEvent class
instance) is inserted in an unordered_map with the task information as the key (pro-
cess ID + thread ID). When the system call exits, the same information (process ID
+ thread ID) is used to locate the SystemCallEvent instance that is passed to the
exit stub which captures the return value and output parameters. If a Python or C++
plug-in is present then it will be invoked for both the system call entry and exit, where
it can inspect or manipulate any of the parameters or, in the case of system call exit,
the return value. Once the system call processing (entry and exit) has completed, the
SystemCallEvent instance is added to the first stage (lightweight) serialiser, de-
scribed later in this chapter.

For non-exiting system calls, the entry stub is invoked (including any registered
plug-ins) and upon return the SystemCallEvent instance is immediately added to
the first stage serialiser).

Some system calls have a conditional exit, for example execve will exit if it fails
but not if it succeeds. CopperDroid v2 manages this by inserting SystemCallEvent
instance for the conditional-exit system call into a table on per-processor basis and then

Chapter 3 50

Analysis and Manipulation of Android Apps and Malware in Real-Time

checking for any pending conditional system calls then next time a system call entry
occurs on the same processor. A system call entry can only occur on the same processor
without an exit occurring the system call did not exit (which indicated success in the
case of execve) and in that case, the system call is removed from the table and added
to the first stage serialiser.

Plug-ins CopperDroid v2 can modify system call parameters and return values in
order to alter the behaviour as needed. Chapter 6 and Chapter 7 demonstrate how this
can be used to good effect with minimal effort in a Python plug-in to perform research
in information leakage detection and anti-evasion.

3.6 Automatic System Call Reconstruction

This section describes the process involved in generating system call reconstruction code
for all supported Android versions. The final result of this process is a system call
handler implementing the ISysCalls interface described in the previous section that
correctly reconstructs all system calls for a given Android version.

Generating the system call reconstruction code for each Android version requires
several distinct stages. The first of which produces a system call table that captures
the names, return values, parameters and system call numbers of all system calls that
version. This involves utilising code obtained from the bionic utilities and is described
in detail in Section 3.6.1.

The second stage determines whether a given system call’s pointer parameters are
filled in by the caller (inbound) or by the system call (outbound). The process involved in
determining parameter direction is described in detail in Section 3.6.2 and modifies the
system call table generated in stage one to include the parameter direction information.

CopperDroid v2 serialises all data captured during a run to protobufs which support
scalar value types of double, float, int32, int64, uint32, uint643 along
with bool, string and bytes (the latter being an arbitrary sequence of bytes). Thus,
the third stage of the reconstruction code generation determines which Protocol Buffer
type best matches the C type of a parameter and is described in Section 3.6.3.

The fourth stage utilises the system call table from stage one (augmented with the
parameter direction information from stage two), a list of non-returning system calls and
the protobuf types to generate a class derived from the ISysCalls interface, this is
described in Section 3.6.5. The generated class provides the version specific system call
reconstruction code for each supported Android version.

3There are other integer types but aren’t relevant here

Chapter 3 51

Analysis and Manipulation of Android Apps and Malware in Real-Time

Return Type Function Name[:Syscall Name[:callid]](Parameter List) System Call Number or Presence or Architecture

Froyo through JellyBean
ssize t read(int, void*, size t) 3 (syscall number)

KitKat
ssize t read(int, void*, size t) 1 (supported on ARM platform)

Lollipop through Oreo
ssize t read(int, void*, size t) all (supported platforms)

Table 3.3: Different formats of SYSCALLS.TXT entries across versions illustrated by read system call

3.6.1 Generating System Call Information

Android’s bionic [32] utilities provide information on all the supported system calls
for a given Android version including the processor architecture on which the sys-
tem call is valid (x86 or ARM). The supported system calls reside in a file named
SYSCALLS.TXT. Support for parsing this file exists in the form of a Python class
also present in the bionic utilities. Android makes use of these components to produce
the system call stubs during the build process. CopperDroid v2, however, uses them to
assist in the generation of system call reconstruction code.

Since each version of Android has a different format for this file, it is necessary to
use the corresponding parser to determine the system calls valid for a given Android
version including the return values and parameters. Prior to Android KitKat (4.4.2) the
SYSCALLS.TXT file included each system call number with the relevant system call
(as can be seen in Table 3.3).

However, for Android KitKat and later versions, the system call number is not
present in SYSCALLS.TXT and has to be obtained by parsing the unistd.h header
for the Android version in question.

Android’s bionic utilities also includes gensyscalls.py [35] and this file con-
tains code to scan the unistd.h file and obtain the system call numbers for a given
platform. The author of this thesis therefore built an equivalent function using the
gensyscalls.py code as a starting point to build the system call information, this
can be see in Listing A.9 (in Appendix A).

The method ParseSyscalls() uses the parser from the bionic utilities and con-
structs a table of all the system calls including the name, parameters and return value
types. This table is constructed with the same structure for all Android versions per-
mitting a single code generator to produce the reconstruction code for all system calls
across any Android version.

Chapter 3 52

Analysis and Manipulation of Android Apps and Malware in Real-Time

3.6.2 Determining System Call Parameter Direction

System calls can have parameters that are either inbound or outbound, or both. For
example, the write system call has inbound parameters for file descriptor, buffer and
buffer length with a return value of the number of bytes written. The read system call
on the other hand has a buffer that is outbound, as it is filled in by the system call, and
will contain the data only on return from the system call. The ioctl system call has
a parameter that is both inbound and outbound. As system call entry and exit are two
separate events, CopperDroid v2 needs to have sufficient context as to when a specific
parameter should be captured (on entry or exit or both).

Furthermore, since CopperDroid v2 executes outside of the system, when it attempts
to access memory that is paged out, the guest OS does not page in the memory, rather, the
read fails. Therefore CopperDroid v2 tracks whether or not reading a specific memory
region succeeded and if not, re-reads the memory on system call exit. The author also
tested hooking into the paging code for the ARM platform within QEMU and re-reading
the memory when a memory read that was missed on system call entry was paged-in
by the guest OS. This works, however, re-reading inbound parameters on system call
exit proved sufficient and the author does not wish to risk potentially destabilizing the
emulator on such a critical code path. However, if required in the future, re-reading
memory when it is paged in by the guest OS is a viable option.

Currently CopperDroid v2 uses heuristics to determine input versus output param-
eters, specifically, examining system call names to see if they include ’read’, ’recv’,
’pipe’, ’socketpair’ as well as ’get’ among others and if so, non-const pointer parame-
ters are marked as outbound. Thus far every system call outbound parameter is correctly
handled. The author has considered writing a program to scour the online Linux docu-
mentation to determine parameter direction and parameter names, however, parameter
direction is already adequately handled in a 30 line Python module using the heuristics
mentioned above.

3.6.3 Determining Parameter Types

Each entry in the generated system call table includes parameter information that Cop-
perDroid v2 uses to determine the protobuf types to which a given parameter should be
mapped. Scalar types such as integers and boolean parameters use the equivalent proto-
buf type, whereas char* are mapped to the string protobuf type. For C structures
or void* parameters, the bytes type is used with CopperDroid v2 automatically cap-
turing the buffer into a bytes allocation based on the structure’s size. CopperDroid

Chapter 3 53

Analysis and Manipulation of Android Apps and Malware in Real-Time

v2 also includes a hand-written bytes class (separate from the protobuf bytes) that
is capable of reading memory from and writing memory to the guest using a functor
shown in Listing A.10.

When system calls are invoked, scalar parameters are assigned using the appropri-
ate type (since they represent a numeric value only), however, types such as char*,
void* or sockaddr_storage are copied from the guest into a bytes instance on
the host.

3.6.4 Accessing Guest Data

While the emulator runs on the host system using host memory, accessing memory
managed by the guest operating system requires copying data into or out of the guest’s
address space. The IPlugInContext class (shown earlier in Listing A.2) provides
methods for copying data between host and guest.

There are two functors that CopperDroid v2 uses, CopyFromGuest and
CopyToGuest (shown in Listing A.11). This allows the bytes class to be agnostic
of routines used for actually copying the memory. The CopyFromGuest functor uses
the ReadMemory()method of the plug-in context, while the CopyToGuest function
uses the WriteMemory() method. Using a functor interface makes it possible to pass
the copy routine to the appropriate method without needing to define separate methods
for each.

Listing A.12 shows two methods which are integral to copying memory between
the host and the guest. The SetData method is used extensively throughout the
ISysCalls implementation for copying non-scalar data from the guest to the host.
Instances of bytes can be re-used and will discard their current allocations and up-
date them to new ones. The m_DataAddress field stores the address from which the
memory was originally read.

There are multiple overloaded methods for SetData and WriteToAddresswhich
will use the stored address when re-trying a copy.
WriteToAddress is only used to modify the guest when a change is made in a
Python or C++ plug-in. The void* CopyContext is currently always an
IPlugInContext interface, however, to keep the bytes class agnostic of the rest of
the system this is passed in as a void pointer.

Although protobufs have a bytes type, serialisation of this type needs to be of type
std::string, since the length will be used to determine the data to copy as opposed

Chapter 3 54

Analysis and Manipulation of Android Apps and Malware in Real-Time

Linux Type Protobuf Type

int int32

int64 t int64

ssize t int64

uint32 t uint32

uint64 t uint64

mode t uint32

size t uint64

char*, const char* string

void* bytes

struct sockaddr, msghdr, stat etc. bytes

Table 3.4: Mapping of C types to Protobuf types

to a null terminated string. The bytes class therefore has an AsStringmethod which
returns a std::string instance initialised with the data.

3.6.5 System Call Reconstruction Code Generation

With the types correctly determined, the fourth stage proceeds to generate the
ISysCalls implementation. For every entry in the system call table, an entry and
exit stub is built (for non-returning calls such as exit or exit_group only an entry
stub is created). These stubs contain all the code necessary to capture the parameters
(using their type information) and corresponding return values. Parameters are captured
into a structure similar to the protobuf type that most suits them (as per Table 3.4). For
example, structures such as sockaddr are copied into a bytes class instance from
the guest using the size of sockaddr_storage structure, to ensure the full address
is captured. Specialisers in the code generation choose the appropriate structures to
use for a given type and generate the appropriate code. Similarly there are specialisers
that handle specific system calls differently, for instance, the ioctl stub is specialised
to call into the Binder reconstruction whenever an ioctl occurs to a file descriptor
matching the /dev/binder device.

The code generated by the system call reconstruction for the open system call en-
try stub is shown in Listing A.13. Line 40 shows the allocation of an instance of a
CSystemCallOpen class, which is automatically generated using the type informa-
tion for the system call captured above. The automatically generated source code for
this class is shown in Listing A.14 (in Appendix A.2).

Chapter 3 55

Analysis and Manipulation of Android Apps and Malware in Real-Time

Process Name Process Id Thread Id Thread Info System Call Parameter 1 Parameter 2 Parameter 3 Return Value
com.example.binderdemo 1504 1504 0xe03ac000 open (5) /dev/binder 0x00020002 38

...
com.example.binderdemo 1504 1504 0xe03ac000 ioctl (54) 38 0xc0186201 0xa68f3cf0 0

...

Table 3.5: System calls that includes the system call names and parameters.

CopperDroid v2 enables plug-ins to modify any system call’s parameters when they
are invoked for that system call. This provides the ability to significantly alter both the
input and output of a system call, as plug-ins are invoked prior to system call entry/exit
occurring in the guest.

Choosing C++ types that match equivalent protobuf types simplifies the generation
of the Google Protocol Buffers file that enables serialisation of all the collected sys-
tem call information and Binder IPC communication across all versions with a single
protobuf definition. Deserialisation code is also automatically produced (in C++ and
Python) permitting the resulting protobuf file to be analysed with tools written in
either language.

The final stage of the code generation automatically produces boilerplate code for
Python and C++ plug-ins for system call handling. C++ classes are also automatically
generated for each system call and associated parameters in order to allow passing a
single entity between CopperDroid v2 and Python or C++ plug-ins and permitting
the tracking of modifications made by plug-ins. Listing A.14 demonstrates the auto-
matically generated class that encapsulates the data of the open system call (and is
instantiated on line 40 of Listing A.13 in Appendix A.2). Chapter 6 demonstrates a
plug-in redirecting an open of a non-existent file in the guest to one located on the host.

With the system call code generation complete, additional missing portions of infor-
mation our available and can be seen in Table 3.5. While at this point all the information
for a given system call will be captured, however, understanding the contents of the
Binder ioctl data requires additional work and is described in Section 3.9.

Parameter 3 of the ioctl system call in Table 3.5 refers to a instance of the
BINDER_WRITE_READ structure and will be described later in this chapter. The data
that is captured at this point will simply include the raw data of the structure and can be
seen in Listing 3.2.

00000000 08 00 00 00 08 00 00 00 90 25 43 b8 00 01 00 00%C.....
00000010 30 00 00 00 88 24 43 b8 0....$C.

Listing 3.2: Binder ioctl Buffer data

Chapter 3 56

Analysis and Manipulation of Android Apps and Malware in Real-Time

3.7 Serialisation of System Call Data

As mentioned in Section 3.3, serialisation of the captured system call and Binder data is
managed using a two-stage serialisation process (to ensure minimal overhead for system
call inspection). The first stage is a lightweight serialiser that simply adds the data for
each system call to a std::queue protected by a lock. Second stage serialisation
either occurs at the end of a given analysis, with all data being kept in memory and then
serialised to storage, or periodically on a separate thread of execution (using POSIX

threads). The latter occurs based on a timeout (using seconds) or if a memory threshold
is reached. The timeout period as well as the memory threshold have default values,
however, these can be adjusted too.

As mentioned in Section 3.6, the results obtained from analysing an app with Cop-
perDroid v2 are serialised using Google Protocol Buffers, a message based language-
independent, platform-neutral mechanism for the serialisation of structured data. Pro-
tobuf messages don’t store their length internally, therefore using a single file for se-
rialisation requires including the length along with a given message. CopperDroid v2
therefore uses a file with a header that contains details of the file (including a magic
number and file version). While for each system call event, the length of the serialised
message is stored followed by the message (as shown in Figure 3.3).

System call data is serialised in the SysCallEvent message (as shown in Listing 3.3).
The basic structure of a serialised system call is a header, which contains information
about the system call, such as the system call number in addition to information identi-
fying the process making the call. When serialising the system call, the header is filled
in as well as an optional event field matching the system call, for example readevent,
writeevent or ioctlevent. When protobufs are serialised, only required fields and op-
tional fields that have been set are included. Therefore, although the message definition
is large, each message stored includes only the data relevant to the system call.

The code generators which generate the serialisation code also produce deserialisa-
tion code in Python and C++. This deserialisation code assists in post-processing of
CopperDroid v2 output for reconstructing (potentially malicious) behaviours.

3.8 CopperDroid v2 Viewer

As mentioned in Section 3.7, system call data from a given run is serialised into Google
Protocol Buffers. The serialisation is performed using the information gathered from

Chapter 3 57

Analysis and Manipulation of Android Apps and Malware in Real-Time

CopperDroid Magic
Version Length
CopperDroid File Version

SYSTEM CALL EVENT LENGTH 0

SYSTEM CALL EVENT 0

FILE HEADER

CopperDroid Magic
Version Length
CopperDroid File Version

SYSTEM CALL EVENT LENGTH 0

SYSTEM CALL EVENT 0

FILE HEADER

SYSTEM CALL EVENT LENGTH n

SYSTEM CALL EVENT n

SYSTEM CALL EVENT LENGTH n

SYSTEM CALL EVENT n

Figure 3.3: CopperDroid v2 Serialisation File Structure

message SysCallEvent {

enum SYSCALLNUMBER {
...
SysCallEnumRead = 3;
SysCallEnumWrite = 4;
...

}

message Header {
required SYSCALLNUMBER syscallnumber = 1;
optional string timestamp = 2;
optional int64 processid = 3;
optional int64 threadid = 4;
optional int64 threadinfo = 5;
optional string name = 6;
optional int64 eventid = 7;

}
...
message SysCallRead {

optional int64 returnvalue = 1;
optional int32 parameter0 = 2;
optional bytes parameter1 = 3;
optional uint64 parameter2 = 4;

}

message SysCallWrite {
optional int64 returnvalue = 1;
optional int32 parameter0 = 2;
optional bytes parameter1 = 3;
optional uint64 parameter2 = 4;

}
...
required Header header = 1;
optional SysCallRead readevent = 1000003;
optional SysCallWrite writeevent = 1000004;
...

}

Listing 3.3: Portion of the Google protobuf definition file for system call events

Chapter 3 58

Analysis and Manipulation of Android Apps and Malware in Real-Time

parsing SYSCALLS.TXT which also enables deserialisation code to be automatically
generated in both Python and C++. The Python deserialisation code is utilised for
post-processing the protobufs for a given app’s run and plays a key role in producing
low-level, high-level and composite behaviours utilised in malware analysis and classi-
fication. In the DroidScribe publication [21], 5246 app samples were classified using
the features extracted by analysing the protobufs. The code which analysed the proto-
bufs was writing entirely by the author of this thesis and uses the deserialisation code
mentioned earlier. Support for composite behaviours was also added to improve the
feature set available for machine learning, for instance, a combination of open, read,
close is a composite behaviour of FILE_READ, whereas open, write, close is
a behaviour of FILE_READ_WRITE. Similarly, a socket, bind and listen is a
NETWORK_SERVER, where as socket and connect is a NETWORK_CLIENT.

The author (of this thesis) implemented a text based Python script to allow filter-
ing of specific apps (based on Process ID), Binder interface method calls and system
calls. However, the sheer number of system calls collected while running a given app
makes it incredibly difficult to look at a specific system call or Binder interface call
and follow what is occurring. Therefore, the author added automatically generated C++
deserialisation support for system calls and the Binder protocol (the latter is described
in Section 3.9) and implemented a more useful tool, the CopperDroid v2 Viewer.

The CopperDroid v2 Viewer is implemented in C++ using the deserialisation code
and presents a Graphical User Interface (GUI) that permits filtering on process, system
call (including system call parameters and return value) as well as specific interfaces
and methods on those interfaces. Furthermore, it also fully displays all the different
Binder operations for both transactions (calls) and replies enabling one to analyse each
component accordingly. The concept is akin to a combination of the system call tracer
strace and a network packet analyser such as Wireshark or the Windows Network
Monitor (NetMon). However, rather than network packets, the CopperDroid v2 Viewer
is able to inspect and display the contents of Binder IPC communications, in addition
to regular system calls.

Figure 3.4 is an example of an openat call of /system/build.prop followed
by a read of the file. The title bar shows the current filters being applied to the list of
system calls. Multi-select can be used for viewing multiple processes and system calls
simultaneously. Alternatively, selecting the * at the top of a pane (either Processes or
System Call Types) clears the filters for that type.

Using multi-select of processes in conjunction with specific Binder interface calls
allows one to view both the client and server side of a given invocation. Figures B.1,

Chapter 3 59

Analysis and Manipulation of Android Apps and Malware in Real-Time

Figure 3.4: Lollipop 5.1.1 openat and read of /system/build.prop

B.2, B.3 and B.4 in Appendix B all show both the client and the server in the system call
window (although only the client side Binder details are visible as the client side calls
are selected).

The various portions of the CopperDroid v2 Viewer are populated by the contents of
the protobuf file, this includes system call types, processes and the system calls invoked
by each process. Additionally, every interface and method invoked is included in the
options dialog (shown in Figure 3.5). Therefore, if a given system call or interface isn’t
invoked it won’t appear in the viewer.

While automated analysis can achieve a lot, there are times when it is necessary to
have a person inspect an operation or set of operations. For instance, when Google
Bouncer flags something, a human operator will look at it to confirm whether or not
the action is malicious [10]. The CopperDroid v2 Viewer has proven very useful to
the author in debugging issues with Binder reconstruction and in verifying that changes
made by plug-ins are marshalled correctly. Plug-ins are invoked prior to each system call
(or Binder call) actually being invoked and before the data has been serialised resulting
in plug-in modified data being collected in the protobuf.

Information leakage detection and anti-evasion described in Chapter 6 and Chap-
ter 7 respectively replace entire files by intercepting open, lseek, fstat, read and
close. The CopperDroid v2 Viewer makes it possible isolate the calls involved in
opening a file, determining the length and actually reading it by allowing one to filter
and mark specific system call types in a given process and then jump from instance to

Chapter 3 60

Analysis and Manipulation of Android Apps and Malware in Real-Time

instance while still seeing all the other system calls occurring within that process.

Figure 3.5: Lollipop 5.1.1 Options Dialog showing several interfaces and methods

The Options Dialog in Figure 3.5 includes a Mark Only check-box which, when
selected, will highlight system calls matching the filters in blue while leaving all others
black. The Alt-N and Alt-P key combinations then loop through the next and previous
instances of matching system or Binder calls.

3.9 Binder ICC Reconstruction

This section describes how the fixed structures passed to ioctl for the /dev/binder
device are parsed. It also describes how the interface and method call in a given invo-
cation are determined, however, actual call parameters and return value marshaling is
described in the Chapter 4. This chapter does, however, describe the interaction be-
tween the work performed here with that of the marshaling code generated as a result of
the static analysis described in Chapter 4.

3.9.1 Introduction

Binder interprocess communication is accomplished using a kernel driver that is re-
sponsible for moving the information for calls and their responses between client and
server (as outlined in Section 2.1). It should be noted that the client and server refer to
the initiator of an IPC request and the target to which that request is sent. For example,

Chapter 3 61

Analysis and Manipulation of Android Apps and Malware in Real-Time

while the LocationManager service is the server-side of a location information query,
when it sends a one-way location update notifications to an app that requested them, it
is at that point the client and the app is a server.

Binder exposes a device /dev/binder and implements a protocol4 on top of the
ioctl system call provided by the Linux kernel. This protocol provides the necessary
infrastructure to support fast interprocess communication between apps and services.
Apps may also communicate with one another, provided the interface definition has
been shared. Furthermore, services communicate with one another too, which is all
performed through Binder IPC.

Binder IPC has the same basic architecture as Remote Procedure Calls (RPC) on
other platforms. When a specific interface method is invoked, a proxy/stub component
for that interface marshals the parameters into a single allocation (a Parcel in Binder’s
case), it then invokes the remote method and copies or maps the allocation into the target
server. The server then unmarshals the parameters from this allocation and invokes the
specific method passing in the unmarshaled parameters. Replies are handled in the same
way with the difference that they are marshaled on the server, copied or mapped into the
client and then unmarshaled and returned to the original caller.

The Parcel structure plays a key role in marshaling information between client
and server. There is also a Parcel class provided to marshal and unmarshal data
to and from raw data contained within the Parcel. Parcels can also be accessed
using native C++ code via the Java Native Interface (JNI). The author of this thesis
implemented a hand-written Parcel class in CopperDroid v2. There are a few rea-
sons for this, firstly, the hand-written class is aware of host and guest memory and can
therefore move data back and forth as needed. Secondly, an attacker could, in theory,
attack Binder by specially crafting Parcels [62] [26] and a separate and distinct im-
plementation could make it harder to attack CopperDroid v2 through this (since both
implementations would have to be similarly compromised). Thirdly, the Parcel class
implementation in Android uses a combination of Java and native code (including
the JNI), complicating automatic code generation. Finally, there are some constructs in
Java that are tricky to translate to C++ (but not impossible) and implementing the class
by hand is faster.

4The author refers to this as the Binder Protocol in this thesis

Chapter 3 62

Analysis and Manipulation of Android Apps and Malware in Real-Time

3.9.2 The Binder Protocol

The well-defined ioctl mechanism mentioned above passes different structures be-
tween the app and the /dev/binder device, the most interesting of these being the
binder_write_read structure (see Listing 3.4), and the marshaled data contained
in the location pointed to by either the write_buffer or read_buffer members
of this structure. The Binder driver has a command and return protocol. These are gen-
erally both present in a single client-server round trip. The write_buffer contains
the commands sent from the client to the server. The read_buffer contains the reply
from the server.

struct binder_write_read {
binder_size_t write_size; /* bytes to write */
binder_size_t write_consumed; /* bytes consumed by driver */
binder_uintptr_t write_buffer;
binder_size_t read_size; /* bytes to read */
binder_size_t read_consumed; /* bytes consumed by driver */
binder_uintptr_t read_buffer;

};

Listing 3.4: binder write read structure

Binder IPC calls work in the following manner, a BINDER_WRITE_READ ioctl
is sent to the Binder driver, the write_buffer containing the commands, with the
write_size specifying the complete size of the buffer, while write_consumed
contains the length of the buffer actually utilised5.

The write_buffer contains one or more BC_* commands (such as those in List-
ing 3.5). Commands are packed into the write_buffer one after another. While
one may be tempted to simply loop through every looped through every byte in the
write_buffer up to write_size-4 and checking every 4 bytes to see if they
match either BC_TRANSACTION/BC_REPLY or BR_TRANSACTION/BR_REPLY,
this could lead to issues. For example some commands contain addresses which could
potentially have the same value as BC_TRANSACTION (0x40286300),
BC_REPLY (0x40286301), BR_TRANSACTION (0x80287202) or
BR_REPLY (0x80287203), leading to undefined behaviour including instability.

enum binder_driver_command_protocol {
BC_TRANSACTION = _IOW(’c’, 0, struct binder_transaction_data),
BC_REPLY = _IOW(’c’, 1, struct binder_transaction_data),
/*
* binder_transaction_data: the sent command.
*/
...
BC_INCREFS = _IOW(’c’, 4, __u32),

5The author of this thesis obtained the information regarding the Binder protocol through experimen-
tation and inspection of the Binder driver source code

Chapter 3 63

Analysis and Manipulation of Android Apps and Malware in Real-Time

BC_ACQUIRE = _IOW(’c’, 5, __u32),
BC_RELEASE = _IOW(’c’, 6, __u32),
BC_DECREFS = _IOW(’c’, 7, __u32),
/*
* int: descriptor
*/
...

};

Listing 3.5: Binder command protocol (code omitted for brevity)

Only write_size bytes need to be examined, as the caller knows the size of the
buffer it is sending and only includes that many bytes. The write_consumed value is
updated by the Binder driver (invoked after CopperDroid v2 inspects the ioctl data).
CopperDroid v2, however, needs to intercept and potentially modify a given transaction
prior to the ioctl actually being executed (and reaching the Binder driver) therefore,
the write_size is used in determining what is contained with the ioctl request.
An example of a write_buffer including write_size and write_consumed
can be seen in Figure B.5, in Appendix B.

enum binder_driver_return_protocol {
BR_ERROR = _IOR(’r’, 0, __s32),
/*
* int: error code
*/

BR_OK = _IO(’r’, 1),
/* No parameters! */

BR_TRANSACTION = _IOR(’r’, 2, struct binder_transaction_data),
BR_REPLY = _IOR(’r’, 3, struct binder_transaction_data),
/*
* binder_transaction_data: the received command.
*/
...
BR_INCREFS = _IOR(’r’, 7, struct binder_ptr_cookie),
BR_ACQUIRE = _IOR(’r’, 8, struct binder_ptr_cookie),
BR_RELEASE = _IOR(’r’, 9, struct binder_ptr_cookie),
BR_DECREFS = _IOR(’r’, 10, struct binder_ptr_cookie),
/*
* void *: ptr to binder
* void *: cookie for binder
*/
...

};

Listing 3.6: Binder return protocol (code omitted for brevity)

The read_buffer similarly contains one or more BR_* return commands (such
as those in Listing 3.6). Return commands are also packed into the read_buffer one
after another. Replies to Binder calls are returned using a BR_REPLY return command.

CopperDroid v2 processes the return path on ioctl exit and uses the
read_consumed value when analysing the read_buffer. As the caller does not
know ahead of time how many bytes will be in the response, a larger buffer, specified in
read_size, is always sent (often 256 bytes). However, only the bytes actually used
for the reply are needed and these are reflected in the read_consumed value. An
example of a read_buffer including read_size and read_consumed can be
seen in Figure B.6.

Chapter 3 64

Analysis and Manipulation of Android Apps and Malware in Real-Time

ClientClient ProxyProxy StubStub ServerServerBinder DriverBinder DriverBinder DriverBinder Driver

BC_TRANSACTION

BR_TRANSACTION

Returns result of type IIntentSender

BR_REPLY

Returns result of type IIntentSender

Calls IActivityManager.getIntentSender()

BC_REPLY

Invokes IActivityManager.getIntentSender()

1

2

3

4

5

6

7

8

Figure 3.6: Sequence of an app call to IActivityManager getIntentSender and corresponding reply

CopperDroid v2 fully interprets both the command and return protocols and is able
to reconcile calls and their responses correctly. Full protocol support also opens the path
for further research into the resiliency of Binder to attacks targeting its referencing of
objects (fpr which malware could certainly craft attacks using native code and accessing
the /dev/binder device directly).

Figure 3.6 is an example sequence diagram for the IActivityManager
getIntentSender() interface method call6. On the client side, the proxy marshals
the parameters into a Parcel and issues an ioctl to the /dev/binder device which
includes a BC TRANSACTION 2 structure with the data pointing to the Parcel.
The /dev/binder driver translates any flat binder object structures between pro-
cesses and completes a waiting ioctl on the server passing it a BR TRANSACTION
3 which includes the (potentially) modified Parcel. The server stub unmarshals

the Parcel into the parameters and invokes the getIntentSender() method 4 .

6The IActivityManager getIntentSender() method is used as a running example throughout this thesis
because it is a non-trivial interface method to reconstruct and demonstrates several different facets of
Binder communication.

Chapter 3 65

Analysis and Manipulation of Android Apps and Malware in Real-Time

The reply performs the same steps in reverse using BC REPLY and BR REPLY on the
server and client sides respectively.

In general multiple operations are sent at a time, for example, BC INCREFS,
BC FREE BUFFER and BC TRANSACTION can often be seen in a single write
buffer. In the case of an immediately completed request, it is not unusual to see a
BR NOOP, BR TRANSACTION COMPLETE and BC REPLY in the read buffer
associated with a given request.

Most Binder calls are synchronous and return on the same thread as they were ini-
tiated7. Others are one-way calls that reply via a broadcast receiver. Binder transaction
requests include a code, which translates to the name of the method that the Binder
transaction invokes, and an interface token, which represents the interface to which the
method belongs. Conversely, Binder transaction replies include only an exception code
of 0 (if successful) and the return result. In case of a failure the reply consists of a
non-zero exception code and a string detailing the exception. The return value of the
target function is contained within the reply and is dependent on the return type of
the function, either a primitive or complex type. Therefore, when examining Binder
replies, it is necessary to know the return type associated with a given call. This infor-
mation is present in the Android Interface Definition Language (AIDL) files for most
interfaces [34] and in Java files for some interfaces such as IActivityManager,
IContentProvider and IServiceManager.

Intents permit a particular app or service to carry out an operation on behalf
of a caller. These can either be acted upon immediately or held for later use via a
PendingIntent. For example when sending an SMS text message, including a sent
and a delivery PendingIntent enables the Telephony Service to notify the caller
when the message is sent and once it has been delivered. The PendingIntent is
obtained via a call to the IActivityManager.getIntentSender() method.

Figure 3.7 demonstrates the call (Binder transaction) that registers the PendingIn-
tent while Figure 3.8 shows the response with the handle to the PendingIntent.

The second field in the binder transaction data structure as shown in Figure 3.7 is
the code field and refers to the interface method to which the transaction is referring.

All Android interfaces include an onTransact() method in their stub and the
code specifies which transaction to execute. An example onTransact() method is
shown in Listing 4.4 in Section 4.6. The prototype for the method can be seen in List-

7The author determined this by debugging Binder ioctl system call entry/exit using the Copper-
Droid v2 emulator

Chapter 3 66

Analysis and Manipulation of Android Apps and Malware in Real-Time

BC * Params BC TR Params BC * Params

target

code

uid
...

data size

buffer

StrictMode InterfaceToken Param 1 ... Param 6 ...

s
t
r
u
c
t

b
i
n
d
e
r
t
r
a
n
s
a
c
t
i
o
n
d
a
t
a

IActivityManager.getIntentSender(2,
. . .,
Intent(’Sent’),
. . .)

write size

write consumed

write buffer

read size
...

ioctl(binder fd, BINDER WRITE READ, &binder write read);

Figure 3.7: An example of a Binder transaction that registers a pending Intent with the IActivityManager
that is later used for notification

BR * Params BR REPLY Data BR * Params

Exception Code Result

0
PendingIntent(flat binder object) {
Type: Handle,
Flags: {Priority: 127, File
Descriptors Accepted}, Handle: 0xa,
Cookie: ba4567a0 }

...

read size

read consumed

read buffer
...

ioctl(binder fd, BINDER WRITE READ, &binder write read);

Figure 3.8: An example of a Binder reply that receives the information corresponding to the PendingIntent
registered with the IActivityManager

Chapter 3 67

Analysis and Manipulation of Android Apps and Malware in Real-Time

ing 3.7.

@Override
public
boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws

RemoteException;

Listing 3.7: Interface onTransact method prototype

Listing 3.12 is taken from a test program written by the author that encrypts sensitive
data and sends it via SMS. The program is used to test which portions of entropy in the
system need to be controlled for secure key generation to generate the same keys from
the initial seed and will be further described in Chapter 6. How the code in this example
is marshaled into a Parcel can be seen in Figure 3.9. Chapter 4 describes in detail the
analyses that ultimately enable the automatic unmarshaling of such Binder transactions.

Binder interfaces optionally have a StrictMode policy at the start of the Parcel
(stored as a 32-bit integer). However, not all interfaces and interface methods have
StrictMode settings. CopperDroid v2 needs to determine the target interface for a
given Parcel which requires parsing the raw Parcel.

For an interface without StrictMode policy, this would just involve reading the
interface descriptor string (32-bit integer length plus the number of Unicode characters
denoted by the length, plus any padding which may be present) as per Table 3.6, later in
this chapter.

All components of a Parcel are 4-byte aligned, which is why a byte is stored as
a 32-bit integer (see Table 3.6 later in this chapter). However, if StrictMode policy
is present, then that needs to be read first and then the interface descriptor needs to be
read. Therefore CopperDroid v2 uses heuristics to determine if StrictMode is present
and does so by determining if the 32-bit integer at the beginning of the Parcel has a
value higher than that of the length of the Parcel, in which case it is StrictMode
policy. If the length is smaller than the total Parcel then the two uint16_t values
immediately following the first 32-bit integer are analysed to determine if they are valid
UNICODE characters. If not, the first 32-bit integer is StrictMode policy, otherwise
the first 32-bit integer is the length of the interface descriptor string.

If it is determined that StrictMode is present then the policy value is read and
stored and the presence of StrictMode is noted, if not, then that is noted too. The
interface descriptor is read from the Parcel next and this is used to invoke code to
unmarshal the rest of the Parcel. There is a non-heuristic based approach that can be
taken at some point (if it is necessary). The binder_transaction_data structure

Chapter 3 68

Analysis and Manipulation of Android Apps and Malware in Real-Time

struct binder_transaction_data {
/* The first two are only used for bcTRANSACTION and brTRANSACTION,
* identifying the target and contents of the transaction.
*/
union {

__u32 handle; /* target descriptor of command transaction */
binder_uintptr_t ptr; /* target descriptor of return transaction */

} target;
binder_uintptr_t cookie; /* target object cookie */
__u32 code; /* transaction command */

/* General information about the transaction. */
__u32 flags;
pid_t sender_pid;
uid_t sender_euid;
binder_size_t data_size; /* number of bytes of data */
binder_size_t offsets_size; /* number of bytes of offsets */

/* If this transaction is inline, the data immediately
* follows here; otherwise, it ends with a pointer to
* the data buffer.
*/
union {

struct {
/* transaction data */
binder_uintptr_t buffer;
/* offsets from buffer to flat_binder_object structs */
binder_uintptr_t offsets;

} ptr;
__u8 buf[8];

} data;
};

Listing 3.8: Binder Transaction Data used in Binder IPC

typedef struct _flat_binder_object {
/* 8 bytes for large_flat_header. */
__u32 type;
__u32 flags;

/* 8 bytes of data. */
union {
binder_uintptr_t binder; /* local object */
__u32 handle; /* remote object */
};

/* extra data associated with local object */
binder_uintptr_t cookie;
} flat_binder_object;

Listing 3.9: Flat Binder Object used for referencing data specific to either the client or server

in Binder has a target field which is either a handle or a pointer value (see List-
ing 3.11). From the client side, this is a Binder handle value representing the service in
question and is obtained by a call the IServiceManager.getService() method
(with the handle being returned in a flat_binder_object). Since CopperDroid v2
observes everything in the system, the IServiceManager.getService()method
call and reply can be used to track services. Thus far this has not been necessary, but
remains a possibility should it be required.

