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Abstract

High-performance systems pose a number of challenges to traditional fault tolerance

approaches. The exponential increase of core numbers in large-scale distributed

systems exposes the growth of permanent, intermittent, and transient faults. The

redundancy schemes in use increase the number of system resources dedicated to

recovery, while the extensive use of silent-failure mode inhibits systems’ capability

to detect faults that hinder application progress. As parallel computation strives to

survive the high failure rates, software shifts focus towards the support of resilience.

The thesis proposes a mechanism for resilience support for Chapel, the high per-

formance language developed by Cray. We investigate the potential for embedded

transparent resilience, to assist uninterrupted program completion on distributed

hardware, in the event of component failures. Our goal is to achieve graceful degra-

dation; continued application execution when nodes in the system suffer fatal fail-

ures. We aim to provide a resilience-enabled version of the language, without appli-

cation code modifications. We focus on Chapel’s task- and data-parallel constructs,

and enhance their functionality with mechanisms to support resilience.

In particular, we build on existing language constructs that facilitate parallel ex-

ecution in Chapel. We focus on constructs that introduce unstructured and struc-

tured parallelism and constructs that introduce locality, as derived by the Parti-

tioned Global Address Space programming model. Furthermore, we expand the

resilient support to cover data distributions on library-level.

The core implementation is on the runtime level, primarily on Chapels task-

ing and communication layers; we introduce mechanisms to support automatic task

adoption and recovery by guiding the control to perform task re-execution. On the

data-parallel track, we propose a resilience enabled version of the Block data distri-

bution module. We develop an in-memory data redundancy mechanism, exploiting

Chapel’s concept of locales. We apply the concept of buddy locales, as the primary

means to store data redundantly and adopt remote workload from failed locales.

We evaluate our resilient task-parallel mechanism with respect to the overheads

introduced by embedded resilience. We use a set of constructed micro-benchmarks

to evaluate the resilient task-parallel implementation, while for the evaluation of

resilient data-parallelism we demonstrate results on the STREAM triad benchmark

and the N-body all-pairs algorithm, on a 32-node Beowulf cluster. In order to assist

the evaluation, we develop an error injection interface to simulate node failures.
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Chapter 1

Introduction

Hardware is becoming increasingly parallel, complex and error-prone. Parallel pro-

grams are required to efficiently exploit the power of the underlying hardware. Novel

parallel languages are developed to exploit the computational power, with two pre-

vailing approaches; either by requiring the programmer to handle the low-level man-

agement of threads, task synchronisation, communication and data access or by

employing layers of abstraction; high-level language components and middleware.

Both approaches come with advantages and disadvantages; writing a parallel

program using a low-level language can be challenging to debug and requires more

effort to reach a correct solution, since all parallel aspects and possible pitfalls need

to be taken into consideration. The programmer is responsible for the coordination

of parallel tasks, while avoiding race conditions and deadlocks. On the other hand,

using a language equipped with high-level components requires less effort to get to

an initial solution, while the part of performance tuning becomes complex as the

high-level abstractions often obscure the causality of poor performance or introduce

overhead.

The Partitioned Global Address Space (PGAS) programming model emerged in

the early 2000’s, and is an attempt to simplify parallel programming while providing

control over the low-level components of the programming stack via powerful high-

level abstractions, with the general aim of increasing the programmers’ productivity

on massively parallel machines. PGAS programming languages allow application

code to refer to any lexically visible variable, residing in local or remote memory.

The runtime system and the compiler are responsible for the coordination of data
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access operations over the communication layer.

Nonetheless, even after a careful choice of programming language and given

the non-trivial effort dedicated to performance tuning, a computationally-intensive

application is still prone to fail due to the intrinsic poor reliability of the hardware

components that make up the underlying large-scale system on which the application

executes. As the component count increases to the thousands the probability of

failures increases as well. The rate of fatal failures increases further when executing

on commodity hardware. Research results show that such failure events are clustered

temporally and spatially (Hacker, Romero, and Carothers, 2009), thus increasing the

complexity of both the failure analysis and the design of parallel applications. Such

failures cost computing time and power resources.

Central to this research is resilience and its implementation in the runtime of

a Chapel, a representative language of the PGAS programming model. Resilience

is the ability of a system to execute in a timely manner in the presence of failures.

In the context of a programming language, the produced programs are expected

to maintain the properties of correctness and timely execution. Correctness refers

to the avoidance of data corruption, while timely execution refers to performance

and efficiency considerations of the executing program. Failures are defined as both

hardware and software events that impede the progress of the application program.

A relevant term to resilience, fault tolerance, is more commonly used to describe

the ability to tolerate failures and take recovery action using mechanisms that are

segregated from the application or are provided by a third party software or hardware

component, as documented by Morin and Puaut, 1997 and Gärtner, 1999.

A fair amount of research and bibliography (Brewer, 2000; Cristian, 1991; Lam-

port, 1977 and Patterson, Brown, Broadwell, et al., 2002) has been dedicated to

recovery strategies to alleviate the effect of failures during execution of large-scale

applications. Most prominently, we find techniques that persist the application’s

state in memory and restart the computation from logs, following a failure, com-

monly categorised as checkpoint-restart. Variations of checkpoint-restart are used

extensively today, especially in data intensive applications. The issue then remains,

how expensive it is to pause the computation in order to capture snapshots of the

application state and what is the performance overhead when recovering from a
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checkpoint. Other questions also arise, for example, for how long the system re-

mains in an erroneous state; how can we ensure that a checkpoint-ed state is valid

and what is the performance penalty of using such mechanisms when no failures

occur. in the following chapter (Chapter 2) we review resilience techniques and

recovery mechanisms.

In our design we propose a different approach, based on the principles of for-

ward error recovery, transparent resilience via the technique of graceful degradation.

Forward error recovery, as opposed to checkpoint-restart, employs mechanisms to

handle failures while the execution progresses. Transparency refers to the ability

of the resilient system to handle failures without user-assistance; in the context of

Chapel this directly translates to enabling resilience without changes on application-

level. Finally, graceful degradation aims to preserve the liveness (Lamport, 1977)

of the system, allowing the program to progress with less compute nodes as failures

occur during program execution. Our design focuses on runtime-level mechanisms

for task-adoption and recovery from in-memory stored data, without the use of

checkpointing.

1.1 Thesis Statement

The key hypothesis of the thesis is that it is possible and beneficial to pro-

vide support for transparent resilience embedded in Chapel (Chamber-

lain, Callahan, and Zima, 2007); implemented solely within the runtime

system and on library-level. No program changes should be necessary to

enable resilience on application-level.

In particular the thesis is organized into two main parts; we look at task paral-

lelism and its implementation within the communication and the tasking layers of

the language and at data parallelism; implemented within Chapel’s data distribu-

tions on module-level and assisted by the runtime system.

Our design addresses resilience for Chapel, one of the first generation PGAS

languages. Chapel, is actively developed by Cray as an open-source project and it is

designed from first principles for High Performance Computing. It aims to cover gen-

eral parallelism needs, it incorporates the basic principles of the programming model
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with parallelism and locality as its focal points, and builds on a multi-resolution de-

sign allowing the use of high- and low-level features, as required by the application

programmer.

Partitioned Global Address Space (PGAS) programming languages were moti-

vated by the need to increase productivity in parallel programming, by exposing

details of the low-level system on application-level in a succinct elegant manner ;

such as task- and data-locality, and by proving control over the number and the

synchronisation of executing tasks. As such, programmers can reason about the

location of data, statically or dynamically, using language semantics or a number of

available execution-time queries.

The work presented in this thesis is an exploration of techniques in order to allow

parallel programs to progress and complete execution, producing correct results

when components —nodes of a large-scale system, experience fatal failures during

execution. We apply the key design concepts of task-adoption and task-recovery

by migrating the computation and the data on the remaining system nodes. We

also apply data redundancy techniques and we look into maintaining an up-to-date

image of the system, including status checks and data updates, without the use of

checkpointing.

We argue that the globally-visible data used in PGAS can be exploited to

provide resilience without requiring programming effort or modifications

on application level. Parallel applications execute till completion and

produce correct results in cases where the system experiences failures

due to a node malfunction, an unscheduled node shutdown or a network

partition.

To evaluate our design and implementation we provide experimental results on

a set of constructed micro-benchmarks, a linear algebra benchmark used as a stress-

test and a non-trivial application. We are primarily concerned with correctness,

timely execution and the overheads introduced by the adoption, recovery and data

redundancy mechanisms. We evaluate overheads both during normal execution,

when no failures occur, and for a range of failure scenarios, including single and

multiple node failures during execution.

The research aims to answer the following main research questions:
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• Built-in resilience: Can a resilience mechanism be integrated in the internal

design of a parallel programming language? What mechanisms of the lower-

level runtime system can be employed to assist recovery?

Erlang is the most widely-used language providing built-in resilience, but it

started as a purpose-specific language for telephone networks. Erlang employs

recovery when worker threads fail. Can this idea be ported to a larger scale,

where system components -or entire nodes- fail? And how are PGAS lan-

guages –and in particular, Chapel– good candidates for a parallel language

with built-in resilience? We aim to provide solutions for embedding resilience

in Chapel and we advocate that designing a language with resilience in-mind

from the early stages of the development is the best approach towards a com-

plete solution.

• Transparency: Can a resilience mechanism be efficient without user-assistance

and manual tuning? In particular, is transparent resilience beneficial in the

context of a general-purpose parallel programming language?

Fault-tolerance and resilience mechanisms are notoriously difficult to under-

stand, use in programs and maintain, this is the reason behind the success of

external frameworks that provide relevant functionality. On hardware level,

processor design towards hardware-level fault tolerance has the potential of

eliminating failures. On application level though, it is often difficult to ac-

knowledge a failure; on the programmer’s side, a component failure is not

immediately evident and most programmers will seek the reason for abrupt

termination or incorrect results within their application code. On the other

hand, alternating between application code and resilience code requires in-

depth analysis of the application’s behaviour and eliminates the portability

potential across applications. We seek to substantiate the benefits of language

built-in resilience, and minimize the overheads of the added computation and

data management, taking advantage of the global namespace characteristics.

In PGAS, we advocate that providing parallel programmers with a complete

built-in solution for resilience is an added benefit towards writing efficient code

that executes despite systemic disruptions.

• Application programming: When failures occur in a system with a given num-
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ber of resources, is it beneficial for an application to attempt to recover the

failed tasks and proceed with less computational power?

In large scientific computations we often encounter precision tolerance limits

in the expected results. This practice is used as a trade off to the large ex-

ecution times expected and the subsequent higher possibility of failure. We

seek to answer whether a resilience-embedded language can provide compara-

ble execution times to a non-resilient version in the context of a failure-free

execution without sacrificing the precision of the computation.

1.2 Contributions

The main research contributions of this thesis are:

• a design approach to built-in resilience on PGAS parallel programming lan-

guages;

• an implementation of transparent resilience in the lower-level runtime system

and within Chapel’s standard libraries;

• the experimental evaluation of the proposed mechanism on micro-benchmarks,

as well as larger-scale applications on a distributed system.

The detailed contributions of the thesis are presented below:

1. On language level, the design of a transparent resilience framework for Chapel’s

task-parallel language constructs : begin, cobegin and coforall loop (Chapter

4) and a blocked distribution module with resilience capabilities, one of the

standard data-parallel modules used in Chapel (Chapter 5). The resilience

design covers all task parallel constructs offered in the language, while Chapel

offers in total four standard distributions; Block, Cyclic, BlockCyclic and 2D

Dimensional. Towards the end of Chapter 5 (Section 5.5) we discuss the

main steps required to port our resilient implementation to other predefined

distributions.

2. On system-level, an in-memory data redundancy mechanism to assist recovery

using data copying and taking advantage of Chapel’s data locality principles.

This mechanism utilizes the notion of buddies that store data owned by af-

filiated nodes, as an alternative to the use of external file systems for data
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redundancy. We provide the algorithm for building buddy sets; while ad-

vanced users can implement their own algorithms, based on application and

systemic requirements.

3. An implementation of resilience for task-parallel features, integrated within

the runtime system, with modifications on the communication and tasking

layers (Chapter 4). We provide an evaluation of the implementation on a set

of constructed micro-benchmarks and we discuss future optimisations.

4. The implementation of a resilient version of the blocked data distribution, using

higher- and lower-level recovery strategies. We provide an evaluation of the

overhead introduced by the resilience mechanism in configurations with single

and multiple failures. We discuss the mechanism’s behaviour during applica-

tion execution and propose possible optimisations to improve efficiency. We

analyse the results from testing on two applications: the STREAM benchmark

and the N-body algorithm (Chapter 5).

5. A fault injection mechanism for Chapel programs that simulates failures of

Chapel locales in a distributed setup; as an auxiliary functionality for testing,

due to the lack of a hardware or software mechanism to simulate component

failures in a controlled manner. In an effort to simulate node failures more

accurately, we require that locales that suffer failure remain idle after the fail-

ure and till execution completion. To this end, we have added a local status

check, that works as a hook into the runtime system’s components, poten-

tially extensible to accommodate added functionality, for example a dynamic

load-balancing mechanism. The fault injection mechanism is also applicable

to other languages or systems that utilize GASNet as the lower-level imple-

mentation of their communication layer (Chapters 4 and 5).

6. A review of resilience and fault tolerance in high performance systems, covering

fault detection and fault avoidance techniques. We provide a critical review

of predominantly used recovery mechanisms for backward and forward error

recovery; we also review existing languages and runtime systems with resilience

capabilities (Chapter 2).
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1.3 Context and Limitations

This work aims to provide a resilient framework embedded in the runtime of a

general-purpose parallel language. Though we aim for a general solution, the dis-

tinct characteristics of application programs may be incompatible with the imple-

mentation of resilience in this work.

We provide a high-level description of the types of computation that are not

currently covered by the resilient Chapel implementation, while we also refer to

limitations that are inherited from the language itself, in order to clearly define the

scope of the work. We also discuss limitations of the implementation and briefly

explain the rationale or reasoning behind the corresponding design decisions.

• As Chapel employs high-level abstractions and a layered runtime stack, the

state of the computation in the sense of the progress of an executing thread,

is not exposed outside the threading layer to the upper layers; primarily the

tasking and the communication layer where the resilience mechanism is im-

plemented. The accessible information on task-level is restricted to whether

a task has begun or terminated execution or whether it remains in idle state.

To this end, the resilient mechanism is unable to pick-up computation from a

specific point, on the subsequent recovery after a failure; we instead execute

the calculation from the beginning. We require that tasks are atomic in the

context of resilience; either they complete successfully or the entire task is

re-started.

This design choice is mainly driven by two factors. Firstly, assuming we were

able to retrieve detailed information on the progress of a thread, we believe

that the added complexity would not necessarily decrease the overheads of

resilience. It would require added logic and data structure management to

persist such information and added communication to maintain the system up

to date. Secondly, as tasks are the main means for introducing parallelism in

Chapel, we consider the tasking layer a better candidate for the implemen-

tation of resilience. One of our main goals is transparent resilience and part

of that is to preserve the semantics of the base language; by continuing to

provide the programmer with constructs to reason about parallelism –in the

form of tasks.
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• Chapel programs that use locality features as part of the computation cannot

be covered by the implementation, since their correctness property cannot be

maintained after migration on a different location in the system. A simple ex-

ample is demonstrated in Listing 1.1. The parallel forall loop iterates over the

elements of the distributed array A and performs an addition of the element’s

value and the locale’s identifier on which the execution takes place. After a

failure, the value here.id will be modified due to the migration of the compu-

tation to a different place in the system (recovery), thus the correctness of the

result will be compromised. Although, relying on such locality information is

a bad programming practice, it is not currently prohibited by the language or

the type system.

1 f o r a l l a in A do

2 a = a + here . id

Listing 1.1: A parallel forall loop with locality-based computation

Locales are Chapel constructs that define a place in the system; for a dis-

tributed system they are commonly mapped to nodes in a cluster. The here

keyword is Chapel’s syntactic equivalent of MPI Get processor name() in

MPI or the equivalent of node() in Erlang.

Chapel’s parallelism assumes homogeneous sets of processors, and nodes by

extension. The idiom of specific placement is potentially applicable to pro-

grams that use non-homogeneous cluster nodes, for example when using a

co-processor attached to a node, or when a node handles the connection to

an external file system (for example, when implementing the HDFS Chapel

interface). As a consequence of task migration during failure recovery, these

programs are not covered by our design of resilience. On the other hand, any

programs that depend on connectivity to external systems or special types of

nodes would possibly be inefficient (if not erroneous) to continue executing

when connectivity is lost. In other words, in order to take advantage of the

resilient mechanism, applications with placement requirements, are required

in this context to use systems with redundant special components and provide
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a parametric reconnection strategy on application level.

A detailed discussion of Chapel constructs is provided in Chapter 3. In Chap-

ter 5 we provide an in-depth discussion of data parallelism, including parallel

loops and distributed arrays.

• Real faults in HPC platforms are the subject of extended study (Schroeder

and Gibson, 2010, El-Sayed and Schroeder, 2013, Bosilca, Bouteiller, Guer-

mouche, Herault, Robert, Sens, and Dongarra, 2016, Gainaru, Cappello, Snir,

and Kramer, 2012) and their types and correlations are non-trivial to pinpoint.

Log analysis indicates spatial and temporal correlations between failures and

a correlation between higher workloads and high failure rates. In Di, Guo,

Pershey, Snir, and Cappello, 2019, we find a detailed analysis on a number

of large scale systems that demonstrate a MTBF between 1 and 42 hours. In

the context of Chapel though, nodes are abstracted by locales. The spatial

distribution of node faults within a cluster is not directly mapped to the failure

distribution on locales within a Chapel program. As such, from a program-

mer’s perspective failures occur in random patterns.

In the presence of real failures, the evaluation of a resilient mechanism is com-

plex. In this work, we introduce a custom mechanism to simulate failures

pseudo-randomly, but also introduces some limitations. We demonstrate fail-

ure recovery for failures that are clustered in the beginning of the execution.

The current implementation of the testing framework is parametric as to the

number of failures we introduce in the system, but not with respect to the

point in time that the failures are introduced. For example, when two failures

are injected on two random locales in the system, the failure injection mech-

anism executes alongside the application, performs a sign-on on each remote

locale and sends a Unix-level signal. The injection is serial, so the number of

failures to introduce affects the time that a failure is realised by the system,

nevertheless failure signals occur earlier in the execution and are bound by a

short time frame.
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1.4 Thesis Structure

• Chapter 2: Background

The chapter provides a detailed review of parallelism and resilience. We ex-

pand on the main ideas of concurrency and parallelism and discuss the most

widely used memory models; shared and distributed memory. We provide the

background for fault tolerance focusing on the concepts of dependability, fail-

ures and faults, and we review failure metrics and software-level fault tolerance

techniques. Towards the end of the chapter we review programming languages

and frameworks that provide or aspire to provide fault-tolerance capabilities

and we draw on their main similarities and differences to this work.

• Chapter 3: The Chapel Parallel Programming Language

Chapter 3 serves as an introduction to Chapel. We discuss the guiding princi-

ples and the design of the language and we detail the main language compo-

nents that introduce and/or assist the writing of parallel programs and their

internal functionality. We cover the topics of structured and unstructured

parallelism, synchronisation, parallel loops and domain distribution. We also

expand on the notion of locality which is integral to Chapel’s design. The

chapter also covers –the most relevant to this work– parts of the underlying

runtime system.