A flat_binder_object is returned from the getIntentSender() call,
shown in Listing 3.9. This structure is used for passing references to objects between
processes with the Binder driver updating the binder/handle field to reference the
object within the process in question.

Chapter 3 69

Analysis and Manipulation of Android Apps and Malware in Real-Time

CopperDroid v2 wraps the flat_binder_object structure into a class called
BinderReference, this class includes helper methods for determining the object
in question is a handle, reference or file descriptor. It also includes an AsString()
method that returns a string representation of a flat_binder_object, as can be
seen from the following text copied from output of the CopperDroid v2 viewer. This is
discussed in more detail in Chapter 4.

android.app.IActivityManager
getIntentSender(type = 1, packageName = "com.example.binderdemo", token = BinderReference {

Type:"Binder Strong Reference", Flags: {"Priority: 127, File Descriptors Accepted" },
Binder: 0x0, Cookie: 0 }, resultWho = "(null)", requestCode = 0, intents = ["{ "mAction
" : "Sent", "mData" : null, "mType" : "(null)", "mPackage" : "(null)", "mComponent" :
null, "mFlags" : 0, "mCategories" : [], "mExtras" : null, "mSourceBounds" : null, "
mSelector" : null, "mClipData" : null, "mContentUserHint" : -2 }"], resolvedTypes = [
], flags = 0, options = null, userId = 0)

Listing 3.10: IActivityManager getIntentSender call parameters

The result is also a flat_binder_object and therefore encapsulated by a
BinderReference class.

android.app.IActivityManager
getIntentSender()
exceptionCode = 0
res = BinderReference { Type:"Binder Handle", Flags: {"Priority: 127, File Descriptors

Accepted" }, Binder: 0x8, Cookie: a5243f80 }

Listing 3.11: IActivityManager getIntentSender reply data

The offsets_size field refers to the size of the offsets field in
binder_transaction_data (see Listing 3.11) where each offset is of type
binder_uintptr_t which is 4 bytes in length on a 32-bit Android system and 8
bytes in length on a 64-bit Android system.

Listing 3.13 shows the full Parcel which is produced by calling the sendText
method on the ISms interface. The target refers to the service that the app is communi-
cating with, in this case the SMS service.

The code that produces this parcel is shown in Listing 3.12 and a visual representa-
tion is shown in Figure 3.9. The Parcel in Listing 3.13 is color coded to demonstrate
the different components that make up the Parcel and these match those shown in
Figure 3.9.

The first 4 bytes are the StrictMode policy (in gray). The next portion is the
interface token, followed by the package name and all the different parameters.

The flat_binder_objects present in the Parcel are prefixed by a violet 32-
bit value (0x00000001) representing the boolean value of true, indicating the presence
of the flat_binder_object. If null had been specified in the call, then this would
have been 0x00000000 (false). A null string is encoded as -1 (0xffffffff) and can be seen

Chapter 3 70

Analysis and Manipulation of Android Apps and Malware in Real-Time

public class MainActivity extends AppCompatActivity implements View.OnClickListener {
...
private Button m_SendSMS;
PendingIntent piSent;
PendingIntent piDelivered;
...
@Override
protected void onCreate(Bundle savedInstanceState) {

...
piSent = PendingIntent.getActivity(this, 0, new Intent("Sent"), 0);
piDelivered = PendingIntent.getActivity(this, 0, new Intent("Delivered"), 0);
...

}
...
@Override
public void onClick(View view) {

...
if (view == m_SendSMS) {

...
byte[] encryptedData = SecurityUtils.encryptAES(seedValue, LeakString);
String encryptedText;
encryptedText = AESHelper.toHex(encryptedData);

SmsManager smsManager = SmsManager.getDefault();
smsManager.sendTextMessage("0123456789", null, encryptedText, piSent,

piDelivered);
}
...

}
}

Listing 3.12: Sample showing creation of PendingIntents which are used in a SMS sendText call

Target: 32, Cookie: 0, Code: 10, Flags: 16, SenderPid: 0,
SenderEuid: 0, Datasize: 536, OffsetsSize: 8

Buffer:
00000000 04 03 00 00 23 00 00 00 63 00 6f 00 6d 00 2e 00#...c.o.m...
00000010 61 00 6e 00 64 00 72 00 6f 00 69 00 64 00 2e 00 a.n.d.r.o.i.d...
00000020 69 00 6e 00 74 00 65 00 72 00 6e 00 61 00 6c 00 i.n.t.e.r.n.a.l.
00000030 2e 00 74 00 65 00 6c 00 65 00 70 00 68 00 6f 00 ..t.e.l.e.p.h.o.
00000040 6e 00 79 00 2e 00 49 00 53 00 6d 00 73 00 00 00 n.y...I.S.m.s...
00000050 01 00 00 00 16 00 00 00 63 00 6f 00 6d 00 2e 00c.o.m...
00000060 65 00 78 00 61 00 6d 00 70 00 6c 00 65 00 2e 00 e.x.a.m.p.l.e...
00000070 62 00 69 00 6e 00 64 00 65 00 72 00 64 00 65 00 b.i.n.d.e.r.d.e.
00000080 6d 00 6f 00 00 00 00 00 0a 00 00 00 30 00 31 00 m.o.........0.1.
00000090 32 00 33 00 34 00 35 00 36 00 37 00 38 00 39 00 2.3.4.5.6.7.8.9.
000000a0 00 00 00 00 ff ff ff ff a0 00 00 00 37 00 33 007.3.
000000b0 34 00 34 00 39 00 31 00 33 00 31 00 44 00 44 00 4.4.9.1.3.1.D.D.
000000c0 30 00 30 00 36 00 30 00 46 00 45 00 41 00 43 00 0.0.6.0.F.E.A.C.
...
000001d0 32 00 42 00 35 00 45 00 39 00 33 00 37 00 31 00 2.B.5.E.9.3.7.1.
000001e0 34 00 32 00 44 00 39 00 32 00 36 00 00 00 00 00 4.2.D.9.2.6.....
000001f0 01 00 00 00 85 2a 68 73 7f 01 00 00 08 00 00 00*hs........
00000200 00 00 00 00 01 00 00 00 85 2a 68 73 7f 01 00 00*hs....
00000210 0a 00 00 00 00 00 00 00

Offsets:
00000000 f4 01 00 00 08 02 00 00

Listing 3.13: Parcel from a calling sendText on the ISms interface

in orange in Listing 3.13 where the source address parameter is omitted (and null passed
instead).

The offsets shown below the buffer are offsets into the parcel where the
flat_binder_object structures are located, when the Binder driver is invoked in

Chapter 3 71

Analysis and Manipulation of Android Apps and Malware in Real-Time

PendingIntent piSent;
PendingIntent piDelivered;

piSent = PendingIntent.getBroadcast(this, 0, new Intent("Sent"), 0);
piDelivered = PendingIntent.getBroadcast(this, 0, new Intent("Delivered"), 0);

byte[] encryptedData = SecurityUtils.encryptAES(seedValue, LeakString);
String encryptedText = AESHelper.toHex(encryptedData);
SmsManager smsManager = SmsManager.getDefault();
smsManager.sendTextMessage("0123456789", null, encryptedText, piSent, piDelivered);

com.android.internal.telephony.ISmsStrictMode com.example.binderdemo “0123456789” null encryptedText piSent piDelivered

Figure 3.9: Parceling of a call

a given process, prior to transferring the Parcel to the target process, any
flat_binder_objects in the parcel are translated to their counterparts in the tar-
get parcel. For example, while the handle value for the sent PendingIntent ob-
ject is 0x00000008 in the listing shown below, it is 0x0000000f in the target process
(com.android.phone) – obtained by examining the communication between client and
server using the CopperDroid v2 Viewer, developed by the author.

Table 3.6 demonstrates examples of how different types are packed within a Parcel.
This is not an exhaustive list, however, it should be noted that all values are always 4-
byte aligned, so even boolean values (requiring one byte of storage) are represented
using 4 bytes.

For transactions, the parcel contains the interface name and all of the parameters
being passed to the method, including both simple and complex types. Perhaps the most
well-known of the internal Android interfaces is the IActivityManager, as it is cen-
tral to supporting Android apps. As shown in figure 3.7, when an Android app regis-
ters a PendingIntent, this is managed through the IActivityManager method,
getIntentSender(). In this case, the Binder reply contains a Binder handle ref-
erence. Figure 3.8 (earlier in the chapter) depicts the reply which in this case contains a
Binder handle reference.

Content providers also register with the Activity Manager and apps that utilise a
given content provider communicate with the Activity Manager (via the IActivityMan-
ager interface) to obtain a reference to the content provider in question. This is covered
in more detail in Chapter 6 as it is relevant in determining when a content provider is
queried for (potentially sensitive) information.

Public interfaces are shared via AIDL files and CopperDroid v2 initially used an
AIDL compiler8 modified by the author to generate C++ code to reconstruct interface

8Compiler in this thesis refers to a source-to-source compiler

Chapter 3 72

Analysis and Manipulation of Android Apps and Malware in Real-Time

Parcel Type Packing

int int32

byte
int32

0-255

bool
int32

0 : false
1 : true

String
int32 length + Unicode characters + padding

-1 : null
0 : empty string

Array
int32 item count + array

-1 : null

Bundle
int32 length + BNDL magic + data

-1 : null

Objects
object data

-1 : null

Table 3.6: Packed representation of types within a Parcel

communications. However, as in CopperDroid v1, this only assists in obtaining the
overall structure of the interface method call, but can not reconstruct complex objects.
It also suffers from the same shortcoming of CopperDroid v1 where the length of com-
plex objects within a Parcel can only be determined by actually unmarshaling them
(which results in any simple types following complex objects being incorrectly recon-
structed) and that is where the unmarshaling Oracle is required. However, as mentioned
in Chapter 2, the unmarshaling Oracle suffers from performance and stability issues.
For example, it throws an exception which crashes the Oracle when an object contain-
ing embedded IBinder types is included in the Parcel and it attempts to reconstruct
the obejct without the correct context. It is also unable to reconstruct interfaces such as
IActivityManager (implemented in Java) as it needs to be provided with all the
types contained a Parcel.

3.9.3 Parsing The Binder Protocol

Section 3.9.1 describes a Parcel class written by the author which enables Cop-
perDroid v2 to determine the interface name specified within a given Parcel while

Chapter 3 73

Analysis and Manipulation of Android Apps and Malware in Real-Time

7

Strict
Mode

32 a n d r o i d . a c c o u n t s c

o u n t M

android.accounts.IAccountManager

Function code 7: getAccountsAsUser

accountType: com.google

userId: 0

0

code

data.ptr.buffer

write_buffer

binder_write_read

Protocol operation
(BC_TRANSACTION)

Strlen

Parcel

binder_transaction_data

code

. I A c

a n a g e r

Interface descriptor

10 c o m . g o o g l e

Figure 3.10: Breakdown of a Binder Transaction

also handling the optional StrictMode policy. Figure 3.10 demonstrates how the
binder_write_read structure is used to access a given operation’s
binder_transaction_data and finally the Parcel. For every structure that the
Binder protocol includes, the author implemented classes that understand how to parse
and even modify each Binder structure. These classes assist in unmarshaling and, in the
case of modifications, marshaling a Parcel correctly.

The open system call entry handler (open_stub_enter_syscall()) men-

Chapter 3 74

Analysis and Manipulation of Android Apps and Malware in Real-Time

tioned in Section 3.6.5 instantiates a BinderObject class instance if the
/dev/binder device is opened. This class inherits from the KernelObject class
defined in Listing A.15 in Appendix A.

Only /dev/ashmem and /dev/binder are currently tracked internally within
CopperDroid v2. While CopperDroid v2 tracks anonymous shared memory objects
(ashmem), it currently doesn’t examine them in much detail. Support was added for
this because it was thought that PendingIntent may be returned using an ashmem
region, however, the author disproved this idea by determining that they are in fact
allocated by calling the IActivityManager interface’s getIntentSender()
method.

The BinderObject class derives from the KernelObject class and imple-
ments the GetObjectType(), IoCtl() and IoCtlExit() calls. When the Cop-
perDroid v2 ioctl handler is invoked on entry, it attempts to locate the correspond-
ing KernelObject using the file descriptor. If it locates an object, it then invokes
the IoCtl method. The BinderObject class’s IoCtl method then proceeds to
parse the Binder protocol. For a BINDER_WRITE_READ ioctl, this involves copying
the binder_write_read structure from the target address in the guest to the host.
The write_buffer is copied next and each command is stored in an instance of a
BinderOperation class (written by the author) which has the requisite knowledge
on the contents of each command and return type (BC_*/BR_*).

The BinderOperation class holds the logic for parsing the top level of ev-
ery command and return. It also encapsulates a BinderTransaction class which
knows how to parse the fixed portions of Binder transactions and replies. The
BinderTransaction class allocates a Parcel object and initializes it with the data
obtained from the guest and then parses it. The BinderObject class tracks transac-
tions and replies using the thread ID of the calling thread. When a BC_TRANSACTION
or BR_TRANSACTION occurs, and the transaction is not one-way, the details of the
transaction are extracted (interface, method, parameters etc.) and the current operation
is inserted into an unordered_map using the current task’s thread ID as the key (line
27 in Listing A.16). When a subsequent reply (BC_REPLY or BR_REPLY) occurs, the
previous transaction’s operation is located using the thread ID as the key (line 14 in
Listing A.16).

3.9.4 Extracting Interface Call Information

Extraction of Binder data for transactions and replies is accomplished using the
IInterfaceDataExtractor interface, shown in Listing 3.14. This interface is

Chapter 3 75

Analysis and Manipulation of Android Apps and Malware in Real-Time

implemented using code automatically generated through static analysis of the Android
Framework and is described in Chapter 4.

class IInterfaceDataExtractor
{
public:

virtual STATUS ExtractData(string InterfaceName, int code, Parcel* parcel,
BinderTransaction* binderTransaction, bool isTransaction) = 0;

};

Listing 3.14: IInterfaceDataExtractor interface

When the ExtractOperationData() is called (line 17 of Listing A.16), it
will first utilise the ExtractData() method shown Listing 3.14 to unmarshal the
Parcel. If a plug-in is present, it will call the plug-in passing in the unmarshaled data
wrapped in a class (described in Chapter 4). If the plug-in modifies the Parcel data
then the data will be marshaled into a new Parcel and overwritten in the same memory
location as the original Parcel on the guest. Currently modifications to Parcels

cannot exceed the original data size due to the fact that CopperDroid v2 is executing
outside of the guest and can’t allocate memory in the guest to handle larger Parcels.

3.9.5 Serialising Binder Information

Section 3.7 covers how system calls are serialised in CopperDroid v2, but does not cover
Binder. When anioctl is serialised, the IOCTL_TYPE is set to IoCtlGeneral by
default, however, if the ioctl is to the /dev/binder device, then the appropriate
Binder type is set (see Listing A.17). All Binder types include the IoCtlBinderFlag
value and this flag is later used for determining which of the Binder structures to use.

Serialisation occurs only after plug-ins have been invoked, therefore any changes
made by a plug-in will be reflected in the resultant protobuf file. The author has consid-
ered keeping a copy of the original data too and this may be added in the future.

3.10 Summary

In this chapter, the author describes the design of CopperDroid v2, including how static
analysis of the system call information aids in the automatic generation of system call
reconstruction code thereby enabling a version-agnostic approach. Additionally, the
author described how the parameters of each system call are encapsulated into a classes
that can be shared via a plug-in interface, permitting Python and C++ plug-ins to
analyse and modify system call parameters and behaviour in real-time.

Chapter 3 76

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author further describes how the fixed portions of the Binder protocol are parsed
and how this interacts with the IInterfaceDataExtractor interface in order to
invoke the unmarshaling code for a given interface.

With regards to Table 3.5, parameter 3 can now be correctly interpreted to recon-
struct the BINDER_WRITE_READ structure and included operations. The example
included in the table is captured from a notification to the ILocationListener

onLocationChanged method, but at this point (based on what is covered thus far)
one can determine the interface and method code, but cannot extract the contents of the
marshaled data.

In the next chapter, the author describes how the Android framework source is stat-
ically analysed to produce a model that is applied in extracting code code pertinent to
Binder ICC. Application of the model is achieved through the CopperDroid v2 source-
to-source compiler and demonstrates how static analysis of the Android framework can
be used to automatically produce C++ reconstruction code for unmarshaling interfaces
and objects in real-time. While this design and implementation are followed in this the-
sis, there are other ways which offer a different trade-off, this is discussed in Chapter 8.

Chapter 3 77

Chapter 4

Efficient Version-Agnostic Automatic
Interface Introspection for Android

4.1 Introduction

Binder IPC plays a significant role in Android as described in Chapter 2. Services
are hosted in external processes and Binder enables apps to communicate with those
services via interface method calls. Interface method call transactions from apps are
routed through Binder to the appropriate service and replies are routed from services to
the calling app in a similar manner. Therefore, it is necessary to interpret both the app
to service calls as well as the service to app replies in order to fully analyse high-level
operations.

As mentioned in Section 3.9.2 most interfaces are shared via AIDL files which the
AIDL parser uses to generate Java code that marshals the parameters and return values
for interface method calls. However, IActivityManager, IContentProvider,
IServiceManager and others are implemented directly in Java. Using a modified
AIDL parser can be used to generate reconstruction code for AIDL based interfaces,
however, it does not address those interfaces implemented in Java. The latter are only
present in the form of Java code, split into two files, with the interface declaration in one
file and the proxy/stub code in a second file. For example, IActivityManager.java and
ActivityManagerNative.java in the case of the IActivityManager interface.

While investigating the source of the PendingIntents used in the call to
ISms interface’s sendText()method, the author originally considered that the Binder
handles may be file descriptors (possibly for /dev/ashmem objects), however, the val-
ues did not match any in the process. The author therefore continued examining each
Binder call that occurred prior to the ISms interface’s sendText() call. Doing so
led to the discovery that the IActivityManager.getIntentSender() method

78

Analysis and Manipulation of Android Apps and Malware in Real-Time

returns the handle value which uniquely identifies the PendingIntent object within
a given process.

This example is one of many that emphasise how critical the ActivityManager
is in the functioning of Android. For instance, without the ability to reconstruct the
IActivityManager interface, there is no way of determining if an app accesses
contacts or the SMS inbox, as these can only be determined by reconstructing other
methods on the IActivityManager interface.

Therefore, given the central role that the ActivityManager plays in Android,
it is clear that reconstructing behaviours for apps is incomplete without the ability to
unmarshal these interfaces. Such interfaces remain opaque to the unmarshaling Oracle
too, as the parameter types need to be determined by CopperDroid v2 and passed to the
Oracle in conjunction with the Parcel.

The author considered several options for achieving this goal. For example, using
the ANTLR [65] parser generator with a Java grammar, the author implemented a pro-
gram that translated the Java code back into an AIDL interface. However, using the
AIDL parser on this AIDL file did not produce the correct results, for several reasons in-
cluding the fact that some method codes in the IActivityManager have to be fixed
as they are called from C++, as shown in Listing 4.1.

// Please keep these transaction codes the same -- they are also
// sent by C++ code.
int START_RUNNING_TRANSACTION = IBinder.FIRST_CALL_TRANSACTION;
int HANDLE_APPLICATION_CRASH_TRANSACTION = IBinder.FIRST_CALL_TRANSACTION+1;
int START_ACTIVITY_TRANSACTION = IBinder.FIRST_CALL_TRANSACTION+2;
int UNHANDLED_BACK_TRANSACTION = IBinder.FIRST_CALL_TRANSACTION+3;
int OPEN_CONTENT_URI_TRANSACTION = IBinder.FIRST_CALL_TRANSACTION+4;

Listing 4.1: Fixed transaction codes used by native code

Another option is writing a simple parser that just determines parameter types (by
looking for readStrongBinder(), readInt() and other operations) for each line
in a given transaction case statement, however, this quickly becomes far too complex to
manage. As Listing 4.2 demonstrates, some statements cross multiple lines, or read in
a value from the Parcel that is then assigned elsewhere or conditionally read another
value depending on the first value read. Parsing this naively could result in the wrong
logic being applied and incorrectly unmarshaling the values.

It is clear that these approaches cannot succeed and, moreover, don’t solve the prob-
lem of unmarshaling complex objects. Yet, in order to automatically match Pending-
Intent registration with usage (and other methods), it is necessary to utilise the IActiv-
ityManager interface source code to assist in interpreting the Binder transaction and
responses for that interface.

Chapter 4 79

Analysis and Manipulation of Android Apps and Malware in Real-Time

...
case START_ACTIVITY_TRANSACTION:
{

data.enforceInterface(IActivityManager.descriptor);
IBinder b = data.readStrongBinder();
IApplicationThread app = ApplicationThreadNative.asInterface(b);
String callingPackage = data.readString();
Intent intent = Intent.CREATOR.createFromParcel(data);
String resolvedType = data.readString();
IBinder resultTo = data.readStrongBinder();
String resultWho = data.readString();
int requestCode = data.readInt();
int startFlags = data.readInt();
String profileFile = data.readString();
ParcelFileDescriptor profileFd = data.readInt() != 0
? data.readFileDescriptor() : null;
Bundle options = data.readInt() != 0
? Bundle.CREATOR.createFromParcel(data) : null;
int result = startActivity(app, callingPackage, intent, resolvedType,
resultTo, resultWho, requestCode, startFlags,
profileFile, profileFd, options);
reply.writeNoException();
reply.writeInt(result);
return true;

}
...

Listing 4.2: StartActivity transaction case statement in IActivityManager

The author also considered using a parser generator to produce code for parsing
Java, however, one issue with a grammar generated parser is that adapting to language
changes can be very difficult.

Thus, the author developed a back-tracking recursive descent parser for Java 1.7
(the version Android was using at the time). Android Nougat 7.0.0 and later use Java
1.8 and the author extended the parser to handle the new language features in less than
a week. CopperDroid v2 is implemented in C++, therefore, an ideal solution that un-
marshals interfaces and objects would also be written in C++, to reduce overhead and
simplify integration.

The Android interface code is designed solely to marshal parameters and return
values between client and server. However, dynamic analysis of these interfaces relies
on the ability to reconstruct the communication, not implement it. The author therefore
uses static program analysis of the Android framework to enhance the dynamic analysis
of Android apps; specifically in reconstructing their interprocess communication.

The Java parser is a front-end supported by several back-ends with different pur-
poses. At a high-level, the interface back-end analyses the interface abstract syntax tree
and produces code for marshaling and unmarshaling the different interface methods.
An object back-end analyses every Java source file in the Android framework and
produces a type system that includes every object class for a given version of Android.

Every method call (including return type and parameter types) and field declaration
(including type) is included, as are class relationships such as nesting and inheritance.
This back-end also produces a call graph and a data dependency graph using the methods

Chapter 4 80

Analysis and Manipulation of Android Apps and Malware in Real-Time

and fields as nodes/vertices and the interaction between them as edges (for example a
method from one class accessing a field from its own class or another class).

A second object back-end is invoked for a given Java object and uses the call
graph and data dependency graph (producing a system dependency graph (SDG)) to
extract (through slicing) only those portions relevant to marshaling and unmarshaling
the object. A final stage in the both interface and the second object back-ends is to
produce C++ reconstruction code.

This chapter describes in detail how the parser/translator (source-to-source com-
piler) works and how it utilises code slicing [86] [53], splicing [5], transformation [83]
and type translation to generate working C++ code that enables real-time analysis and
manipulation of Binder operations.

4.2 Static Analysis of the Android Framework

There are many abstractions that are used for static analysis and each has its benefits
and drawbacks. For instance, Soot [82] operates on Java bytecode and provides the
means to manipulate bytecode (including translating into other languages). However,
the amount of context at a given level declines the further one gets from the source. For
example, while a variable may be named index at the field level, it’s name doesn’t exist
once it is compiled into bytecode or native code. Source can also be parsed and then
operated on using control flow graphs which may also lose context.

Therefore, the static analysis used in CopperDroid v2 operates on the Abstract Syn-
tax Trees (ASTs) built from the source code of the Android framework. This allows
CopperDroid v2 to keep class, method, field, variable and parameter names as well as
the original structure. There are instances where the code structure is altered, however,
this is intentional and usually due to either syntax differences between Java and C++
or to enable reconstruction.

4.3 Abstract Syntax Tree Structure

The CopperDroid v2 parser uses an irregular heterogeneous AST, where a given node
in the tree is specific to the type it represents and the components contained therein.
For instance, an assignment expression contains a left side expression, an assignment
operator (=,-=,+=,/=,*=,|=,&=,<<=,>>= or >>>=) and a right expression.
The left side of an assignment is usually an identifier (variable, or field name) but can
also be a field access expression, for example, location.mBearing = 0;.

Chapter 4 81

Analysis and Manipulation of Android Apps and Malware in Real-Time

The goal of the AST is not to generate executable code directly (where an interme-
diate representation such as LLVM IR might apply), but rather to generate C++ code
for inclusion into CopperDroid v2 thereby enabling real-time reconstruction and ma-
nipulation. Using this AST structure enables using both the visitor design pattern [24]
as well as external tree walkers [64]. The latter make it simpler to modify whole por-
tions of the tree whereas the former allow scope tracking for variables, parameters and
fields. The CopperDroid v2 compiler has nine visitors each performing a different task.
For example, one visitor is responsible for managing name mappings, as some identifier
names are valid in Java but not in C++, such as NULL and string (when using the
std namespace). The name mapper traverses the AST replacing any instance of a given
name with one that doesn’t clash with a C++ type or #define.

All non-abstract nodes in the AST implement a Write() method that generates
code specific to the node. While Java and C++ are closely related, there are differ-
ences. For example, Java generally has only the dot operator (.) for class member
access (with the exception of method references in Java 1.8 which use the double
colon notation (::)). However, C++ uses different notations depending on the context,
for example, non-pointer fields and methods are accessed using the dot notation, pointer
fields and methods use the arrow notation (->) and static members use the double colon
notation. The context in which a particular member is being used affects the notation,
thus the nodes responsible for member access (field access and method calls) also en-
code this information.

As mentioned earlier, CopperDroid v2 also generates boilerplate plug-in code in
Python and while the root AST node is the same, there are specific Python AST
nodes as well. These implement a Write method that generates Python code.

4.4 CopperDroid v2 Compiler Design

The source-to-source compiler described in this chapter consists of a hand-written lexer,
Java parser and several back-ends. Its ultimate goal is to produce working C++ code
that can marshal and unmarshal Binder IPC in real-time.

Each interface method call has its own parameters and return value (if present), for
example, that shown earlier in Listing 4.2. Unmarshaling these consists of either reading
a specific type from the Parcel, for instance readString() and readInt(), or
creating an object from the Parcel using the createFromParcel() method for a
given object. In some cases classes are instantiated by calling a readFromParcel()

Chapter 4 82

Analysis and Manipulation of Android Apps and Malware in Real-Time

1 ...
2 case STOP_SERVICE_TOKEN_TRANSACTION: {
3 data.enforceInterface(IActivityManager.descriptor);
4 ComponentName className = ComponentName.readFromParcel(data);
5 IBinder token = data.readStrongBinder();
6 int startId = data.readInt();
7 boolean res = stopServiceToken(className, token, startId);
8 reply.writeNoException();
9 reply.writeInt(res ? 1 : 0);

10 return true;
11 }
12 ...

Listing 4.3: IActivityManager stopServiceToken interface method

method as opposed to calling createFromParcel(), demonstrated in Listing 4.3
line 4.

Many Android objects contain other objects, for instance, the Intent object con-
tains Rect, ComponentName, Uri and Bundle objects. Each object maintains its
own marshaling code and invokes the marshaling code of objects that it uses. This led
to the key insight that all the code needed for marshaling and unmarshaling interfaces
and Android objects is contained within the Android source code. A second key insight
is that the only portion of the Android object source code needed is that which inter-
sects with an interface operation. The latter point is important, because the goal is not
to implement full support for every aspect of a given object, but rather to determine the
portions involved in marshaling and use those to generate the required code.

The compiler supports three separate modes of operation. The first mode builds the
type system and system dependency graph across all Android objects (in a given ver-
sion). The second mode analyses interfaces and updates the system dependency graph
to mark code for inclusion while also producing the interface method marshaling code.
The third mode uses the system dependency graph to determine which classes, methods
and fields to include and generates object marshaling code for all objects accessed by
the interfaces.

4.4.1 Type System and System Dependency Graph

The CopperDroid v2 compiler uses a sqlite3 database as the storage for both the type
system and system dependency graph. When CopperDroid v2 is built, the compiler
is invoked (per-version) and checks to see if the type system has already been con-
structed for that version. If it has not been constructed then every Java file in a given
version is parsed and the resulting ASTs analysed over four passes. The first pass cap-
tures all the fields and class names for a given file, while the second pass adds every
class located in a given Java source file to the database, including fields, methods,
base classes, outer classes (if nested) and class type (enum, interface or class).

Chapter 4 83

Analysis and Manipulation of Android Apps and Malware in Real-Time

The third pass determines which class every field access or method call belongs to,
using the database. Each entity is automatically assigned a node identifier. The final
pass analyses every field and method to locate the edges between methods, fields and
classes, using method calls, field initialisers, new operators and array instantiations.
This also takes inheritance into account, for example, the Uri class has an abstract
writeToParcel(Parcel, int) method that it inherits from the Parcelable
interface. When it is determined that an inherited (and inheritable) method is called, then
any calls to the method on the base class also result in edges to the derived classes. The
code for determining the called methods correctly distinguishes between overloaded
methods (having the same name with different parameters). Every edge determined
through this process results in a record being added to the edge table which contains the
current node and the node it is accessing. This information is sufficient for building the
system dependency graph and contains the raw data involved.

Typically top-down parsers, such as recursive descent parsers start at the top of the
grammar and work their way down. However, the CopperDroid v2 parser also permits
a partial parse starting a specific point in the grammar. As mentioned above, the type
system includes all methods (including parameters and return types) and all fields (in-
cluding their type). When building the call graph by following method calls and field
accesses, as a variable is accessed, the class involved is determined from the variable
declaration (using the currently active scope and working outwards) is read into mem-
ory from the database. The database representation is cached in-memory (so future
reads don’t access the disk) and each method signature is parsed, methods are stored
in the form of MethodName(Parameter1,Parameter2,...) (a method with
no parameters is simply MethodName()). Thus the methods are parsed into an AST
(starting at the ParseMethod() entry point in the parser) and then added to the class
and used for matching with those found in the current Java code. Similarly, field types
are parsed into an AST as well (starting with the ParseType entry point) to obtain
the type. As code is traversed, field types are used to determine which nodes need to be
included.

The method matching code is utilised by many different components (including vis-
itors) and first verifies that the methodName matches and then checks each argument to
make sure the types match the declared parameters. This can either be a literal matching
a given type or an exact type match (int, boolean, Intent or String) or it can
be a more flexible match, for example, a null will check for any type that could be
null (typically objects). Additionally, since the call matching occurs multiple times

Chapter 4 84

Analysis and Manipulation of Android Apps and Malware in Real-Time

including before and after type translation (discussed later in this chapter), some argu-
ments are checked to see if they match any of the possible types. For example, on Java
a boolean argument can be either boolean or Boolean, however, in C++ only bool
is valid, therefore when a true or false literal are encountered, all possibilities are
checked. If a method parameter is a base class (determined using the type system) of a
given argument (and no better match exists) then the method with the base class will be
chosen as matching the call.

Each method and field entry in the type system includes a boolean value that indi-
cates if it should be included once the class is built. Initially this boolean is set to false
for all methods and fields, as there is no reliable mechanism to determine from the ob-
jects alone which methods and field should be included. While one could argue that
anything accessing a Parcel should be included, there are supporting methods (from
other classes, sometimes invoked directly by interfaces) that don’t operate on Parcels
and yet need to be included.

Class A

method1()
v0

field1

v1

Class B

field 1
v4

method2()

v2

method1()
v3

Class C

field 1

v7

method1()

v5

Member
Access

e2 field 2
v8

field 3

v9

Member access

e5

method2()
v6

vn

Figure 4.1: High-level representation of class relationships with vertices (methods/fields) and edges (field
access/method call)

Figure 4.1 is an example of the class relationships as determined through analysis of
all the Android objects for a given version. The type system contains information about
each class including its methods and fields. The system dependency graph is constructed
using the method calls and fields accessed by a given method or field initialiser.

However, the graph constructed at this point is incomplete in that is cannot identify
which fields and methods need to be included for a given class and even if the class
itself is required for marshaling. The Uri class has multiple nested classes, many of
which do not play any role in marshaling. Therefore, more context is required in order
to build a complete system dependency graph that captures all the necessary information
required to produce marshaling code for Android objects. This process is described in
the following section.

Chapter 4 85

Analysis and Manipulation of Android Apps and Malware in Real-Time

4.5 Unmarshaling Android Interfaces

Binder interfaces in Android are defined in either AIDL, Java or C++. The AIDL
compiler that is included in the Android SDK compiles AIDL into Java source code.
CopperDroid v2 uses that standard AIDL compiler to produce interface marshaling code
for AIDL defined interfaces in Java. The CopperDroid v2 compiler analyses the Java
interface code in order to build the unmarshaling code. While the author could have
continued using a modified AIDL compiler for the AIDL interfaces, doing so would
require maintaining two separate compilers, both of which need to work together to
produce the final marshaling code. Therefore, the simpler route is to use the standard
AIDL compiler to produce Java and have the CopperDroid v2 compiler analyse the
Java code in the same way it analyses those interface handwritten in Java.

As mentioned in Section 4.4, a front-end for Java is used in conjunction with sev-
eral back-ends to statically analyse Android interfaces and objects and automatically
produce code that is able to dynamically reconstruct Binder ICC calls. This analy-
sis includes slicing/splicing of the marshaling code in interfaces and objects, code and
type transformation and the automatic generation of code that enables reconstruction of
Binder operations in real-time. While slicing typically involves individual statement
paths related to a given variable [86] [54] [9], the approach CopperDroid v2 utilises is
to include all statements, fields and methods related to marshaling and unmarshaling
Binder ICC calls.

The front-end for Java produces an Abstract Syntax Tree (AST) after parsing a
Java file (for an interface or Android object). The AST is passed through to the back-
end where forward and backward slicing is used to extract the code and data relevant to
a Binder ICC call. Slicing in CopperDroid v2 is achieved using a system dependence
graph (where vertices represent methods and fields and edges represent data and control
dependencies to those methods and fields). This is similar to the system dependence
graph described in [54]. Splicing in the context of this paper refers to either removing
a portion of an AST and attaching it elsewhere, or inserting a new AST into an existing
AST.

The system dependency graph referred to as S, is constructed by parsing all the An-
droid object Java source files into ASTs and producing vertices for each class method
or field encountered (over three passes to capture all the necessary information). A final
pass examines every statement and produces edges for every method call or field access
(whether direct, indirect, as a super call to a base class or field initialisation or argument

Chapter 4 86

Analysis and Manipulation of Android Apps and Malware in Real-Time

to a method call). Calls to overloaded methods (which share a name but differ in param-
eters only) are fully supported with method resolution being done at the call site based
on the arguments to the call.

The system dependency graph is typically constructed once, as it involves parsing all
the Android framework Java source code for each supported version (requiring around
7-10 hours to analyse the 8 million lines of code from Froyo to Oreo). As the source
code for each Android version is static, constructing this once per-version and then re-
using it thereafter is sufficient (but can be overridden). Each Android interface Java
source file is parsed into ASTs and these are sliced/spliced as described in Section 4.6.
The final AST for each interface produced by the slicing/splicing is then analysed to
determine the vertices that are accessed within the system dependency graph S and for
every vertex vi accessed, all edges ej are followed recursively until all vertices vi...vm are
marked for inclusion inside the type system (described in Section 4.2). This information
is utilised in the object slicing phase, described in Section 4.8. Figure 4.2 illustrates
how this works (at a high-level). The lines and vertices marked in red represent those
that a given interface case statement accesses. Since this analysis is performed for every
onTransact() case statement (and all statements contained there-in), once complete,
all accessed vertices are marked for inclusion.