• Chapter 4: Resilient Task Parallelism

The chapter covers our main implementation of transparent resilience for task

parallelism in Chapel applications. The main design decisions and assumptions

are discussed early in the chapter. We then move to a detailed discussion of

the functional parts of task execution on the runtime level and discuss the

implementation details of resilience support. We focus on the extensions of the

underlying communication layer and we evaluate the effect of the modifications

on a set of constructed micro-benchmarks. The evaluation section targets the

task-parallel components, as presented in Chapter 3 and is divided into two

sections. A section on correctness; where the focus is on results verification

with respect to the corresponding results of the non-resilient version and a

section on performance and overhead results, using a range of experimental

configurations.
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• Chapter 5: Resilient Data Parallelism

The chapter covers the implementation of resilience support for Chapel’s data-

parallel track, specifically Chapel’s blocked distribution module. We detail the

design of the mechanisms that assist data redundancy. We then focus on the

implementation of the resilient blocked distribution, covering the functional

modifications required to support resilient program execution. For the pur-

poses of our evaluation we use the STREAM triad ; a synthetic linear algebra

benchmark and the N-body all-pairs algorithm. We discuss the performance

results with respect to the baseline’s execution runtimes. Towards the end we

cover the issue of portability of the resilient implementation to other Chapel

predefined distributions.

• Chapter 6: Conclusion

In the final chapter we summarize the main outcomes of our work in terms

of system design, implementation challenges and performance results as they

emerge from the empirical evaluation of resilience. We also discuss current

limitations, as they arise from the design and the implementation. Finally, we

propose future research directions that stem from this work, and topics that

we consider relevant to the thesis.
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Background

In this chapter, we discuss concurrency and parallelism, expanding on the main

characteristics of shared and distributed memory systems. We provide a systems’

dependability overview, discussing system design and detailing properties and types

of failures and widely-used failure metrics. We also discuss the main challenges

faced towards the exa-architectures, focusing on failure detection mechanisms and

techniques for failure avoidance and recovery. Towards the end of the chapter,

we provide an overview of related work with focus on programming languages and

runtime systems with resilient capabilities.

2.1 Distributed Systems Terminology

Continuous research and development in the fields of computational technology has

brought the programming community into the era of multi-core machines and high

speeds. Today, a conventional home machine is at least quad-core and can achieve

around 15 gigaflops of computational power. Since sequential performance in terms

of clock frequency has stalled and the number of cores per chip increases rapidly, a

personal computer today is of equivalent computational power to the machines used

in supercomputing a decade ago. According to Berkeley scientists (Shalf, Bashor,

Patterson, Asanovic, Yelick, Keutzer, and Mattson, 2009), the goal from a hard-

ware’s perspective has been to double the number of cores per chip every 18 months.

In order to achieve performance from the growing number of high-performance ma-

chines, the development of new sophisticated parallel programming languages be-
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comes a necessity.

2.1.1 Concurrency and Parallelism

Concurrency is defined as the progressing of more than one processes or programs

at the same time. It is a term that describes the general topic of parallelism in

multiprocessing systems (Daintith, 2004).

According to Flynn’s classification (Flynn, 1972), parallelism can be explained

in terms of instruction and data streams in a system, leading to the below categori-

sation:

• SISD: single instruction, single data;

• SIMD: single instruction, multiple data;

• MISD: multiple instruction, single data;

• MIMD: multiple instruction, multiple data

SISD represents the computation on a conventional serial processor, while MISD

does not occur in real systems. SIMD is a pattern of operation on matrices and

vectors, which takes advantage of the inherent parallelism in these data structures.

MIMD represents a wide range of architectures from large symmetrical multiproces-

sor systems, where processors share memory resources, to the small asymmetrical

mini-computer/DMA channel combinations, where a master processor controls the

data accesses. Shared and distributed memory systems form special subcategories

of MIMD systems, and are discussed in detail in the following paragraphs.

2.1.2 Parallel Architectures

Distributed Memory Model

From a hardware’s aspect, a distributed memory architecture consists of individual

processors, with a dedicated memory and I/O mechanism. The processors rely on

a network interface for local and wide-area communication. The address space is

formulated by a number of disjoint address spaces and the same physical address

can refer to different private memory locations, precluding explicit access from a

remote processor. This is the type of memory architecture that is used in clusters.

An overview of a distributed memory system is shown in Figure 2.1.
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Figure 2.1: Distributed Memory Architectural Topology (Meter, 2016)

From a software’s perspective processes in a distributed memory system perform

computation on the local part of memory, while different sets of processes may in

its simplest form reside on the same physical machine or on remote nodes in the

networked environment. Data exchange is implemented by message passing, forming

send/receive pairs of operations. Implementations of message passing require the

programmer to embed library calls in the source code; they are typically language

independent and tuned for a range of underlying architectures. The Message Passing

Interface (MPI) (Graham, Dongarra, Geist, et al., 2015) is a standardized interface

for performing data exchange on distributed memory architectures - currently at

version 3.1.

Due to the high cost of message transfers, it is crucial for parallel performance

to allow frequent memory accesses and to be able to hide the latency of message

passing by performing other computation. Provided that the majority of memory

accesses is local, a distributed memory system can achieve low latency. On the

other hand, programming for such systems requires additional effort to coordinate

the data exchange.

Shared Memory Model

From a hardware’s perspective, a shared memory architecture consists of a number

of independent processors, sharing the system’s available memory, thus accessing
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the same physical address space. Two commonly-used access patterns are: Uniform

Memory Access (UMA); where all processors have balanced access to the shared

memory, and Non-uniform Memory Access (NUMA); where a part of the shared

memory is attached to each processor. An overview of the shared memory model

can be found in Figure 2.2.

Figure 2.2: Shared Memory Architectural Topology (Ferretti, 2017)

As the number of cores scales, the memory architecture and the design of cache-

coherent systems becomes challenging. Ongoing research on the elimination of this

complexity proposes an approach based on non-cache-coherency (Cai and Shrivas-

tava, 2016), which reduces data sharing and relies on message passing. An example

machine with non-coherent caches is the Singlechip Cloud Computer (SCC) (Gries,

Hoffmann, Konow, and Riepen, 2011) by Intel Labs, while the Compiler Microar-

chitecture Lab of Arizona State University (Jeyapaul, 2012) has proposed a virtual

shared memory implementation where cache updates are handled on library-level.

Nonetheless, most modern systems remain cache-coherent, mainly due to conve-

nience in programming. A typical server-size machine today, such as the HPE

Superdome Flex (Hewlett Packard Enterprise, 2018) consists of 4 up to 32 cores,

forming one NUMA region per 4 cores. The NUMA regions are connected in an all-
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to-all fashion, using Hewlett Packard’s ASIC technology –the latest generation of

SGI’s NUMAlink (Woodacre, Robb, Roe, and Feind, 2003), to provide equal latency

across nodes.

From a software’s perspective, the memory is mapped to the address space of the

processes that share the memory region. There is no inter-process data exchange,

so the kernel is not involved. Due to the concurrent memory accesses, synchroniza-

tion is required when storing or retrieving data to/from a shared memory location.

Common synchronization techniques such as mutexes, condition variables, read and

write locks, record locks, and semaphores are used widely in systems programming.

OpenMP (Barney, 2017), which stands for Open Multi-Processing is an API used

for multi-threaded parallelism for this type of memory. It consists of a limited set

of programming directives and aims to provide a standard for programming shared

memory architectures.

Inter-processor coordination and synchronization is managed via the global mem-

ory, thus increasing programmability. The main challenges faced in shared memory

systems are performance and scalability. The interconnection network is a major

bottleneck for performance, while scalability is often hindered by consistency issues

between the global memory and the caches.

Hybrid memory architectures have also been proposed to tackle the challenges

posed by the two prevailing models, as discussed earlier. For example, an alternative

memory architecture may comprise of a small set of processors that function as an

individual node within the system, using a single bus interconnect, thus combining

shared and distributed memory characteristics on a single system.

2.1.3 High-Performance Systems towards the Exascale

High-performance systems face software challenges towards the exascale era. System

utilization and load balancing are considered integral to benefit from the underlying

hardware’s capability (Aggarwal and Aggarwal, 2010), while asynchrony and data

migration costs continue to challenge programmers. One of the main hindering

factors with regard to the scalability of high-performance computing (Dongarra,

Graybill, Harrod, et al., 2008) is fault tolerance.

In DeBardeleben, Laros, Daly, Scott, Engelmann, and Harrod, 2009 the authors
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identify the key research areas across fields for achieving resilience on High-End

Computing (HEC). We expand on the topics of relevance to this thesis, while in

Figure 2.1 we show the complete classification.

Theoretical Foundations

Metrics and Measurements
Simulations and Emulation
Formal Methods
Statistics and Optimisation
Efficiency Modelling
and Uncertainty Quantifica-
tion

Enabling Infrastructure

Programming Models
and Languages
RAS Systems
System Software
Middleware, Libraries and
APIs
Cooperation and Coordina-
tion Frameworks
Tools

Fault Prediction and De-
tection

Statistical Analysis
Data and Information Collec-
tion
Anomaly Detection
Visualisation
Machine Learning

Monitoring and Control

RAS Systems
Performability
System Software and Middle-
ware
Tunable Fidelity
Quality of Services

End-to-end Data In-
tegrity

Silent Data Corruption

Table 2.1: Key Research Areas Towards Resilience (DeBardeleben, Laros, Daly,
Scott, Engelmann, and Harrod, 2009). We briefly discuss the relevant areas (colour-
coded) to systems design and this work.

Enabling Infrastructure Programming Models & Languages : Application level

resilience introduces a new challenge into programming and it is unclear whether

the average domain scientist can handle resilient code. Programming model and

language production has been focusing on easing parallel programming complexity

while providing performance. DARPA’s HPSC program is an example project tar-

geting productivity coupled with performance. The predominant model for HPC

applications today is the Message Passing Interface (MPI) which is historically not

tolerant to faults. As it becomes evident by the number of languages and runtimes

with resilience support, presented in Section 2.5, the focus of new programming

models and languages is shifting today towards the provision of resilience mecha-
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nisms.

System Software: HPC systems’ evolution has been driven by performance. For

example, Linux OS has made progress in terms of performance over the past decade,

but little effort has been invested in enabling reliability or robustness. Currently,

the common case in the event of a failure remains the system-wide abort.

Middleware, Libraries & APIs : As scientific libraries (mathematical, data com-

pression) and programming models overlap considerably, a large number of scientific

computation depends on libraries – often highly tuned for performance. These li-

braries take no steps towards reliability, for example protection of data integrity.

On the other hand, checkpointing libraries are specifically designed for reliability in

the presence of hard failures, but do not ensure the data integrity of checkpoints.

Tools : A variety of tools continues to be developed on the analysis of performance

of HPC applications, while very little effort has been put into resilience-related tools.

System administrators today use tools that allow them to monitor a range of health

metrics for a system, from voltage and temperature to fan speeds and resource

managers. Application developers, on the other hand, lack the tools to monitor

application related statistics, such as abrupt terminations or transient errors, which

could prove useful in determining checkpoint intervals and resource utilisation.

Cooperation & Coordination Frameworks : Due to the lack of standardized inter-

faces, the components of a system are disassembled, thus inhibiting the cooperation

on fault detection and recovery.

When designing for resilience in HPC systems, the above infrastructure is nec-

essary but not sufficient to unilaterally tackle the issue of resilience. Subsequently,

approaches to support resilience are often hindered by the lack of supportive mech-

anisms on other levels of the software/hardware stack. For example, in this work,

we propose a mechanism for transparent software level fault tolerance, embedded

in the runtime system of a programming language. In order to provide a complete

evaluation, we required a mechanism to introduce failures in a controlled manner.

Though, such a functionality is outside the scope of this work, we have dedicated

time to customize a standalone testing mechanism, as this was integral for our test-

ing. At the time of writing of this thesis and to the best of the author’s knowledge

there is no available software to coordinate node failure simulations.
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Fault Prediction & Detection Fault prediction and detection are fundamental

to achieving resilience, though the difference between faults that impact applica-

tions, leading to errors, and of those faults that have no effect on the integrity

of the computation, remains unclear. Fault detection also refers to monitoring the

health indicators of a system to minimize error latency. Health metrics (Kothamasu,

Huang, and VerDuin, 2006) include CPU, I/O and system paging to detect whether

a system runs near maximum capacity and also performance alterations that may

signify faulty or unoptimised components. Fault prediction in hardware systems is

an extensively researched topic with approaches ranging across the analysis of sen-

sor data (Turnbull and Alldrin, 2003) and the study of the temporal correlations

of failures (Bouguerra, Gainaru, and Cappello, 2013) to the application of machine

learning (Chigurupati, Thibaux, and Lassar, 2016).

The main challenge for data collection in the extreme scale is the volume of

data and the size of the platform. Today’s techniques lack the ability to identify

only relevant data and process them in a scalable and fast manner to reach useful

conclusions, without impacting application performance. Similarly to statistical

analysis and data collection, anomaly detection suffers from the large number of

components and since components are expected to behave similarly when subject to

the same circumstances, it becomes more difficult to establish causal relationships

between failures and components.

Another hindering factor in error detection is the lack of visualisation tools and

techniques that can allow the detection of irregularities. Additional capabilities,

such as varying fidelity and granularity settings, could prove useful to real-time

fault detection. Due to the vast amount of data collected during execution, machine

learning is the most prominent research area for identifying and categorizing patterns

of irregularity or degraded state of execution. Machine learning techniques, such as

pattern recognition and Knowledge Discovery in databases (KDD) could also apply

to platform monitoring, if provided with known fault indicators and use cases.

Monitoring & Control The focal points in control theory are observability and

controllability, thus system monitoring research is concerned with determining the

current state of the application or platform and finding ways to impose reliabil-
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ity. Performability is used to describe the coupling of performance and reliability.

Current models for large scale systems do not address reliability and performance

equally and/or fail to incorporate power requirements. The discussion around re-

liability usually involves trade-off’s of performance or power consumption. On ap-

plication level, tunable results are foreign to scientists today, though a critical step

towards scalable reliable systems.

Software support for resilience has commonly been vendor-specific and targeted

to hardware monitoring, lacking metrics of quality of service. As a result, there is no

common standard -for example an API- to query platform characteristics, runtime

information and scheduling across different systems from different vendors. Such

a standardization would assist in cross-platform testing of the proposed resilience

mechanisms.

End-to-end Data Integrity Numerous techniques aimed to data integrity are

available in literature, most prominently lock-step, bound checks and periodic flush-

ing. The confidence in getting correct results is highly dependant on data integrity,

especially in critical mission systems, thus such systems employ data integrity tech-

niques on multiple levels; component, board, software. These techniques require

significant time for design and validation and as bit-error rates grow, end-to-end

solutions become more attractive compared to per-bit or per-structure approaches.

Silent Data Corruption (SDC) poses a threat to computational tasks and can

have multiple causes, such as temperature/voltage, electrostatic discharge and fluc-

tuations. Furthermore, platforms with multiple replicated components are more

vulnerable to SDC’s. We currently lack the scientific methods to determine the

probability of a SDC, when for example writing/reading from disk. SDC errors

require both efforts of characterisation and employment of suitable resilience tech-

niques to mitigate their impact.

Theoretical Modelling One aspect of increasing concern is error latency ; the

interval between fault activation and error detection. For real-life systems, there

is no theoretical modelling or simulation & emulation techniques that can allow

an application programmer to make an educated choice among available hardware

platforms to run an application with known resource requirements and execution

21



Chapter 2: Background

time.

2.2 Dependability of Distributed Systems

It is experimentally proven that identical systems which operate under closely match-

ing conditions fail at different points in time (Schroeder and Gibson, 2010). Thus,

the analysis of a system’s dependability is based on a set of fundamental concepts

drawn from probability theory. In the following paragraphs we introduce the main

properties of dependable systems: reliability, availability, safety, integrity and main-

tainability.

2.2.1 Properties of Dependable Systems

Reliability is the probability that a system will perform its indented function within

the specified design limits – typically runtime, memory or hardware capabilities.

Mathematically, if we assume that the lifetime of a component is represented by

the randomly chosen value T, we can define the survival function of the component

as follows:

R(t) = P (T > t), t ≥ 0 (2.1)

The above equation is the mathematical representation of reliability, R(t) is the

probability distribution of a failure and T represents a random time of a system

failure. Assuming that the system can tolerate a single failure within the time

interval at issue, and building on the previous equation of reliability we can define

unreliability as a measure of failure, the probability that the system will fail by time

T, earlier than t:

F (t) = P (T ≤ t), t ≤ 0 and thus F (t) = 1−R(T ) (2.2)

F (t) is the probability distribution function, while R(t) is the complementary

probability distribution function (survival function). Following from the above, if

we assume that T takes its values in [0, +∞), then the distribution function F (t),

and as a consequence the complementary probability distribution function R(t), are
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continuous for t and admit a derivative within their definition interval.

Considering the survival function R(t), we can define the probability density

of lifetime as the probability that a component or system fails within the interval

[t, t+ ∆t], as shown by the equation below:

i(t)dt = P (t < T ≤ t+ ∆t) = P (T ≤ t+ ∆t)− P (T ≤ t) (2.3)

and thus:

i =
dF

dt
=
d(1−R)

dt
=
d(1)

dt
− d(R)

dt
= −dR

dt
(2.4)

or

dR =

∫
i(t)dt (2.5)

Availability (Daintith, 2004) is defined as the probability that the system will

function according to specification at any point throughout a stated period of time

t. It is a measure for allowing system repair, when failure occurs.

The Mean Time to Failure and Mean Time Between Failures are commonly used

failure metrics to help in the definition of availability. Mean Time To Failure

(MTTF) measures the average time to failure with a modeling assumption of in-

finite repair time. Given the reliability function of a system R(t) (as in equations

2.1-2.8) we can define the MTTF as follows:

MTTF =

∫ ∞
0

t F (t) dt (2.6)

For the case we are concerned, where T is a non negative random variable, and

the mean T is described by T = E[T ] (Kaufmann, Cruon, and Grouchko, 1977),

the average of a system’s lifetime distribution (grottke2008ten). We can assume

there exist an a > 0 such that limt→∞[eatR(t)] = 0. As such R(t) tends towards 0

exponentially. The above shows that for a given ε > 0, there exists a failure rate

such that

R(t) = 1− (1− ε−t) = ε−t (2.7)

The survival function then becomes :

R(t) =

∫ ∞
t

f(s) ds for all t ≥ 0 (2.8)
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Then:

R(t) ≤ R(0) =

∫ ∞
0

f(s) ds =

∫ î

0

f(s)ds+

∫ ∞
î

f(s)ds (2.9)

Applying 2.5 and performing integration by parts, with the limitation of tR(t)→

0 as t→∞, we reach the following definition:

MTTF =

∫ ∞
0

R(t) dt (2.10)

Thus, MTTF is the definite integral evaluation of the reliability function.

Mean Time Between Failures (MTBF) is the measure of reliability of hard-

ware components. For most components, typical uptime varies between thousands

and tens of thousands of hours between failures. For example, a commodity hard

disk drive has an average MTBF of 300,000 hours. MTBF also applies to systems

and represents the expected value of time between failures, implying that a sys-

tem has previously failed and has been repaired. MTBF is defined by the following

relation:

MTBF = MTTF +MTTR (2.11)

where MTTR is Mean Time To Repair, a measure of the time required for a

repair in maintenance studies.

Building on the above metrics, the mathematical representation of availability is

defined as follows :

Availability =
System up time

System up time+ System down time
=

MTTF

MTTF +MTTR
(2.12)

where MTTF is the Mean Time To Failure and MTTR is the Mean Time To Repair.

In Hacker, Romero, and Carothers, 2009, the authors analyse event logs of two

IBM Blue Gene petascale systems and present a prediction model for node failures.

They confirm previous findings that failure rates follow a Weibull (Murthy, Xie, and

Jiang, 2004) rather than an exponential distribution, while they also investigate the

possibility of ranking the system into sets of nodes based on reliability to efficiently

guide job scheduling. They also observe variation in the reliability curves of the two

24



Chapter 2: Background

systems, though they are built with identical hardware components, which poses

questions on whether MTBF provided by hardware manufacturers is an adequate

measure of reliability.

Availability measures success and is used primarily for repairable systems. In

the case of unrepairable systems availability is equivalent to reliability.

Safety (Avižienis, Laprie, Randell, and Landwehr, 2004) is defined as the ab-

sence of catastrophic consequences for the users and the environment. This property

is especially relevant to mission critical systems, such as aircraft monitoring soft-

ware. Safety assessments determine the impact of design and implementation on

the overall systemic safety (Johnson, 1998).