Class A

method1()

v0

field1

v1

Class B

field 1

v4

method2()

v2

method1()

v3

Class C

field 1

v7

method1()

v5

Member
Access

e2
field 2

v8

field 3

v9

Member access

e5

method2()

v6
vn

Interface X
Abstract

Syntax Tree

onTransact()
Method

Case
Statement

Statement
Block

Local
Variable

Declaration

Initializer

Method call
A::method1()

Figure 4.2: High-level representation of class relationships with vertices (methods/fields) and edges (field
access/method call) included due to an interface accessing one of the classes.

While a Uri is instantiated using a createFromParcel method, subclasses of the Uri
class are instantiated using a readFrom() method. Therefore when forward slicing the
Uri class, all methods in all classes invoked along the createFromParcel call graph

Chapter 4 87

Analysis and Manipulation of Android Apps and Malware in Real-Time

need to be sliced too. In the case of the IActivityManager getIntentSender() exam-
ple, the ActivityManager instantiates an Intent object using its createFromParcel
method which in turn instantiates (among others), a Uri object which attempts to in-
stantiate the correct subclass using its readFrom method. An example of how this is
sliced is shown in Figure 4.3 which shows a combination a control flow and data de-
pendency graph which focuses on the Intent, ClipData and Uri classes. Many methods
and data members were omitted for brevity, however some are present in the diagram
but excluded from the slice (outside the dashed line) were shown for demonstration pur-
poses. These include the Intent(Intent) and Intent(String) constructors of
the Intent class and the parsePath() method of the Uri class. The following
sections describe how this slicing is performed.

Intent

Uri

mData

Uri

mData

String

mAction

String

mAction

ClipData

mClipData

ClipData

mClipData

createFromParcel(Parcel)

Intent(Parcel)

Intent(Intent) Intent(String)

Uri

mData

Uri

mData

Uri

createFromParcel(Parcel)

StringUri OpaqueUri

String

uriString

String

uriString

String

scheme

String

scheme

Path

ssp

Path

ssp

String

uriString

String

uriString

readFrom(Parcel) readFrom(Parcel)

readFromParcel(Parcel)

setAction(String)

String

mAction

String

mAction

parsePath()

ClipData

ClipData(Parcel)

call

data

Key

Figure 4.3: Slicing of code and data for an Intent object.

Chapter 4 88

Analysis and Manipulation of Android Apps and Malware in Real-Time

4.6 Interface Code Slicing

There are typically four components to a given Binder interface method call. The
client-side call marshaling, server-side call unmarshaling, server-side reply marshal-
ing and client-side reply unmarshaling. These components are contained within the
onTransact method of the interface stub and the interface method in the proxy. In-
tercepting a given Binder call and potentially modifying it requires separating these four
components as follows.

As mentioned in Section 3.9.2, all interfaces have an onTransact method in
their stub. This method contains a portion of the marshaling code for a given inter-
face call, with the rest of the marshaling code residing in the interface method in the
proxy. When CopperDroid v2 analyses a given interface, it walks the AST for the proxy
class and adds every method it encounters to an unordered_map (these methods typ-
ically have the same name as the public name, for example getIntentSender(),
although they can differ). Next the switch(code) statement is located and ev-
ery case is analysed individually using multiple passes. The first pass analyses every
method call in the statement block and determines if the method matches one of the
methods from the proxy (using the method outlined in Section 4.2. Typically calls
to the interface method will either be of the form methodName(Parameters) or
this.methodName(Parameters). By determining the AST node responsible for
calling the service in question, the call and reply can be ascertained. Determining which
code is involved in the call versus the reply is required for constructing the code that
performs unmarshaling and marshaling of a given interface method.

This initial pass also creates a def-use chain using the parameters to the onTransact
method and any variable declared locally within the case statement. The def-use chain
is updated for every use, including assignment between variables and when passed as
parameters to method calls. The highlighted portions in Listing 4.4 illustrate how the
def-use chains apply to interface method parameters. The if-else statement is in-
cluded in any slices as the request intents and resolved types are included. The interface
method call arguments are of particular interest as any variables that affect this method
call are typically required for unmarshaling the call on the server side. There are excep-
tions which will be discussed shortly.

A second pass uses the def-use chain to remove any statements not involved in mar-
shaling (for example statements that log information). This is followed by a pass that
performs type conversions, for example, IBinder to BinderReference, String
to javaString (described in Chapter 5) and others. A subsequent pass determines

Chapter 4 89

Analysis and Manipulation of Android Apps and Malware in Real-Time

which statements are involved in marshaling the reply to the client and stores these sep-
arately. The transaction unmarshaling code is used to build a case statement similar to
that of the Java code for unmarshaling the current transaction.

1 public abstract class ActivityManagerNative extends Binder implements IActivityManager
2 {
3 ...
4
5 @Override
6 public boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws

RemoteException
7 {
8 switch (code) {
9 ...

10 case GET_INTENT_SENDER_TRANSACTION: {
11 data.enforceInterface(IActivityManager.descriptor);
12 int type = data.readInt();

13 String packageName = data.readString();

14 IBinder token = data.readStrongBinder();

15 String resultWho = data.readString();

16 int requestCode = data.readInt();

17 Intent[] requestIntents ;

18 String[] requestResolvedTypes ;

19
20 if (data.readInt() != 0) {
21 requestIntents = data.createTypedArray(Intent.CREATOR);

22 requestResolvedTypes = data.createStringArray();

23 } else {
24 requestIntents = null;

25 requestResolvedTypes = null;

26 }
27
28 int fl = data.readInt();

29 Bundle options = data.readInt() != 0 ? Bundle.CREATOR.createFromParcel

(data) : null;

30 int userId = data.readInt();
31
32 IIntentSender res = getIntentSender(type , packageName , token ,

33 resultWho , requestCode , requestIntents , requestResolvedTypes , fl ,

options , userId);

34
35 reply.writeNoException();
36 reply.writeStrongBinder(res != null ? res.asBinder() : null);
37
38 return true;
39 }
40 ...
41 }
42 }
43 }

Listing 4.4: IActivityManager onTransact stub method case statement for the getIntentSender method
(code omitted for brevity).

1

2

Next the interface method as analysed and the code separated into the transaction
marshaling code and the reply unmarshaling code. The transaction marshaling code is

Chapter 4 90

Analysis and Manipulation of Android Apps and Malware in Real-Time

used to build a class that is initialised within the transaction case statement and passed
for plug-ins to permit them to use and potentially manipulate the transaction.

44
45 class ActivityManagerProxy implements IActivityManager
46 {
47 ...
48 public IIntentSender getIntentSender(int type,
49 String packageName, IBinder token, String resultWho,
50 int requestCode, Intent[] intents, String[] resolvedTypes, int flags,
51 Bundle options, int userId) throws RemoteException
52 {
53 Parcel data = Parcel.obtain();
54 Parcel reply = Parcel.obtain();
55
56 data.writeInterfaceToken(IActivityManager.descriptor);
57 data.writeInt(type);
58 data.writeString(packageName);
59 data.writeStrongBinder(token);
60 data.writeString(resultWho);
61 data.writeInt(requestCode);
62 if (intents != null) {
63 data.writeInt(1);
64 data.writeTypedArray(intents, 0);
65 data.writeStringArray(resolvedTypes);
66 } else {
67 data.writeInt(0);
68 }
69 data.writeInt(flags);
70 if (options != null) {
71 data.writeInt(1);
72 options.writeToParcel(data, 0);
73 } else {
74 data.writeInt(0);
75 }
76 data.writeInt(userId);
77
78 mRemote.transact(GET_INTENT_SENDER_TRANSACTION, data, reply, 0);
79
80 reply.readException();
81 IIntentSender res =
82 IIntentSender.Stub.asInterface(reply.readStrongBinder());
83 ...
84 }
85 ...
86 }

Listing 4.5: IActivityManager proxy with getIntentSender method (code omitted or edited for brevity).

3

4

Listing 4.4 shows a case statement in the onTransact method and the
getIntentSender method in the proxy and shows a portion of the code needed for un-
marshaling and marshaling a given interface method. If this code were to be executed
as-is (in the correct environment), it would simply marshal the data between the client
and the server. While this is necessary for Android to function, only the marshaling
and unmarshaling code associated with Binder IPC calls in both the proxy and stub are
required to unmarshal the parameters associated with a given interface call. Addition-

Chapter 4 91

Analysis and Manipulation of Android Apps and Malware in Real-Time

ally both simple and complex types need to be unmarshaled, however, that process is
described in Section 4.8.

In the case statement for the onTransact method (shown in Listing 4.4), the
server-side unmarshaling code (shown in 1 , lines 12-30) is sliced and transformed
before being added to a corresponding switch statement in a C++ transaction recon-
struction class. In addition, a class is built for every interface method that includes the
transaction marshaling code (shown in 3 , line 56-77) in Listing 4.5 and is instantiated
from within the case statement.

Contained within the getIntentSender method is the reply unmarshaling code,
shown in 4 (lines 80-82) in Listing 4.5; this code is added to a corresponding switch
statement in C++ reply reconstruction class. These classes are invoked by CopperDroid
v2 when a call to the IActivityManager interface occurs. A class is also produced which
includes the reply marshaling code (shown in 2 , lines 35-36 in Listing 4.4). Code not
included in boxes 1 , 2 , 3 or 4 is removed from the final output as it is not re-
quired for marshaling or unmarshaling. All four slices are needed to fully unmarshal
and marshal both transactions and replies, anything less loses vital information.

Once the abstract syntax tree for the reconstruction has been produced, it is examined
and the Android object slices are computed by following all method calls and field
accesses to Android objects through the vertices and edges being followed and marking
every vertex for inclusion in the slice. Method signatures are utilised at call sites to
manage overloaded methods, with the signature consisting of the method name and
parameter types. Wildcard matching is used for indeterminate types such as null.

The classes built for the marshaling code are not required for reconstruction, how-
ever, they are automatically produced in order to make it possible to share the unmar-
shaled transaction and replies with plug-ins. Plug-ins can examine and modify trans-
actions and replies through these classes and call methods to modify them. If the data
is modified then the changes are written back into the guest, permitting the plug-ins to
manipulate the calls and replies.

The above algorithms are formalized in Algorithm 4.1 and Algorithm 4.2.
When the algorithms mentioned above are applied to every interface method for a

given interface, they produce code that unmarshals a transaction into another generated
class that is passed to a plug-in (if present). If the plug-in modifies the transaction, the
changes are marshaled in a parcel and written to the guest. Replies are handled in a
similar manner and any modifications by plug-ins are written to the guest.

Chapter 4 92

Analysis and Manipulation of Android Apps and Malware in Real-Time

ALGORITHM 4.1: Parsing transaction case statement to build transaction
unmarshaling code and reply marshaling code
Data: Java onTransact method case statement
Result: C++ onTransact transaction case statement and reply class

1 for each AST node do
2 build def-use chains;
3 if interface method located then
4 exit loop;
5 end
6 end
7 for each interface method parameter do
8 mark def-use chain for inclusion;
9 end

10 Build unmarshaling slice with included def-use chains;
11 for each AST node after interface method do
12 if return statement then
13 exit loop;
14 end
15 add statement to reply marshaling code;
16 end
17 Build reply marshaling slice using reply code;
18 Build reply class and splice marshaling slice into WriteToParcel method;

ALGORITHM 4.2: Parsing interface method code to build transaction
marshaling code and reply unmarshaling code.

Data: Interface method code (for example IActivityManager.getIntentSender())
Result: C++ onTransact reply case statement and transaction class

1 for each AST node do
2 if transact method located then
3 exit loop;
4 end
5 add node to transaction marshaling code
6 end
7 build transaction class and splice marshaling slice into WriteToParcel method;
8 for each AST node after transact method do
9 if return statement then

10 exit loop;
11 end
12 add statement to reply code;
13 end
14 Build reply unmarshaling slice using reply code;
15 Build reply case statement and splice reply unmarshaling slice;

Chapter 4 93

Analysis and Manipulation of Android Apps and Malware in Real-Time

class IDataExtractor
{
public:

virtual STATUS BuildTransactionData(int code, Parcel* data, BinderTransaction*
binderTransaction) = 0;

virtual STATUS BuildReplyData(int code, Parcel* reply, BinderTransaction* binderReply) =
0;

};

Listing 4.6: IDataExtractor interface which is invoked to extractr the transactions and replies for a given
message

Listing A.18 shows the class automatically generated for extracting interface trans-
actions and replies. The class inherits from the IDataExtractor interface (seen in
Listing 4.6) and has abstract methods that are invoked for either a transaction or a reply.
These functions are invoked separately as the transaction occurs on the ioctl system
call entry while replies occur on system call exit and may even occur on the exit of a
subsequentioctl system call exit (though on the same thread). Looking at the code in
Listing A.18, one can see that it is very similar to the server-side unmarshaling code in
Listing 4.4 denoted by 1 .

This is the C++ equivalent of code required to unmarshal the server side of the
IActivityManager’s getIntentSender()method. The types have been trans-
lated and the correct member access notation chosen as appropriate, arrow-notation for
pointer members and double-colon notation for static members. The TypedObjectArray,
TypedArray and javaString classes are hand-coded to bridge the gap between
Java and C++ (described in Chapter 5).

As mentioned earlier, every interface method call transaction results in an equivalent
case statement being created for transaction unmarshaling and marshaling (similarly for
replies). These classes inherit from the IInterfacePlugInTransactionData
interface and implement the methods shown in Listing 4.7. A destructor is only gen-
erated if a given class has fields that are pointers (and hence require being deleted).
The CActivityManagerGetIntentSenderTransaction class shown in List-
ing A.19 has dynamically allocated fields (pointers) and therefore includes a destructor.

Each generated class has a m_IsModified field which is initially set to false,
however, if a plug-in calls a Set method in the class, this is then set to true. When the
plug-in completes its processing and returns to CopperDroid v2, the IsModified()
method is invoked on the current class instance and, if this returns true, the
WriteToParcel() method is called, updating the Parcel. CopperDroid v2 then
copies the Parcel into the guest at the same address as the original Parcel.

Chapter 4 94

Analysis and Manipulation of Android Apps and Malware in Real-Time

class IInterfacePlugInTransactionData
{

public:
virtual ˜IInterfacePlugInTransactionData() {};
virtual std::string GetTransactionCodeString() = 0;
virtual bool IsModified() = 0;
virtual void WriteToParcel(Parcel* InterfaceParcel) = 0;

};

Listing 4.7: IInterfacePlugInTransactionData interface for supporting plug-ins modifying transactions
and replies

The WriteToParcel() method shown in Listing A.19 is the C++ analogue of
the transaction marshaling Java code shown earlier in Listing 4.5 in the box labeled
3 . This code is required to re-marshal any changes made by plug-ins into a Parcel

that replaces the original Parcel in the guest.
Reply handling is similar to that of transactions. The reply unmarshaling code is

extracted from the proxy method shown in Listing 4.5 4 . However, the CopperDroid
v2 compiler adds some additional code to handle the case when an exception is raised.
In the case of a successful reply, the exception code will be 0 and the result will be
available for unmarshaling, otherwise the exception code and string are captured.

It is possible to change a successful response into a failure response by calling the
SetExceptionCode() method on the reply class instance (shown in Listing A.21 -
code omitted for brevity) and thus fail otherwise successful calls from a plug-in.

As mentioned earlier in this section, there are exceptions to the method described
thus far. While this works for almost all cases, there are some transactions that don’t
have an associated method. There are also methods that don’t return a result and instead
update an output parameter, for example the IActivityManager getMemoryInfo
transaction. Therefore, prior to generating the necessary unmarshaling and marshaling
code the CopperDroid v2 compiler analyses every variable in the case statement’s AST
to determine which Parcel it is accessing. Since the onTransact() method pa-
rameters are known, the CopperDroid v2 compiler knows which is the transaction and
which is the reply Parcel. Similarly, the order of the declaration of the Parcels in
the interface method determine their function. Interface marshaling code generated by
the Android AIDL compiler use _data and _reply as opposed to data and reply,
however, the name mapper visitor mentioned earlier normalizes these to match the hand-
written names.

Once all the code slices have been determined and the resultant Abstract Syntax
Tree constructed for each slice, the resultant ASTs are analysed to determine which
nodes/vertices have to be marked for inclusion. Listing A.22 shows the method that is
invoked for every case statement in the onTransact() method. This is performed
over multiple passes and when actually building the final extractors, analyses all the

Chapter 4 95

Analysis and Manipulation of Android Apps and Malware in Real-Time

edges to determined which nodes need to be included. The CObjectBuilder class
(present in Listing A.22) simplifies construction of the classes used for sharing the mar-
shaled data with plug-ins, including the production of pybind11 bindings for Python
support.

Listing A.23 demonstrates one of the visitor classes (CEdgeAnalyzer) used to follow
every edge and determine every node affected by the interface being analysed. This
results in all reachable classes, methods and fields being marked for inclusion to enable
the object code slicing (described in the next section) to include only the code relevant
to Binder IPC.

4.7 Interface Code Generation

As mentioned earlier, every AST node has a Write() method that outputs code spe-
cific to that node. As an interface is being constructed, the ASTs for the transaction
and reply case statements are spliced (inserted into) the method relevant to them, either
BuildTransactionData or BuildReplyData. Once this has been completed,
the class is already present in the form of an AST, with type translation done and mem-
ber access and pointer information correctly updated.

Generating the code is as simple as calling the Write() method in the class. Sim-
ilarly, at this point all the transaction and reply objects have been captured and these are
all written first, followed by the class. The final portion added to the class statement are
the transaction codes. The code in Listing A.24 generates every line of code necessary
for interface marshaling.

Code generation for plug-in support is described in Section 5.3, which details the
various portions involved in supporting Python and C++ plug-ins.

4.8 Android Object Code Slicing

4.8.1 Overview

Since Android is open source, all of the complex objects are also available in source
form, these are mostly in the form of Java code although some do have native (C++)
code for performance sensitive tasks. Complex objects such as Intent, Uri, Location-
Request, SmsRawData are instantiated through a static CREATOR createFromPar-
cel() routine [78] which then instantiates objects use within those classes, such as Rect,

Chapter 4 96

Analysis and Manipulation of Android Apps and Malware in Real-Time

Bundle and ComponentName. These, in turn, instantiate other objects, for exam-
ple the TextUtils class instantiates a SpannableStringInternal object that
relies on the ArrayUtils.idealIntArraySize() method.

The system dependency graph mentioned in Section 4.2 is constructed by parsing
all the Android object source files into ASTs. The ASTs are analysed and all vertices
(for methods/fields) and edges (for method calls and field accesses) computed. When
the Android interfaces are parsed (as described in Section 4.6), all vertices accessed by
the interface are marked for inclusion and edges from those vertices are recursively fol-
lowed until all accessed vertices are marked. This greatly simplifies the Android object
slicing as all the classes, fields and methods have already been computed. The last stage,
described in this section, involves walking each Android object’s AST and building the
slice. This is not unlike native code linkers that exclude unreferenced code from executa-
bles while linking [52]. The difference is that the compiler described here is excluding
code at the source level as opposed to the object or native code level. Source-to-source
translation is difficult even for closely related languages like Java and C++, therefore
reducing the code to only that involved in marshaling simplifies this task significantly.

4.8.2 Constructing Android Objects

The CopperDroid v2 compiler has a visitor class named CObjectTranslatorwhich
is involved in building the type system and system dependency graph described in
Section 4.2. This class also performs the final stage which constructs the slices re-
sponsible for object marshaling and unmarshaling using the system dependency graph.
The CObjectTranslator performs both functions because there is a great deal
of overlap in the logic involved in creating the type system and system dependency
graph as well as the final stage of slicing and code generation. A second class named
CObjectBuilder simplifies construction of the resultant object classes and is also
used in building the transaction and reply classes for plug-in support (seen earlier in
Listing A.22).

Constructing the type system and the system dependency graph produces a database
containing all the object classes, method names, parameters and return types as well
as fields and their types in a given Android version, but doesn’t produce any code.
The interface analysis marks any classes, fields and methods required for marshaling
in the database in addition to producing the marshaling code for a given interface, slic-
ing as needed. This section describes how the slicing is accomplished with the next
few sections describing how ASTs are transformed (to support C++) and how the code
generation works.

Chapter 4 97

Analysis and Manipulation of Android Apps and Malware in Real-Time

The CopperDroid v2 compiler is invoked once for each Java object source file with
ASTs being constructed for any classes present in the file. As each class is analysed,
a CObjectBuilder instance is created with the same name as the current class. If
any nested classes are encountered, then instances of CObjectBuilder are created
for these too with the outer (parent) CObjectBuilder instance being recorded. Fig-
ure 4.4 shows an example of this using the Uri class hierarchy. This only shows the
classes that are finally included in the slice, however, there are others, such as Builder,
PathSegments, that are excluded for brevity.

The parents of a given nested class need to be tracked for several reasons. There
are many nested classes with duplicate names, for example there are 32 nested classes
named Builder in KitKat 4.4.2 and 116 in Oreo 8.0.0 (see Listing 4.8). When re-
solving a given class using its name, the potential parents include all the outer classes
of the current class. Additionally, C++ requires fully qualified names to be used when
accessing nested classes (even if the code accessing nested classes is within the same
class hierarchy). Therefore, the code generation needs to be aware of any nesting in
order to generate C++ that will actually compile (and work).

salah@Pholus:˜/Enlistments/cd2/plugin/copperdroid/platforms/KitKat-4.4.2/java$
sqlite3 types.db "select count(name) from class where name=’Builder’;"

32

salah@Pholus:˜/Enlistments/cd2/plugin/copperdroid/platforms/Oreo-8.0.0/java$
sqlite3 types.db "select count(name) from class where name = ’Builder’;"

116

Listing 4.8: Number of instances of Builder nested classes in KitKat and Oreo

The CObjectBuilder for a given class is populated with methods and fields of
the class, including modifiers such as public, static or const. These properties
are translated into C++ equivalents described in Section 4.11.

Chapter 4 98

Analysis and Manipulation of Android Apps and Malware in Real-Time

Uri : ObjectBuilder

[] : m_ParentObjects

Uri : ObjectBuilder

[] : m_ParentObjects

AbstractPart : ObjectBuilder

[Uri] : m_ParentObjects

AbstractPart : ObjectBuilder

[Uri] : m_ParentObjects

Representation : ObjectBuilder

[Uri, AbstractPart] : m_ParentObjects

Representation : ObjectBuilder

[Uri, AbstractPart] : m_ParentObjects

AbstractHierarchicalUri : ObjectBuilder

[Uri] : m_ParentObjects

AbstractHierarchicalUri : ObjectBuilder

[Uri] : m_ParentObjects

StringUri : ObjectBuilder

[Uri] : m_ParentObjects

StringUri : ObjectBuilder

[Uri] : m_ParentObjects

OpaqueUri : ObjectBuilder

[Uri] : m_ParentObjects

OpaqueUri : ObjectBuilder

[Uri] : m_ParentObjects

HierarchicalUri : ObjectBuilder

[Uri] : m_ParentObjects

HierarchicalUri : ObjectBuilder

[Uri] : m_ParentObjects

Part : ObjectBuilder

[Uri] : m_ParentObjects

Part : ObjectBuilder

[Uri] : m_ParentObjects

EmptyPart : ObjectBuilder

[Uri, Part] : m_ParentObjects

EmptyPart : ObjectBuilder

[Uri, Part] : m_ParentObjects

PathPart : ObjectBuilder

[Uri] : m_ParentObjects

PathPart : ObjectBuilder

[Uri] : m_ParentObjects

Figure 4.4: Object Builder Hierarchy for Uri.java

Similarly, class names are tracked and each time a new class is encountered its name
is recorded while it is being analysed and then discarded when analysis is complete.
These names are used when locating a given class in the type system, as the backing store
is a relational database, several records could be found and the correct one extracted.
Usually, the potential parents are passed into the SQL query, however, there are instances
where this isn’t possible and resolution has to be handled by using the full hierarchy.
Figure 4.5 portrays how the class name list (stored in a std::vector) changes as
ASTs are walked.

Chapter 4 99

Analysis and Manipulation of Android Apps and Malware in Real-Time

Uri

Uri AbstractPart

Uri AbstractPart Representation

Uri AbstractPart

Uri AbstractHierachicalUri

Uri OpaqueUri

Uri StringUri

Uri Part

EmptyPartUri Part

Uri Part

Uri

Representation

Uri AbstractPart

Uri AbstractHierachicalUri

Uri OpaqueUri

Uri StringUri

Uri HierachicalUri

Uri HierachicalUri

EmptyPartUri Part

Part

Uri

Start

Finish

Figure 4.5: Class Traversal for Uri.java

The CopperDroid v2 compiler makes several passes over the full AST for a given
Java source file with each pass building on the previous pass’ work. The initial pass
captures all of the information about every class in the AST.

The second, and final, pass performs type translation (including fully qualifying
nested classes) and AST transformation to ensure that valid C++ code is produced.
These are both discussed in subsequent sections.

Only the CObjectBuilder class instances are involved in the final stage, which
is responsible for finally slicing the code. This occurs in several stages, the first re-orders
the CObjectBuilder instances to ensure that inherited and parent classes occur prior
to other classes in the final source. The second stage removes any CObjectBuilder
instances for classes that aren’t used (determined through the SDG). The third stage
trims methods and fields that are not referenced (using the SDG). The next stage ensures

Chapter 4 100

Analysis and Manipulation of Android Apps and Malware in Real-Time

that all complex object types are declared as pointers, for example Parcel* as opposed
to Parcel. It also determines if a constructor calls another constructor in the same class
or a base class (a super() call) and if so, moves the call from the statement block into
an initialiser for the current constructor. Additionally, statically declared non-scalar
fields and constants are moved from inline initialisation to out-of-line initialisation.

Listing 4.9 shows a small portion of the Uri class with the Part nested class inher-
iting from the AbstractPart class. Two static non-scalar fields with initialisers are
shown along with a constructor that invokes a base class constructor using a super()
call. While valid in Java, this requires significant transformation to work in C++.

class Uri {
...
static abstract class AbstractPart {

...
volatile String encoded;
volatile String decoded;

AbstractPart(String encoded, String decoded) {
this.encoded = encoded;
this.decoded = decoded;

}
...

};
...
static class Part extends AbstractPart {

/** A part with null values. */
static final Part NULL = new EmptyPart(null);

/** A part with empty strings for values. */
static final Part EMPTY = new EmptyPart("");

private Part(String encoded, String decoded) {
super(encoded, decoded);

}
...

}
}

Listing 4.9: Nested Part class with inline initialisation and a super call

The first set of transformations result in the AbstractPart and Part classes
being forward declared within the Uri class. The AbstractPart class also inher-
its the Object class, this has to do with managing parity with some of the Java

assumptions and is described in Chapter 5. Finally the Part class inherits from the
AbstractPart class using its fully qualified name (required in C++), as can be seen
in Listing 4.10. The CopperDroid v2 compiler automatically separates declarations and
definitions of objects into a header and source file if an output source file name is pro-
vided; otherwise everything remains in the header (which is the case for interfaces). The
CLASS_INSTANCE_ID will be covered later, but is used to support transformation of
instanceof into a C++ compatible implementation.

Chapter 4 101

Analysis and Manipulation of Android Apps and Malware in Real-Time

class Uri : public Parcelable
{
public:

...
class AbstractPart;
class Part;
...

};
...
class Uri::AbstractPart : public virtual Object
{
public:

class Representation;

AbstractPart(javaString encoded, javaString decoded);
...
javaString encoded;
javaString decoded;
static constexpr uint64_t CLASS_INSTANCE_ID = 257456649854816405U;

};
...
class Uri::Part : public Uri::AbstractPart
{
public:

class EmptyPart;

Part(javaString encoded, javaString decoded);
...
static Uri::Part* _NULL_;
static Uri::Part* EMPTY;
...
static constexpr uint64_t CLASS_INSTANCE_ID = 9516640767813523839U;

};
...

Listing 4.10: Nested Part class declaration in header

While constant scalar fields such as integers or floats can be initialised inline (for
example CLASS_INSTANCE_ID in Listing 4.10), complex types such as strings or ob-
jects have to be initialised out-of-line. Therefore, the CopperDroid v2 compiler declares
these in the class header but initializes them in the source file (seen in Listing 4.11).
Furthermore, super calls and alternate constructor invocations from constructors are
converted to constructor initialisers. For non-constructor super calls, the base class is ex-
plicitly used. For example super.MyMethod(parameters) would be translated
to BaseClass::MyMethod(parameters). The type system is used to locate the
appropriate base-class for a given method signature.

Uri::Part* Uri::Part::_NULL_ = new Uri::Part::EmptyPart(nullptr);
Uri::Part* Uri::Part::EMPTY = new Uri::Part::EmptyPart("");

Uri::Part::Part(javaString encoded, javaString decoded) : AbstractPart(encoded, decoded)
{
}

Listing 4.11: Nested Part class with out-of-line static field inialization and base class constructor
invocation

Algorithm 4.3 formally describes the algorithm used in computing the slices for a
given object.

Chapter 4 102

Analysis and Manipulation of Android Apps and Malware in Real-Time

ALGORITHM 4.3: Android object slicing for unmarshaling and mar-
shaling.

Data: Android object code (for example Intent)
Result: C++ class for unmarshaling/marshaling Android object using the system

dependency graph (SDG)
1 for each AST node in class do
2 if node is a method then
3 if method is marked for inclusion in SDG then
4 add method for inclusion on current class;
5 end
6 end
7 if node is a field then
8 if field is marked for inclusion in SDG then
9 add field for inclusion on current class;

10 end
11 end
12 end
13 Trim excluded methods and fields from CObjectBuilder instance.

4.8.3 Splicing Code into Android Objects

The object slicing described in the previous section creates a CObjectBuilder in-
stance containing ASTs for all the marshaling and unmarshaling code of a given An-
droid object. However, in order to extract the necessary data and make it possible for
plug-ins to analyse and manipulate objects, additional code is required.

Each CObjectBuilder instance stores methods and fields. The CopperDroid v2
compiler inspects every field in a given object and creates Get and Set methods for
every non-constant field. Listing A.25 shows a portion of the Location generated
object class with the AsString() method as well as get and set routines for latitude
and longitude.

Using the fields in a given object, an AsString() support method is produced.
This method returns a string representation of a given object in the form of a JSON ob-
ject. The variable fields in the object are included based on their type, for example, scalar
types are added using the appropriate format string (%d, %f etc.), strings are included
using .c_str() and nested objects by calling their AsString() method. This can
be seen in Listing A.26 which demonstrates how all the fields of the Location object
are used in construction of the JSON represention.

All these components are spliced into the Abstract Syntax Tree (AST) of the object
class similar to [3] [18], [5] and [45], except using ASTs.

Chapter 4 103

Analysis and Manipulation of Android Apps and Malware in Real-Time

Java notation C++ equivalent Example

string.equals(value) string == value
name.equals(”selector”)→

name == ”selector”

asInterface(x) / asBinder(x) x
asInterface(data.readStrongBinder())→

data->readStrongBinder();

type.StaticMember type::StaticMember
Intent.ACTION MAIN→
Intent::ACTION MAIN

type.
CREATOR.

createFromParcel()
type::createFromParcel() Intent.CREATOR.createFromParcel()

→ Intent::createFromParcel()

string.intern String
mActions.add(action.intern());→

mActions->add(action);

fully.qualified.type type java.lang.String→ string

Table 4.1: The types of transformations used to convert the Java code for interfaces and objects into
equivalent C++ code

4.9 Abstract Syntax Tree Transformation

While Java and C++ are relatively closely related (in terms of syntax, structure and
keywords), it is necessary to transform the code and translate types to produce recon-
struction code. For example, while Java uses dot-notation for field access, method
calls and access to static fields in classes, C++ uses dot-notation for statically allocated
objects, arrow-notation for dynamically allocated structs/objects (pointers) and double
colon notation for static member access.

The ASTs for field access or method calls are examined and necessary adjustments
made in the generated C++ code. Table 4.1 shows all of the different transformations
used in order to generate reconstruction code in C++.

Simple types in Java are translated to a C++ equivalent, for example String →
string or boolean → bool. Other translations also take place, for example the Java
null is translated into the C++11 nullptr. The type translator is seeded with some static
conversions (String→ javaString, Boolean/boolean→ bool, Float→ float, IBinder→
BinderReference) to simplify the process. When methods are called, the return type is
examined and if needed, the type of the assignee is changed to match the translated type.

A pass is done over the class’ Abstract Syntax Tree (AST) [3] [18] which switches
each AST node to C++. During this pass all types are also translated from Java to
C++.

The transformations that take place can either remove a portion of an AST, move a
portion elsewhere or insert a new portion (splicing). Figure 4.6 shows what is actually

Chapter 4 104

Analysis and Manipulation of Android Apps and Malware in Real-Time

occurring in when a super call in Java is transformed into a field initialisation with a
method call to the base class while re-using the arguments to the original call (in earlier
listings 4.9, 4.10 and 4.11). The super call AST node is removed from the AST and
deleted. This is one of many examples of the types of transformations that occur in the
CopperDroid v2 compiler in order to produce working code for marshaling Android
objects.

Constructor
Part

Parameters

String
encoded

String
decoded

Statement
Block

Super Call

Arguments

Identifier
encoded

Identifier
decoded

Constructor
Part

Parameters

String
encoded

String
decoded

Initializer

AbstractPart()
Constructor
Invocation

Arguments

Identifier
encoded

Identifier
decoded

Statement
Block

Transformation

Super CallSuper Call

Figure 4.6: Abstract Syntax Tree Transformation for the Uri::Part example shown in the previous section

4.9.1 Transforming Java enum’s to C++

Java and C++ both have an enumeration type, however, there are a few significant
difference between them. Java enum’s have implicit methods such as name() and
valueOf(). They also support inheritance and can have explicitly defined methods
and also hold a value (their current state). Listing A.27 shows the SupplicantState
enumeration which inherits from the Parcelable class and therefore implements the
writeToParcel(), createFromParcel() and newArray methods. The Cop-
perDroid v2 compiler therefore transforms enumerations into a C++ equivalent with the
same semantics.

As mentioned in Section 4.4.1, the CopperDroid v2 stores a schematic of every class
the it encounters in a given version of Android in the type system. This includes the
type of class: interface, class or enum. When interface are analysed, the SDG is
updated for enumerations too. Therefore, when the source file for a given enumeration

Chapter 4 105

Analysis and Manipulation of Android Apps and Malware in Real-Time

is analysed and the enumeration is marked for inclusion, the CopperDroid v2 compiler
builds a CObjectBuilder instance for a class with the same name. It then splices
the enumeration values into a nameless nested enum within the class. Any methods in
the Java enumeration referenced by interfaces are added to the class, along with ex-
plicit implementations of name() and valueOf(). Both of these use the enumeration
value identifier names to build these routines. An example is present in Listing A.28.

Since the name() and valueOf() methods are implicit, there is no Java code
that can be used to produce these methods. Therefore, the AST for the name(),
valueOf() implicit methods as well as a default constructor, a copy constructor and
operator== and operator= are built by hand. These are spliced into the class that
is partially constructed using the code present in the Java enumeration. Listing A.29
provides an example of the code used to produce the valueOf() method.

4.10 Type Translation

While Java and C++ have several types in common and are structurally similar, not
all types are equivalent. While primitive types such as int, float and double are
the same, there is no String class in C++. While one code argue that there is a
std::string class, the semantics of these differ. The author therefore implemented
the javaString class (described in Chapter 5) which has similar semantics as the
Java String class in that it can be null, empty(””) or hold a value (”Some Text”).
This is one of several differences between Java and C++.

4.10.1 Binder Interface Types

Android interfaces are passed flat_binder_objects when used as arguments to
interface method calls or return values from calls. As mentioned previously, Copper-
Droid v2 wraps flat_binder_objects within the BinderReference class.
Since there are many different interfaces in Android, CopperDroid v2 infers the type
based on how it is parceled. If something is unmarshaled using the Parcel method
readStrongBinder() or marshaled using the writeStrongBinder()method,
then its type is converted to BinderReference. Any calls to asInterface() and
asBinder() result in the same type conversion. The flat_binder_objects are
a reference (or handle) to a given object within the current context rather than the object
itself, CopperDroid v2 translates their type to BinderReference so that they can be
tracked if needed.

Chapter 4 106

Analysis and Manipulation of Android Apps and Malware in Real-Time

4.10.2 Array Types

C++ arrays are fixed length (statically allocated) while Java arrays are dynamically
allocated and variable length. Fixed size arrays of primitive types are unchanged, how-
ever, variable length arrays of non-pointer types are translated to TypedArray (derived
from std::vector) and pointer types are translated to TypedObjectArray. The
reason for this distinction is that dynamically allocated objects need to be freed once the
array is freed. These two classes are described in Chapter 5.

Similarly, other array types, such as ArrayList, List are also translated to ei-
ther TypedArray or TypedObjectArray, depending on the type argument type.
Unifying the types simplifies the need to support multiple classes with the same imple-
mentation. This is discussed further in Chapter 5.

4.10.3 Hash Table Types

There are many different hash table classes used in Android, such as HashMap,
ArrayMap and Hashtable. These are automatically translated to either a C++

HashMap implementation or an ObjectValueHashMap. The latter manages the
lifetimes of dynamically allocated objects using reference counting. Similarly, unifying
the hash table types reduces the number of implementations necessary to support the
functionality.

4.11 Code Generation

Once the static program analysis just described for a given object is complete, two code
generation back-ends are invoked. The first of these automatically produces C++ header
and source files for the current Java file. Any classes contained with the current Java
file that is referenced by interfaces either directly or indirectly are written to the appro-
priate file (class declarations in the header file and class implementations in the source
file). The second automatically produces pybind11 bindings that allow Python plug-
ins to access data members of Android interface method calls and objects by exposing
Get and Set routines [43]. Examples of these bindings are shown in Section 5.3 where
plug-in code generation is described in more detail.

As mentioned earlier in this chapter, the CObjectBuilder class is constructed
using a given Java class’s AST. The CObjectBuilder class hierarchy for the Uri
class is illustrated in Figure 4.4, shown earlier. When analysis of the classes contained
within a given Java source file is complete, the CopperDroid v2 compiler invokes the

Chapter 4 107

Analysis and Manipulation of Android Apps and Malware in Real-Time

Process Name Process Id Thread Id Thread Info System Call Parameter 1 Parameter 2 Parameter 3 Return Value
com.example.binderdemo 1504 1504 0xe03ac000 open (5) /dev/binder 0x00020002 38

...
com.example.binderdemo 1504 1504 0xe03ac000 ioctl (54) 38 0xc0186201 See Listing 4.12 0

...

Table 4.2: System calls with full context further described in Listing 4.12.

CObjectTranslator::BuildObjects() method. This performs the final stage
of producing C++ code for marshaling and unmarshaling Android objects. The classes
are ordered to ensure that they are declared prior to use, following which the
BuildObject() method is invoked for every CObjectBuilder instance for the
current source file. The BuildObject() method performs many tasks, including
trimming any methods or fields not involved in marshaling/unmarshaling, moving field
initialisations of complex types from inline to out-of-line, adding implicit methods (for
enumerations) and several others, preparing the object(s) for code generation.

The CObjectBuilder class also generates a unique 64-bit class ID using the fully
qualified name of the current class, as can be seen in Listing A.30. This hash is assigned
to the CLASS_INSTANCE_ID static field of all generated classes and used for imple-
menting instanceof semantics in C++. The author wrote a tool which used the type
system class information to generate hashes for every single one of the fully qualified
class names for each Android version from Froyo (which has 3591 classes) to Oreo
(which has 12187) classes. There were no hash collisions within any of the versions.
The author considered using C++ runtime type information (rtti) but it wasn’t clear if
the semantics were identical, therefore the solution described here is used instead.

The CopperDroid v2 compiler generates an InstanceOf() method for every
class in a given source file. The InstanceOf() method checks the provided class
instance ID against the current classes instance ID, if that doesn’t match then any base
classes inherited from directly are also queried which follows the same pattern.

The next stage produces C++ ASTs (via the BuildClass() method) for each
class referenced by interfaces and inserts the field initialisations and method definitions
into the source document AST, it also generates the Python bindings for all referenced
classes. The BuildClass() method produces either a class wholly inlined (if the
source document is null) or it produces a class declaration with method prototypes in
the header and method definitions in the source file AST. The header document is con-
structed using the AST for the class produced by the BuildClass()method and each
is inserted into the header document AST in the order previously determined. Finally,
the Write() method is called on each document’s AST (header, source and python
bindings) which produces C++ source code for all of these.

Chapter 4 108

Analysis and Manipulation of Android Apps and Malware in Real-Time

BR TRANSACTION:
android.location.ILocationListener.onLocationChanged(Location)
Location:

mProvider : "gps"
mTime : 1556678061000
mElapsedRealtimeNanos : 172928871078
mLatitude : -74.000000
mLongitude : 40.710000
mHasAltitude : true
mAltitude : 100.000000
mHasSpeed : false
mSpeed : 0.000000
mHasBearing : false
mBearing : 0.000000
mHasAccuracy : true
mAccuracy : 20.000000
mExtras :

mMap : (null)
mParcelledData :

String Value : "satellites"
mHasFds : false
mFdsKnown : true
mAllowFds : true

mIsFromMockProvider : false

Listing 4.12: Reconstructed Binder interface call for the ILocationListener.onLocationChanged() method

Through the application of static analysis on the Android framework source code
and the code that is automatically generated by the CopperDroid v2 source-to-source
compiler, Binder ICC can be fully reconstructed. The example illustrated in earlier
chapters and again in Table 4.2 contains a call to the ILocationListener
onLocationChanged method with a Location object. This can be seen fully
reconstructed in Listing 4.12. Furthermore, the resultant code enables the modification
of reconstructed interface calls parameters and including any Android objects.

4.12 Evaluation

In order to ensure that the model correctly reconstructs Binder ICC and Android ob-
jects, the author performed several tests. Leveraging the CopperDroid v2 Viewer, in
conjuction with several test apps, the author verified that the information being recon-
structed and displayed in the Viewer was, in fact, the same information as had been
passed through in the test application.

However, writing many tests in this manner is inefficient and won’t cover several of
the more complex interface methods. Thus a plug-in to CopperDroid v2 was utilised
to access objects from different interfaces and methods and read values from objects
present in the method and update a specific value with itself. While this has no change
on the actual data included in the Binder ICC request, it does force CopperDroid v2
to reparcel the original data. During initial testing, there were some values that were
being remarshaled incorrectly (due to the author assuming a byte type would require one
byte, however, as mentioned earlier all integer types are 4 bytes in length for Binder).

Chapter 4 109

Analysis and Manipulation of Android Apps and Malware in Real-Time

Incorrectly parceled requests result in an exception in Android which is visible through
adb logcat. Severely malformed parcels can also hang Android, which the author
encountered at several points while working on this.

In verifying the accuracy of Binder reconstruction, the author realised that while
there are thousands of Binder interface methods and Android objects, it is only neces-
sary to verify several key constructs. Namely, the primitive types that Binder supports
and arrays of either Android objects or simple types. No matter how complex any given
object or how many objects it encapsulates, all marshaling eventually leads to primitive
types or arrays being written into the parcel. While the author tested various interfaces
including complex IActivityManager methods, Location objects (since they
contain several types including Bundle) and the ISms interface, the key factor in all
of these is whether or not the primitive types and array were being marshaled/unmar-
shaled correctly. Approximately 40 interface methods (across different interfaces) were
tested to ensure that as many combinations were handled as possible. Initially the num-
ber was higher, however, the author reduced the number of tests once the key success
factor was determined.

Through these tests the author is able to establish that the proposed model with the
automatically generated code is able to correctly unmarshal and marshal Binder ICC
with complete accuracy. This is the expected outcome as the source code is a source of
truth for the Android objects and Binder ICC.

4.13 Summary

In this chapter the author described how static analysis of the Android framework Java
source is leveraged to produce C++ marshaling code for both objects and interfaces.
This enables a version-agnostic method of reconstructing complex ICC operations in
real-time. This include the details on how a complete type system is constructed as
well as how the intersection between interfaces and objects provides the necessary in-
formation for correctly slicing the objects for marshaling and unmarshaling. The author
further described how the results of the static analysis is used to provide plug-ins with
the ability to perform analysis and manipulation of the interface calls and complex ob-
jects in real-time.

The next chapter describes how the work performed in this chapter and the pre-
vious chapter are integrated to provide a whole system that enables seamless analysis
and manipulation of system calls and Binder interfaces and objects. It also evaluates
CopperDroid v2 in terms of performance and extensibility.

Chapter 4 110

Chapter 5

Integrating CopperDroid v2’s
Components

5.1 Introduction

In Chapter 3, the author describes the architecture and design of CopperDroid v2 in-
cluding the core portions that manage state, the automatic reconstruction of system calls
and parsing teh fixed portions of the Binder protocol. Chapter 4 describes the analysis
performed by the CopperDroid v2 compiler to automatically generate C++ code that
marshals and unmarshals Binder interfaces and objects. While this accomplishes the
vast majority of the work required to effectively enable reconstruction and manipula-
tion of system calls and Binder operations, combining all this into a working solution
requires some additional pieces.

This chapter describes the portions not covered in detail previously, including how
all the pieces are integrated to provide an end-to-end solution.

5.2 Classes that Provide Parity with Java

The differences between the Java and C++ languages are more extensive than would
first appear. Furthermore, Android introduces additional classes that are implemented
partially in Java and partially in C++. While it is technically possible to use static anal-
ysis for both the Java and C++ portions and generate a unified C++ implementation
for these classes, as this is a time-consuming task the author considers it to be future
work. The author therefore chose to achieve parity with Java by hand implementing
these classes. The most critical of these is the Parcel class, mentioned earlier, as
well as collection and hash table classes. The Parcel class is hand implemented to
provide parity with the Android Java class, however, there are some differences. The

111

Analysis and Manipulation of Android Apps and Malware in Real-Time

Java class utilises native code (written in C++) to achieve some of the core function-
ality which includes retrieving objects (using the flat_binder_object) from the
Binder Object Manager. This, however, requires the correct context in order to work
and while the author has investigated this and has some ideas on how to achieve this
goal, it requires additional research. Therefore, the class written by the author simply
maintains the flat_binder_objects in their original form without attempting to
locate them in the current task’s address space.

5.2.1 The javaString Class

Java strings can either be null, empty (””) or contain some text. The C++ string class,
however, only supports a string being empty or containing some text. The distinction
is important though, while certain strings in Android parcels can be empty, if they are
null, an exception is raised. One such example is the ComponentName(Parcel)
class constructor (shown in Listing 5.1), where an empty string is valid, however, a
null string is not. The author initially translated null string comparisons to empty
string comparisons (since the C++ string class doesn’t support null semantics), how-
ever, it quickly became clear that this isn’t a viable solution as both parameters can be
empty in a valid parcel.

public final class ComponentName implements Parcelable, Cloneable, Comparable<ComponentName>
{
private final String mPackage;
private final String mClass;

...
public ComponentName(Parcel in) {

mPackage = in.readString();
if (mPackage == null) throw new NullPointerException("package name is null");
mClass = in.readString();
if (mClass == null) throw new NullPointerException("class name is null");

}
...

}

Listing 5.1: ComponentName Java constructor with Parcel input

The author therefore implemented a new class called javaString that handles
null semantics in addition to strings being either empty or containing data. This class
permits null assignment and comparisons while still supporting all the usual string
methods, thus enabling a simpler translation to C++ as shown in Listing 5.2.

Chapter 5 112

Analysis and Manipulation of Android Apps and Malware in Real-Time

class ComponentName : public Parcelable
{
public:

...
ComponentName(Parcel* in);
...

private:
javaString mPackage;
javaString mClass;
...

};

ComponentName::ComponentName(Parcel* in)
{

mPackage = in->readString();
if (mPackage == nullptr) {

throw logic_error("package name is null");
}
mClass = in->readString();
if (mClass == nullptr) {

throw logic_error("class name is null");
}

}

Listing 5.2: ComponentName C++ constructor with Parcel input

The javaString class makes use of the C++11 nullptr_t type in order to dif-
ferentiate null assignments from other types. The class tracks null using a boolean
value, clearing the underlying string in the case of nullptr being assigned.

5.2.2 The Object Class

All Java classes implicitly inherit from the Object class and several Android classes
use the Object class as arguments when the actual type can vary. Therefore, the Cop-
perDroid v2 compiler adds a virtual Object base class to classes that don’t inherit
from other classes (since they would have inherited from the Object class already).
This enables the CopperDroid v2 compiler to generate code that works correctly with
methods that have parameters of type Object. Furthermore, this class provides ref-
erencing counting which is used to assist with object lifetime. While most objects are
used and deleted directly (for example class fields), objects can also be added to an ar-
ray or hash table and can sometimes be copied into multiple collections. For example,
objects in a hash table also be copied into a vector-like array or objects into a differ-
ent hash table. The TypedObjectArray and ObjectValueHashMap classes de-
scribed in the following sections utilise the reference counting to ensure that objects are
only freed once all instances are no longer in use. The Object class also exposes a
pure-virtual method InstanceOf() which provides the same semantics as the Java
instanceof operator.

The Object class also includes Reference() and Dereferencemethods that
atomically increment and decrement a reference count (initialised to 1 for a newly in-
stantiated object). When this reference count reaches 0, the object is deleted. This

Chapter 5 113

Analysis and Manipulation of Android Apps and Malware in Real-Time

assists the TypedObjectArray and ObjectValueHashMap template classes in
managing object lifetimes.

5.2.3 The TypedArray/TypedObjectArray Classes

The TypedArray and TypedObjectArray classes (seen in various code listings
in Chapter 4) provide a variable length array-type template class for parity with Java.
TypedArray inherits from the std::vector class and the TypedObjectArray
class inherits from the TypedArray class. As mentioned in Section 4.8 the Copper-
Droid v2 compiler splices AsString() methods into all of the classes it generates
and these methods are generated to either use type specific formatting when outputting
a string (%d, %ld, %f or %s) or in the case of objects, invoking their AsString()
methods. Both TypedArray and TypedObjectArray include an AsString()

method that produces an array in JSON form ([entry0, entry1, . . . , entryn]).
The distinction between simple types and objects is necessary to ensure this is

handled correctly. When the CopperDroid v2 compiler translates arrays into either
TypedArray or TypedObjectArray, it examines the type associated with the
array using the type system described in Chapter 4. If the type is a complex ob-
ject, then it translates the array to a TypedObjectArray otherwise it translates it
to TypedArray.

Listing A.34 includes a portion of the TypedArray class including the default
constructor, destructor and AsString() method. The latter outputs the individual
entries to a stringstream which is converted back into a string that is returned
to the caller. This enables generated objects to seamlessly output their arrays without
requiring additional generated code.

The TypedObjectArray, as shown in Listing A.35, inherits from the TypedArray
class and also implements the AsString() method. However, since all of the entries
in the array are objects themselves, it invokes their AsString() methods in order to
construct the stream and resultant string. Since all of these objects are dynamically al-
located, the destructor invokes the clear() method which dereferences every object
before removing it from the array. This invokes the Derefernce() method on the
underlying object (described earlier), thus enabling the correct management of object
lifetimes.

The TypedObjectArray class includes an assignment operator that references
and object assigned to it. Methods that remove entries from the array dereference the
objects prior to removal. Implementing the class this way allows for seamless translation

Chapter 5 114

Analysis and Manipulation of Android Apps and Malware in Real-Time

from Java to C++ reducing the amount of transformation or code splicing that would
otherwise be required.

5.2.4 The HashMap/ObjectValueHashMap Classes

Just as the TypedArray/TypedObjectArray classes are used for simplifying the
translation from Java to C++, so too are the HashMap and ObjectValueHashMap
classes. As with the previous example the HashMap class is used when both the
key and the value are simple types (for example int, float or string), while
ObjectValueHashMap is used with the key is a simple type but the value is a
complex object. Analogous to the TypedObjectArray class described in the previ-
ous section, the ObjectValueHashMap uses reference counting for managing object
lifetimes and invokes the AsString() method on its entries when its AsString()
method is invoked. The HashMap class simply outputs its entries to a stream.

5.3 Plug-in Code Generation

The CActivityManagerGetIntentSenderTransaction/Reply classes,
along with all other interface method transactions/replies, are shared with Python

plug-ins using pybind11 bindings as described in Section 4.6. Some of the code for the
automatically generated classes can be seen in Chapter 4, Listing A.19 and Listing A.21.
The Python plug-in code generation, mentioned in comment in Listing A.24, uses the
Set and Get methods automatically produced for every non-constant field of a class to
permit access to the interface call data. These methods are shared with Python plug-
ins using automatically generated bindings, shown in Listing A.36. C++ plug-ins do not
require these bindings as they can include the automatically generated headers directly.

The Python code generator consists of 14 hand-coded AST classes which are con-
gruent to their Java counterparts; for example, if statements, methods, return state-
ments as well as an auto-indenter (for Python). During the code generation phase, the
Java AST is examined and used to automatically produce the Python plug-in boiler-
plate code described below. The CopperDroid v2 compiler automatically generates a
plug-in entry point module (named copperdroidplugin.py) using the Python
ASTs.

For every interface analysed, CopperDroid v2 generates a Python plug-in module
(Listing A.39) that invokes a given routine use the interface code string as a key to a
dictionary. While the integer code value could have been used, the string is clearer.

Chapter 5 115

Analysis and Manipulation of Android Apps and Malware in Real-Time

In addition to producing the plug-in module, the CopperDroid v2 compiler also
produces boilerplate code that includes comments listing the methods available each
method interface call’s class. An example is provided in Listing A.40.

The plug-in boilerplate code generated is placed into multiple files, two per interface
(for Python) or a single header (for C++) and one as the plug-in module (Python) or
a source and header for C++. Figure 5.1 illustrates the directory structure of the some
of the files produced for both the Python and C++ plug-in boilerplate code.

...
arm

pythonplugin
activitymanagerplugin.py
activitymanagerroutines.py
...
copperdroidplugin.py
...
systemcallplugin.py
systemcallroutines.py
...

plugin
activitymanagerplugin.h
...
plugin.h
plugin.cpp
...
systemcallsplugin.h
...

Figure 5.1: Automatically generated plug-in boilerplate directory/file layout

5.4 Evaluation

The author evaluates CopperDroid v2 in terms of accuracy and diversity in the recon-
struction of Android apps’ behaviours, its incurred overhead as well as extensibility to
fuel further research.

CopperDroid v2 contains approximately 1.5 million lines of C++ code. Of this
86,000 lines are hand-written and implement the static program analysis and type hierar-
chy outlined earlier and the core state management functionality in the CopperDroid v2
plug-in. The remaining code is automatically generated as a result of the static analysis
described in Chapter 3 and Chapter 4.

Chapter 5 116

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author carried out experiments on a 1st gen Quad-core Core i7 2.93Ghz with
16GB RAM, running Ubuntu 16.04 using the Android emulator (QEMU) running KitKat
4.4.2 to perform controlled tests. While CopperDroid v2 seamlessly supports Android
versions from Froyo to Oreo, a large portion of the initial testing took place on KitKat
and, to ensure consistency, the remaining testing was continued using that version.
Chapter 6 includes experiments executed on KitKat 4.4.2 and Lollipop 5.1.1 for its anal-
ysis and run recently on different hardware.

5.4.1 Behaviours

The author analysed 4,500 apps, consisting of the top 50 paid and free apps in each
category (2,500 total) on the Google Play Store [38], as well as 2,000 known malware
samples all obtained through AndroZoo [1] (December 2017). CopperDroid v2 breaks
down behaviours into three categories: system calls, Binder ICC (e.g., calls to Binder
interfaces) and composite (e.g., system calls where semantic-dependency form cluster
of related low-level actions that represent high-level behaviours [78], such as data sent
over network).

Each app was analysed by CopperDroid v2 for 3 minutes; the author observed over-
all 387,153,582 system calls (128 unique), 1,687,267 Binder ICCs (294 unique) and
5,505,832 composite (40 unique) behaviours across the ∼2500 benign apps. The mal-
ware apps yielded 92,185,408 system calls (122 unique), 349,949 Binder ICCs (234
unique), and 1,520,954 composite (41 unique) behaviours, overall1. Table 5.1 reports a
small excerpt of the total behaviours reconstructed.

In contrast, [78] relied on Java reflection to reconstruct a limited view of Binder
semantics (e.g., only a subset of requests). This incurred a prohibitive overhead, further
exacerbated by the reliance on the GDB stub and the RSP protocol for intercepting
system calls.

5.4.2 Performance

The author evaluated the performance of CopperDroid v2 with the PassMark v2.0.1 [66]
benchmark app. The author also includes 2D benchmarks as graphical events are im-
plemented as Binder calls. the CPU tests, Memory tests, 2D Graphics tests and Disk
tests. The author also ran CFBench to gauge its applicability, however, since it is CPU
and memory based and (as mentioned in Section 3.1) CopperDroid v2 only intercepts
system calls, there was negligible difference (with CopperDroid v2 outperforming the

1Please note that unique number refers only to raw events with no argument reconstruction.

Chapter 5 117

Analysis and Manipulation of Android Apps and Malware in Real-Time

Behaviour Class Subclass Benign Malware

Network Access
Generic 89,171 46,377
HTTP 7,620 8,070
DNS 0 1

FS Access Read 886,472 458,943
Write 33,052 93,123

Access Personal Info.
Phone 4,915 19,144
Accounts 1,080 61
Location 682 861

Exec. External App.

Generic 2,672 3,280
Priv. Esc. 12 47
Shell 30 128
Inst. APK 0 0
Create Process 1,930 1,907

Make/Alter Call — 0 5

Binder Telephony

getDeviceId 1,782 13,299
getSubscriberId 295 2,473
getDeviceSvn 2 97
getLine1Number 157 808

Anti-Debug — 20 549,938

Table 5.1: Excerpt of the behaviour breakdown on the (potentially) benign apps and known malware
(source: AndroZoo [1]).

plain emulator at times) between running with or without CopperDroid v2 and therefore
the author have not included the results of this benchmark here. However, the display
system in Android makes use of Binder calls for managing surfaces. Since Binder
is implemented via an ioctl system call, CopperDroid v2 is invoked and therefore 2D
graphics benchmarks were included.

Benchmarks were performed using a vanilla Android emulator, a CopperDroid v2-
enhanced Android emulator, and a CopperDroid v2-enhanced Android emulator with
Python plug-in enabled2.

It is important to note that the Python and C++ plug-in support is not required for
CopperDroid v2 to function and indeed all application behaviour capture takes place
irrespective of any plug-in. The plug-in support is simply an add-on that simplifies the
task of enabling other research opportunities.

As CopperDroid v2 intercepts system calls, it captures the data associated with each
system call (parameters, buffers pointed to by parameters and return values) and seri-
alises this data to disk on a secondary thread within the same Android emulator. This

2It is worth remarking that Python plug-in support eases the development of complex behavioural
analysis, but its absence does not affect in any way the functionalities of CopperDroid v2.

Chapter 5 118

Analysis and Manipulation of Android Apps and Malware in Real-Time

Type Emulator CopperDroid v2 no plug-in CopperDroid v2 with Python plug-in

Disk 44,324 34,548 (22.06% overhead) 22,335 (49.61% overhead)

2D Graphics 407 267 (34% overhead) 205 (49.6% overhead)

Table 5.2: Overall Benchmark score for Disk and 2D Graphics performance (10 runs)

introduces overhead since memory read from the guest OS is dependent on the system
calls, the size of the buffers etc. The data collected is currently analysed offline, after a
given execution, which allows us to reconstruct behaviours upon which to build further
analyses.

The disk benchmarks shown in Table 5.2, show an overhead 22.05% and 49.61% for
CopperDroid v2 with no plug-in and with a plug-in respectively. The overhead without
the plug-in is due to CopperDroid v2 copying and logging all of the memory for every
read/write operation that is occurring in these benchmarks. For live scenarios where
behaviour is reconstructed for enforcing security policies, logging will not be enabled
and therefore the overhead of copying/logging would not feature.

Table 5.3 shows the actual throughput in all three scenarios. The internal read bench-
mark uses 32K buffers for all read operations, micro-benchmarks built into CopperDroid
v2 show that the majority of its processing of reads complete in under 12µs, however,
there are also some cases where processing can take as long as 1ms. This is due to
copies of guest memory taking longer in certain instances (for example due to it being
paged out on the host system). The internal write benchmark uses a combination of 4K
and 16K and 32K buffers and this results in more overhead. While the overall through-
put is higher, there is some cost involved in invoking CopperDroid v2 for every system
call, and smaller buffers (while faster to copy) require more system calls. However, as
mentioned earlier, the copy can be deferred to an on-demand basis should a plug-in wish
to examine a specific process’s read/write requests for making security policy decisions
in real-time.

The additional overhead in the case of a Python plug-in is due to the fact that an
embedded Python plug-in is being invoked for every read/write operation (system call
entry/exit) which incurs overhead associated with cross language interactions. These
tests were executed prior to the author adding C++ plug-in support and thus the mea-
surements only include Python plug-ins. Python plug-ins are easy to implement and,
being interpreted, can be quickly modified and rerun, in addition Python can be em-
bedded in a C/C++ program; therefore the author chose this as a language to support.
Additionally, a significant amount of the malware analysis code for CopperDroid v2 is

Chapter 5 119

Analysis and Manipulation of Android Apps and Malware in Real-Time

Type Emulator only CopperDroid v2 no plug-in CopperDroid v2 with plug-in

Internal Read (MB/s) 26.89 26.01 (3.37% overhead) 23.68 (13.58% overhead)

Internal Write (MB/s) 45.80 31.15 (47.04% overhead) 21.58 (112.22% overhead)

External Read (MB/s) 158.34 104.64 (51.31% overhead) 45.05 (251.52% overhead)

External Write (MB/s) 35.38 27.83 (27.10% overhead) 16.82 (110.34% overhead)

Table 5.3: Performance benchmarks for disk read/write operations

Operation (per second) Emulator only CopperDroid v2 no plug in CopperDroid v2 with plug in

Solid Vectors 642 451 (42.35% overhead) 298 (115.44% overhead)

Transparent Vectors 513 316 (62.34% overhead) 247 (107.69% overhead)

Complex Vectors 10.4 9.67 (7.55% overhead) 7.18 (44.85% overhead)

Image Rendering 805 504 (59.72% overhead) 374 (115.24% overhead)

Image Filters 34.4 29.4 (17.01% overhead) 22.8 (50.88% overhead)

Table 5.4: Performance benchmarks for 2D graphics operations

written in Python and supporting Python plug-ins makes it easy to invoke this code
in real-time and perform the analysis online as opposed to offline.

The performance for 2D graphics operations are also impacted by CopperDroid v2
as these make extensive use of the Binder in order to update the display, although the
actual data transfer is done to memory mapped regions. Table 5.4 demonstrates the im-
pact in performance depending on the task at hand. Processor intensive operations (like
Complex Vectors) actually have less overhead since most of the work is done indepen-
dently of system calls/Binder interaction.

IActivityManager is central to Android apps (including start tasks, checking
permissions and many others) and prior to this work, automatic reconstruction of apps -
IActivityManager interactions were not been addressed. The
IActivityManager supports 260 unique methods (on Oreo) callable by Android
apps, with the IPackageManager having the next highest at 182. Table 5.5 therefore
shows micro-benchmarks for the IActivityManager.getIntentSender()
method and the IPhoneSubInfo.getDeviceId() method. While the
getDeviceId() benchmark with the Python plug-in seems to have a large over-
head, this is likely due to a context switch occurring during this call. Each micro-
benchmark was run 1,500 times as a warmup and then a further 15,000 times with the
latter runs being used for determining the overhead. Individual measurements of the
overhead breakdown contained in Table 5.6 show that the time spent in both the Binder
reconstruction and the plug-in invocation is very little.

Chapter 5 120

Analysis and Manipulation of Android Apps and Malware in Real-Time

Binder call Emulator only CopperDroid v2 no plug-in CopperDroid v2 with plug-in

getIntentSender 1,590.47µs 1,818.87µs (14.36% overhead) 2,296.53µs (44.39% overhead)

getDeviceId 2,490.8µs 2,922.10µs (17.32% overhead) 4,065.25µs (63.21% overhead)

Table 5.5: Micro-benchmarks Binder operations (15k runs)

Operation System Call Total Binder Entry Plug-in Binder Exit Plug-in

getIntentSender 123.82µs 25.99µs N/A 9.27µs N/A

getDeviceId 130.73µs 1.50µs N/A 6.84µs N/A

getIntentSender (with Python plug-in) 200.40µs 48.48µs 23.49µs 32.75µs 23.76µs

getDeviceId (with Python plug-in) 189.06µs 23.15µs 21.70µs 31.19µs 24.03µs

Table 5.6: Micro-benchmarks µs breakdown for Binder operations (15k runs)

The getIntentSender() method was chosen as an example as reconstructing
the Intent array instantiates multiple other complex objects (e.g., ComponentName,
Uri, Bundle, Rect, ClipData, ClipDescription) required on the order of
seconds to reconstruct [78]. Conversely, CopperDroid v2 needs only 300µs to re-
construct the entire Binder ICC call from the app through the /dev/binder ioctl
(150µs on the client and 150µs on the server). Similarly, getDeviceId() was cho-
sen to show a low-overhead yet successful reconstruction of a Binder reply. While both
cases are micro-benchmarks, they measure the full path from the Java app through the
Binder device to the Java server and back.

While some benchmarks show a fairly large overhead, these are worst case scenarios
and the cost can be reduced by only copying the relevant buffers when needed. As
CopperDroid v2 is invoked for every system call for every process from the start of
boot until capture is stopped or the emulator exits, the author took the geometric mean
of every system call from boot to emulator exit and this showed an overhead of 16.8%
with system call and Binder plug-ins and a 9% impact without any plug-ins but still
doing full capture of system call data and reconstruction of Binder calls.

CopperDroid v2 also supports micro-benchmarks with a much finer granularity that
are included in every protobuf (if enabled). For instance, full reconstruction of a
getIntentSender() call including Intent parameters requires only 25.99µs (us-
ing a geometric mean), when measuring the reconstruction time alone. In contrast, just
reconstructing a single Intent object with the unmarshaling oracle (using a hand-
crafted test that only included the Intent object) in [78] takes 20s. This represents a
76.95 million % improvement in performance. These results were obtained by enabling
the micro-benchmarks for Binder which measures the time required to unmarshaling

Chapter 5 121

Analysis and Manipulation of Android Apps and Malware in Real-Time

each interface method call. Plug-in invocations are measured as well in order to cor-
rectly determine the time spent in the unmarshaling versus the plug-in.

5.4.3 Extensibility

CopperDroid v2’s design allows for low-overhead online introspection of Android apps’
events. This enables to introspect and modify any system call argument, including ICC
payload, which facilitates ICC-related fuzzing analyses, anti-VM evasions, and eases
the effort required to port CopperDroid v2 on a real-device for realtime security policy
enforcement.

To ease this task further, the author enhanced CopperDroid v2 to support Python
and C++ plug-ins.3 As the static analysis described in Chapter 4 produces both C++

classes and Python bindings as well as boilerplate Python and C++ plug-in code for a
given Android interface, manipulating Binder requests and replies is a straightforward
task. In particular, every method of a given interface produces a function with the same
parameters of Task and Object. The Task parameter in each function provides infor-
mation about the currently executing thread, whereas the Object parameter provides
access to the methods valid for that given Object. In the case of a Binder reply (versus
a Binder transaction) these typically include a result as well as exception-related meth-
ods. The exception information can be used to mask an exception and make it appear as
though an event occurred, or not.

Listing 5.3 shows the code that produces a pseudo-random IMEI number whenever
CopperDroid v2 captures getDeviceId replies. The Python plug-in code for the
getDeviceId method, checks to see if it is being called in the context of a given
thread and only manipulate such resources in that case.

The plug-in support in CopperDroid v2 works for both interface transactions and
replies, making it possible to manipulate a transaction to an interface and modify the
data prior to it reaching the service in question. As shown in Section 5.4.2, while there is
some overhead in invoking the Python plug-in, this is negligible to have any measurable
effect on operations in general.

5.4.4 Use Cases

Through the combination of real-time reconstruction/modification and plug-in support,
CopperDroid v2 enables the following three (and potentially more) use cases.

3The same actions can be achieved from within CopperDroid v2 by writing C++ code; here, the author
show how CopperDroid v2 analysis framework and its support of plug-ins ease the task further.

Chapter 5 122

Analysis and Manipulation of Android Apps and Malware in Real-Time

def GetDeviceIdReply(Task, Object):
Valid methods for Task
...
GetProcessName

Valid methods for Object of type: CPhoneSubInfoGetDeviceIdReply
...
SetResult(ResultValue)

if Task.GetProcessName() == "com.example.binderdemo":

newIMEI = ""
for x in range(0,15):

newIMEI += str(random.randint(0,9))

Object.SetResult(newIMEI)

Listing 5.3: Python plug-in code for introspecting and manipulating ICC-related objects.

Malware Analysis. CopperDroid v2 has already been utilised in the analysis of 3000+
malware samples, however, all of these were done based on post-processing data cap-
tured during execution. With the Python plug-in support in CopperDroid v2 it is possible
to perform this analysis in real-time. While there are advantages to storing the data (as
is currently done), for example for use in machine learning, being able to run these in
real-time saves storage space and can provide more immediate results.

Anti-evasion. There are many techniques that malware can use to determine if it is
running inside an emulator varying in their degree of difficulty, as mentioned in [84].
In the case of Android, some of the simplest ones are to query for things such as the
device ID, subscriber ID, the line1 number or voice mail number (among others). As
shown in Listing 5.3, it is easy to manipulate this type of information from within a
Python plug-in. Other properties such as battery status is also used for determining
whether or not an emulator is in use. Apps that query for battery status are notified by
the batteryPropertiesChanged method of the IBatteryPropertiesListener interface, using
the BatteryProperties class, which can be modified using a Python plug-in to mimic the
characteristics of actual charging.

App/Service Fuzzer and error injection. BinderCracker [26] is an automatic testing
framework for Android Services. Due to the fact that Binder calls contain both primi-
tive and complex types, BinderCracker needed to record many Binder calls and build
a dependency graph between them in order to understand how complex objects fit to-
gether. BinderCracker also needed to instrument the Parcel unmarshaling methods
to understand the simple data types at each point, and then modify them accordingly.

Chapter 5 123

Analysis and Manipulation of Android Apps and Malware in Real-Time

This, however, did not give BinderCracker much context in terms of what specific
primitive types represented. As mentioned in Section 3.9.2, parcels contain both simple
and complex types. BinderCracker needs to record seed transactions and uses those to
determine the primitive types of complex Android objects.

CopperDroid v2, however, automatically generates classes for complex Android ob-
jects, such as Intent, Rect, Bundle etc. As these are made available to Python plug-ins,
it is simple to manipulate these objects directly as well as handles to such objects as they
are passed around, as can be seen in Listing 5.4 and Listing 5.5.

def SendTextTransaction(Task, Object):
...
Valid methods for Object of type: CSmsSendTextTransaction
...
GetSentIntent()
SetSentIntent(SentIntentValue)
GetDeliveryIntent()
SetDeliveryIntent(DeliveryIntentValue)
...
sentIntent = Object.GetSentIntent()
deliveryIntent = Object.GetDeliveryIntent()

Object.SetSentIntent(deliveryIntent)
Object.SetDeliveryIntent(sentIntent)

...

Listing 5.4: Python example that swaps the sentIntent and deliveryIntent (ellipsis denote code omitted
for brevity)

This functionality can be used to build something similar to BinderCracker with far
more context available with regards interfaces, parcels and complex objects, potentially
enabling more thorough fuzzing. For example, rather than simply manipulating a float-
ing point number, knowing it referred to a Global Positioning System (GPS) coordinate
would permit a targeted change to perhaps cause a specific result.

def GetIntentSenderTransaction(Task, Object):
...
Valid methods for Object of type: CActivityManagerGetIntentSenderTransaction
...
GetIntents()
...
for intent in Object.GetIntents().GetElements():

if (intent.GetAction() == "Sent"):
intent.SetAction("SENT")

...

Listing 5.5: Python example which changes an Intent’s action (ellipsis denote code omitted for brevity)

Chapter 5 124

Analysis and Manipulation of Android Apps and Malware in Real-Time

5.4.5 Limitations

Currently CopperDroid v2 does not support purely native Android interfaces which are
implemented entirely in C++ with no AIDL file. There are 24 such interfaces (approxi-
mately 6.22%) of the total number of interfaces in Android, as opposed to the 363 Java
Android interfaces (as of Oreo). However, this constitutes very little of the entire An-
droid interface surface area, as the number of interface methods is 3.75% of the total
number in Android. The percentage of lines of code involved in these C++ interfaces is
2.87% of the total in Android across all Java and C++ interfaces.