Integrity (Avižienis, Laprie, Randell, and Landwehr, 2004) is the absence of

improper system alterations. Integrity is a requirement of system security, and refers

to the extent of the data corruption and the ability to recover from it; ensuring the

correctness of system upgrades and the stability of the system’s state.

Maintainability is the probability that a failed system will be restored to the

specified conditions within a given period of time, when maintenance is performed

according to prescribed procedures and resources.

In Laprie, 1995, we find a definition of dependability based on Impairments, the

factors that make a system unreliable; Means, the methods to construct a dependable

system and Measures that overlap with some of the properties explained above. This

categorisation is represented in Figure 2.3, below.

According to the above taxonomy, we identify the factors that affect systems’

dependability, referred to as Impairments. Errors are introduced by programmers

or designers and may include incorrect numerical values, omissions or typographical

errors. Errors lead to software faults, which can remain undetected until they become

software failures. Failures occur when the system ceases to deliver the expected

results according to the specification’s input values. There are four categories based

on the severity of the failure (catastrophic, critical, major and minor) which also

vary depending on the system or the application. Failures are further discussed in

the following section.
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Dependability

Impairments

Faults

Errors

Failures

Means

Procurement

Fault Avoidance

Fault Tolerance

Validation Error Removal

Error Forecasting

Measures

Reliability

Availability

Figure 2.3: Laprie’s taxonomy of dependability (Laprie, 1992)

2.2.2 System Failures on Distributed Systems

System failure is the condition in which a system no longer performs the intended

function or is not able to do so at a level that equals or exceeds established mini-

mums. Common causes of failure include software and hardware failures, network

partitions, power outages and human errors.

Types of failures

Figure 2.4 demonstrates a categorisation of common faults. The categorisation

covers the when (Creation Phase), where (Dimension) and how (Persistence) faults

occur, while it also takes into account faults related to system security, caused with

Malicious Intent.

In the literature, we find fault model taxonomies based on a set of differentiat-

ing failure factors. In Schneider, 1993a and Cristian, 1991, the authors propose a
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Faults

Creation Phase
Development Faults

Operational Faults

System Boundaries
Internal Faults

External Faults

Phenomenological
Causes

Nature Faults

Human-made Faults

Dimension
Hardware Faults

Software Faults

Objective
Malicious Faults

Non-Malicious Faults

Intent
Deliberate Faults

Non-Deliberate Faults

Capability
Accidental Faults

Incompetence Faults

Persistence
Permanent Faults

Transient Faults

Figure 2.4: Categorisation of causes of faults (Laprie, 1992). In this work, we address
internal hardware faults, irrespectively of their persistence, whether permanent or
transient.

classification based on the result of the failure on the system. Among system faults

we distinguish another taxonomy: crash faults; which cause system-wide aborts,

fail-stop faults; where the failure of a subset of the system becomes evident to the

rest of the system and Byzantine faults; where the system continues to operate but

its behaviour is unpredictable.

The different classifications of fault-tolerance techniques, as described in Gärtner,

1999, take into account the properties the system preserves after failure; safety and

liveness, the two classes of system properties required in order to prove program

correctness. According to Lamport, 1977, safety is expressed by an invariant, a set
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live not live
safe masking fail-safe
not safe non-masking none

Table 2.2: Classification of fault-tolerance techniques (Gärtner, 1999). Rows repre-
sent the preservation of the liveness property and columns represent the preservation
of the safety property of a system.

of legal states. As long as the distributed program remains within the invariant, it

maintains the safety property. On the other hand, liveness addresses the progress

of a system. A common example of liveness is the timely termination of a program,

given a correct input.

In Table 2.2, we summarize the fault tolerance techniques as they arise by the

combination of the maintenance of safety and liveness in the system. Maintaining

neither safety nor liveness (none) is equivalent to the absence of any fault tolerance

measures. Fail-safe techniques aim to preserve the safety property and allow the

system to terminate in a non-proper manner or in an unknown state. On the other

hand, non-masking techniques are concerned with allowing the system to progress,

although programs will eventually require the safety property to produce meaningful

results. This is a common approach in internet services, as it allows the system to

return to normal execution after the failure, for example a the case of a server

crash. Finally, fault-masking, is the strictest and harder to achieve as it requires

that despite failures the program will remain within the invariant and will continue

execution, till it terminates properly.

In this taxonomy, our work falls under the fault-masking category, when node

failures are introduced in the system. Our system aims to preserve liveness, by

avoiding abrupt termination, and safety by introducing mechanisms to adopt or-

phaned tasks and perform task re-execution as required. On the latter, we also

ensure that any further communication to failed nodes is handled transparently to

the application level, by the runtime system.

2.2.3 Failure Rates

Technology scaling makes chip-level reliability difficult to achieve, due to hard fail-

ures, single-event upsets and variability. The shrinking processor sizes result in the
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increase of hard failures and device degradation, leading to thermal stresses and

electro-migration. On top of device shrinking, the increased power supply voltage,

electric fields and temperature contribute to increased device failure rates. Also,

single-event upsets (SEU) occur due to node capacity in integrated circuits. An in-

crease of 8% is predicted in SEU rate per bit in each technology generation (Kogge,

Borkar, Campbell, et al., 2008). With smaller transistors, the spatial variation of

the electrical characteristics increases, leading to intermittent or permanent faults.

The threshold voltage for transistors in a single group can vary by 30%. Figure 2.5

presents a summary of the above effects as a function of time, measured in 2008 and

with a projection into the Exascale.

Figure 2.5: Resilience Rate Projection to the Exascale (2008) (Kogge, Borkar,
Campbell, et al., 2008)

Table 2.3, summarizes the probability of different types of component faults,

their impact probability and the proposed course of action to alleviate the effects

of faults. While the failure rate of any particular component is relatively small,

the overall resilience of a computing system depends strongly on the number of

components that it is comprised of; this is particularly true for data-center class

systems. Additionally, the impact of failure of any of the hardware components is
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Fault Probability Impact Action

Fans High Low Node down
Power Supply High Low Node down
CPU/SRAM Very Low Low Node down
DRAM Medium Low Reconfiguration
Solder Joints High Low Node down
Sockets High Low Node down
Disks Mid to High Low Reconfiguration
NAND/PCM Low Low Reconfiguration
Soft Errors Low High Clever accounting

Table 2.3: Probability of Faults
(Source: Shekhar Borkar, Intel, Sep’ 2014)

marked low with respect to the hardware, taking into account the costs of repair or

replacement. In the case of an executing application though, any of these failures

would lead to abrupt termination, therefore their impact is high.

2.3 Resilience Principles

Resilience is integrated to the system and works alongside the application’s ex-

ecution, as opposed to fault tolerance which is segregated from the system. Fault

tolerance adopts a reactive and fatalistic approach to failures, contrasting resilience’s

proactive optimistic approach which is based on monitoring and often on data repli-

cation to circumvent failures.

2.3.1 CAP Theorem

Brewer (Gilbert and Lynch, 2002) conjectured that a distributed system cannot

simultaneously provide all three of the following desirable properties:

• Consistency read operations are aware of all previously completed write

operations;

• Availability read and write operations are always successful;

• Partition tolerance system properties are maintained even when network

failures prevent communication among machines

In (Brewer, 2000) we also find examples of systems that forfeit one of the three

properties and the features and mechanisms used. Examples of CA (Consistency-

Availability) systems are single-site databases, cluster databases, LDAP and xFS
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file systems. Commonly used practices include two-phase commits and cache vali-

dation protocols. Examples of systems that forfeit the availability property include

distributed databases, distributed locking and majority protocols that employ pes-

simistic locking or withhold availability of minority partitions. Finally, Coda, web

caching and DNS are example systems that forfeit consistency, usually by employing

expiration rules and conflict resolution.

Different systems and technologies support combinations of the three properties

at different levels. For example, it is widely accepted that we can achieve consistency

and availability within a cluster, although it is hard to do so in practice. Also,

OS’s and networks provide better availability but are practically less consistent,

contrasting databases that fulfil consistency rather than availability requirements.

The choice of two out of three properties, naturally results to three combinations

of design approaches; CP, AP, and CA. It is widely acceptable that CA is not a

coherent option as a system that is not partition tolerant, will be forced to give up

either Consistency or Availability. The CAP theorem is thus restated as follows:

during a system partition, a distributed system must choose either Consistency or

Availability.

On component failure, our design prioritizes partition tolerance; by avoiding

abrupt termination, and availability; by proactively migrating data and re-actively

migrating executing processes on secondary locations. In our design, processes do

not share state information; in order to avoid additional system-wide communi-

cation costs, instead migrated calculations are restarted on the remote location.

Consistency in the sense of ordered task execution or the intermediate results, is not

actively maintained. In fact, nodes will prioritize local over ”adopted” task execu-

tion. This design decision does not violate program semantics since, irrespectively

of their ordering, tasks will execute within the scope of the surrounding synchroni-

sation block of the adopting task (or within the implicit synchronisation scope of

the application itself).

2.3.2 Software Level Fault Tolerance

There is a number of different approaches when handling a system fault, with the

simplest form being to allow the system to fail, though this approach is prohibitive
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for industrial and embedded systems. Another common approach is to allow func-

tioning parts of a system or an application to continue after shutting down the

affected parts, also referred to as graceful degradation (Herlihy and Wing, 1991).

This technique requires a component able to distinguish the functioning and faulty

parts (Sampath, Sengupta, Lafortune, Sinnamohideen, and Teneketzis, 1995) or a

detection mechanism embedded within the components (Yau and Cheung, 1975;

Laprie, Arlat, Beounes, and Kanoun, 1990).

We also note the case of fail-safe fault tolerance, where a system reaches a safe

state and is allowed to continue after the fault (Gärtner, 1999). An alternative ap-

proach is component redundancy, where multiple components perform the same task

and the correct result is obtained using a majority voting algorithm. An instance

of this technique is N-version programming discussed later in this section, while in

(Schlichting and Schneider, 1983) we find a method of organising redundant com-

ponents using fail-stop processors.

In Schneider, 1993b the author introduces a self-stabilising system, which can

survive failure of the internal state and allows errors to persist until a correct state is

restored, thus surviving transient faults, though the implementation and verification

of such a system is hard in practice.