It is not difficult to support those interfaces written in C++ but would require parsing
the C++ code for the interfaces and transforming them in a similar manner to that which
CopperDroid v2 employs for the Java interfaces. This is something that the author is
considering. The purely native interfaces are mostly used for the graphics surface/win-
dow management, event connectors, and hardware sensors (such as accelerometers and
gyroscopes). While the reconstruction of graphics and window management is of little
value, the ability to manipulate sensors via a plug-in does have potential applications.

The design of the CopperDroid v2 compiler is such that only a new C++ front-end
needs to be written using the same AST classes (which already support both Java and
C++) as those employed for managing Java interfaces. The code structure in the native
interfaces is sufficiently similar to that of Java that little to no modification is required
to perform the necessary object slicing required to support interface marshaling and
unmarshaling. Therefore, not currently supporting native interfaces is not a design issue
in CopperDroid v2, but simply due to the constraints of time (and is something that the
author plans to address in the future).

The unmarshalling Oracle [78], by comparison, uses Java reflection to reconstruct
complex objects and therefore cannot reconstruct the native C++ interfaces. In addi-
tion, the Oracle has to be passed the parameter types of a given interface parcel in order
to reconstruct the contents. Conversely, the approach described in this work, utilising
static analysis to automatically generate reconstruction code for Android interfaces, al-
lows automatic unmarshalling and remarshalling of parcels. This is something that the
unmarshalling Oracle (used in CopperDroid v1) is unable to achieve due limitations in
its design.

5.5 Summary

This chapter described how the various portions of CopperDroid v2 are integrated to
provide a system that enables seamless reconstruction of system calls and Binder inter-

Chapter 5 125

Analysis and Manipulation of Android Apps and Malware in Real-Time

faces and complex objects in real-time. It further described those hand-written classes
that assist in bridging the gap between Java and C++, as well as the boilerplate plug-
in code generation. CopperDroid v2 was further evaluated in terms of performance,
flexibility and extensibility for use a platform for further research.

Chapter 6 describes a plug-in built on CopperDroid v2 that uses black-box differen-
tial analysis to perform information leakage detection of sensitive information through
the real-time manipulation of sensitive items.

Chapter 5 126

Chapter 6

Information Leakage Detection

6.1 Introduction

The preceding chapters (Chapter 3, Chapter 4 and Chapter 5 describe how static analysis
is leveraged to automatically produce a framework that enables real-time reconstruction
and manipulation of Binder ICC and Android objects. This chapter builds on the model
described thus far and, through the use of a plug-in to CopperDroid v2, describes a dif-
ferential analysis approach to detecting the leakage of sensitive information on Android.

The leakage of sensitive and personally identifiable information (PII) is a well-
known of issue, however, it is also a challenging problem to address. While malware
may seek to intentionally leak this information, even otherwise benign apps can do so
whether intentionally or unintentionally [72] [69] [23] [77] [4]. The reasons for collect-
ing sensitive information vary, for example some apps may choose to identify users so
that they can provide a unified experience across all devices on which a user has the app
installed. Others may wish to monetize the app through targeted ads. If a particular app
encodes the sensitive information in a way that can’t be reversed, for example using a
SHA-256 hash the leakage will likely be less risky, however, should still require user
consent.

The Federal Trade Commission does fine Android app developers when they
breach privacy laws [14] [13] [15]. Following suit, the European Union has intro-
duced stricter privacy laws to safeguard against sensitive information being leaked and
will fine those found to be doing so [27]. Therefore, it is likely that more app developers
will attempt to obfuscate or encrypt sensitive information prior to transmitting it in order
to avoid being fined.

Prior research on information leakage detection uses static or dynamic taint analysis,
for example TaintDroid [23] and TaintART [77]. However, there are ways to work
around taint analysis through implicit flows (using information contained in a given

127

Analysis and Manipulation of Android Apps and Malware in Real-Time

portion of data to make control flow decisions that transmit data based on the control
path taken), or rarely tracked explicit flows, such as writing to a file and later reading
from and then transmitting the data [23]. Furthermore, these require some modification
to the runtime (either Dalvik or ART) in order to work. While dynamic taint analysis can
detect information leakage from downloaded code, native code that leaks information
directly via system calls may be undetected. TaintDroid [23] attempts to mitigate this
by ensuring the only native libraries included in the firmware can be loaded, citing the
fact that only 5% of the apps at that time included shared objects.

Static taint analysis, on the other hand decompiles apps and then uses tools to con-
struct control-flow graphs that are used determine how information flows from sources
(where sensitive information is accessed) to sinks (where it is transmitted off the device)
through the app [4]. This approach, while likely to have high accuracy, is both time
consuming and resource intensive [72]. Furthermore, it cannot be used to detect leaks
in native code or code downloaded by the app. It may also result in false positives if, for
instance, a path between source and sink can never be executed.

Another approach is to use network flow analysis to detect sensitive information
being transmitted over the network [51] [70] [75] [57]. However, this approach only
works with data sent in the clear or using commonly known obfuscations such as Base64
encoding. When an app uses its own custom encoding or encrypts data prior to sending
it to the network, then network flow analysis fails to detect the leak.

A further approach is to use black-box differential analysis through multiple execu-
tions of a program, with differing inputs and analysing the resultant HTTP and HTTPS
traffic. An example of this is the Privacy Oracle [44]. Another project (AGRIGENTO)
extends this model by controlling various sources of non-determinism as apps are exe-
cuted and analyses HTTP and HTTPS traffic from these apps [17]. While the majority
of apps do use HTTP or HTTPS for transmitting data across the network, this is by no
means a guarantee.

A differential analysis approach is based on the intuition that if the system is suffi-
cient controlled then any data transmitted from the system will only change if a specific
piece of (tracked) information is explicitly changed. Thus if one can control the non-
determinacy in Android and only modify sensitive information, detecting differences in
transmitted information makes it possible to detect information leakage. The work de-
scribed in this chapter is akin to record/replay, however, it is a very lightweight approach
and is evaluated later in this chapter.

Chapter 6 128

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author of this thesis also uses differential analysis conceived independently of
the work described in [17]. This approach is necessitated due to CopperDroid v2 exe-
cuting outside the Android guest and operating entirely on system call data.

This chapter describes a Python plug-in that is used to support the differential
analysis by permitting modification of sensitive information building on the boilerplate
code generated by the CopperDroid v2 compiler. This provides an example of using the
plug-in infrastructure that CopperDroid v2 exposes while also demonstrating its use in
application of information leakage detection.

6.2 Overview

The plug-in support and boilerplate code generated by the static analysis (described in
Chapter 4) simplifies the development of various security-related research tools. This
chapter demonstrates the versatility of CopperDroid v2 with a plug-in that utilises the
control it has over the guest operating system, both through system calls and Binder
operations, to aid in the detection of sensitive information leakage. This is achieved
through running app/malware samples multiple times and changing only one specific
sensitive datum per execution. To ensure that each run is identical, non-determinism
is reduced by always returning the same values from operations that could be used for
entropy.

As Chapter 5 shows, the Python plug-in boilerplate code produced by the Copper-
Droid v2 compiler includes a copperdroidplugin.py file which has the following
routines that can be invoked from CopperDroid v2:

1. InitializePlugIn(ConfigFileName)

2. SetPackageName(PackageName)

3. UninitializePlugIn()

4. InvokeInterfacePlugIn(Task, InterfaceName, Type, Method, Object)

5. InvokeSystemCallPlugIn(Entry, Task, SystemCall, Object)

6. UpdateScenario(ScenarioName)

7. Serialize()

Chapter 6 129

Analysis and Manipulation of Android Apps and Malware in Real-Time

Functions 1-5 are invoked for all plug-ins, while functions 6 and 7 were added to
support launching the emulator and running multiple scenarios sequentially. In the lat-
ter case, the CopperDroid v2 automation framework stops the app between scenarios,
instructs the plug-in to serialise its data, performs some cleanup and then relaunches
the app with a new scenario. This feature exists in order to avoid starting the emulator
instance for every iteration and saves 5+ minutes per-scenario.

6.2.1 Sources of Non-determinism

Performing differential analysis requires that non-deterministic inputs be controlled so
that only the data actually modified intentionally affects the final output. In Android
there are multiple sources of non-determinism that have to be controlled, for instance,
random number sources such as the Random or SecureRandom classes, system val-
ues such as the remaining disk or memory space of the system, timing data such as the
current time or date, as well as information obtained from network sources. For the
purposes of this thesis, the latter is excluded due to time constraints, however, it can be
trivially added in the future. The experiments described later in this chapter use a mod-
ified version of the app stimulation described in [78], where every activity is launched
and MonkeyRunner is used to stimulate the all apps in the same way. The automation
also starts every activity in a given app, stimulating the app, waiting for a fixed period
of time and then moving to the next activity.

Sensitive information accessed by malware can be transmitted in the clear, encrypted
or obfuscated (such as using Base64 encoding). When encrypting data, malware can
use either secure key generation or a simple random number generator (such as the
Random class in Java). Through experimentation, the author determined that only
three sources of entropy need to be controlled to ensure the same secure cryptographic
keys are generated for every run when the SecureRandom class is used. The keys
will change during a run, however, the initial starting key and subsequent keys will
always stay in sync. These three pieces of information are the Process Id (PID), data
read from the /dev/random device and the current millisecond or nanosecond time
(as determined using the gettimeofday() system call).

However, in KitKat and earlier versions the Random class determines the starting
seed (if none is provided) by adding the current millisecond time to the
identityHash() for the calling instance of the Random class. Thus any apps or
malware using the malware utilising the Random class on versions prior to Lollipop
can result in false positives (but not false negatives). While AGRIGENTO [17] replaced
the random functions that apps utilise, CopperDroid v2 does not modify the image or

Chapter 6 130

Analysis and Manipulation of Android Apps and Malware in Real-Time

the app. However, beginning with Lollipop, the initial seed for the Random class is ob-
tained by combining the current nanosecond time (obtained from gettimeofday())
with a constant (either through addition or exclusive-OR). Therefore, returning a consis-
tent value from gettimeofday() will result in the initial seed for the Random class
remaining the same through every execution on Android Lollipop and subsequent ver-
sions. Apps also utilise other sources for entropy, such as the IActivityManager
method getMemoryInfo() or the StatFs.getAvailableBlocksLong()
method.

6.2.2 Sensitive Information Sources

The most commonly leaked information on Android includes the device identifier (IMEI),
subscriber identifier (IMSI), location, contacts [23]. Additionally, some malware for-
wards or leaks SMS messages [48] [49]. The plug-in described in this chapter also
tracks potential leakage of the phone number, voicemail number and SIM serial num-
ber. Any sensitive values that need to be changed are specified in JSON and are accessed
via information in the plug-in configuration file (example shown in Listing 6.1).

Some information is also included which is static across all configurations to ensure
that entropy is controlled. For example, the MemoryInfo property contains all of
data related to the IActivityManager.getMemoryInfo() method, while the
Location field contains timestamp information that would otherwise vary with every
query even if the location is unchanged. Furthermore, the StatFs data is used to return
consistent data for different paths from the the statfs64 system call.

The flags field specifies which sensitive information to track for a given execution
and the results of a run are written to the output file specified. Once all runs are complete
another tool analyses the output against the baseline (which controls the entropy but
doesn’t modify any sensitive data).

6.2.3 Sinks

While apps or malware may access sensitive data, information leakage only occurs if
they transmit the data to an external entity. Therefore, whenever a sensitive datum is
accessed, a flag is set (specific to what was accessed) and all subsequent data trans-
mitted from the process or any processes it launches is logged in the output file. The
sensitive information is called a source and the transmission point a sink. In the case of
this plug-in the sendto(), sendmsg(), write() and writev() (for sockets) and
SMS sendText(), sendMultipartText() and sendData() are all tracked.

Chapter 6 131

Analysis and Manipulation of Android Apps and Malware in Real-Time

Although only 2% of apps leak sensitive information over SMS that would still mean
approximately 60,000 apps on the Google Play Store provided the same percentage
applies [55].

6.3 Approach

The analysis of a given app is accomplished in the following manner, an app is exe-
cuted four times in succession (stopping, resetting state and restarting it between ex-
ecutions) with certain properties that affect non-determinism being controlled. If at
any point during a given execution sensitive information is accessed, then that ac-
cess is logged and any action that transmits data (such as sendto(), sendmsg(),
write(sockedfd) or sendText()) is subsequently logged. Each entry includes
flags that determine what information was accessed, be it the IMEI, IMSI or some
other sensitive datum. The flags remain set once something is accessed, since there is
no guaranteed method (using a purely system call approach) to determine if the next
sink actually transmitted the datum or if perhaps multiple items were accessed and then
sent together. The initial four runs establish a baseline for the app.

Once the baseline has been determined, the app is run an additional eight times dur-
ing which only one sensitive information source is altered per run, for example Location,
Contacts or IMEI. The sources of private information altered are as follows: IMEI (de-
vice ID), IMSI (subscriber ID), Location, phone number, ICCID (Sim card number),
voice mail number, contacts and SMS messages.

The plug-in to CopperDroid v2 uses JSON files for managing each execution. A
JSON file used for establishing the baseline can be seen in Listing 6.1.

{
"isBaseline" : true,
"OutputFileName" : "$RESULTS_DIRECTORY/baseline.json",
"Flags" : [

"TELEPHONY_ALL",
"LOCATION",
"CONTACTS",
"SMS_READ"

],
"Properties" : [

{
"name" : "Pid",
"value" : 1260

},
{

"name" : "Tid",
"value" : 1354

},
{

"name" : "Location",
"value" : {

"Provider" : "gps",
"Time" : 1542349162000,
"ElapsedRealtimeNanos" : 239759509138,
"IsFromMockProvider" : false

}
},

Chapter 6 132

Analysis and Manipulation of Android Apps and Malware in Real-Time

{
"name" : "MemoryInfo",
"value" : {

"availMem" : 613654528,
"totalMem" : 766939136,
"threshold" : 150994944,
"lowMemory" : false,
...

}
}

],
"AddFile" : [

{
"target" : "/data/data/com.cd2.preptool/files/rules.json",
"redirected" : "/test/plugin/infoleak/data/rules.default.json"

}
],
"StatFs" : [

{
"target" : "/",
"value" : "009988b400788...0673a10534b2"

},
...
{

"target" : "/storage/sdcard",
"value" : "c08a8007882b0...0673a10534b2"

},
{

"target" : "/data",
"value" : "c08a87b400788...0673a10534b2"

},
...
{

"target" : "*",
"value" : "009988b400788...0673a10534b2"

}
]

}

Listing 6.1: Sample JSON configuration file for the baseline properties

The flags array indicates which sensitive data is pertinent to the current run, however,
all sensitive information access is tracked in all instances. The flags only serve to isolate
which were modified in the individual run (or in the case of the baseline to indicate that
all need to be considered). As the plug-in is invoked by CopperDroid v2 for a specific
piece of sensitive information, it updates the flags to indicate which items have been
been accessed.

The stimulation that the CopperDroid v2 automation framework uses, analyses APK
permissions and checks for Location and SMS read permissions. If location permis-
sions are included in the apps manifest, then location updates are sent 10 times per run,
with the same co-ordinates each time. Similarly if SMS read permissions are requested
then several SMS messages are sent to the device. Both of these communicate via the
Android Debug Bridge (adb).

For the most part, the plug-in modifies sensitive information in different areas by
simply adding code to the system call or interface handler that is automatically generated
as a result of the static analysis performed by the CopperDroid v2. The two exceptions
are contacts and SMS messages, which are updated using a tool described later in this
chapter. However, access to contacts or SMS is detected using IActivityManager
interface and is described in Section 6.3.3.

Chapter 6 133

Analysis and Manipulation of Android Apps and Malware in Real-Time

While the baseline appears to be updating the Location information, it is only doing
so in order to ensure that timing information included in a Location update does not
differ across runs, the co-ordinates are unchanged except for the specific Location run.

The code generated by the CopperDroid v2 compiler greatly simplifies the manipu-
lation of data in real-time. The following sub-sections illustrate how access to a given
sensitive resource is determined and, where applicable, how the values are changed.

6.3.1 Telephony related information

The various telephony related resources are accessed using the Telephony interface,
IPhoneSubInfo. This interface is responsible for providing information such as the
IMEI (Device Id), IMSI (Subscriber Id) and phone number. While CopperDroid v2
unmarshals both Binder calls (transactions) and replies, no parameters are passed into
the transaction and therefore only the automatically generated reply routines need to be
modified. Listing 6.2 illustrates how the device ID returned by
IPhoneSubInfo.getDeviceId() call is (potentially) modified depending on the
data specified in the JSON configuration for a given run. If the configuration does not
specify a device ID, then the result is unchanged, although the value is still logged. If a
different value is specified for the device ID, then the modified value is returned.

Subscriber ID, phone number and other sensitive telephony data is all modified in
this way. The automatically generated boilerplate code for each interface method’s re-
ply is modified to either return a specific value or the default (if none is specified) in
addition to logging the access.

def GetDeviceIdReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CPhoneSubInfoGetDeviceIdReply
GetResult()
SetResult(ResultValue)
...

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):

present, deviceId = config.GetConfig().GetProperty("DeviceId")

if present != False:
Object.SetResult(deviceId)

else:
deviceId = Object.GetResult()

event = events.Event(events.ACCESS_PERSONAL_INFO, "DeviceId", Task.GetProcessName(),
Task.GetProcessIdentifier(), Task.GetThreadIdentifier(), events.
FLAG_TELEPHONY_DEVICE_ID)

event.SetData(deviceId)
events.GetEvents().AddEvent(event)

Listing 6.2: Plug-in code to modify DeviceId

Chapter 6 134

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.3.2 Location Information

An app can obtain the current location information through one of two methods, it
can either call the ILocationManager.getLastKnownLocation() method,
or it can request location updates. In the latter case, a given app requests location up-
dates from the ILocationManager and passed in an instance of a class that im-
plements the ILocationListener interface. Once registered, any update to the
location (even with the same information) results in the app’s class being invoked on its
onLocationChanged() method.

The info-leak plug-in implemented by the author handles both cases, although only
the code for the callback is shown in Listing 6.3. As can be observed by referring to the
listing, the JSON configuration can update any field in the Location object.

While an app is more likely to send only the latitude, longitude, altitude and other
information pertinent to the devices current location, it’s entirely possible that the en-
tire location object could be serialised and sent. Furthermore, as the location includes
timestamps an app could attempt to use this for entropy. Therefore, the Time and Elapse-

dRealtimeNanos fields are modified in the baseline case (and all non-location cases) to
ensure they are unchanged across invocations. Only the location run does not update the
timestamp information and leaves it as the value set by the location service. However,
latitude, longitude and altitude are all modified by the configuration.
def OnLocationChangedTransaction(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CLocationListenerOnLocationChangedTransaction
GetLocation()
SetLocation(LocationValue)

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):
present, locationModifiers = config.GetConfig().GetProperty("Location")

if present != False:
Location = Object.GetLocation()

...

if "Time" in locationModifiers.keys():
Location.SetTime(locationModifiers["Time"])

if "ElapsedRealtimeNanos" in locationModifiers.keys():
Location.SetElapsedRealtimeNanos(locationModifiers["ElapsedRealtimeNanos"])

if "Latitude" in locationModifiers.keys():
Location.SetLatitude(locationModifiers["Latitude"])

if "Longitude" in locationModifiers.keys():
Location.SetLongitude(locationModifiers["Longitude"])

if "Altitude" in locationModifiers.keys():
Location.SetAltitude(locationModifiers["Altitude"])
Location.SetHasAltitude(True)

...

if "IsFromMockProvider" in locationModifiers.keys():
Location.SetIsFromMockProvider(locationModifiers["IsFromMockProvider"])

Chapter 6 135

Analysis and Manipulation of Android Apps and Malware in Real-Time

Object.SetLocation(Location)

else:

Location = Object.GetLocation()

event = events.Event(events.ACCESS_PERSONAL_INFO, "Location", Task.GetProcessName(),
Task.GetProcessIdentifier(), Task.GetThreadIdentifier(), events.FLAG_LOCATION)

event.SetData(repr(Location))
events.GetEvents().AddEvent(event)

Listing 6.3: ILocationListener onLocationChanged() callback

6.3.3 Contacts and SMS

Content providers such as Contacts and SMS return results to queries using shared mem-
ory regions. These regions contain the returned data in the form of SQLite cursors.
The author has utilised CopperDroid v2 to determine how this information is shared and
how to manipulate it, however, this is still being researched. Therefore, the author devel-
oped a tool (described in the next section) that modifies the Contacts and SMS messages
for each iteration.

Detecting that an app is accessing a content provider (such as contacts or SMS)
requires tracking state through IActivityManager interface method invocations.
The first of these is the getContentProvider method call which queries for a
given content provider. The reply contains a Binder handle corresponding the content
provider in question. As mentioned in Section 3.9.2, Binder calls are synchronous and
are either one way (such as the ILocationListener.onLocationChanged()
call mentioned earlier) or return their result on the same thread, but not necessarily on
exit from the current system call (it can occur on a subsequent ioctl exit).

Additionally, while tracking the getContentProvider method call enables the
plug-in to determine than an app has queried for the content provider, unless a call to the
method refContentProvider() occurs, the sensitive data in question has not been
accessed. Therefore a second call refContentProvider call must be inspected as
it is passed a Binder handle that uniquely identifies the content provider being queried.
Only by tracking the initial getContentProvider method call and response, can
one determine which provider a given Binder handle to which it refers.

Therefore, the info-leak plug-in monitors all calls to the
IActivityManager.getContentProvider() method, adding a pending han-
dle entry to a dictionary using the process ID and thread ID as the key along with the
name of the provider being requested. This is necessary as this is the only instance in
which the content provider name will be passed as a parameter to a Binder interface.

Chapter 6 136

Analysis and Manipulation of Android Apps and Malware in Real-Time

def GetContentProviderTransaction(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetContentProviderTransaction
...
GetName()
...

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):
InsertPendingHandleEntry(Task.GetProcessIdentifier(), Task.GetThreadIdentifier(),

Object.GetName())

Listing 6.4: GetContentProvider call

The plug-in is subsequently invoked when the reply is dispatched back to the app
and examines the data included in the call. As Section 4.10.1 mentions,
flat_binder_object instances are encapsulated in a BinderReference class
that has methods to simplify handling these structures.

One such method is the IsHandle() method that determines the type of the
flat_binder_object and returns true only if the data contained therein refers to a
Binder handle. The GetCph() method on the automatically generated reply class re-
turns an instance of the IActivityManager.ContentProviderHolder class.
As with all such classes in the Android framework, the CopperDroid v2 compiler au-
tomatically generates Get and Set methods for all variable fields and exposes these
through Python bindings. Thus the connection field is made available for query by the
plug-in reply handler method shown in Listing 6.5.

If a pending handle entry can be located for the current process/thread, which will be
the case immediately following a call to getContentProvider, then the reply han-
dler method determines if the connection flat_binder_object contains a handle
and if so, inserts the handle into a Binder handle table along with the name and deletes
the pending handle entry.

When a content provider is released in an app (for instance if a method local variable
goes out of scope), then the removeContentProvider() method on the
IActivityManager interface is invoked with the Binder handle in question. When
this occurs, the info-leak plug-in deletes the handle entry from the table specific to the
current process.

def GetContentProviderReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetContentProviderReply
GetCph()
...

Chapter 6 137

Analysis and Manipulation of Android Apps and Malware in Real-Time

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):
pendingHandleEntry = FindPendingHandleEntry(Task.GetProcessIdentifier(), Task.

GetThreadIdentifier())

if pendingHandleEntry != None:
cph = Object.GetCph();

if cph.GetConnection().IsHandle():
InsertBinderHandleEntry(Task.GetProcessIdentifier(), cph.GetConnection().

GetHandle(), pendingHandleEntry.GetResourceName())

DeletePendingHandleEntry(Task.GetProcessIdentifier(), Task.GetThreadIdentifier())

Listing 6.5: Get Content Provider reply

While the previous two plug-in methods are used to determine the handle refer-
ring to a given content provider, the actual access to sensitive data is only determine
when it is used. For that to happen, a call to the IActivityManager method
refContentProvider() occurs, in which the info-leak plug-in locates the handle
entry referring to the handle provided to the method call and determines if it matches
either of the providers of interest. If so, the access is logged as can be observed in List-
ing 6.6.

def RefContentProviderTransaction(Task, Object):
...

Valid methods for Object of type: CActivityManagerRefContentProviderTransaction
GetConnection()
...

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):
connection = Object.GetConnection()

if connection.IsHandle():
binderHandleEntry = FindBinderHandleEntry(Task.GetProcessIdentifier(), connection

.GetHandle())

if binderHandleEntry != None:
if binderHandleEntry.GetResourceName() == "com.android.contacts":

event = events.Event(events.ACCESS_PERSONAL_INFO, "Contacts", Task.
GetProcessName(), Task.GetProcessIdentifier(), Task.
GetThreadIdentifier(), events.FLAG_CONTACTS)

event.SetData("Contacts Accessed")
events.GetEvents().AddEvent(event)

if binderHandleEntry.GetResourceName() == "SMS":
event = events.Event(events.ACCESS_PERSONAL_INFO, "SMS", Task.

GetProcessName(), Task.GetProcessIdentifier(), Task.
GetThreadIdentifier(), events.FLAG_READ_SMS)

event.SetData("SMS Accessed")
events.GetEvents().AddEvent(event)

Listing 6.6: Reference Content Provider

The actual contents related to either Contacts or SMS is specified in JSON data file
on the host system. A tool is executed once per-run that attempts to open the file from its
local /data/... folder and the info-leak plug-in intercepts the open and openat
system calls and opens a file from the host if requested. A fake file descriptor (of value
10000 or higher) is returned and with all subsequent operations being handled by the
plug-in. For example, following an open system call, a call is made to the fstat64
system call to determine the file size, which the plug-in responds to with the appropriate

Chapter 6 138

Analysis and Manipulation of Android Apps and Malware in Real-Time

value (depending on the file size on the host system). All read requests then return
data as requested and close system call results in the plug-in removing the descriptor
from the descriptor table for the current process.

The plug-in handles either the addition of a new file (should the file not exist in the
guest) or replacement of a file in the guest with one from the host, although the latter
is currently only used in the next chapter. Thus as each iteration is run, the plug-in can
specify a new data file resulting in the different behaviour without having to modify the
guest image (other than installing the preparation tool). The preparation tool is only
required in order to simplify the running of multiple information leakage passes booting
the emulator only once per app.

6.3.4 Tracking System State

CopperDroid v2 and its plug-ins observe the whole Android system (with the exception
of kernel components) and can therefore track not just a given package but also any pro-
cesses it launches. The automation framework first installs the preparation tool and the
app being tested and then starts the full system capture. Thus calls to Binder interfaces
are only made visible to the plug-in once the app has been installed. There are apps
and malware than install other packages and knowing what processes to include in the
collected data is critical to ensuring that all relevant data is captured.

When a package is installed a call is made to the IPackageInstallObserver
interface to notify the system of the package installation. As the CopperDroid v2 au-
tomation is controlled by the author, any packages installed after capture has started are
initiated by the app in question. Therefore the plug-in adds any packages installed to the
list of tracked packages as demonstrated in Listing 6.7.

def PackageInstalledTransaction(Task, Object):
...
Valid methods for Object of type: CPackageInstallObserverPackageInstalledTransaction
GetPackageName()
...

packageinfo.InsertPackage(Object.GetPackageName())

Listing 6.7: Tracking package installation

Similarly when a process is forked or cloned resulting in a new distinct process (i.e.
not a thread), then it is necessary to track any actions taken by the the new process.
Failing to do so would allow an app to query sensitive data and then launch a program
that transmits the data. If the new process is not tracked then the system would fail to
detect the transmitted data.

Chapter 6 139

Analysis and Manipulation of Android Apps and Malware in Real-Time

Listing 6.8 demonstrates how the plug-in handles the clone system call, similar
code is used for the fork and vfork system calls. However, the author has only ever
observed the clone system call being used in Android that is by no means a guarantee.
An app could utilise native code to perform a fork and execve in an attempt to evade
detection.

def SystemCallClone(Entry, Task, Object):
...

Valid methods for Object of type: CSystemCallClone
...
GetFlags()
GetReturnValue()
...

if Entry == false:
newProcessPid = Object.GetReturnValue()
parentProcessId = Task.GetProcessIdentifier()
flags = Object.GetFlags()

if (newProcessPid != parentProcessId) and
((flags & (CLONE_THREAD | CLONE_FILES)) == 0):

InheritProcessHandleTable(parentProcessId, newProcessPid)

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or
packageinfo.IsTrackedProcess(Task.GetProcessIdentifier()):

packageinfo.InsertProcess(Task.GetProcessIdentifier())

Listing 6.8: Tracking processes through clone

6.4 Controlling Sources of Non-determinism

A key requirement in differential analysis such as that described in this chapter is min-
imizing or removing non-determinism. As described earlier there are multiple sources
of non-determinism that can affect the output produced by a given app. For instance,
timing values obtained from the system, the process ID (PID) of the current process and
others. This section describes how each is controlled.

6.4.1 Randomly Generated Values

There are a variety of methods that an app can utilise to obtain randomly generated val-
ues. For instance the /dev/random, /dev/urandom and /dev/arandom devices
can all provide random values. The SecureRandom class combines output from the
/dev/urandom device, the current process PID and the current time in order to seed
its generator. The Python plug-in described in this chapter addresses this by always
returning 0’s from any reads to these devices. While the author tested different values
including a sequence of chosen values that always initiated at the same point the first
time a given process or thread read from these devices, returning 0’s was sufficient for
this example (see Listing 6.9).

Chapter 6 140

Analysis and Manipulation of Android Apps and Malware in Real-Time

The randomUUID() Javamethod [63] returns a randomly generated UUID. How-
ever, it relies on the same data sources as the SecureRandom class and therefore can
be controlled in the same way.

def SystemCallRead(Entry, Task, Object):

Valid values for Entry
True -- this is being invoked on system call entry
False -- this is being invoked on system call exit

Valid methods for Task
GetProcessIdentifier
...

Valid methods for Object of type: CSystemCallRead
GetFileDescriptor()
SetFileDescriptor(FileDescriptor)
GetBuffer()
SetBuffer(Buffer)
GetCount()
SetCount(Count)

if Entry == False:
...
fileDescriptor = Object.GetFileDescriptor()

handleTableEntry = FindHandleEntry(Task.GetProcessIdentifier(), fileDescriptor)

if handleTableEntry != None:
fileObject = handleTableEntry.GetObject()
identifier = fileObject.GetIdentifier()

if identifier in ["/dev/random","/dev/urandom","/dev/arandom"]:

bufferData = bytearray(Object.GetBuffer())

for i in range (0, Object.GetCount()):
bufferData[i] = 0

Object.SetBuffer(bytes(bufferData))
...

Listing 6.9: Read system call controlling the values returned from the /dev/urandom device

6.4.2 Timing Values

Apps can request timing information from the system using calls such as
System.currentTimeMillis() or System.nanoTime(). Both of these APIs
make use of the gettimeofday() system call in order to obtain the timing values.
If a process of interest calls the gettimeofday() system call, the plug-in modifies
the output to the same value every time (as shown in Listing 6.10). While the value
chosen in this case is 0 for both, the author has verified that any value that stays constant
(or predictable, for instance returning a specific set of values in order for a given pro-
cess/thread) results consistent output across iterations. However, in order to mitigate the
risk of external events resulting in additional gettimeofday() calls and affecting
the results, the author kept these constant. Doing so had no observable side-effects in
apps, which the author verified by manipulating apps through their user-interface within

Chapter 6 141

Analysis and Manipulation of Android Apps and Malware in Real-Time

the CopperDroid v2 emulator while a Python plug-in set the values to 0.

def SystemCallGettimeofday(Entry, Task, Object):
...
Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CSystemCallGettimeofday
GetTimeValue()
SetTimeValue(TimeValue)
...

if Entry == False and (packageinfo.IsTrackedPackage(Task.GetProcessName()) or
packageinfo.IsTrackedProcess(Task.GetProcessIdentifier())):

seconds = 0
nanoseconds = 0

timeBuffer = bytearray(8)

struct.pack_into("<i", timeBuffer, 0, seconds)
struct.pack_into("<i", timeBuffer, 4, nanoseconds)

Object.SetTimeValue(bytes(timeBuffer))

Listing 6.10: Modification of gettimeofday system call data

6.4.3 System Related Data

As mentioned earlier, some of the secure cryptographic random number generators make
use of the process ID as a source of entropy (as determined by the author through ex-
perimentation). Apps can also make use of other system values such as those provided
by StatFs, such as getAvailableBytesLong() or the IActivityManager
interface method getMemoryInfo(). As CopperDroid v2 is invoked for all system
calls and Binder operations, any plug-in registered with CopperDroid v2 is invoked for
these too. Thus a plug-in simply has to implement code in the appropriate system call
or interface method’s generated boilerplate code to modify the output as required.

The process ID can be controlled by modifying the output of the getpid() system
call which is very simple to accomplish, as shown in Listing 6.11.

def SystemCallGetpid(Entry, Task, Object):
...

Valid methods for Object of type: CSystemCallGetpid
GetReturnValue()
SetReturnValue(ReturnValue)

if Entry == False and (packageinfo.IsTrackedPackage(Task.GetProcessName()) or
packageinfo.IsTrackedProcess(Task.GetProcessIdentifier())):

present, pid = config.GetConfig().GetProperty("Pid")

if present:
Object.SetReturnValue(pid)

Listing 6.11: Handler for getpid() system call

Chapter 6 142

Analysis and Manipulation of Android Apps and Malware in Real-Time

The plug-in written for this example also modifies the output of the StatFs and
getMemoryInfo() APIs mentioned above, using the values provided in the con-
figuration file for each iteration. Listing 6.12 illustrates how simple this is to do by
modifying the automatically generated reply handler for the interface method.

def GetMemoryInfoReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetMemoryInfoReply
GetOutInfo()
SetOutInfo(OutInfoValue)
...

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or
packageinfo.IsTrackedProcess(Task.GetProcessIdentifier()):

present, memoryInfoModifiers = config.GetConfig().GetProperty("MemoryInfo")

if present != False:
memoryInfo = Object.GetOutInfo()
...
if "availMem" in memoryInfoModifiers.keys():

memoryInfo.SetAvailMem(memoryInfoModifiers["availMem"])

if "totalMem" in memoryInfoModifiers.keys():
memoryInfo.SetTotalMem(memoryInfoModifiers["totalMem"])

if "threshold" in memoryInfoModifiers.keys():
memoryInfo.SetThreshold(memoryInfoModifiers["threshold"])

...

Object.SetOutInfo(memoryInfo)

Listing 6.12: IActivityManager getMemoryInfo() reply handler

In the case of the StatFs class, when the statfs64 system call is invoked, the
data to use is determined by the path passed into the system call. If the path doesn’t
match any provided in the configuration then the data matching the "*" entry used.
The data in the configuration is passed in as hexadecimal and is converted to binary data
upon loading a given configuration. This binary data is simply copied over the whole
statfs64 buffer.

6.5 Detecting Information Leakage

Android apps can have multiple threads within their process and may also launch other
processes, either from the firmware or downloaded. Therefore, when performing differ-
ential analysis it is necessary to determine which process/thread in each iteration match
those in the base line and other iterations. As mentioned earlier, the logging of infor-
mation only begins the first time the app being analysed accesses sensitive information.
Once that occurs every instance of data being transmitted off the device is recorded.
Thus if an app sent thousands of packets of data prior to accessing anything sensitive,
those would not be recorded as it could not result in information leakage.

Chapter 6 143

Analysis and Manipulation of Android Apps and Malware in Real-Time

Every event recorded in the logs includes the process or package name as well as the
process and thread ids for the app in question. The data contained in a given log for a
specific iteration is separated based on the process name, process ID and thread ID in
which the event occurred. The process and thread identifiers are not important in terms
of their values (since these change as processes are launched and can’t be controlled),
however, the analysis utilises them to assign psuedo-identifiers to each process/thread.
For instance the main process of an app is assigned a process ID of 0 and thread ID of
0, while the next thread is a assigned a process ID of 0, but a thread ID of 1. This is true
for the baseline. However, for the other iterations, process name and events are used to
identify which processes/threads match those in the baseline and all are assigned values
accordingly.