Fault Recovery

The main goal of a system’s recovery strategy is to preserve a correct state with

respect to the expected behaviour. Error occurrence can be determined as the time

the system transitioned from a correct to an erroneous state. The two most common

approaches in literature, are backward error recovery and forward error recovery and

will be discussed in the following paragraphs.

Backward Error Recovery (BER) (Smith, 1988) This technique relies on the

assumption that the system was in a correct state at some point in the past. At a

time when the system is known to have a correct state, a copy of the state infor-

mation is stored (backup). Once an error is detected, steps are taken to restore the

program to the backed up correct state, thus moving the system backwards in time.

The major disadvantage of this technique is that the error that caused the rollback
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may not have disappeared, causing the system to fail again. To some degree this

situation can be dealt with by moving the system forward after the rollback has

occurred.

One of the most commonly used BER techniques is checkpoint/restart. One of its

major selling points is the fact that it is suitable both for transient and permanent

failures. The periodic saving of the state in stable storage is called a checkpoint.

When a failure is detected, one or more processes are restarted using the information

stored in the latest checkpoint. The simplest approach is synchronous checkpointing,

with execution suspension until the checkpoint is saved. Depending on the type of

stable storage used, this process can significantly reduce performance. Alternatively,

asynchronous checkpointing strategies allow processes to continue execution, while a

checkpoint is written. A number of optimisations has been proposed to minimize the

time needed for checkpointing, notably incremental checkpoints that only capture

the data that have been modified since the last checkpoint. Asynchronous and

incremental checkpoint techniques depend on address translation hardware to detect

modified data (Morin and Puaut, 1997).

Checkpointing techniques address primarily the communication layer of the run-

time. Consistent checkpointing requires coordination of all processes on each check-

point. In this technique, one checkpoint per process is enough to recover a correct

state and the checkpoint imposes a barrier beyond which rollback is not necessary.

A common optimisation on this technique is to checkpoint only processes that have

established communication since the last checkpoint, with the drawback of having

to maintain logs of the inter-process communication.

The alternative to consistent checkpoints are independent checkpoints, where

each process establishes a local checkpoint without synchronisation. Because the

set of the latest checkpoints of all processes does not ensure a consistent checkpoint,

processes are required to maintain multiple checkpoints. In the event of a failure,

inter-process communication is tracked in order to identify a consistent checkpoint

and then each process is forced to rollback to one of their checkpoints. In the worst

case, all processes must be restarted from the initial state, also referred to as the

domino effect. Proposed optimisations to address the domino effect and minimize

the data stored per process, require message logging. In this case, messages sent
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after the checkpoint and before the failure are replayed using the logs.

Forward Error Recovery (FER) Forward Error Recovery (FER) takes steps

to recover the state while moving the system forward along the time line. This

technique requires prior knowledge of the failure characteristics of the system and

system recovery needs to be built-in to the system. Commonly, it requires some

form of redundancy scheme to maintain critical information that can be used to

recover the state, similarly to the information persisted in checkpoints.

In other cases, the properties of the application need to be taken into consid-

eration, for example a large weather simulation application may be fault-agnostic;

the results of a failed computation can be substituted by older data (i.e. results of

previous iterations) or failed computation can be excluded, without distorting the

final results, a technique commonly referred to as decimation.

Forward Error Correction (FEC), a form of Forward Error Recovery, is com-

monly applied in digital communications to correct erroneous data on the receiving

end, most commonly by applying error correcting codes (Puri, Ramchandran, Lee,

and Bharghavan, 2001). The error correcting codes are encoded with the data, al-

lowing the receiver to apply correction without the need for added communication.

Multicast and broadcast networks, as a primary example of one way communication

use forward error correction techniques.

Other Approaches to Software Level Fault Tolerance

As the recovery of the state is an important issue regarding fault tolerance, a num-

ber of techniques has been proposed to tackle the issue. Compensation recovery

(Jin and Yang, 2009) is an approach where the faulty state is assumed to contain

enough information to recalculate a correct state. Fault-masking (Laski, Szermer,

and Luczycki, 1995, Yakovlev, 1993, Beńıtez-Pérez, Latif-Shabgahi, Haydn, Ben-

nett, Fleming, and Bass, 1999), where in each step recovery is performed without

previous fault detection, stems from compensation recovery.

Another recovery approach proposed during the 1970’s, N-version programming

(Chen and Avižienis, 1978), is inspired by hardware reliability techniques and it

builds on the same ideas of FER. The base idea is that N versions of software exe-
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cute and the correct answer is deducted using a voting algorithm to resolve conflicts.

The decision algorithm is based on the increasing independence as N increases, but

if failures do not occur independently and are more than N−1
2

then the system is

guaranteed to fail. Practical aspects of constructing such systems are presented

in Avižienis, Gunningberg, Kelly, Strigini, Traverse, Tso, and Voges, 1985 and

Avižienis, Lyu, Schütz, Tso, and Voges, 1988 using the Design Diversity Experi-

ment (DEDIX), a supervisor and testing system for multi-versioning, developed by

UCLA.

Another approach, researched extensively during the 1970’s, is recovery blocks

(Randell, 1975; Horning, Lauer, Melliar-Smith, and Randell, 1974) which has served

as basis for more recent approaches. Recovery blocks build on the idea of reliable

segments, to ensure that changes to external variables of the block are performed

reliably. Resilient Distributed Datasets (Zaharia, Chowdhury, Das, et al., 2012),

discussed in detail in Section 2.5.2, draw from the same principle.

Finally, in the literature we also find approaches that aim at fault prevention,

often referred to as fault avoidance (Smith, 1988) techniques. Verification protocols

are used throughout the application to prove correctness, while detailed specifica-

tions of the behaviour of the program and continuous testing is employed to preserve

correctness. Fault avoidance techniques are considered inefficient in proving the ab-

sence of bugs. As Dijkstra noted program testing can be used to show the presence of

bugs, but never to show their absence (Dahl, Dijkstra, and Hoare, 1972). Program

correctness proofs, like mathematical proofs, can only prove what is specified and

the complexity of program adds to the complexity of the proof.

2.3.3 Hardware Level Fault Tolerance

Many of the techniques that have been proposed to tackle failures on software level

derive from hardware level fault-tolerance techniques. In this section, we discuss a

number of prevalent hardware redundancy techniques. The guiding principle is that

when a fault occurs in real-time systems a set of redundant modules take over the

functionality of the failed module(s).

One-for-one redundancy is a technique which assumes two hardware modules,

namely the active and standby component. The standby component monitors the
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activity and state of the active component and in the case of failure it takes over

the execution of ongoing tasks. While this technique doubles the cost of hardware,

it provides high levels of availability, as the probability of both components failing

at the same time is decreased.

Another common approach is N+X Redundancy where N represents the num-

ber of required components to perform the task and X represents the redundant

hardware, typically less than N. In case of failure of one of the N components, an

X component adopts the local functionality of N. The process is coordinated by a

higher-level module which monitors health and decides on which X module will take

over N’s work when N fails. N+X redundancy alleviates the high hardware cost,

but reduces the system’s availability in the case of multiple failures. We note also,

that one-for-one is a special case of the N+X redundancy scheme.

Finally, load sharing is based on a high-level coordination module, responsible

for distributing the load among active components and monitoring their health. In

the event of a failure, the coordinator will attempt to redistribute the load over the

available components. This technique leads to graceful degradation of performance

on each hardware failure. The cost for redundancy in this case is minimal, but a

hardware failure leads the system to perform in a non-optimal way until the failed

components are replaced.

Our software-level resilience mechanism is inspired by the load sharing hardware

technique. We are concerned with the progress of program execution when one or

multiple components fail. As the Chapel runtime is agnostic to any health metrics

of the underlying hardware and the communication layer as implemented by GAS-

Net applies a strict policy of termination on failure, we introduce a runtime level

coordination mechanism. We assume that a component is able to send a message

to notify of its failing state. A hardware or software level monitoring module could

replace this functionality without any further changes in the runtime.

All of the above mentioned redundancy techniques require synchronisation of

the standby by the active components. In bibliography we find different techniques

of standby synchronisation, such as Bus Cycle Level, Memory Mirroring, Message

Level and Checkpoint Level Synchronization and Reconciliation on Takeover.
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2.4 Resilient Store

To enable applications to recover from failure we require a form of resilient store

to maintain critical information. The main feature of such a store is the ability

to survive failures. The two prevailing techniques to achieve availability of data

espite the occurrence of failures are in-memory replication and the use of external

file systems.

In-memory data replication requires that the low-level data structure manage-

ment is implemented within the runtime system, a requirement that introduces

memory overheads. On the other hand, the technique is appealing as it is faster than

disk storage (Zaharia, Chowdhury, Das, et al., 2012) and results in self-contained

applications. As we discuss in earlier published work (Panagiotopoulou and Loidl,

2016) this approach ensures independence of third-party components and modules

and does not require specific knowledge by the application programmer.

Also, as discussed in Dam, Vishnu, and Jong, 2011, the choice of an in-memory

redundancy scheme is based on the implicit assumption that the number of the par-

ticipating processors is chosen with respect to the amount of work to be performed,

rather than the amount of memory required by the application.

The above assumption reveals a conflict between in-memory replication and the

use of weak scaling. Indeed, the increased input sizes combined with the added

memory stress of redundant data may lead applications to hang or fail due to mem-

ory limitations. On the other hand, weak scaling is a testing technique to process

larger inputs when adding processing power; it is used to test or project performance

by examining raw numbers. We argue that the goals of resilience and weak scaling

differ, as resilience is intended for long running applications, rather than a sequence

of experiments. Furthermore, we argue that weak scaling does not require the use

of a resilience mechanism; the main testing requirement of maintaining a fixed per

processor workload is violated when nodes (or processors) are lost due to failures.

As a high level design approach for the management of redundant data we define

buddy nodes, an idea based on the work of Finkel and Tripathi, 1990. Buddy nodes

act as backup locations to store the required data for task re-execution. Each of the

participating nodes in the system is required to define one or multiple such buddy

nodes and accordingly we refer the original nodes as guests. Each of the buddy
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Nodes Root 1 2 3
Buddy of 3 Root 1 2

Root node1 node2 node3

taskA

taskB

log taskA

log taskB

taskC

log taskC

Figure 2.6: Sample communication flow of in-memory replication of tasks (and data)
among guest and buddy nodes. log task{X} represents the copied task descriptor
of the remotely spawned task task{X} on the buddy node.

nodes is required to maintain data on all its guest nodes, and provide access or take

up execution in the place of a dead guest node that has suffered a failure.

Figure 4.1 demonstrates an example of communication flow for in-memory repli-

cation among nodes, with a basic next node buddy configuration. In the figure,

Node 2 stores copies of the tasks (and data) launched on Node 1, in this case taskA.

The initiating node (Root) establishes communication to the buddy node (Node 2)

and communicates log taskA, the copy of taskA, intended to execute on Node 1.

For the purposes of this work we do not look into inter-dependencies among

tasks. In fact, in the context of Chapel, task descriptors contain all the necessary

information to re-execute the task from the stored copy. The above configuration

(next node) is the one applied in this work, but alternative buddy configurations

can be employed. Later in Chapter 5 (Section 5.2.2) we discuss the implementation

details of this configuration while in Section 5.3.2 we discuss how a multi-locale

configuration can take advantage of the simple round robin buddy allocation algo-

rithm to build an efficient recovery strategy. We also detail the criteria that an

alternative buddy allocation mechanism should fulfil in order to comply with the

implementation in this work.

In the next paragraphs, we discuss two implementations of resilient stores, rep-

resentative of the two main directions; external file systems such as Hadoop’s HDFS

in Section 2.4.1 and in-memory replication with the use of an API, as implemented
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by the ZooKeeper framework (Section 2.4.2).

2.4.1 External File Systems

Hadoop Distributed File System (HDFS)

Hadoop’s Distributed File System (HDFS) (Borthakur, 2008) is a file system

designed for commodity clusters. HDFS is aimed for large datasets and provides

high throughput data access. As the large number of components in a Hadoop

system, expose the non-trivial probability of hardware failure, HDFS’s main design

goal is to address detection and recovery from faults.

HDFS uses the master-slave architectural model, with a central Namenode and

multiple Datanodes, as shown in Figure 2.7. The Namenode is responsible for the

management of the filesystem’s namespace and the clients’ access to the files. Also,

it handles open, close and rename operations for files and directories and maps the

file blocks to the available Datanodes. Datanodes are responsible for local storage

and for serving read and write requests, block and file creation, replication and

deletion, as instructed by the Namenode.

Figure 2.7: The Hadoop Distributed File System Architecture (Borthakur, 2008).
The Namenode manages filesystem accesses and Datanodes serve read and write
requests.
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Fault tolerance in HDFS is achieved via data partition and replication. Each file

is partitioned in equal sized blocks (with the exception of the last block) and it is

stored on multiple Datanodes, while extra copies of the block are stored on remote

Datanodes for redundancy. Both the blocksize and the replication factor are config-

urable. A second mechanism, aiming to fault detection, is the periodical Heartbeat

and Blockreport sent from each Datanode to the Namenode. The heartbeat indi-

cates that the node is functioning properly, while Blockreport contains a list of all

blocks currently stored on a Datanode.

The Namenode also uses replication for local logs, while the blocks are validated

for data corruption using checksums. The Namenode is a single point of failure

for the system, while auto-restart and failover functionality to another machine is

not currently supported. Chapel provides integration with HDFS. An example is

provided in Appendix A.3.

2.4.2 In-Memory Replication Techniques

ZooKeeper

ZooKeeper (Hunt, Konar, Junqueira, and Reed, 2010) developed by Yahoo!, is a

coordination service for distributed applications. The main motivation behind the

ZooKeeper system is to provide applications with basic memory coordination setup.

It uses a shared hierarchical namespace, organized as a regular file system, but with

in-memory storage. The main components are data registers named znodes.

ZooKeeper is replicated on a number of hosts, while the server machines maintain

an image of state, logs of the transactions and snapshots in persistent store. Clients

establish a TCP connection to one of the servers and send requests and heartbeats.

Each transaction leads to a time stamped update, used for ordering.

The system provides a set of guarantees, including sequential consistency, thus

ensuring that updates from a client will be performed in the order sent, and trans-

action atomicity. Clients are provided with a single system image regardless of the

specific server they are connected to. ZooKeeper guarantees that the applied up-

dates will persist until the next update, thus maintaining the reliability property.

Finally, the image of the system from the client’s part, within a time frame, is

referred to as timeliness.
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2.5 Related Work

In this section we discuss a set of existing programming languages and runtime

systems that provide resilience capabilities or have fault tolerance characteristics.

2.5.1 Languages with resilience capabilities

Resilient X10

Resilient X10 (Cunningham, Grove, Herta, et al., 2014) is a complete implementa-

tion of the X10 language designed for fault tolerance and based on three main design

decisions. Firstly, the changes towards resilience only affect the runtime system and

libraries. Secondly, a new type of exception, Dead Place Exception (DPE), is intro-

duced and thrown when an X10 place’s failure is detected. Finally, a Happens Before

Invariance Principle is introduced to ensure that in the occurrence of place failures,

any modifications to the heap of non-failed places occur in the order specified by the

original program. This ensures that tasks residing at failed places will either run to

completion or not at all.

Base X10 Design X10’s parallelism is based on the finish construct that defines

synchronised blocks of tasks. A finish block waits until all spawned tasks within

its context complete, while it also aggregates exceptions thrown by the tasks. A

finish construct can be explicit in the application code or is created implicitly

when a remote task is spawned by a placement at construct.

In regular X10, remote tasks are recorded with runtime level X10RT messages

from the spawning place (home) to the remote place. The completion of a task

is indicated by a corresponding X10RT message from the remote place where the

task executes back to the home place. The mechanisms in place do not guarantee

resilience, as in the event of a place failure, the synchronised block will wait endlessly

on a termination notification message.

The runtime system maintains two internal stacks of finish states. The first

one, called the synchronisation stack ; it is used to query the closest synchronisation

point. The second one is the explicit stack, used to locate the closest explicit finish

which governs new asynchronous tasks (asyncs) in the code. All tasks have access
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to these stacks and as they are spawned or terminated, they call methods on the

associated finish object, which in turn handles wait operations. A finish object

is complemented by an API with the following methods: make, wait, fork, begin,

join and pushEx. The use of a finish construct on application level is demonstrated

in Listing 2.1.

1 f i n i s h {
2 at ( dst ) async{ // An asyncronous task is spawned
3 body ( ) ; // to the dst place
4 }
5 }

Listing 2.1: An example use of the finish construct in X10 (application level), that
governs the synchronisation of a remote asynchronous (async) task spawned to place
dst.

Resilient X10 Design Resilient X10 allows places (equivalent of locales) to

fail asynchronously. Failures are exposed via exceptions and the runtime system

is modified to repair the global control structure and ensure that the failure of a

place does not alter the happens-before relationship between instances at non-failed

places.

Failure detection is not part of the design of Resilient X10; it is assumed that

failures are detected by the runtime system and realised in the form of the newly

defined Dead Place exceptions. The developers do not report on node resurrection,

so in the case of false positive failure detection, the relevant exception is thrown

and the place is considered failed for the remainder of the execution. In Chapel’s

resilient implementation, we provide a explicit sanity check mechanism to restrict

new tasks from executing on locales that are detected to have failed.

On implementation level, an API call polls the status of arbitrary places and re-

turns the number of failed X10 places. When a failed place is detected, the runtime

undertakes the task of clearing the link to the place and continues the execution. A

distributed termination detection mechanism is introduced as the number of tasks

is not statically known at compile time. Listings 2.2 and 2.3 demonstrate snippets

of the runtime API on the source and target place, respectively.
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1 f=Fin i shObject . make( c u r r e n t f ) ;
2 //set activity’s current_f to f
3 f . f o rk ( here , dst ) ;
4 x10rt runAsync ( dst , body , f ) ;
5 //
6 //continue with local tasks
7 f . wait ( ) ;
8 //restore current_f

Listing 2.2: The internal implementation of a finish at the source place (runtime
system level).

1 //The remote task, f and src are received from src
2 i f ( f . begin ( src , here )==true ){
3 try {
4 body ( ) ;
5 } catch ( e : Exception ){
6 f . pushExc ( e ) ;
7 }
8 f . j o i n ( here ) ;
9 }

Listing 2.3: The internal implementation of a Finish at the destination place
(runtime system level).

Listings 2.2 and 2.3 demonstrate the internal functionality of the finish object

on the source and destination places of a remote task, respectively. In Listing 2.3,

the conditional f.begin(src, here) == true is used to identify the case where the

source place has failed after transmitting the message, but before the message has

been received at the destination, thus restricting orphaned tasks from executing on

the remote locale.

All exceptions are combined into a MultipleException e and thrown by the wait

call. If the finish is implicit, then exceptions are propagated further towards the

initiating place through the at construct.

The runtime maintains counters and assumes its own state as resilient. Each

finish state object contains an internal live counter set, to record the executing

tasks and their home places and stores exceptions accumulated via the pushExc

method. In the case that a source place fails after the destination executes the begin

statement, then the task may execute on the destination, though it is considered

lost. Thus, the finish object has to log the messages in-transit (transit counters)

and the conditional (begin) is only used to avoid execution of the task when the

source place has failed.
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Based on these semantics, X10 is able to support resilience, except for the case

when the home place of the finish dies. In this case, tasks become orphaned. A

parent finish cannot assume that tasks have terminated, as its local counters do

not log orphaned tasks. Resilient X10 provides an adoption strategy for orphaned

tasks, according to which, the closest parent finish adopts orphaned tasks by merging

counters and discarding any exceptions. The implementation of the finish object is

thus modified to maintain two counter sets to keep track of adopted and local tasks,

while updates from adopted tasks are redirected to the location of the adopting

finish.