The process and thread pseudo-identifier assignments use the contents of events to
determine which thread or process matches, for example, if the device ID and subscriber
ID is accessed or the size of the data being transmitted and how it is transmitted. A app
could use sendto() or sendmsg() to transmit data off the device, these are noted
separately and therefore assist in the construction of the apps profile. Figure 6.1 illus-
trates how this selection is performed and process/thread pseudo-identifier assignments
determined.

Access:
Device Id

com.test.app
PID: 0
TID: 0

Access:
Subscriber Id

sendto()
Data: <...>
Length: 50

sendto()
Data: <...>

Length: 216

Access:
Contacts

com.test.app
PID: 0
TID: 2

sendto()
Data: <...>

Length: 510

Access: SMS

com.test.app
PID: 0
TID: 1

sendto()
Data: <...>
Length: 78

sendto()
Data: <...>

Length: 112

Access:
Location

Location

Access:
Device Id

com.test.app
PID: 0
TID: 0

Access:
Subscriber Id

sendto()
Data: <...>
Length: 50

sendto()
Data: <...>

Length: 216

Access:
Contacts

com.test.app
PID: 0
TID: 1

sendto()
Data: <...>
Length: 78

sendto()
Data: <...>

Length: 112

Access:
Location

Baseline

Figure 6.1: App Process and Thread identification through event analysis

Following this assignment, the actual data transmitted is examined. The four base-

Chapter 6 144

Analysis and Manipulation of Android Apps and Malware in Real-Time

line iterations are compared to determine what data, if any, differs between them since
non-deterministic information is controlled as much as is possible. This permits the
analysis to determine which data transmitted, if any, differs without changes to the en-
vironment. This assists in determining the potential for false positives.

Only one of sensitive information is modified per-iteration, therefore, the final stage
of the analysis focuses only on the transmitted data and removes any matching the base-
line or differing across all iterations (although these are tracked to avoid false negatives).
Finally the analysis determines which flags are set for each transmission event remain-
ing and determines if this matches what the current configuration is modifying. If so, the
leak is logged, otherwise the examination continues until all events have been analysed
and any leaks identified.

While the listing shown earlier in this chapter for the baseline (Listing 6.1) enables
flags for all types of sensitive information, the configuration for the others only include
a flag specific to the sensitive datum being modified. Listing 6.13 only modifies the
location information and this is specified in the JSON configuration for the run.

The LOCATION textual flag name is used as a lookup in a dictionary that maps to
the value 0x00000020. Thus when considering events logged for a given app, the flag is
used to ensure that only data transmissions occurring after the location is accessed will
be considered.

{
"isBaseline" : false,
"OutputFileName" : "$RESULTS_DIRECTORY/modifiedlocation.json",
"Flags" : [

"LOCATION"
],
"Properties" : [

...
{

"name" : "Location",
"value" : {

"Latitude" : 47.6704449,
"Longitude" : -122.1187072,
"Altitude" : 17

}
}
...

],
...

}

Listing 6.13: Portion of location leak detection configuration showing the flags to check for this iteration

Unlike other work in this area [72] [17], this plug-in does not specifically target
HTTP or HTTPS traffic, instead it analyses any data transmissions that leave the device.
While HTTP traffic is prevalent among Android apps, it is not the only option.

Chapter 6 145

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.6 Evaluation

As mentioned earlier, the approach taking in this chapter uses differential analysis over
multiple executions of a given app.

6.6.1 Experiment Setup

The author used an extended version of the framework mentioned in [78]. This creates a
new Android Virtual Device (AVD) with the requested Android version and then starts
the emulator. Once boot is complete, two apps are installed, one is a tool which is used
to prepare the system between runs and the second is the app that is being analysed.

The preparation tool (preptool) is used to simplify the management of contacts and
SMS messages on the system. While contacts can be added using adb the author has
found the performance less than optimal. While launching the preparation tool (prep-
tool) is simple, providing it with the data for a given run requires some innovative think-
ing.

Since CopperDroid v2 is invoked for all system calls in all processes on Android,
the author added code in the preptool to open and read a non-existent file named
rules.json from its data directory. Using the CopperDroid v2 Viewer, the author de-
termined the path to the file in question and added support to the plug-in to redirect the
file read to the host. The plug-in handles the open , lseek (to obtain the file length) as
well as the read and close calls. This provides a simple means of passing different
configuration information to the preparation tool for each iteration without requiring any
changes to the guest image.

...
"AddFile" : [

{
"target" : "/data/data/com.cd2.preptool/files/rules.json",
"redirected" : "/test/plugin/infoleak/data/rules.default.json"

}
]
...

Listing 6.14: Configuration for redirecting reads to the host for the preptool configuration

Prior to every iteration (including the initial baseline), the preptool cleans up state
by deleting SMS messages and contacts and then adding any contacts or SMS messages
specified in the configuration file. Each iteration has its own configuration and the file is
redirected into the guest only when the preptool attempts to open it when starting each
time. This enables the execution of multiple distinct configurations without requiring a

Chapter 6 146

Analysis and Manipulation of Android Apps and Malware in Real-Time

new emulator instance.

{
"DeleteExistingContacts" : true,
"DeleteExistingSms" : true,
"Contacts" : [

{
"Name" : "Donald Duck",
"PhoneNumber" : "425-882-8000"

},
{

"Name" : "Daffy Duck",
"PhoneNumber" : "206-218-1000"

},
{

"Name" : "Goofy",
"PhoneNumber" : "206-517-1000"

}
]

}

Listing 6.15: Default rules

The framework utilised for the experiments included in the [78] paper runs only a
single instance of the emulator at the time. Therefore the experiments were executed
in many virtual machines (across multiple servers) each running a copy of Ubuntu and
running one CopperDroid v2 emulator per virtual machine.

The experiments carried out here, however, were run in a single Ubuntu virtual
machine hosted on an 8-core Intel Core i7-7820x with 128GB RAM. The system has 16
logical processors (with hyper-threading) 14 of which were assigned to the VM and up
to 120GB RAM available for the VM to use.

The automation framework, as modified by the author, makes it possible to run as
many instances of the emulator as the system can handle. The author also implemented
an automation tool in C++ that takes as input a list of all the sample APKs to run and
launches workers to manage as many instances as requested.

Each worker launches its own instance of the CopperDroid v2 automation frame-
work that creates an AVD, installs the preptool, the sample requested and runs all the
required iterations. The automation worker monitors the execution of the framework
and once a sample is completed, records the success and requests a new sample, starting
a new framework and hence emulator instance. There are situations when the emulator
can hang (even an unmodified emulator) and if this occurs (determined through a time-
out), the automation worker kills the whole process group and restarts it automatically.
The experiments carried out for the purposes of this chapter ran 12 samples concurrently,
requiring as much as 120GB RAM at times.

For each sample, the app was run for 10 minutes in each of the iterations (4 baseline
+ 8 targeted) requiring at least 120 minutes to complete (although a time-out of 180

Chapter 6 147

Analysis and Manipulation of Android Apps and Malware in Real-Time

minutes was specified). Between iterations, the preptool was run which deleted the
contacts and SMS messages and then added any specified in the configuration file.

The reason for the 10 minute runtime is to match that used by the AGRIGENTO
[17]. However, that work was performed on a device, while this work is on an emulator,
with the latter running slower. In general apps can be run automatically through all of
their activities in less than 10 minutes, even in an emulator, however, some malware will
set an explicit timer for 3 minutes to avoid triggering any malicious actions while being
analysed. Thus a 10 minute timer is sufficient for the purposes of this thesis.

While the author would have preferred to run each iteration on a clean VM, not
enough time remained prior to the thesis deadline to do so. The author does plan to
redirect the data folders of apps to the host in the future for multiple reasons, including
the fact that doing so means the plug-in can retain files that the app downloads (and tries
to delete after execution), as well as making it easier to clean up state between iterations.

Experiments were run on Android KitKat 4.4.2 and Lollipop 5.1.1. The latter is
useful in that the non-secure Random class’s initial seed can be controlled by returning
the same values from the gettimeofday() system call.

6.6.2 Datasets

This author used the same datasets as the AGRIGENTO [17] paper as that includes the
ReCon [72] and BayesDroid [80] datasets. The datasets include a total of 1030 apps,
including 750 apps from the AppsApk.com market and other sources, as well as the
top 100 free Google Play apps at the time of those papers. Using the same datasets
makes it possible to determine the efficacy of the approach followed as compared to
those determined in the aforementioned papers.

6.6.3 Identifying Potentially Leaking Apps

As previously mentioned, there is no simple way to control the initial seed of the
Random class on versions prior to Android Lollipop. However, not controlling this
information can lead to false positives but not false negatives. Therefore, the initial run
of the experiments was performed against KitKat 4.4.2 to identify apps that had the po-
tential to leak. This is determined by analysing the logs produced for a given app and
checking if any transmission of data occurred after accessing sensitive information.

Performing this analysis reduced the number to apps needed for the experiments to
338. These apps were then executed on Lollipop 5.1.1 in addition to KitKat and the
results of the experiments follow in the Section 6.6.4.

Chapter 6 148

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.6.4 Results

The experiments performed in the manner mentioned in Section 6.6 yielded a total of
195 apps that leaked sensitive information. Based on the results shown in Table 6.1, this
falls between the ReCon network flow analysis approach and the differential analysis of
network traffic approach of AGRIGENTO. Among the leaks detected, the most prevalent
were device ID and subscriber ID, however, SMS messages, location and contacts were
also leaked.

There are several potential reasons why the number detected is lower than that dis-
covered in AGRIGENTO. Due to the time constraints, the experiments had to be run for
all iterations of a given app without fully resetting the app state, either by creating a
new emulator instance or uninstalling/reinstalling the app. Thus if an app stored sensi-
tive information in its storage without querying for it again, it would not have received
the information as modified by the plug-in. Furthermore, leakage detection of the An-
droid ID was not included in the experiments as that would have required creating a
new emulator instance. Lastly, the stimulation that performed by the CopperDroid v2
automation framework launches the main activity, waits for approximately 30 seconds
and then launches the next activity finally returning to the original activity. Although
the author used MonkeyRunner to send keystrokes and taps to the app, some paths that
result in information leakage may have been missed.

Tool Approach #Apps Detected
FlowDroid Static taint analysis 44
AppAudit Static and dynamic taint flow 46
Andrubis/TaintDroid Dynamic taint analysis 72
ReCon Network flow analysis 155
Info-leak plug-in to CopperDroid v2 Differential analysis of network traffic 195
AGRIGENTO Differential analysis of network traffic 278

Table 6.1: Comparison of different approaches including the plug-in described in this chapter [17]

The info-leak plug-in, developed by the author in just 6 days, still yielded a signif-
icant number of leaks, many of which the author confirmed by examining the captured
network traffic. Listing 6.16 is an example of network traffic sent in the clear that leaks
the device ID as modified by the plug-in. Some apps leaked information using base64
encoding, although the plug-in did not have to decode the data (since it relies on the
differences between transmissions), the author did so manually to verify the leaks.

POST /bbmf_boss/application_createSession.action HTTP/1.1
Accept: */*
Content-Type: text/html

Chapter 6 149

Analysis and Manipulation of Android Apps and Malware in Real-Time

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.4.2; sdk Build/KK)
Host: ads.adlayout.net
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Length: 321

{"screenSize":"480*320","osVersion":"4.4.2","packageName":"com.menueph.util.funtorch","
deviceModel":"sdk","lng":"0","osType":"Android","existMarket":"0","version":"5","
timezone":"-5","sdkKey":"D4A3655874","appVersion":"2.8","responseType":"json","
carrier":"Android","language":"en","lat":"0","deviceId":"091287362661728"}

POST /mobile!install.action HTTP/1.1
Accept: */*
Content-Type: application/x-www-form-urlencoded
Connection: Keep-Alive
User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.4.2; sdk Build/KK)
Host: www.searchmobilestuff.com
Accept-Encoding: gzip
Content-Length: 165

appKey=9adb1850-a666-488a-8ee7-e4bc6de78293&language=en&packageName=com.menueph.util.
funtorch&deviceModel=sdk&deviceId=091287362661728&appVersion=2.8&carrier=Android

Listing 6.16: com.menueph.util.funtorch leaking device ID

In addition to providing an example of information leakage detection using differ-
ential analysis, the results of these experiments also demonstrate the ease with which
research can be conducted using the plug-in infrastructure that CopperDroid v2 pro-
vides.

6.6.5 Record/Replay challenges

As mentioned earlier in Section 6.4, sources of non-determinism are controlled in order
to ensure that the only changes in transmitted data occur through the plug-in explicitly
modifying a sensitive datum and the app being executed leaking that (modified) sensi-
tive datum. Thus, for each run, the values of (otherwise) non-deterministic data need to
be controlled.

In general this has no side-effect on the execution of Android or the apps. However,
setting the result of the clock gettime system call to the same (unchanging) value
every time will hang Android. None of the entropy used by apps relies on this system
call, however, the author tested controlling this value for each process/thread and deter-
mined that provided the value constantly increases at any rate on every query in a given
process/thread, Android is unaffected. This was verified using the plug-in described
here but starting every thread at the same initial value and then increasing at the same
rate, tracking the new values per thread.

Chapter 6 150

Analysis and Manipulation of Android Apps and Malware in Real-Time

6.7 Summary

This chapter described how the various portions of CopperDroid v2 are integrated to
provide a system that enables seamless reconstruction of system calls and Binder inter-
faces and complex objects in real-time. It further described those hand-written classes
that assist in bridging the gap between Java and C++, as well as the boilerplate plug-
in code generation. CopperDroid v2 was further evaluated in terms of performance,
flexibility and extensibility for use a platform for further research.

Chapter 6 describes a plug-in built on CopperDroid v2 that uses black-box differen-
tial analysis to perform information leakage detection of sensitive information through
the real-time manipulation of sensitive items.

Chapter 6 151

Chapter 7

Anti Evasion for Malware Analysis

7.1 Introduction

This chapter describes the techniques utilised by Android malware to avoid analysis
by anti-malware systems. It further describes a plug-in that modifies otherwise static
information that malware accesses in order to determine its execution environment.

Malware and malware detection can be likened to a digital arms race, as one side
advances, the other has to advance accordingly to combat the increased threat. Malware
has existed in form or another since the early 1980s and has evolved as new platforms
have been introduced. Over time malware has also evolved in its attempts to evade
detection [79]. The Brain virus is one of the first known instances of evasive malware,
hooking the int 13h interrupt to redirect disk reads to an uninfected boot sector in
order to hide itself [25].

The introduction of software marketplaces, such as the Apple AppStore and the
Google Play Store, has made it significantly easier for developers to make their soft-
ware available for installation. While many legitimate apps are available from these
stores, the threat of malware making it onto these stores is ever-present. Examples such
as the HummingBad and HummingWhale software are two examples of malware that
was accepted onto the Google Play Store but also significatly benefited its authors
financially [61] [12].

Given the large number of apps available the various stores and the rate at which
they are being developed, it is necessary to scale up the rate at which these can be
analysed. While mobile device hardware is becoming increasingly powerful, it still
doesn’t compare to what can be achieved using traditional desktop systems. The Google
Play Store, for example, uses the emulator-based Google Bouncer to analyse apps for
potential threats. This allows analysis tools to execute many apps simultaneously on
multiple instances of the Android emulator in parallel. As mentioned in Section 6.6,

152

Analysis and Manipulation of Android Apps and Malware in Real-Time

12 instances of the CopperDroid emulator were run in parallel on an 8-core, 128GB
RAM system to ensure the experiments were completed in time. With better financial
resources, far more is possible.

There are, however, distinct differences between emulators and actual devices, mak-
ing it possible for malware to detect an emulated environment and not exhibit any ma-
licious behaviours. These characteristics may be something simple like retrieving and
checking the IMEI (which is all zeros by default on an emulator) to the timing of mem-
ory access with the cache enabled and disabled. Techniques such as the cache-timing
differences or processor performance counter analysis, both described in [68], are hard
to thwart but they also require expertise to implement correctly. In many instances mal-
ware authors may prefer to perform simpler tests to detect an emulated environment.

This chapter does not attempt to solve the issues related to detecting virtualised
environments such as those described in [68]. Rather it seeks to demonstrate how the
static analysis performed by the CopperDroid v2 compiler coupled with automatically
generated plug-in code can be used to further research on Android and in so doing assist
in the detection of evasive malware through anti-evasion techniques.

7.2 Evasive Techniques Malware Utilise

Successfully emulating a full system completely is a very difficult task that may never
be fully realised. There are a myriad of potential pitfalls that can interfere with doing
so, including performance characteristics, device presence or lack thereof, sensor timing
and values and a host of others. However, detecting an emulated environment can also,
potentially, require a significant amount of work. The more accurately a given system
can be accurately emulated, the harder the malware author must work to detect the
environment.

As with anything, there are trade-offs that need to be made. Does the malware author
spend a significant amount of energy trying to determine processor cache timings of
analyse the performance of 2D and 3D graphics? Or can simpler techniques be used,
such as readily available device properties? From the perspective of one constructing
an emulated environment, can device properties be easily changed in order to force
malware authors to work harder to detect the environment?

Prior work in this area has identified several heuristics that malware can use to iden-
tify an emulated environment [84] [67] [29]. These can be separated into several cate-
gories, namely, static heuristics, dynamic heuristics or virtualisation heuristics.

Chapter 7 153

Analysis and Manipulation of Android Apps and Malware in Real-Time

7.2.1 Static Heuristics

Static properties are those which generally do not change on either a device or in an
emulated environment. For instance, the device ID (IMEI) remains the same for the
lifetime of a device. The SIM card serial number (ICCID), however, while static for the
most part could change in a real device if the card is replaced. These values, however,
generally do not change in an emulator and additionally are initialised to well-known
values. For example, the device ID (IMEI) is ”000000000000000” in an emulator, but
has an actual value on a real device. Similarly the subscriber ID (IMSI) has a constant
well-known value in the Android emulator but a real value on a device. Additional
properties such as the device model, build information, fingerprint or product are also
static well-known values, for example sdk or generic.

Table 7.1 lists the various static values on a given Android system that can be
used to determine if the app/malware is executing inside an emulator. These values
are obtained from different sources, for example, the BUILD values are all present
in the /system/build.prop file, while the IMEI (device ID) and others are ob-
tained from the Telephony class of interfaces. Table 7.2 includes potential values for
Build.HOST as these can vary widely, however, some are known to be associated with
emulators. These constant static values make it easy for malware to detect an emulated
environment without much effort.

Network routing information is another area that evasive malware can target as this
is fixed in the emulator where addresses are can be in the 10.0.2/24 subnet or 0.0.0.0.
Routing information is obtained by reading from /proc/net/tcp.

7.2.2 Dynamic Heuristics

Android devices have various sensors such as accelerometers, gyroscopes, GPS, gravity
and others. These sensors provide dynamic data based on movement or orientation of
a device. The SensorManager is responsible for exposing these sensors to apps.
Apps register with the SensorManager for callbacks related to specific sensor and
are then receive calls to their onSensorChanged() method. In an actual device the
frequency and timing of sensor updates can vary, however, simulated sensors tend to
have a regular period (with very minor discrepancies) [67]. Thus, malware can utilise
this knowledge to detect simulated sensors and hence an emulated environment.

Chapter 7 154

Analysis and Manipulation of Android Apps and Malware in Real-Time

API Method Value Meaning
Build.ABI armeabi Likely an emulator
Build.ABI2 unknown Likely an emulator
Build.BOARD unknown Emulator
Build.BRAND generic Emulator
Build.DEVICE generic Emulator
Build.FINGERPRINT contains: generic, sdk etc. Emulator
Build.HARDWARE goldfish Emulator
Build.HOST Various See Table 7.2
Build.ID FRF91 Emulator
Build.MANUFACTURER unknown Emulator
Build.MODEL sdk Emulator
Build.PRODUCT sdk Emulator
Build.RADIO unknown Emulator
Build.SERIAL null Emulator
Build.TAGS test-keys Emulator
Build.USER android-build Emulator
TelephonyManager.getDeviceId() 000000000000000 Emulator
TelephonyManager.getLine1Number() 155552155xx Emulator
TelephonyManager.getNetworkCountryIso() us Possible Emulator
TelephonyManager.getNetworkType() 3 Possible Emulator (EDGE network)
TelephonyManager.getNetworkOperator().substring(0,3) 310 Possible Emulator or USA device
TelephonyManager.getNetworkOperator().substring(3) 260 Possible Emulator or T-Mobile USA device
TelephonyManager.getPhoneType() 1 Possible Emulator or GSM phone
TelephonyManager.getSimCountryIso() us Possible Emulator
TelephonyManager.getSimSerialNumber() 89014103211118510720 Emulator
TelephonyManager.getSubscriberId() 310260000000000 Emulator
TelephonyManager.getVoiceMailNumber() 15552175049 Emulator

Table 7.1: Static values that malware can query to detect an emulated environment [84]

Device Build.HOST
Emulator apa27.mtv.corp.google.com
Emulator android-test-15.mtv.corp.google.com
Emulator android-test-13.mtv.corp.google.com
Emulator android-test-25.mtv.corp.google.com
Emulator android-test-26.mtv.corp.google.com
Emulator vpbs30.mtv.corp.google.com
Emulator vpak21.mtv.corp.google.com

Motorola Droid android-test-10.mtv.corp.google.com
HTC EVO 4G AA137

Samsung Charge SEI-26
Samsung Galaxy Tab7 SEP-40

Samsung Galaxy Nexus vpak26.mtv.corp.google.com

Table 7.2: Build.Host values for different environments [84]

7.2.3 Virtualisation Heuristics

Physical devices execute code using the native instruction set of their CPU. Although
a bytecode instruction set such as Java is translated into native instructions, this is
still faster than an additional level of translation. Emulators, however, may need to
translate code between instruction sets, in addition to any translation that occurs due to
a bytecode based instruction set. Therefore, the performance characteristics between a

Chapter 7 155

Analysis and Manipulation of Android Apps and Malware in Real-Time

device and an emulator are likely to differ significantly. Furthermore, emulators often
take short cuts to improve performance, such as not updating the the virtual program
counter on every instruction [67]. While such information is harder to access, since it
likely involves writing native code, it is still an avenue that malware can utilise to detect
an emulated environment.

7.3 Anti-Evasion built upon CopperDroid v2’s plug-in
infrastructure

For the purposes of this thesis, this chapter will focus on the static values as mentioned in
the previous section. These represent the low-hanging fruit that malware authors can use
with relative ease to determine if their app is being run within an emulator. Changing all
these values by hand would require significant effort and malware could also fingerprint
the environment during execution and pass information back to the author enabling them
to detect the modified environment in the future. Therefore, a good solution would not
only simplify changing the values for the otherwise static information, doing so should
require a minimum of effort. Reducing the effort in modifying these values ensures that
they can change frequently to avoid fingerprinting by malware.

Detecting the emulator via sensors and virtualisation heuristics requires significantly
more work and while certainly feasible, it is likely that malware authors will utilise a
simpler approach until that is no longer possible.

The information leakage plug-in described in Chapter 6 provides mechanisms to
modify many of the common characteristics that evasive malware use in their attempt
to evade analysis in an emulated environment. In addition to the IMEI and IMSI,
evasive malware may also rely on device specific details, such Model, Manufacturer,
Build Identifier and the IP tables (to check for a 10.0.2.x IP addresses) [84], [67], [29]
to determine the presence of an emulated environment. The device specific details are
stored in a /system/build.prop and /system/vendor/build.prop files
(the former is always present, the latter varies based on the device in question). During
boot Android reads these files and make the properties contained therein available via
the android.os.Build.<value> property.

The author therefore added the ability to redirect existing files to the host (in addi-
tion to adding files as was done for the preparation tool). By doing so, the plug-in is
able to provide a modified build.prop with values that do not match the emulated
environment without having to modify the image. This functionality is also used (at
least for the short term) to return network routing information that does not match an

Chapter 7 156

Analysis and Manipulation of Android Apps and Malware in Real-Time

emulator. The author obtained this by capturing the output of a Linux system into a file
and then redirecting the read there. These are shown in Listing 7.1. The example shown
is for KitKat, however, the author also has build.prop files for Lollipop and others.

The author extended the info-leak plug-in rather than writing a second one for two
reasons, firstly, almost all the necessary functionality for modifying static values is al-
ready present in the info-leak plug-in. Secondly, doing so simplifies combining infor-
mation leakage detection with anti-evasion, making it possible to detect information
leakage in apps that attempt to evade analysis through emulator detection. A set of
experiments was carried out on the 1030 samples used for the information leakage de-
tection, however, after analysing the data and performing a second set of experiments
targeting anti-evasion only (without information leakage), the author determined that
none of the apps in question were employing any evasion techniques.

...
"ReplaceFile" : [

{
"target" : "/system/build.prop",
"redirected" : "/test/plugin/infoleak/data/kitkat.build.prop"

},
{

"target" : "/system/vendor/build.prop",
"redirected" : "/test/plugin/infoleak/data/kitkat.build.prop"

},
{

"target" : "/proc/net/tcp",
"redirected" : "/test/plugin/infoleak/data/tcp"

}
],
...

Listing 7.1: Support for redirecting existing files to the host for modifying static information

As mentioned in Section 6.3, configuration information is passed to the plug-in in the
form of a JSON file. Chapter 6 described the different properties that are manipulated,
including device ID, subscriber ID, phone number, voicemail number etc. Since many
of these are used by malware to detect emulators, changing these parameters can be
achieved simply by specifying the appropriate entry in the configuration. The network
type is included as an additional value and sets the network type to LTE (Listing 7.2).
The operator and other values are not as critical as they are also valid on a physical
device (the author has a T-Mobile USA phone).

The location information is included so that the properties (if queried) provide realis-
tic data, for example, the co-ordinates (including the altitude are realistic) and the speed
is sufficiently slow (but non-zero) that querying multiple times is unlikely to change the
value.

Chapter 7 157

Analysis and Manipulation of Android Apps and Malware in Real-Time

...
"Properties" : [

{
"name" : "DeviceId",
"value" : "736356289373622"

},
{

"name" : "SubscriberId",
"value" : "820164381256781"

},
{

"name" : "PhoneNumber",
"value" : "+14258001111"

},
{

"name" : "VoiceMailNumber",
"value" : "+14258788811"

},
{

"name" : "SimCardSerialNumber",
"value" : "98104012312215801702"

},
{

"name" : "NetworkType",
"value" : 13

},
{

"name" : "Location",
"value" : {

"Provider" : "gps",
"Latitude" : 47.6704449,
"Longitude" : -122.1187072,
"Altitude" : 207.0,
"Speed" : 0.001,
"Bearing" : 72.134,
"Accuracy" : 11.125,
"IsFromMockProvider" : false

}
},

...

Listing 7.2: Plug-in configuration modifying all the necessary properties accessed through the Telephony
Manager

The author modified the plug-in to add support for modifying the network type as
returned from the ITelephony.getNetworkType() method including in List-
ing 7.3. The value specified in the JSON configuration indicates an LTE network.

def GetNetworkTypeReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CTelephonyGetNetworkTypeReply
GetResult()
SetResult(ResultValue)
...

if packageinfo.IsTrackedPackage(Task.GetProcessName()) or packageinfo.IsTrackedProcess(
Task.GetProcessIdentifier()):
present, networkType = config.GetConfig().GetProperty("NetworkType")

if present != False:
Object.SetResult(networkType)

Listing 7.3: ITelephony getNetworkType method handler in the plug-in for modifying the network type

The author modified KitKat, Lollipop and other version’s build.prop files using
information obtained from different sources to match those of actual devices. For ex-
ample, information from a Marshmallow device’s file was use to modify the KitKat file

Chapter 7 158

Analysis and Manipulation of Android Apps and Malware in Real-Time

shown in Listing 7.4.

begin build properties
autogenerated by buildinfo.sh
ro.build.id=KK442
ro.build.display.id=pixel 4.4.2 KK442 3462041 release
ro.build.version.incremental=3462041
ro.build.version.sdk=19
ro.build.version.codename=REL
ro.build.version.release=4.4.2
ro.build.date=Thu Nov 10 05:52:02 UTC 2016
ro.build.date.utc=1478757122
ro.build.type=user
ro.build.user=dailybuild
ro.build.host=server006
ro.build.tags=release-keys
ro.product.model=Pixel
ro.product.brand=v2
ro.product.name=Pixel
ro.product.device=Pixel
ro.product.board=pxlv2
ro.product.cpu.abi=armeabi-v7a
ro.product.cpu.abi2=armeabi
ro.product.manufacturer=Google
ro.product.locale.language=en
ro.product.locale.region=US
ro.wifi.channels=
ro.board.platform=pxlv2
ro.build.product is obsolete; use ro.product.device
ro.build.product=Pixel
Do not try to parse ro.build.description or .fingerprint
ro.build.description=pixel-user 4.4.2 KK442 3462041 release-keys
ro.build.fingerprint=Google/pixel/pixel:4.4.2/KK442/3462041:user/release-keys
ro.build.characteristics=default
end build properties

Listing 7.4: Modified KitKat build.prop made to resemble that of an actual device

While the combination of the JSON configuration to the plug-in and the redirec-
tion of the build.prop file in the emulator handles almost all of the properties that
evasive malware can potentially use to detect the emulator environment, one still re-
mains. The code, which the author found in [29] and included here for convenience
in Listing 7.5, is from an actual malware sample Android/Pincer.A. The first portion
of the if statement is referring to the network provider name obtained by calling the
TelephonyManager.getNetworkOperatorName() method. The author has
worked to determine how this value is propagated up to the app (since it is set in the
modem), but it requires additional research.

if (str3.toLowerCase().equals("android") || str1.equals("000000000000000")) || (str1.
equals("012345678912345")) || (str2.equals("15555215554")) || Build.MODEL.
toLowerCase().equals("sdk")) || (Build.MODEL.toLowerCase().equals("generic")))
com.security.cert.b.a.a.a(paramContext, true);

else
{

str8 = "false";
continue;

}

Listing 7.5: Android/Pincer.A malware emulator detection source

The author therefore implements a single line change to the emulator’s modem
(shown in Listing 7.6) in order to change the provider to something that malware would
not recognise as an emulator. The author does plan to make it possible to change this via

Chapter 7 159

Analysis and Manipulation of Android Apps and Malware in Real-Time

configuration as opposed to manually in the future. With this change in place (the author
verified the API now returns the modified value), the malware anti-analysis detection in
Listing 7.5, will not detect the emulator and will execute its payload. The author uses
the T-Mobile network name since other properties listed in Table 7.1 refer to the device
being on the T-Mobile network and the incongruence resulting in choosing another net-
work or inventing a new one could be used for emulator detection.

#define OPERATOR_HOME_NAME "T-Mobile" // Previously: "Android"

Listing 7.6: Change to android modem.c to return a different network name

Listing 7.7 is obtained directly from a copy of the Dendroid malware source [81].
The malware checks multiple BUILD properties to determine if it is executing in an
emulator and if not, it executes its payload. Since all of the values shown below clearly
do not match those provided in the build.prop substituted through the plug-in, this
malware will also execute its payload.

if("google_sdk".equals(Build.PRODUCT) || "google_sdk".equals(Build.MODEL) ||
Build.BRAND.startsWith("generic") || Build.DEVICE.startsWith("generic")
|| "goldfish".equals(Build.HARDWARE))

{
}
else
{

PreferenceManager.getDefaultSharedPreferences(getApplicationContext()).edit().putBoolean(
"Start", true);

initiate();
}

Listing 7.7: Dendroid Emulator Detection Source

In all the samples run thus far by the author, none exhibited evasive techniques, even
though clearly malware does exist that attempts to evade detection in emulated environ-
ments. Mobile malware is still relatively new as compared to desktop malware and thus
it is likely that as the platform matures, so too will malware advance to avoid detection,
likely leading to an increase in evasive malware instances. The author developed a test
program to implement the two methods for determining the presence of an emulator as
per the two malware samples (Android/Pincer.A and Dendroid). In both cases, the
emulator was not detected when anti-evasion was enabled, but was detected if it wasn’t
enabled.

7.4 Summary

In this chapter the author describes enhancements to the information leakage plug-in to
easily mask the static properties of the Android emulator to support anti-evasion. Al-

Chapter 7 160

Analysis and Manipulation of Android Apps and Malware in Real-Time

though requiring very little additional code and some configuration information, imple-
menting the evasion routines from two evasive malware samples resulted in the heuristic
determining that it was not running in an emulator.

Chapter 7 161

Chapter 8

Discussion

8.1 Introduction

This chapter compares Copperdroid v1 with CopperDroid v2 in addition to discussing
different approaches that could be taken with respect to the utilising the model proposed
in this thesis. As mentioned before, the model establishes a clear relationship between
Binder interfaces and Android objects and makes it possible to determine only those
portions specifically related to Binder ICC. While the author has chosen to utilise slic-
ing and transformation of the Java ASTs to automatically generate C++ code, other
implementations are possible with their own benefits and trade-offs.

8.2 CopperDroid v1 versus CopperDroid v2

8.2.1 CopperDroid v1

As mentioned earlier in this thesis, CopperDroid v1 demonstrates that a system call
only based approach to app/malware analysis is viable, however, it requires the assis-
tance of an unmarshaling Oracle for reconstructing Binder ICC and Android objects.
Furthermore, the performance of CopperDroid v1 and the unmarshaling Oracle limit the
usability across Android versions. In [78], Tam et al. describe the performance of Cop-
perDroid v1, including the fact that system wide analysis incurs more than a 200% per-
formance overhead. While the targeted analysis has a lower overhead (20-35%), it has
the potential to miss actions that may be important. In the context of CopperDroid v1,
targeted means only certain interesting system calls. The problem with focusing on spe-
cific system calls and excluding others is that side-effects of calls not included could po-
tentially enable exploitation of the system. For instance, the exploitation of speculative
execution on x86 processors in the SPECTRE and MELTDOWN malware to access

162

Analysis and Manipulation of Android Apps and Malware in Real-Time

kernel memory is an example of an unexpected side-effect albeit on CPUs [46] [56].
Similarly an otherwise innocuous system call could potentially be exploited to perform
an execution of privilege or other attack. Thus it is imperative that any approach aimed
at app/malware analysis not be limited by its design such that certain operations cannot
be analysed.

CopperDroid v1 only supports execution on Android Froyo version 2.2.3 with the
performance characteristics limiting adoption of later versions. The design and imple-
mentation of CopperDroid v1 requires significant modification of the Android emulator
as well as a second unmodified emulator instance for hosting the unmarshaling Oracle,
with communication with the occurring via TCP/IP. While the basic system call sup-
port in CopperDroid v1 is mostly automatically generated (with several hand-written
portions including ioctl code for Binder) and the AIDL-based Binder interfaces,
there is a significant amount of hand-written code to enable reconstruction of parts of
the core Binder service interfaces IActivityManager and IServiceManager.
Furthermore, CopperDroid v1 is designed specifically for use with the Android emu-
lator, without considering other potential execution options. Additionally, the design
is not extensible and therefore doesn’t provide a mechanism through which further re-
search can be conducted.

8.2.2 CopperDroid v2

CopperDroid v2, by contrast, analyses every system call across all processes with only
a 7-12.22% overhead even when fully reconstructing Binder ICC. All version specific
code in CopperDroid v2 is automatically generated, making adoption of a new Android
version relatively simple. As described in Chapter 4, the automatically generated code
reconstructs Binder ICC and Android objects with minimal overhead (on the order of
nanoseconds) as opposed to the order of seconds as required by the unmarshaling Ora-
cle. Furthermore, CopperDroid v2 is itself extensible through plug-ins which are given
full access to reconstructed system call and Binder interfaces and Android objects. The
aforementioned plug-ins can analyse and manipulate system calls, Binder interfaces
and Android objects. Table 8.1 compares the characteristics of CopperDroid v1 and
CopperDroid v2. While not explicitly included, one additional feature is the possibility
of execution in other environments. CopperDroid v2 is designed with flexibility of the
execution environment in mind and is thus implemented using the abstract plug-in in-
terface. However, as mentioned in Chapter ??, other options are possible including the
use of Berkeley Packet Filters, described in the following section.

Chapter 8 163

Analysis and Manipulation of Android Apps and Malware in Real-Time

CopperDroid Version Android Versions New Version Cost AIDL interfaces Java interfaces Real-time Modify in-vivo Extensible
CopperDroid v1 Froyo 2.2.3 2+ weeks 3 7 7 7 7

CopperDroid v2 Froyo 2.2.3→ Oreo 8.0.0 1 hour 3 3 3 3 3

Table 8.1: Comparison of qualitative properties of CopperDroid v1 versus v2

CopperDroid Version System call overhead Binder Reconstruction Overhead
CopperDroid v1 0.0910ms >1 second (including Oracle)
CopperDroid v1 0.0001ms 10µs

Table 8.2: Performance comparison between CopperDroid v1 versus v2

Table 8.2 shows the micro-benchmark performance of different system calls and the
reconstruction of Binder ICC. The system call processing overhead for CopperDroid v1
is obtained from [78] while the Binder overhead is obtained from timing tests carried
out by the author of this thesis using CopperDroid v1. The system call overhead of Cop-
perDroid v2 is calculated across all system calls in a given execution of CopperDroid
v2 using a geometric mean. This includes any reads or writes occurring to/from the
file system and the associated copying of such data for logging purposes. CopperDroid
v1, however, only inspects certain interesting system calls and thus the performance
information provided in [78] may not provide an accurate assessment.

As a qualitative example, using the Android Emulator’s Graphic User Interface
(GUI) is simply not possible with CopperDroid v1, even with the limited system call
capture it performs. However, the Android Emulator instance is fully usable in the case
of CopperDroid v2, even though every single system call is analysed in real-time.

In the case of the Binder ICC performance tests, only calls with complex objects
are included as the processing of simple types for CopperDroid v2 only registers in
nanoseconds (and is indistinguishable from the margin of error). While the table in-
cludes the processing time for the Oracle (in the case of CopperDroid v1), it should be
noted that the Oracle is not invoked during execution of the emulator, but rather during
post-processing (due to the overhead incurred by accessing the Oracle). Therefore, the
performance cost of the Oracle is included to illustrate the difference between the model
followed in the Oracle versus that provided through the static analysis approach taken
in this thesis.

8.3 Supporting On-Device Execution

As described in Chapter 3.2, CopperDroid v2 has modular design, with the core func-
tionality being implemented as a plug-in to an abstract interface. While one of the goals
of this design is to limit the modification required to support a new emulator version,

Chapter 8 164

Analysis and Manipulation of Android Apps and Malware in Real-Time

a second goal is to enable the execution of the CopperDroid v2 in other environments,
including on a device. The Linux kernel does not support C++ code, therefore, the
current implementation of the plug-in manager and the CopperDroid v2 plug-in would
likely need to execute in a user-mode process and trace all system calls (for example via
ptrace). However, this mode of execution would add additional overhead in analysing
apps, however, this approach does not expose the kernel to attacks through carefully
crafted Parcels.

Another potential approach is to leverage the Berkeley Packet Filter [59] support
provided in Android [37] to enable on device analysis of Android apps/malware. As de-
scribed in Chapter 4, static analysis is utilised to determine the precise relationship be-
tween Binder interfaces, calls and Android objects. This model makes it possible to ex-
tract only the portions of the Android framework source code directly related to Binder
ICC. The design described in Chapter 4 constructs an abstract syntax tree which is then
analysed by visitor classes to extract the necessary code for reconstructing Binder inter-
faces and Android objects. The current visitor classes maintain a similar code structure
to the original transforming those portions necessary to a support C++ implementation,
however, this is only one potential solution. The visitor paradigm described here applies
to building on the support already provided by the CopperDroid v2 compiler, however,
any approach that follows the model described in this thesis can achieve the same ends.
The key insight, that only Binder interfaces and their intersection with Android objects
is required to reconstruct Binder ICC, is all that is needed to achieve this goal. The sys-
tem dependency graph generated through the static analysis makes it possible to isolate
those portions directly involved in Binder and determine how Parcels are accessed
for a given interface or object.

By constructing a higher level model that determines the relationship between in-
terfaces and objects and Parcels, one can automatically generate Berkeley Packet
Filters for the various interfaces and Android objects. For example, in some cases
one value in a parcel determines how another is interpreted, thus the data read from the
Parcel must take this into account. One example is to check the presence of an object,
for example, if a complex object can be null, then a boolean (uint32) is included that
is set to 1 if the object is present or 0, if it is not. Arrays serialized into a parcel are sim-
ilarly handled, generally there is a boolean to determine presence, followed by a count
indicating the number of items followed by a packed array of the items. Thus, in order to
support Berkeley Packet Filters a visitor class can construct a control flow graph and
data dependency graph and utilising the two in tandem, construct the precise semantics
of a given interface and it’s interaction with Parcels and Android objects. While the

Chapter 8 165

Analysis and Manipulation of Android Apps and Malware in Real-Time

system dependency graph constructed by CopperDroid v2 determines which portions of
a given object are to be included in the object, based on its intersection with interfaces,
the control flow graph as these relate to Parcels is required to automatically construct
the analogous Berkeley Packet Filter code.

As mentioned in Chapter 3.2, the core Binder protocol is largely unchanged over the
last 10 years from a code perspective and is identical in terms implementation for 32-bit
systems. The only modification has been to add support for 64-bit pointers (for protocol
version 8, 32-bit support still uses protocol version 7). Therefore, implementing Berke-
ley Packet Filter support would require parsing this protocol much like CopperDroid
v2 so today, albeit in C as opposed to C++.

There are certain advantages in leveraging the Berkeley Packet Filters in Android
as this permits real-time analysis directly from the kernel, avoiding a process context
switch or kernel to user transition. However, this has its own risks, for instance, malware
could potentially craft a Parcel to exploit the kernel analysis code and potentially
elevate its own privilege. Furthermore, any deep anti-malware analysis would likely be
executing in user-mode to reduce the kernel footprint, since any related databases and
machine learning libraries would probably not support kernel mode execution.

As mentioned in Chapter 1, the author also considered developing a language which
captured the relationships between interfaces, objects and Parcels. Such a language
would contain the data and control flow as it pertained to a specific interface method and
Parcel. Listing 8.1 shows a mock-up of a potential language for capturing the seman-
tics of the getIntentSender of the IActivityManager interfaces, including
the flow control where one Parcel member is dependent on another.

{
type <- int,
packageName <- String,
token <- Binder,
resultWho <- String,
requestCode <- int,
{

_ <- int != 0 ? requestIntents <- array(Intent),
requestResolvedTypes <- array(String)

: requestIntents <- null,
requestResolvedTypes <- null

},
fl <- int,
{

_ <- int != 0 ? options <- Bundle : options <- null
},
userId <- int

}

Listing 8.1: Mock-up of language describing relationship between interface method and Parcel for the
getIntentSender method call

It should be noted that this is simply a mock-up, although the author has considered
multiple approaches to this problem and this captures the semantics. However, Intent

Chapter 8 166

Analysis and Manipulation of Android Apps and Malware in Real-Time

and Bundle need to be defined, although this can be achieved through the system de-
pendency graph described in Chapter 4 combined with analysis of the methods invoked
in the respective objects.

{
noException -> Exception,
res -> Binder

}

Listing 8.2: Mock-up of language describing relationship between interface method and Parcel for the
getIntentSender method reply

Similarly, Listing 8.2 describes the Parcel structure included in the response to
the getIntentSender method call. By constructing all of the client/server unmarshaling/-
marshaling semantics, real-time analysis and manipulation could be achieved through
the generation of the appropriate code for a given target. Furthermore, this language
could also be translated into intermediate representation such as LLVM IR [50] in order
to simplify construction of other solution.

Chapter 8 167

Chapter 9

Conclusions and Future Work

Mobile malware is an ever present threat that has managed, on multiple occasions, to
bypass the protections put in place to hold them at bay and make it onto mobile mar-
ketplaces [61] [12] [28] [47]. Combating this threat requires a solution that is able to
scale to meet the increasing number of apps, while enabling new research with ease.
The solution should also be agnostic of the Android version and runtime.

The model described in this thesis leverages static analysis to determine only the
components necessary for Binder ICC. CopperDroid v2 as described in this thesis im-
plements the model described to automatically generate per-version system call and
Binder reconstruction code. In so doing, it meets the criteria described above in that it
enables version and runtime agnostic reconstruction and manipulation of system calls,
Binder ICC and Android objects in real-time.

By automatically generating boilerplate plug-in code that is able to observe and mod-
ify reconstructed system calls and Binder interfaces and object, further analyses and
research can be built with ease in either Python or C++.

Through micro-benchmarks the author established that reconstruction and modifi-
cation of complex Binder objects requires only micro-seconds (µs). Python plug-ins
add little overhead while C++ plug-ins are almost undetectable in their performance
overhead (within the margin of error).

Experiments show that CopperDroid v2 outperformed the state-of-the-art both in
terms of accuracy and diversity of reconstructed behaviors, and incurred overhead,
paving the way to realistic dynamic analysis of Android apps.

The author evaluated the performance and effectiveness of CopperDroid v2 for real-
time analysis and modification as well as enabling further research scenarios. Copper-
Droid v2 has already been used in the analysis of 10000+ app samples and the author
believes that further research can be built using CopperDroid v2 plug-in infrastructure,
thereby taking advantage of its real-time reconstruction and modification capabilities.

168

Analysis and Manipulation of Android Apps and Malware in Real-Time

The author demonstrates the reconstruction and modification capabilities of Cop-
perDroid v2 through the information leakage plug-in. The plug-in was developed end-
to-end in just 6 days, highlighting the ease with which research can be developed on
top of the platform provided by CopperDroid v2. The information leakage detection
plug-in seamlessly modifies system call data and return values as well as Binder ob-
jects to implement a differential analysis based detection algorithm. The author further
demonstrates combating evasive malware by modifying static properties of the system
in real-time with minor additions to the information leakage plug-in.

9.1 Future Work

As described in Chapter 8, CopperDroid v2 is designed as a plug-in to an abstract inter-
face. This design is intended to permit execution in other environments, including on a
device. However, another approach is to extend the CopperDroid v2 compiler using an
AST visitor to produce Berkeley Packet Filter code for use with the Android support
for Berkeley Packet Filters.

The author intends to further explore the creation of a language that expresses the
semantics of the relationship between Binder interfaces, methods and Android objects,
with the goal that reconstruction and manipulation code can be automatically generated
for a given scenario, including on device execution. Furthermore, such a language may
also enable further research that is yet to be considered.

Although Android malware currently appear to be using simple techniques to detect
emulated environments, as anti-evasion improves, so too will malware’s anti-analysis.
Therefore, with the relatively recent introduction of C++ plug-in support the author
plans to implement an on device version of CopperDroid v2 enabling additional research
on actual devices while simultaneously alleviating the need for anti-evasion.

With the ability to modify system calls and Binder operations with ease, a fuzzing
system can be constructed on top of CopperDroid v2 to allow security testing of apps
and services.

Chapter 9 169

Appendix A

Detailed Source Listings

A.1 CopperDroid v2 Configuration File Format
//
// This file contains the definition for the Configuration files used for
// CopperDroid.
//
// The Configuration "Message" is really just a container in the format
// that Google Protobufs use. Protobufs support both a binary and a text
// format and the data contained within this protobuf definition is used
// in a textual format as configuration.
//

message Configuration {

//
// The version information is to make it clear what a given config file
// is targetting.
//

message AndroidVersion {
required string Name = 1;
required string Version = 2;
required string Path = 3;

}

//
// The TargetSystem assists in describing which architecture a given
// configuration file is targetting as well as other values relevant
// to the system (for example kernel stack size).
//

message TargetSystem {
enum ARCHITECTURE {

ARM = 0;
x86 = 1;
x86_64 = 2;
ARM64 = 3;

}

optional ARCHITECTURE Architecture = 1 [default = ARM];
optional int32 KernelStackSize = 2 [default = 8192];
optional int32 MessageHeaderLength = 3 [default = 28];
optional int32 IoVectorStructureSize = 4 [default = 8];
optional int32 PointerSize = 5 [default = 4];

}

//
// The kernel offsets are to allow control of the offsets within the kernel
// data structures to match a given system, without requiring multiple
// binaries depending on the given emulation target OS. While these values
// have been effectively unchanged for some time, they can differ between
// processor architectures. By making these configurable via a file means
// that the same code base can support different target versions without
// requiring a rebuild; a different configuration file is sufficient.
//

message KernelOffsets {
optional int32 OFFSET_TASK = 1 [default = 12];
optional int32 OFFSET_COMM = 2 [default = 724];
optional int32 OFFSET_THREADID = 3 [default = 492]; // This is really the PID in the

kernel but is actually the thread ID in Linux.

170

Analysis and Manipulation of Android Apps and Malware in Real-Time

optional int32 OFFSET_PROCESSID = 4 [default = 496]; // This is really the TGID in
the kernel but is actually the process ID in Linux.

optional int32 OFFSET_MM = 5 [default = 456];
optional int32 OFFSET_MM_START_STACK = 6 [default = 144];
optional int32 OFFSET_MM_ARG_START = 7 [default = 148];
optional int32 OFFSET_MM_ARG_END = 8 [default = 152];
optional int32 OFFSET_MM_ENV_START = 9 [default = 156];
optional int32 OFFSET_MM_ENV_END = 10 [default = 160];
optional int32 OFFSET_MSGHDR_NAME = 11 [default = 0];
optional int32 OFFSET_MSGHDR_NAME_LEN = 12 [default = 4];
optional int32 OFFSET_MSGHDR_IOVEC = 13 [default = 8];
optional int32 OFFSET_MSGHDR_IOVEC_LEN = 14 [default = 12];
optional int32 OFFSET_IOVEC_BASE = 15 [default = 0];
optional int32 OFFSET_IOVEC_LEN = 16 [default = 4];

}

message AutoSaveThresholds {
optional uint32 TimeThreshold = 1 [default = 30];
optional uint32 SizeThreshold = 2 [default = 104857600];

}

message PlugIn {
enum PLUG_IN_TYPE {

PYTHON = 0;
CPP = 1;

}

required bool InvokePlugIn = 1 [default = false];
optional PLUG_IN_TYPE PlugInType = 2 [default = PYTHON];
optional string PlugInPath = 3 [default = "."];
optional string ModuleName = 4 [default = ""];

}

message Benchmark {
required bool EnableBenchmarks = 1 [default = false];
optional bool BenchmarkSystemCalls = 2 [default = false];
optional bool BenchmarkBinderNoReconstruction = 3 [default = false];
optional bool BenchmarkBinder = 4 [default = false];
optional bool BenchmarkPlugIn = 5 [default = false];

}

required AndroidVersion Version = 1;
optional TargetSystem System = 2;
optional KernelOffsets Offsets = 3;
optional AutoSaveThresholds Thresholds = 4;
optional PlugIn PlugInInformation = 5;
optional Benchmark BenchmarkSettings = 6;
optional bool CaptureFromStartup = 7 [default = false];

}

Listing A.1: Google Protobuf definition file for CopperDroid v2 to support multiple versions with a
single core plug-in.

Appendix A 171

Analysis and Manipulation of Android Apps and Malware in Real-Time

A.2 CopperDroid v2 Source Listings

A.2.1 Chapter 3 Source Code

class IRegisters {
public:

virtual const long int r(REGISTER Register, int banked_mode) = 0;
virtual const long int PageDirectoryBase() = 0;
virtual void set_r(REGISTER Register, long int Value) = 0;

};

class IPlugInContext {
public:

virtual IRegisters* GetRegisters() = 0;
virtual bool ReadMemory(long int TargetAddress, void* Buffer, unsigned long Length) = 0;
virtual bool WriteMemory(long int TargetAddress, void* Buffer, unsigned long Length) = 0;
virtual bool ReadString(long int TargetAddress, char** String) = 0;
virtual void FreeString(char* String) = 0;
virtual bool ReadInteger32(long int TargetAddress, int32_t* Value) = 0;
virtual bool ReadInteger64(long int TargetAddress, int64_t* Value) = 0;
virtual bool ReadUnsignedInteger32(long int TargetAddress, uint32_t* Value) = 0;
virtual bool ReadUnsignedInteger64(long int TargetAddress, uint64_t* Value) = 0;
virtual uint64_t GetUniqueCpuIdentifier() = 0;

};

Listing A.2: Interface for accessing guest memory and state.

class IPlugInManager {
public:

virtual bool RegisterPlugin(const char* Name, IPlugInEvents* Events) = 0;
virtual bool IsTargetBigEndian() = 0;

};

Listing A.3: The IPluginManager interface which a plug-in invokes to register itself

//
// Function(s) which plug-in must support:
// InitializePlugin (signature is show below as InitializePluginFn).
//

typedef bool (*InitializePluginFn)(IPlugInManager* Manager, const char* Parameters, const
char* Port, const char* PlugInConfigFileName);

Listing A.4: Method which a plug-in must have in order to be initialised after being loaded

class IPlugInEvents {
public:

virtual void EnterSyscallEvent(IPlugInContext* Context, ARCHITECTURE Architecture, int
SyscallNumber) = 0;

virtual void ExitSyscallEvent(IPlugInContext* Context, ARCHITECTURE Architecture) = 0;
};

Listing A.5: An Interface that plug-ins implement for system call entry/exit.

Appendix A 172

Analysis and Manipulation of Android Apps and Malware in Real-Time

Version
{

Name: "KitKat"
Version: "4.4.2"
Path : "plugin/copperdroid/objs/kitkat4_4_2.so"

}

System
{

Architecture:ARM
}

Offsets
{

OFFSET_THREADID: 504
OFFSET_PROCESSID: 508
OFFSET_MM : 468
OFFSET_MM_ARG_START: 144
OFFSET_MM_ARG_END: 148

}

PlugInInformation
{

InvokePlugIn: true
PlugInPath : "plugin/infoleak/python/"
ModuleName: "copperdroidplugin"

}

Listing A.6: Configuration file for Android KitKat 4.4.2

...
extern "C" bool InitializePlatform(std::string VersionString, GuestConfiguration*

Configuration, std::string PlugInConfigFileName, ISysCalls** SystemCalls)
{

IPlugIn* PlugIn = nullptr;

SetConfiguration(Configuration);

if (Configuration->IsPlugInPresent()) {
if (Configuration->GetPlugInType() == PYTHON) {

PlugIn = InitializePythonPlugIn(Configuration->GetPlugInPath(), Configuration->
GetPlugInModuleName(), PlugInConfigFileName);

} else {
InitializePlugInFn InitializePlugIn;
void* handle;
string libraryName = Configuration->GetPlugInPath() + "/" + Configuration->

GetPlugInModuleName();

handle = dlopen(libraryName.c_str(), RTLD_LAZY);
if (handle == nullptr) {

printf("Error: Unable to load plug-in. %s\n", dlerror());
return false;

}

InitializePlugIn = (InitializePlugInFn) dlsym(handle, "InitializeCppPlugIn");
if (InitializePlugIn == nullptr) {

printf("Error locating InitializePlugIn routine: %s\n", dlerror());
return false;

}

PlugIn = InitializePlugIn(PlugInConfigFileName);
}
systemCalls.SetPlugIn(PlugIn);

}

*SystemCalls = &systemCalls;

return true;
}

Listing A.7: Initialization routine for initializing a given platform such as KitKat or Nougat.

Appendix A 173

Analysis and Manipulation of Android Apps and Malware in Real-Time

1 typedef SystemCallEvent* (*SyscallEntryStubFunction)(ISysCalls* This, SystemInformation*
System, TaskInformation* Task, IPlugInContext* Context, IPlugIn* PlugIn);

2 typedef void (*SyscallExitStubFunction)(ISysCalls* This, SystemInformation* System,
TaskInformation* Task, IPlugInContext* Context, SystemCallEvent* event, IPlugIn* PlugIn)
;

3
4 class ISysCalls
5 {
6 public:
7 virtual bool IsTrackedSystemCall(const int SysCallNumber) = 0;
8 virtual SystemCallEvent* CallEntryStub(ISysCalls* ThisPointer, SystemInformation* System,

IPlugInContext* Context, const int SyscallNumber) = 0;
9 virtual void CallExitStub(ISysCalls* thisPointer, SystemInformation* System,

IPlugInContext* Context, const int SyscallNumber, SystemCallEvent* Event) = 0;
10 virtual IInterfaceDataExtractor* GetInterfaceExtractor() = 0;
11 virtual void SetPackageName(string PackageName) = 0;
12 virtual void UninitializePlugIn() = 0;
13 virtual void UpdateScenario(string ScenarioName) = 0;
14 virtual void SerializePlugIn() = 0;
15 };

Listing A.8: ISysCalls interface for version agnostic system call inspection.

def ParseSyscalls(FileName, UnistdPath):

parser = SysCallsTxtParser()
parser.parse_file(FileName)

syscallNumberMapping = scanunistd.scan_linux_unistd_h(UnistdPath)

syscalls ={}

for syscall in parser.syscalls:
if syscall[’armid’] == 1 or syscall[’common’] == 1:

allvalues = syscall[’decl’].split()
returntype = allvalues[0]

if ’*’ in allvalues[1]:
returntype += allvalues[1]

if ’*’ in allvalues[2]:
returntype += allvalues[2]

syscallEntry = [returntype, syscall["name"], syscall["params"]]
syscalls[syscallNumberMapping[syscall["name"]]] = syscallEntry

parser = None

return syscalls

Listing A.9: ParseSysCalls which uses the bionic utilities SysCallsTxtParser and unistd.h scanner to
produce the system call table

class ICopyFunctor {
public:

virtual bool operator()(void* Context, byte* Destination, const byte* Source,
size_t Length) = 0;

};

Listing A.10: Abstract interface for a functor that can be passed to a function allowing copy to or from a
guest

Appendix A 174

Analysis and Manipulation of Android Apps and Malware in Real-Time

class CopyFromGuest : public ICopyFunctor {
public:

bool operator()(void* Context, byte* Destination, const byte* Source, size_t Length)
{

IPlugInContext* PlugInContext = (IPlugInContext*)Context;

return PlugInContext->ReadMemory((long int) Source, (void*) Destination, Length);
}

};

class CopyToGuest : public ICopyFunctor {
public:

bool operator()(void* Context, byte* Destination, const byte* Source, size_t Length)
{

IPlugInContext* PlugInContext = (IPlugInContext*)Context;

return PlugInContext->WriteMemory((long int) Destination, (void*) Source, Length);
}

};

Listing A.11: Functor implementations that perform a copy from or to a guest

class bytes
{
public:

...
bool SetData(const void* Data, size_t Length, ICopyFunctor& CopyData, void* CopyContext);
{

byte* Bytes = nullptr;

try {
Bytes = new byte[Length];

} catch (std::bad_alloc) {
return false;

}

if (m_Buffer != nullptr) {
delete[] m_Buffer;
m_Buffer = nullptr;

}

if (CopyData(CopyContext, Bytes, (const byte*) Data, Length) == false) {
delete[] Bytes;

return false;
}

m_DataAddress = (void*)Data;
m_Buffer = Bytes;
m_BufferLength = Length;
m_Offset = 0;

return true;
}

...

bool WriteToAddress(byte* DataAddress, ICopyFunctor& CopyData, void* CopyContext);
{

m_DataAddress = DataAddress;

return CopyData(CopyContext, DataAddress, (const byte*) m_Buffer, m_BufferLength);
}
...

};

Listing A.12: Excerpt of bytes class illustrating copying data to/from guest

Appendix A 175

Analysis and Manipulation of Android Apps and Malware in Real-Time

1 ...
2 static SystemCallEvent* open_stub_enter_syscall(ISysCalls* This, SystemInformation* System,

TaskInformation* Task, IPlugInContext* Context, IPlugIn* PlugIn)
3 {
4 ...
5 SystemCallEvent* event = new SystemCallEvent;
6 Parameters* parameters = new Parameters;
7 Parameter* parameter0 = new Parameter;
8 Parameter* parameter1 = new Parameter;
9 Parameter* parameter2 = new Parameter;

10 KernelObject* object = nullptr;
11 struct timeval timeStamp;
12 char* TempBuffer;
13
14 gettimeofday(&timeStamp, nullptr);
15 event->SetTimeStamp(timeStamp);
16
17 event->CaptureParameterRegisters(Context->GetRegisters()->r(r0,0), Context->GetRegisters

()->r(r1,0), Context->GetRegisters()->r(r2,0));
18 if (Context->ReadString(Context->GetRegisters()->r(r0,0), &TempBuffer) != false) {
19 object = ObjectManager::CreateObject(string(TempBuffer));
20 parameter0->SetValue((const char*)TempBuffer);
21 Context->FreeString(TempBuffer);
22 }
23
24 parameter1->SetValue((int)Context->GetRegisters()->r(r1,0));
25 parameter2->SetValue((mode_t)Context->GetRegisters()->r(r2,0));
26 parameters->Add(parameter0);
27 parameters->Add(parameter1);
28 parameters->Add(parameter2);
29
30 event->SetParameters(parameters);
31 if (object != nullptr) {
32 event->SetKernelObject(object);
33 if (object->GetObjectType().GetType() == TypeBinder) {
34 BinderObject* binderObject = (BinderObject*)object;
35 binderObject->SetInterfaceExtractor(This->GetInterfaceExtractor());
36 }
37 }
38
39 if (PlugIn != nullptr) {
40 CSystemCallOpen* systemCallOpen = new CSystemCallOpen(true, event, (parameters->

GetParameter(0)->GetValue()->Value.string_value != nullptr) ? *parameters->
GetParameter(0)->GetValue()->Value.string_value : "", parameter1->GetValue()->
Value.int32_value, parameter2->GetValue()->Value.int32_value);

41
42 event->SetPlugInData(systemCallOpen);
43 PlugIn->InvokePlugInForSystemCall(true, Task, "open", systemCallOpen);
44
45 if (systemCallOpen->IsModified() != false) {
46 systemCallOpen->Update(Context);
47 }
48 }
49
50 return event;
51 }
52 ...

Listing A.13: Entry stub for the open system call

Appendix A 176

Analysis and Manipulation of Android Apps and Malware in Real-Time

class CSystemCallOpen : public ISystemCallPlugInData
{
public:

CSystemCallOpen(bool IsEntry, SystemCallEvent* SystemCallEventObject, string PathName,
int32_t Flags, int32_t Mode) : mModified(false), mSystemCallEvent(
SystemCallEventObject), mIsEntry(IsEntry), mPathName(PathName), mFlags(Flags), mMode
(Mode) {}

void SetPathName(string PathName)
{

mPathName = PathName;
mModified = true;

}

string GetPathName()
{

return mPathName;
}
...
void SetReturnValue(int32_t ReturnValue)
{

mReturnValue = ReturnValue;
mModified = true;

}

int32_t GetReturnValue()
{

return mReturnValue;
}

bool IsModified()
{

return mModified;
}
...
void Update(IPlugInContext* PlugInContext)
{

CopyToGuest copyToGuest;
bytes data;

data = mPathName;
data.WriteToAddress((byte*)mSystemCallEvent->GetParameterRegister(0), copyToGuest, (

void*)PlugInContext);

PlugInContext->GetRegisters()->set_r(r1, mFlags);
PlugInContext->GetRegisters()->set_r(r2, mMode);

if (mIsEntry == false) {
PlugInContext->GetRegisters()->set_r(r0, mReturnValue);

}
}

private:
bool mIsEntry;
string mPathName;
int32_t mFlags;
int32_t mMode;
int32_t mReturnValue;
bool mModified;
SystemCallEvent* mSystemCallEvent;

};

Listing A.14: Class that encapulates the open system call enabling Python and C++ plug-ins to inspect
and alter parameters

class KernelObject
{
public:

virtual ˜KernelObject(){};
virtual ObjectType GetObjectType() = 0;
virtual bool IoCtl(SystemInformation* System, TaskInformation* Task, IPlugInContext*

Context, uint64_t IoCtlCode, uint64_t BufferAddress, IPlugIn* PlugIn) = 0;
virtual bool IoCtlExit(SystemInformation* System, TaskInformation* Task, IPlugInContext*

Context, IEventData** EventData, IPlugIn* PlugIn) = 0;
};

Listing A.15: KernelObject base class

Appendix A 177

Analysis and Manipulation of Android Apps and Malware in Real-Time

1 bool BinderObject::ExtractData(SystemInformation* System, TaskInformation* Task,
IPlugInContext* Context, BinderEventData* EventData, bytes& DataBuffer, bool Entry,
IPlugIn* PlugIn)

2 {
3 bool result;
4 BinderOperation* binderOperation;
5
6 while (DataBuffer.LengthRemaining() != 0) {
7 size_t bufferOffset;
8 BinderOperation* pendingOperation = nullptr;
9

10 bufferOffset = DataBuffer.GetOffset();
11 binderOperation = new BinderOperation((BINDER_OPERATION_TYPE)DataBuffer.

ReadUnsignedInteger32(), bufferOffset, Task, PlugIn);
12
13 if (binderOperation->IsReply()) {
14 pendingOperation = GetPendingOperation(Task->GetThreadIdentifier());
15 }
16
17 if (binderOperation->ExtractOperationData(DataBuffer, Context,

m_InterfaceDataExtractor, pendingOperation) != false) {
18 EventData->AddOperation(binderOperation, Entry);
19
20 if (binderOperation->PendingReply()) {
21
22 //
23 // Reference the operation.
24 //
25
26 binderOperation->Reference();
27 AddPendingOperation(Task->GetThreadIdentifier(), binderOperation);
28 }
29 }
30
31 if (pendingOperation != nullptr) {
32 pendingOperation->Dereference();
33 }
34 }
35
36 return true;
37 }

Listing A.16: BinderObject tracking transactions and replies

Appendix A 178

Analysis and Manipulation of Android Apps and Malware in Real-Time

message SysCallEvent {
enum SYSCALLNUMBER {

...
SysCallEnumIoctl = 54;
...

}
...
message SysCallIoctl {

enum IOCTL_TYPE {
IoCtlGeneral = 1;
IoCtlBinderFlag = 0x00100000;
IoCtlBinderWriteRead = 0x00100001;
...

}
enum BINDER_OPERATION_TYPE {

BC_TRANSACTION = 1;
BC_REPLY = 2;
...
BR_TRANSACTION = 20;
BR_REPLY = 21;
...

}
enum BINDER_TRANSACTION_FLAGS {

TF_ONE_WAY = 0x01;
...

}
enum FLAT_BINDER_OBJECT_TYPE {

BINDER_TYPE_BINDER = 0x73622a85;
BINDER_TYPE_WEAK_BINDER = 0x77622a85;
BINDER_TYPE_HANDLE = 0x73682a85;
...

}
...
message BINDER_WRITE_READ_DATA {

optional uint64 write_size = 1;
optional uint64 write_consumed = 2;
optional bytes write_buffer = 3;
optional uint64 read_size = 4;
optional uint64 read_consumed = 5;
optional bytes read_buffer = 6;

}
message BINDER_FLAT_OBJECT {

required FLAT_BINDER_OBJECT_TYPE type = 1;
optional int32 flags = 2;
optional bytes write_buffer = 3;
optional uint64 read_size = 4;
optional uint64 read_consumed = 5;
optional bytes read_buffer = 6;

}
message BINDER_TRANSACTION_DATA {

optional uint64 target = 1;
optional uint64 cookie = 2;
optional uint32 code = 3;
optional uint32 flags = 4;
...
optional uint64 dataSize = 7;
optional uint64 offsetsSize = 8;
optional bytes buffer = 9;
optional bytes offsets = 10;
...

}
message BINDER_REFERENCE_DATA {

required uint64 address = 1;
optional bytes data = 2;

}
message BINDER_TRANSACTION {

required BINDER_TRANSACTION_DATA transactiondata = 1;
optional bytes parcel = 2;
...
optional bytes interfaceToken = 4;
...
repeated BINDER_REFERENCE_DATA binderstrongreferencedata = 9;

}
message BINDER_OPERATION {

required BINDER_OPERATION_TYPE type = 1;
optional BINDER_TRANSACTION transaction = 2;
...

}
...
optional IOCTL_TYPE ioctltype = 5;
optional BINDER_WRITE_READ_DATA binderEntryWriteRead = 6;
optional BINDER_WRITE_READ_DATA binderExitWriteRead = 7;
repeated BINDER_OPERATION entryBinderOperation = 8;
repeated BINDER_OPERATION exitBinderOperation = 9;
...

}
}

Listing A.17: ioctl serialisation structure with Binder support

Appendix A 179

Analysis and Manipulation of Android Apps and Malware in Real-Time

A.2.2 Chapter 4 Source Code Listings

class CActivityManagerExtractor : public IDataExtractor
{
public:

STATUS BuildTransactionData(int code, Parcel* data, BinderTransaction* binderTransaction)
{

switch (code) {
...
case GET_INTENT_SENDER_TRANSACTION:
{

int type = data->readInt();
javaString packageName = data->readString();
BinderReference* token = data->readStrongBinder();
javaString resultWho = data->readString();
int requestCode = data->readInt();
TypedObjectArray<Intent*> requestIntents;
TypedArray<javaString> requestResolvedTypes;

if (data->readInt() != 0) {
requestIntents = data->createTypedArray<Intent>();
requestResolvedTypes = data->createStringArray();

} else {
requestIntents = nullptr;
requestResolvedTypes = nullptr;

}

int fl = data->readInt();
Bundle* options = data->readInt() != 0 ? Bundle::createFromParcel(data) :

nullptr;
int userId = data->readInt();

CActivityManagerGetIntentSenderTransaction*
activityManagerGetIntentSenderTransaction = new
CActivityManagerGetIntentSenderTransaction(type, packageName, token,
resultWho, requestCode, requestIntents, requestResolvedTypes, fl,
options, userId);

binderTransaction->SetPlugInTransactionData(
activityManagerGetIntentSenderTransaction);

...
}
...

}
...

}
...

};

Listing A.18: IActivityManager extractor showing the getIntentSender transaction unmarshaling code

Appendix A 180

Analysis and Manipulation of Android Apps and Malware in Real-Time

class CActivityManagerGetIntentSenderTransaction : public IInterfacePlugInTransactionData
{
public:

CActivityManagerGetIntentSenderTransaction(int type, javaString packageName, BinderReference*
token, javaString resultWho, int requestCode, TypedObjectArray<Intent*> intents, TypedArray
<javaString> resolvedTypes, int flags, Bundle* options, int userId) : m_Transaction("
GET_INTENT_SENDER_TRANSACTION"), mType(type), mPackageName(packageName), mToken(token),
mResultWho(resultWho), mRequestCode(requestCode), mIntents(intents), mResolvedTypes(
resolvedTypes), mFlags(flags), mOptions(options), mUserId(userId)

{
}
...
void WriteToParcel(Parcel* data)
{

data->writeInterfaceToken("android.app.IActivityManager");
data->writeInt(mType);
data->writeString(mPackageName);
data->writeStrongBinder(mToken);
data->writeString(mResultWho);
data->writeInt(mRequestCode);
if (mIntents != nullptr) {

data->writeInt(1);
data->writeTypedArray(mIntents, 0);
data->writeStringArray(mResolvedTypes);

} else {
data->writeInt(0);

}
data->writeInt(mFlags);
if (mOptions != nullptr) {

data->writeInt(1);
mOptions->writeToParcel(data, 0);

} else {
data->writeInt(0);

}
data->writeInt(mUserId);

}
...
bool IsModified()
{

return m_Modified;
}
...
virtual ˜CActivityManagerGetIntentSenderTransaction()
{

if (mToken != nullptr) {
delete mToken;
mToken = nullptr;

}
if (mOptions != nullptr) {

delete mOptions;
mOptions = nullptr;

}
}

};

Listing A.19: Generated class for getIntentSender transaction handling permitting modification through
plug-ins (code omitted for brevity).

Appendix A 181

Analysis and Manipulation of Android Apps and Malware in Real-Time

class CActivityManagerExtractor : public IDataExtractor
{
public:

...
STATUS BuildReplyData(int code, Parcel* reply, BinderTransaction* binderReply)
{

switch (code) {
...
case GET_INTENT_SENDER_TRANSACTION:
{

int exceptionCode = reply->readException();

if (exceptionCode == 0U) {
BinderReference* res = reply->readStrongBinder();

CActivityManagerGetIntentSenderReply* activityManagerGetIntentSenderReply
= new CActivityManagerGetIntentSenderReply(res);

binderReply->SetPlugInTransactionData(activityManagerGetIntentSenderReply
);

...
} else {

javaString exceptionMessage = reply->readString();

CActivityManagerGetIntentSenderReply* activityManagerGetIntentSenderReply
= new CActivityManagerGetIntentSenderReply(nullptr, exceptionCode,
exceptionMessage);

binderReply->SetPlugInTransactionData(activityManagerGetIntentSenderReply
);

}
}
...

}
...

}
...

};

Listing A.20: IActivityManager extractor showing the getIntentSender reply (code omitted for brevity).

Appendix A 182

Analysis and Manipulation of Android Apps and Malware in Real-Time

class CActivityManagerGetIntentSenderReply : public IInterfacePlugInTransactionData
{
public:

CActivityManagerGetIntentSenderReply(BinderReference* res, int ExceptionCode = 0U,
javaString ExceptionMessage = "") : m_Transaction("GET_INTENT_SENDER_TRANSACTION"),
mRes(res), mExceptionCode(ExceptionCode), mExceptionMessage(ExceptionMessage)

{
}

...

void WriteToParcel(Parcel* reply)
{

if (mExceptionCode == 0U) {
reply->writeNoException();
reply->writeStrongBinder(mRes != nullptr ? mRes : nullptr);

} else {
reply->writeInt(mExceptionCode);
reply->writeString(mExceptionMessage);

}
}
...
bool IsModified()
{

return m_Modified;
}

BinderReference* GetRes()
{

return mRes;
}

void SetRes(BinderReference* ResValue)
{

mRes = ResValue;
m_Modified = true;

}

int GetExceptionCode()
{

return mExceptionCode;
}

void SetExceptionCode(int ExceptionCodeValue)
{

mExceptionCode = ExceptionCodeValue;
m_Modified = true;

}
...

};

Listing A.21: Generated class for getIntentSender reply handling permitting modification through plug-
ins (code omitted for brevity).

Appendix A 183

Analysis and Manipulation of Android Apps and Malware in Real-Time

void CInterfaceTranslator::ExtractCase(CCaseStatement* CaseStatement, CCaseStatement**
TransactionCaseStatement, CCaseStatement** ReplyCaseStatement)

{
CFormatType formatType;
CClass* transactionObjectClass;
CObjectBuilder* transactionObjectBuilder;
CClass* replyObjectClass;
CObjectBuilder* replyObjectBuilder;
string transactionLabel;
string transactionMethodName;

for (CVariable* parameter : m_CurrentMethod->GetParameters()->GetParameters()) {
if (formatType.IsObject(parameter->GetType()->GetName())) {

parameter->GetType()->SetVariableType(VariableTypePointer);
}

}

CBinderRewriter binderRewriter(m_CurrentMethod->GetParameters(), &m_InterfaceMethodMap,
&m_ImplementationMethodMap, this, m_InterfaceName, m_InterfaceDescriptor,
m_PythonInterfaceDocument, m_PythonPlugInModuleName);

binderRewriter.BuildExtractionCase(CaseStatement, TransactionCaseStatement,
ReplyCaseStatement, &transactionObjectClass, &transactionObjectBuilder,
&replyObjectClass, &replyObjectBuilder, &transactionLabel, &transactionMethodName);

ASSERT(transactionObjectClass != nullptr, "Transaction class can’t be null\n");
ASSERT(replyObjectClass != nullptr, "Reply class can’t be null\n");

m_TransactionObjectClasses.push_back(transactionObjectClass);

m_ReplyObjectClasses.push_back(replyObjectClass);

if (m_CurrentPass == BuildExtractorPass) {
AnalyzeEdges(m_CurrentMethod->GetParameters(), transactionObjectClass);
AnalyzeEdges(m_CurrentMethod->GetParameters(), replyObjectClass);
AnalyzeEdges(m_CurrentMethod->GetParameters(), *TransactionCaseStatement);
AnalyzeEdges(m_CurrentMethod->GetParameters(), *ReplyCaseStatement);

}

transactionMethodName[0] = (char)toupper(transactionMethodName[0]);

m_TransactionToMethodPairs.push_back(make_pair(transactionLabel, transactionMethodName));
m_TransactionObjectBuilders.push_back(transactionObjectBuilder);
m_ReplyObjectBuilders.push_back(replyObjectBuilder);

}

Listing A.22: CInterfaceTranslator::ExtractCase method which analyses a specific transaction case
statement and produces the necessary code

void CInterfaceTranslator::AnalyzeEdges(CParameters* Parameters, CASTNode* Node)
{

CEdgeAnalyzer edgeAnalyzer(Parameters, m_TypeDatabase);

Node->Accept(&edgeAnalyzer, nullptr);
edgeAnalyzer.SetPass(LocateEdges);

Node->Accept(&edgeAnalyzer, nullptr);
for (int nodeId : edgeAnalyzer.GetNodesAccessed()) {

InsertAccessedNode(nodeId);
}

}

Listing A.23: CInterfaceTranslator::AnalyzeEdges method

Appendix A 184

Analysis and Manipulation of Android Apps and Malware in Real-Time

void CInterfaceTranslator::Commit()
{

CLabelStatement* label;
vector<int> startingNodes;

m_TypeDatabase->BeginTransaction();

for (pair<int, bool> node : m_TraversedNodesMap) {
startingNodes.push_back(node.first);

}

for (int nodeId : startingNodes) {
TraverseEdges(nodeId);

}

for (pair<int, bool> node : m_TraversedNodesMap) {
m_TypeDatabase->MarkNodeAccessed(node.first);

}

m_TypeDatabase->CommitTransaction();

for (CClass* transactionObjectClass : m_TransactionObjectClasses) {
transactionObjectClass->Write(m_IndentedOutput);
m_IndentedOutput->Print("\n");

}

for (CClass* replyObjectClass : m_ReplyObjectClasses) {
replyObjectClass->Write(m_IndentedOutput);
m_IndentedOutput->Print("\n");

}

label = new CLabelStatement;
label->SetLabel("private");
m_ClassStatementBlock->Insert(label);

for (CConstant* constant : m_InterfaceConstants) {
m_ClassStatementBlock->Insert(constant);

}

m_Class->Write(m_IndentedOutput);

m_IndentedOutput->Print("\n");
m_IndentedOutput->ApplyIndentation(); // Auto-indent code for readability.
m_IndentedOutput->Write(); // Output the source file for the current interface.
... // Python and C++ plug-in code generation.

}

Listing A.24: CInterfaceTranslator::Commit method for generating interface marshaling code (plug-in
code generation excluded for brevity)

class Location : public Parcelable
{
public:

Location(javaString provider);
...
virtual string AsString();
virtual bool InstanceOf(uint64_t ClassInstanceId);
...
double GetLatitude();
void SetLatitude(double LatitudeValue);
double GetLongitude();
void SetLongitude(double LongitudeValue);
...
double mLatitude;
double mLongitude;
...

};

Listing A.25: Android Location Object class declaration

Appendix A 185

Analysis and Manipulation of Android Apps and Malware in Real-Time

...
double Location::GetLatitude()
{

return mLatitude;
}

void Location::SetLatitude(double LatitudeValue)
{

mLatitude = LatitudeValue;
}

double Location::GetLongitude()
{

return mLongitude;
}

void Location::SetLongitude(double LongitudeValue)
{

mLongitude = LongitudeValue;
}

string Location::AsString()
{

StringFormat objectString;

objectString.Format("{ \"mProvider\" : \"%s\", \"mTime\" : %ld, \"mElapsedRealtimeNanos\"
: %ld, \"mLatitude\" : %f, \"mLongitude\" : %f, \"mHasAltitude\" : %s, \"mAltitude
\" : %f, \"mHasSpeed\" : %s, \"mSpeed\" : %f, \"mHasBearing\" : %s, \"mBearing\" : %
f, \"mHasAccuracy\" : %s, \"mAccuracy\" : %f, \"mExtras\" : %s, \"
mIsFromMockProvider\" : %s }", mProvider.c_str(), mTime, mElapsedRealtimeNanos,
mLatitude, mLongitude, CBoolean(mHasAltitude).AsString().c_str(), mAltitude,
CBoolean(mHasSpeed).AsString().c_str(), mSpeed, CBoolean(mHasBearing).AsString().
c_str(), mBearing, CBoolean(mHasAccuracy).AsString().c_str(), mAccuracy, (mExtras !=
nullptr) ? mExtras->AsString().c_str() : "null", CBoolean(mIsFromMockProvider).
AsString().c_str());

return objectString.GetData();
}
...

Listing A.26: Android Location Object class implementation

public enum SupplicantState implements Parcelable {
DISCONNECTED,
...
ASSOCIATED,
...
UNINITIALIZED,

public void writeToParcel(Parcel dest, int flags) {
dest.writeString(name());

}

public static final Creator<SupplicantState> CREATOR =
new Creator<SupplicantState>() {

public SupplicantState createFromParcel(Parcel in) {
return SupplicantState.valueOf(in.readString());

}

public SupplicantState[] newArray(int size) {
return new SupplicantState[size];

}
};

}

Listing A.27: SupplicantState Java enum with methods

Appendix A 186

Analysis and Manipulation of Android Apps and Malware in Real-Time

class SupplicantState : public Parcelable
{
public:

enum {
DISCONNECTED,
...
ASSOCIATED,
...
UNINITIALIZED,
...

};
...
static int valueOf(javaString EnumName)
{

if (EnumName == "DISCONNECTED") {
return DISCONNECTED;

}
...
if (EnumName == "ASSOCIATED") {

return ASSOCIATED;
}
...
if (EnumName == "UNINITIALIZED") {

return UNINITIALIZED;
}
...
return -1;

}
javaString name()
{

switch (mValue) {
case DISCONNECTED:
{

return "DISCONNECTED";
}
...
case ASSOCIATED:
{

return "ASSOCIATED";
}
...
case UNINITIALIZED:
{

return "UNINITIALIZED";
}

}
return "";

}
...
void writeToParcel(Parcel* dest, int flags)
{

dest->writeString(name());
}
static SupplicantState createFromParcel(Parcel* in)
{

return SupplicantState::valueOf(in->readString());
}

int mValue;
};

Listing A.28: Equivalent SupplicantState C++ class with enum and code

Appendix A 187

Analysis and Manipulation of Android Apps and Malware in Real-Time

CMethod* CObjectBuilder::BuildValueOfImplicitMethod(CEnumConstants* EnumConstants)
{

CMethod* method = new CMethod();
CStatementBlock* statementBlock = new CStatementBlock;
CParameters* parameters = new CParameters;

method->SetName("valueOf");
method->SetModifier(new CModifier(TOKEN_STATIC));

CVariable* variable = new CVariable(new CType("javaString"), "EnumName");

parameters->AddParameter(variable);
method->SetParameters(parameters);

for (CEnumConstant* enumConstant : EnumConstants->GetConstants()) {
CIfStatement* ifStatement;
CParentheticExpression* parentheticExpression;
CComparisonExpression* comparisonExpression;
CStatementBlock* ifStatementBlock = new CStatementBlock;
CReturnStatement* ifReturnStatement = new CReturnStatement;

ifStatement = new CIfStatement();
comparisonExpression = new CComparisonExpression;

comparisonExpression->SetLeftValue(new CIdentifierExpression("EnumName"));
comparisonExpression->SetOperator(TOKEN_EQUAL);
comparisonExpression->SetRightValue(new CStringLiteralExpression(enumConstant->

GetName()));

parentheticExpression = new CParentheticExpression;
parentheticExpression->SetExpression(comparisonExpression);

ifStatement->SetExpression(parentheticExpression);
ifReturnStatement->SetExpression(new CIdentifierExpression(enumConstant->GetName()));
ifStatementBlock->Insert(ifReturnStatement);
ifStatement->SetStatement(ifStatementBlock);
statementBlock->Insert(ifStatement);
statementBlock->Insert(new CBlankLineStatement);

}

CReturnStatement* returnStatement = new CReturnStatement;
returnStatement->SetExpression(new CIntegerLiteralExpression((int64_t)-1));
statementBlock->Insert(returnStatement);

method->SetReturnType(new CType("int"));
method->SetParameters(parameters);
method->SetStatementBlock(statementBlock);

return method;
}

Listing A.29: Code that builds the valueOf method

uint64_t CObjectBuilder::GenerateTypeHash()
{

string fullyQualifiedName = "";
uint64_t identifier = SEED_VALUE;

for (CObjectBuilder* parentObject : m_ParentObjects) {
fullyQualifiedName += parentObject->m_ClassName;
fullyQualifiedName += "::";

}

fullyQualifiedName += m_ClassName;

for (size_t round = 0; round < 10; round++) {
for (size_t index = 0; index < fullyQualifiedName.length(); index++) {

identifier = 37 * identifier + fullyQualifiedName[index];
}

}

return identifier;
}

Listing A.30: CObjectBuilder::GenerateTypeHash() method for generating the class ID for a given class

Appendix A 188

Analysis and Manipulation of Android Apps and Malware in Real-Time

bool ComponentInfo::InstanceOf(uint64_t ClassInstanceId)
{

return (ClassInstanceId == CLASS_INSTANCE_ID || PackageItemInfo::InstanceOf(
ClassInstanceId));

}

Listing A.31: InstanceOf example for the ComponentInfo class

void CObjectTranslator::BuildObjects()
{

vector<CClass*> classes;
...
OrderClasses();
...
for (CObjectBuilder* objectBuilder : m_FlattenedObjectBuilders) {

if (objectBuilder->IsReferenced()) {
BuildObject(objectBuilder);

}
}

// Generate C++ source file

for (CObjectBuilder* objectBuilder : m_FlattenedObjectBuilders) {
CClass* objectClass;

if (objectBuilder->IsReferenced()) {
objectClass = objectBuilder->BuildClass(true, m_SourceDocument != nullptr);

if (m_SourceDocument != nullptr) {
for (CFieldInitialization* fieldInitialization : objectBuilder->

GetFieldInitializations()) {
m_SourceDocument->Insert(fieldInitialization);

}

m_SourceDocument->Insert(new CBlankLineStatement);
for (CMethodDefinition* methodDefinition : objectBuilder->

GetMethodDefinitions()) {
m_SourceDocument->Insert(methodDefinition);
m_SourceDocument->Insert(new CBlankLineStatement);

}
}

// Construct the Python bindings for the current object class and insert them in
the AST

if (m_PythonInterfaceDocument != nullptr) {
CPythonInterface pythonInterface(m_PythonInterfaceDocument,

m_PythonPlugInModuleName);

pythonInterface.BuildInterface(objectBuilder);
}

classes.push_back(objectClass);
}

}

// Generate C++ header file

m_HeaderDocument->Insert(new CBlankLineStatement);

for (CClass* currentClass : classes) {
m_HeaderDocument->Insert(currentClass);
m_HeaderDocument->Insert(new CBlankLineStatement);

}

m_HeaderDocument->Write(m_IndentedHeaderOutput);
m_IndentedHeaderOutput->ApplyIndentation();
m_IndentedHeaderOutput->Write();

if (m_SourceDocument != nullptr) {
m_SourceDocument->Write(m_IndentedSourceOutput);
m_IndentedSourceOutput->ApplyIndentation();
m_IndentedSourceOutput->Write();

}

if (m_PythonInterfaceDocument != nullptr) {
m_PythonInterfaceDocument->Write(m_IndentedPythonInterfaceOutput);
m_IndentedPythonInterfaceOutput->Write();

}
}

Listing A.32: CObjectTranslator::BuildObjects method for generating the header and source files for a
given Java source file

Appendix A 189

Analysis and Manipulation of Android Apps and Malware in Real-Time

class javaString : public string
{
public:

javaString() : m_IsNull(false), string("");
javaString(string Value) : m_IsNull(false), string(Value);
...
javaString(nullptr_t NullPointer) : m_IsNull(true), string("");
...
javaString& operator=(string Value);
javaString& operator=(nullptr_t NullPointer);
bool operator==(nullptr_t NullPointer);
bool operator!=(nullptr_t NullPointer);
...
bool operator!=(javaString Other);
...
bool operator==(javaString Other);
...
bool operator==(string StringValue);
...
bool operator!=(string StringValue);
...

private:
bool m_IsNull;

};

Listing A.33: Truncated javaString class definition

Appendix A 190

Analysis and Manipulation of Android Apps and Malware in Real-Time

A.2.3 Chapter 5 Source Code Listings
template <class T> class TypedArray : public vector<T> {
public:

TypedArray() : m_IsNull(false), m_ReservedElementCount(0), vector<T>::vector()
{
}
...
virtual ˜TypedArray()
{
}
...
virtual string AsString()
{

string result;
stringstream stream;
size_t index = 0;

stream << "[";

for (T t : *this) {
stream << " ";
stream << t;

if (++index < this->size()) {
stream << ", ";

}

}

stream << "]";

return stream.str();
}
...

};

Listing A.34: TypedArray class

template <class T> class TypedObjectArray : public TypedArray<T> {
public:

TypedObjectArray() : m_IsNull(false)
{
}
...
virtual ˜TypedObjectArray()
{

clear();
}
...
string AsString()
{

string result;
stringstream stream;
size_t index = 0;

stream << "[";

for (T t : *this) {
stream << " ";
stream << t->AsString();

if (++index < this->size()) {
stream << ", ";

}
}

stream << "]";

return stream.str();
}
...
void clear()
{

while (this->empty() == false) {
T value = this->back();

value->Dereference();

this->pop_back();
}

}
...

};

Listing A.35: TypedObjectArray class

Appendix A 191

Analysis and Manipulation of Android Apps and Malware in Real-Time

PYBIND11_PLUGIN(CopperDroid) {
module CopperDroid("CopperDroid", "CopperDroid definitions");
...
py::class_<CActivityManagerGetIntentSenderTransaction>(CopperDroid, "

CActivityManagerGetIntentSenderTransaction")
.def("__repr__", &CActivityManagerGetIntentSenderTransaction::AsString)
.def("GetType", &CActivityManagerGetIntentSenderTransaction::GetType)
.def("SetType", &CActivityManagerGetIntentSenderTransaction::SetType)
.def("GetPackageName", &CActivityManagerGetIntentSenderTransaction::GetPackageName)
.def("SetPackageName", &CActivityManagerGetIntentSenderTransaction::SetPackageName)
.def("GetToken", &CActivityManagerGetIntentSenderTransaction::GetToken,

return_value_policy::reference)
...
.def("GetIntents", &CActivityManagerGetIntentSenderTransaction::GetIntents)
.def("SetIntents", &CActivityManagerGetIntentSenderTransaction::SetIntents)
.def("GetResolvedTypes", &CActivityManagerGetIntentSenderTransaction::

GetResolvedTypes)
.def("SetResolvedTypes", &CActivityManagerGetIntentSenderTransaction::

SetResolvedTypes)
...

py::class_<CActivityManagerGetIntentSenderReply>(CopperDroid, "
CActivityManagerGetIntentSenderReply")
.def("__repr__", &CActivityManagerGetIntentSenderReply::AsString)
.def("GetRes", &CActivityManagerGetIntentSenderReply::GetRes, return_value_policy::

reference)
.def("SetRes", &CActivityManagerGetIntentSenderReply::SetRes)
.def("GetExceptionCode", &CActivityManagerGetIntentSenderReply::GetExceptionCode)
.def("SetExceptionCode", &CActivityManagerGetIntentSenderReply::SetExceptionCode)
.def("GetExceptionMessage", &CActivityManagerGetIntentSenderReply::

GetExceptionMessage)
.def("SetExceptionMessage", &CActivityManagerGetIntentSenderReply::

SetExceptionMessage);
...

return CopperDroid.ptr();
}

Listing A.36: Interface method generated class pybind11 bindings

import CopperDroid
import activitymanagerroutines

Transactions = {
...
"GET_INTENT_SENDER_TRANSACTION" : activitymanagerroutines.GetIntentSenderTransaction,
...
"GET_MEMORY_INFO_TRANSACTION" : activitymanagerroutines.GetMemoryInfoTransaction,
...
}

Replies = {
...
"GET_INTENT_SENDER_TRANSACTION" : activitymanagerroutines.GetIntentSenderReply,
...
"GET_MEMORY_INFO_TRANSACTION" : activitymanagerroutines.GetMemoryInfoReply,
...
}

def Invoke(Task, Type, Method, Object):

if Type == CopperDroid.Operation.TypeTransaction:
if Method in Transactions.keys():

Transactions[Method](Task, Object)

if Type == CopperDroid.Operation.TypeReply:
if Method in Replies.keys():

Replies[Method](Task, Object)

Listing A.37: Generated Python plug-in code for invoking IActivityManager methods

Appendix A 192

Analysis and Manipulation of Android Apps and Malware in Real-Time

import CopperDroid
import systemcallplugin
...
import activitymanagerplugin
...

InterfacePlugIns = {
...
’android.app.IActivityManager’ : activitymanagerplugin.Invoke,
...

}

def InitializePlugIn(ConfigFileName):
pass

def SetPackageName(PackageName):
pass

def UninitializePlugIn():
pass

def InvokeInterfacePlugIn(Task, InterfaceName, Type, Method, Object):

if InterfaceName in InterfacePlugIns.keys():
InterfacePlugIns[InterfaceName](Task, Type, Method, Object)

def InvokeSystemCallPlugIn(Entry, Task, SystemCall, Object):

systemcallplugin.Invoke(Entry, Task, SystemCall, Object)

def UpdateConfig(ConfigFileName):
pass

def UninitializePlugIn():
pass

Listing A.38: Generated Python plug-in code

import CopperDroid
import activitymanagerroutines

Transactions = {
...
"GET_INTENT_SENDER_TRANSACTION" : activitymanagerroutines.GetIntentSenderTransaction,
...
"GET_MEMORY_INFO_TRANSACTION" : activitymanagerroutines.GetMemoryInfoTransaction,
...
}

Replies = {
...
"GET_INTENT_SENDER_TRANSACTION" : activitymanagerroutines.GetIntentSenderReply,
...
"GET_MEMORY_INFO_TRANSACTION" : activitymanagerroutines.GetMemoryInfoReply,
...
}

def Invoke(Task, Type, Method, Object):

if Type == CopperDroid.Operation.TypeTransaction:
if Method in Transactions.keys():

Transactions[Method](Task, Object)

if Type == CopperDroid.Operation.TypeReply:
if Method in Replies.keys():

Replies[Method](Task, Object)

Listing A.39: Generated Python plug-in code for invoking IActivityManager methods

Appendix A 193

Analysis and Manipulation of Android Apps and Malware in Real-Time

import CopperDroid

def GetIntentSenderTransaction(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetIntentSenderTransaction
GetType()
SetType(TypeValue)
GetPackageName()
SetPackageName(PackageNameValue)
...
GetIntents
SetIntents
GetResolvedTypes
SetResolvedTypes
...

pass

def GetMemoryInfoTransaction(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetMemoryInfoTransaction

pass

def GetIntentSenderReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetIntentSenderReply
GetRes()
SetRes(ResValue)
...

pass

def GetMemoryInfoReply(Task, Object):

Valid methods for Task
GetProcessIdentifier
GetThreadIdentifier
GetProcessName

Valid methods for Object of type: CActivityManagerGetMemoryInfoReply
GetOutInfo()
SetOutInfo(OutInfoValue)
...

pass

Listing A.40: Generated Python plug-in routines for interface methods

Appendix A 194

Appendix B

Additional Figures

Figure B.1: Binder Transaction with inline reply

195

Analysis and Manipulation of Android Apps and Malware in Real-Time

Figure B.2: Binder inline reply

Figure B.3: Binder Transaction with out-of-line reply

Appendix B 196

Analysis and Manipulation of Android Apps and Malware in Real-Time

Figure B.4: Binder out-of-line reply

Appendix B 197

Analysis and Manipulation of Android Apps and Malware in Real-Time

Figure B.5: Command operations with write_size and write_consumed

Figure B.6: Return operations with read_size and read_consumed

Appendix B 198

Bibliography

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon. Androzoo: Collecting millions of
android apps for the research community. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pages 468–471, May 2016.

[2] Android. Android developer reference. https://developer.android.com/
reference/packages.html.

[3] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press,
1998.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 259–269, New York, NY, USA, 2014. ACM.

[5] Giuseppe Attardi, Antonio Cisternino, and Andrew Kennedy. Codebricks: code fragments
as building blocks. In PEPM ’03 Proceedings of the 2003 ACM SIGPLAN workshop on
Partial evaluation and semantics-based program manipulation, volume 38, pages 66–74,
2003.

[6] Android Authority. Google removed 700k apps from the play store in
2017 for violating policies. https://www.androidauthority.com/
google-play-store-removed-700000-apps-2017-violating-policies-834031/.

[7] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis of malicious code.

[8] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[9] David W. Binkley and Keith Brian Gallagher. Program slicing. In Marvin V. Zelkowitz,
editor, Science Direct, volume 43 of Advances in Computers, pages 1 – 50. Elsevier, 1996.

[10] Oberheide J. Miller C. Dissecting the android bouncer. https://jon.oberheide.
org/files/summercon12-bouncer.pdf.

[11] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel,
Giovanni Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control flow
transitions through the android framework. In NDSS, 2015.

[12] Catalin Cimpanu. Hummingbad android malware found in 20 google play store
apps, 2017. https://www.bleepingcomputer.com/news/security/
hummingbad-android-malware-found-in-20-google-play-store-apps/.

199

Analysis and Manipulation of Android Apps and Malware in Real-Time

[13] Federal Trade Commission. Ftc approves final order set-
tling charges against flashlight app creator, 2014. https://
www.ftc.gov/news-events/press-releases/2014/04/
ftc-approves-final-order-settling-charges-against-flashlight-app.

[14] Federal Trade Commission. Ftc settles with two companies falsely claim-
ing to comply with international safe harbor privacy framework, 2015.
https://www.ftc.gov/news-events/press-releases/2015/04/
ftc-settles-two-companies-falsely-claiming-comply-international.

[15] Federal Trade Commission. Tech company settles ftc charges it unfairly in-
stalled apps on android mobile devices without users’ permission, 2016.
https://www.ftc.gov/news-events/press-releases/2016/02/
tech-company-settles-ftc-charges-it-unfairly-installed-apps.

[16] Shuaifu Dai Guofei Gu Xiaorui Gong Xinhui Han Cong Zheng, Shixiong Zhu and Wei
Zou. Smartdroid: an automatic system for revealing ui-based trigger conditions in android
applications. In ACM Security and privacy in smartphones and mobile devices (SPSM),
2012.

[17] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti, Ali Zand,
Christopher Kruegel, and Giovanni Vigna. Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), pages 1–16, 2017.

[18] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, 2012.

[19] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A system-
atic survey of program comprehension through dynamic analysis. IEEE Transactions on
Software Engineering, 35(5):684–702, Sept 2009.

[20] Tech Crunch. App revenue climbed 35 percent to usd 60 bil-
lion in 2017. https://techcrunch.com/2018/01/05/
app-revenue-climbed-35-percent-to-60-billion-in-2017/.

[21] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, and L. Cavallaro.
Droidscribe: Classifying android malware based on runtime behaviour. In 2016 IEEE
Security and Privacy Workshops (SPW), pages 252–261, May 2016.

[22] Nikolay Elenkov. Using app encryption in jelly bean. https://nelenkov.
blogspot.com/2012/07/using-app-encryption-in-jelly-bean.
html.

[23] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. In
USENIX OSDI, 2010.

[24] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[25] F-Secure. Brain. https://www.f-secure.com/v-descs/brain.shtml.

200

Analysis and Manipulation of Android Apps and Malware in Real-Time

[26] Huan Feng and Kang G. Shin. Understanding and defending the binder attack surface in an-
droid. In Proceedings of the 32Nd Annual Conference on Computer Security Applications,
ACSAC ’16, pages 398–409, New York, NY, USA, 2016. ACM.

[27] Forbes. What is general data protection regulation?, 2018.
https://www.forbes.com/sites/quora/2018/02/14/
what-is-general-data-protection-regulation/#510bc50d62dd.

[28] Thomas Fox-Brewster. Google is fighting a massive android malware outbreak – up to 21
million victims, 2017. ‘‘.

[29] Jyoti Gajrani, Jitendra Sarswat, Meenakshi Tripathi, Vijay Laxmi, Manoj Singh Gaur, and
Mauro Conti. A robust dynamic analysis system preventing sandbox detection by android
malware. In Proceedings of the 8th International Conference on Security of Information
and Networks, pages 290–295. ACM, 2015.

[30] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based architecture
for intrusion detection. In Ndss, volume 3, pages 191–206, 2003.

[31] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks: auto-
matically detecting potential privacy leaks in android applications on a large scale. In
International Conference on Trust and Trustworthy Computing, pages 291–307. Springer,
2012.

[32] Google. Android bionic. https://android.googlesource.com/platform/
bionic/.

[33] Google. Android emulator. https://developer.android.com/studio/run/
emulator.

[34] Google. Android interface definition language (aidl). https://developer.
android.com/guide/components/aidl.

[35] Google. Android lollipop gensyscalls.py source code. https://android.
googlesource.com/platform/bionic/+/lollipop-release/libc/
tools/gensyscalls.py.

[36] Google. Android software development kit. https://developer.android.com/
studio/releases/platforms.

[37] Google. Extending the kernel with ebpf. https://source.android.com/
devices/architecture/kernel/bpf.

[38] Google. The google play store. https://developer.android.com/
distribute/google-play/.

[39] Google. Google protocol buffers. https://developers.google.com/
protocol-buffers/.

[40] Google. Jelly bean. https://developer.android.com/about/versions/
jelly-bean.

201

Analysis and Manipulation of Android Apps and Malware in Real-Time

[41] GuardSquare. Dexguard: Protecting android applications and sdks against reverse
engineering and hacking. https://www.guardsquare.com/en/products/
dexguard.

[42] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
These aren’t the droids you’re looking for: Retrofitting android to protect data from im-
perious applications. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 639–652, New York, NY, USA, 2011. ACM.

[43] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability
between c++11 and python, 2017. https://github.com/pybind/pybind11.

[44] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis, and
Tadayoshi Kohno. Privacy oracle: a system for finding application leaks with black
box differential testing. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 279–288. ACM, 2008.

[45] YUKIYOSHI KAMEYAMA, OLEG KISELYOV, and CHUNG-CHIEH SHAN. Shift-
ing the stage: Staging with delimited control. Journal of Functional Programming,
21(6):617–662, 2011.

[46] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. arXiv preprint arXiv:1801.01203, 2018.

[47] Oren Koriat. A whale of a tale: Hummingbad returns, 2017. https://blog.
checkpoint.com/2017/01/23/hummingbad-returns/.

[48] Kaspersky Lab. Carberp-in-the-mobile. https://securelist.com/
carberp-in-the-mobile/57658/.

[49] F-Secure Labs. Trojan:android/pincer.a, 2013. https://www.f-secure.com/
weblog/archives/00002538.html.

[50] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, page 75. IEEE
Computer Society, 2004.

[51] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka, and Athina
Markopoulou. Antmonitor: A system for monitoring from mobile devices. In Proceedings
of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and Crowdsharing of Big
(Internet) Data, C2B(1)D ’15, pages 15–20, New York, NY, USA, 2015. ACM.

[52] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers, 200.

[53] Donglin Liang and Mary Jean Harrold. Slicing objects using system dependence graphs. In
Software Maintenance, 1998. Proceedings., International Conference on, pages 358–367.
IEEE, 1998.

[54] Donglin Liang and Mary Jean Harrold. Slicing objects using system dependence graphs.
In ICSM ’98 Proceedings of the International Conference on Software Maintenance. IEEE
Computer Society, 1998.

202

Analysis and Manipulation of Android Apps and Malware in Real-Time

[55] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratanto-
nio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000 Apps Later: A
View on Current Android Malware behaviours. In Proceedings of the the 3rd International
Workshop on Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS), 2014.

[56] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Meltdown: Reading
kernel memory from user space. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 973–990, 2018.

[57] Yabing Liu, Han Hee Song, Ignacio Bermudez, Alan Mislove, Mario Baldi, and Alok
Tongaonkar. Identifying personal information in internet traffic. In Proceedings of the
2015 ACM on Conference on Online Social Networks, pages 59–70. ACM, 2015.

[58] Hiroshi Lockheimer. Bouncer. http://googlemobile.blogspot.it/2012/
02/android-and-security.html.

[59] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for user-level
packet capture. In USENIX winter, volume 46, 1993.

[60] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Computer security applications conference, 2007. ACSAC 2007.
Twenty-third annual, pages 421–430. IEEE, 2007.

[61] The Hacker News. Nasty android malware that infected millions re-
turns to google play store. https://thehackernews.com/2017/01/
hummingbad-android-malware.html.

[62] Idan Revivo Nitay Artenstein. Man in the binder: He who controls IPC, controls the
droid. https://blog.checkpoint.com/wp-content/uploads/2015/02/
Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.
pdf.

[63] Oracle. randomuuid, 2018. https://docs.oracle.com/javase/7/docs/
api/java/util/UUID.html#randomUUID().

[64] Terence Parr. Language Implementation Patters. Pragmatic Bookshelf, 2010.

[65] Terence Parr and Kathleen Fisher. Ll(*): The foundation of the antlr parser generator. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, pages 425–436, New York, NY, USA, 2011. ACM.

[66] PassMark Software. PassMark Android. http://www.passmark.com/.

[67] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic analysis of an-
droid malware. In Proceedings of the Seventh European Workshop on System Security,
page 5. ACM, 2014.

[68] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting system emula-
tors. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta, editors,
Information Security, pages 1–18, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

203

Analysis and Manipulation of Android Apps and Malware in Real-Time

[69] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: automatic security
analysis of smartphone applications. In CODASPY’13 Proceedings of the third ACM
conference on Data and application security and privacy, 2013.

[70] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich,
Phillipa Gill, Mark Allman, and Vern Paxson. Haystack: In situ mobile traffic analysis in
user space. ArXiv e-prints, 2015.

[71] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware behaviours. In
Proceedings of the 6th European Workshop on System Security (EUROSEC).

[72] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes. Re-
con: Revealing and controlling pii leaks in mobile network traffic. In Proceedings of
the 14th Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’16, pages 361–374, New York, NY, USA, 2016. ACM.

[73] Sarker T Ahmed Rumee, Donggang Liu, and Yu Lei. Mirrordroid: A framework to detect
sensitive information leakage in android by duplicate program execution. In 2017 51st
Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE, 2017.

[74] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and Wenke Lee. Impeding malware
analysis using conditional code obfuscation. In NDSS, 2008.

[75] Yihang Song and Urs Hengartner. Privacyguard: A vpn-based platform to detect informa-
tion leakage on android devices. In Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM ’15, pages 15–26, New
York, NY, USA, 2015. ACM.

[76] Statista. Number of smartphone users worldwide from 2014 to 2020
(in billions). https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.

[77] Mingshen Sun, Tao Wei, and John C.S. Lui. Taintart: A practical multi-level information-
flow tracking system for android runtime. In ACM CCS 2016. ACM, 2016.

[78] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. CopperDroid:
Automatic Reconstruction of Android Malware behaviours. In NDSS Symposium 2015.
Internet Society, 2015.

[79] Fred Touchette. The evolution of malware. Network Security, 2016(1):11–14, 2016.

[80] Omer Tripp and Julia Rubin. A bayesian approach to privacy enforcement in smartphones.
In USENIX Security Symposium, pages 175–190, 2014.

[81] Unknown. Dendroid malware source. https://github.com/mwsrc/
Dendroid-HTTP-RAT.

[82] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A java bytecode optimization framework. In CASCON First Decade
High Impact Papers, CASCON ’10, pages 214–224, Riverton, NJ, USA, 2010. IBM Corp.

204

Analysis and Manipulation of Android Apps and Malware in Real-Time

[83] M. L. Van De Vanter. Preserving the documentary structure of source code in language-
based transformation tools. In Proceedings First IEEE International Workshop on Source
Code Analysis and Manipulation, pages 131–141, 2001.

[84] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox detec-
tion. In ASIA CCS ’14 Proceedings of the 9th ACM symposium on Information, computer
and communications security, Pages 447-458. ACM New York, NY, USA 2014, 2014.

[85] James Vincent. 99.6 percent of new smartphones run android or
ios. https://www.theverge.com/2017/2/16/14634656/
android-ios-market-share-blackberry-2016.

[86] Mark Weiser. Program slicing. In IEEE Transactions on Software Engineering, volume 10,
pages 352–357, 1984.

[87] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief survey of
program slicing. ACM SIGSOFT Software Engineering Notes, 30(2):1–36, 2005.

[88] L.-K. Yan and H. Yin. Droidscope: Seamlessly reconstructing os and dalvik semantic
views for dynamic android malware analysis. In USENIX Security 2012. USENIX, 2012.

205