X10 Resilient Store Implementations Resilient X10 introduces three distinct

implementations to persist finish states. The implementations share the same

abstract design and differ only with regard to the type of resilient store used; Place-

Zero-Based finish implementation where all data is stored at place 0, ZooKeeper-

Based finish, where all data is stored on znodes and Distributed Resilient finish

implementation, where backup copies of the states are stored at a place different

to the home place. We discuss the three available implementations in the following

paragraphs.

In Place-Zero Based Finish, place 0 is assumed to never fail, so it implements

the resilient data store for the application. In practice operations at other places,

invoke asynchronous communication to Place 0, which maintains a database of all

finish states with additional information on the home and the parent finish places.

On discovery of a dead place, place 0 queries the finish objects on the dead place,

locates the parent finish and facilitates adoption of orphaned tasks. Each finish that

terminates without failure is removed from the database. This practice requires

additional communication and makes place 0 a bottleneck, though it is reported to

scale reasonably up to hundreds of places. Design-wise, the main idea of Place-Zero

Based Finish is similar to our failure-free root assumption, as detailed in Section

4.2.1.

The ZooKeeper Based Finish approach uses the Zookeeper framewrok (Discussed

in Section 2.4.2)) and aims at the elimination of the dependencies to Place 0. In

the preliminary version, each znode stores a counter and each finish state creates
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a znode with a unique identifier. Children znodes contain information on the local

home identifier, the parent finish identifier and an adoption flag. Locks are used

for mutual exclusion of places that update data on a node, while znodes are cre-

ated dynamically to avoid initialisation overhead. Each API method contacts the

ZooKeeper framework, while wait calls use a watcher callback mechanism to check

that all counters have reached zero before termination.

In the optimised version, each znode is created with a unique sequence number,

provided by the ZooKeeper server, thus reducing the number of required operations

for each spawned task. This implementation, though optimised, is estimated to be 13

times slower than the Place-Zero Based Finish implementation, which is attributed

to the high cost of ZooKeeper operations.

Finally, the implementation of the Distributed Resilient Finish is an effort to

improve upon the bottleneck of Place 0, using an X10-level resilient storage. The

core idea is to store each finish at its home place and maintain a backup copy at

a different place. In case the home place is Place 0, then there is no need to use a

remote backup and this case defaults to the Place-Zero-Based Finish approach.

Backups receive synchronisation updates from the master and in the case that the

master dies, they receive updates from children tasks and facilitate the adoption of

orphaned tasks. As such, every operation on the master requires the establishment of

synchronous communication to the backup without the need to distinguish between

adopted and non-adopted tasks. The backup information is stored in the form of a

point-wise sum of the master’s counter sets. After adoption, the backup is tagged

with an adoption flag and a forward reference.

Each place maintains a backup table to associate the masters’ global references

to their backups. If a task fails to communicate with the master, it can query the

backup tables of other places to find its backup. In the case that no master or backup

is found with exhaustive search, a system-wide fatal error occurs. In the event of a

failure, each finish queries for children tasks executing at the failed place and uses

the children’s pointers to find the backup copies and adopt the tasks. Thus, the

tree of places remains connected, unless there is a failure of both master and backup

places. In our design of resilient Chapel, we introduce backup tables to persist

references to other locales (in the form of buddy-guest relationships among locales)
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in the execution, while we also maintain information on the context of remote tasks

in the system.

Resilient Design in X10 and Chapel X10’s resilience mechanism has served as

a prototype for our work in Chapel. Some of the assumptions we make in this work,

are shared with X10’s resilient version and derive from the PGAS programming

model. As an example, in both implementations, tasks on remote locales/places ex-

ecute till completion or not a all. Also, we follow a similar strategy to the Place-Zero

Based Finish for our blocking fork execution, and both implementations support a

form of in-memory distributed resilient store. In Chapters 4 and 5 we provide an

in-depth discussion of our design.

On the other hand, our work differs from X10 in a number of key aspects. For

example, X10’s runtime supports exceptions and failures are handled inside try/-

catch blocks that can be aggregated, while in Chapel we handle each failure as a

single event. Also, X10 assumes that a remote place maintains up-to-date availabil-

ity information on the parent place, while in our work we use status update requests,

where needed. Furthermore, we do not use global references to other locales, apart

from the root, since buddy/guest relationships change dynamically as failures occur;

we instead re-calculate the identifiers of remote locales before communication. Fi-

nally, X10 assumes a distributed termination detection mechanism, while in Chapel

we require the transmission of a short message to notify of a failure. Table 2.4

provides a comparative overview of the various design aspects and their handling in

the Resilient X10 implementation and in our work.

Erlang

Erlang (Armstrong, 2007) is a functional programming language designed for dis-

tributed and fault-tolerant software. Erlang’s development stems from research

within Ericsson towards a programming language tailored to telecommunication

systems. It is designed towards fault-tolerance, in the sense that it provides tools

for mitigating the impact of failures in the early version of the language. It pro-

vides process isolation to avoid propagation of corrupted data in the system and

forces processes to crash. Erlang is tailored for distributed, rather than parallel
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Design as-
pects

Resilient X10 Resilient Chapel

Resilient im-
plementations

Three available implementa-
tions that adhere to the same
design and differ only with re-
spect to the resilient store used.

A single design and implemen-
tation with a number of config-
uration options is provided. A
distributed in-memory resilience
mechanism is used as resilient
store.

Failure reali-
sation

Failures occur in the form of ex-
ceptions, either single or aggre-
gated.

Failures are realised as a single
systemic event with the transmis-
sion of a communication layer sig-
nal.

Failure miti-
gation strat-
egy

Communication links are
cleared, the place is marked as
dead, execution continues

The locale is marked as dead,
the parent (serial execution) or
buddy (distributed execution)
adopts and re-executes the tasks
of the failed locale, and execution
continues.

Task adoption
strategy

The place of the closest synchro-
nisation point (finish) adopts
the orphaned tasks. A num-
ber of orphaned tasks can be ex-
posed via an aggregated excep-
tion.

The buddy locale adopts each
failed task (or the parent locale in
the case of the serial resilient im-
plementation). Each task is mi-
grated based on the destination
locale it was initially scheduled to
execute on and the buddy config-
uration.

Status calls Resilient X10 implements calls
to query the status of arbitrary
places in the execution.

Resilient Chapel implements calls
to query the status of buddies,
guests and children locales

In-transit
message
logging

Recording of in-transit mes-
sages helps in the detection of
incomplete transmissions when
a source place dies.

In-transit messages are used be-
tween parent-children and buddy-
guest locales to communicate task
context.

Node resur-
rection

The number of failed places
does not decrease during appli-
cation execution.

No resurrection is supported
for locales during execution, al-
though idle locales have the abil-
ity to act as buddies and execute
adopted tasks.

Low-level
communica-
tion layer

The implementation supports
only the TCP/IP sockets back-
end, since the PAMI and MPI
backends do not provide one-to-
one connections between com-
municating places.

Resilient Chapel is built on top
of the GASNet communication
backend, the most general multi-
locale setup provided by Chapel.
Other available implementations
such as ofi, a libfabric-based com-
munication layer, introduced in
the more recent versions of the
language and ugni, which is a
Cray-specific implementation are
not supported.

Table 2.4: A comparison of the Resilient X10 and Resilient Chapel design and
implementations, including their main similarities and key differences.
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HPC systems, but scales well for large numbers of agents.

Failure detection, as well as inter-process communication, in Erlang is imple-

mented via linked processes. Each process in the system can create (and destroy)

links to other processes using an API call and the destination’s identifier.

When processes terminate, they emit an exit signal including an exit reason or

they can call an exit function, without impacting their calling process. Processes

can also receive exit signals from linked processes. Erlang uses two types of storage;

ETS: Erlang term storage and and DETS: disk ETS, for RAM and disk storage

respectively. ETS data related to a process that has terminated is discarded, while

DETS data is persistent and error checked.

In the case of abrupt termination, when a process exits with reason other than

normal, all linked processes are signalled. The processes can be programmed to eval-

uate a boolean flag (trap exit) and will either terminate (trap exit == false),

thus sending new signals and propagating the failure to the rest of the system or

will take recovery actions (trap exit ==true). There is a cross-system analogy

between trapping an exit and catching an exception.

Erlang introduces the core idea of supervisor processes. Supervisors monitor the

termination of children processes through links, while they are also able to restart

one or more children. In order to maintain consistency, the required data to start

or restart a process are stored in the disk tables within a transactional scope. Each

child process is complemented by a specification type (Nyström, 2009) shown below:

Id,M, F,A,Restart, Shutdown, Type,Modules (2.13)

where

• Id is the identifier for the child process;

• M, F, A flags indicate how the child should be restarted; by a call to function

F of module M with arguments A;

• Restart indicates how a termination must be handled and can take one of

three values: permanent where the child is always restarted; transient where

the child is only restarted if it fails and temporary which indicates that the

child shall not be restarted;
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• Shutdown indicates the timeframe (in milliseconds) within which a child

process is allowed to perform shutdown before being abruptly terminated;

• Type indicates the role of the process in the system, worker or supervisor;

and

• Modules specify the appropriate handlers to be used.

Each supervisor task implements a Restart Strategy, which can be one-for-one;

only the terminated child process is restarted, one-for-all ; all children processes

are restarted on failure or one-for-rest ; all children processes that started after

the terminated process are restarted. In order to allow global system recovery,

when local restarts cannot tackle the failure, each supervisor has a limited number

of restarts to perform. The limits maxR and maxT indicate that if more than

maxR restarts occur during a period maxT (in seconds) the supervisor task fails.

Erlang applications are built using supervision trees to ensure efficient fault recovery.

Children processes are connected to their parents via links. The leaves of the tree are

worker tasks that perform the actual computation, while non-leaf processes perform

monitoring tasks.

In the context of telecommunication systems or web servers, it is common for

tasks to have inter-dependencies, thus multiple tasks might have to get restarted

on a single failure. The processes are first terminated and subsequently replaced

by newly created processes to avoid the use of obsolete data. A detailed discussion

of Erlang’s fault tolerance mechanism complemented by a strategy for analysing

process structures from source code is published in Nyström, 2009.

Though our work is inspired by Erlang’s fault-tolerance, especially with respect

to the aspects of transparent failure recovery, the two systems differ in a number

of ways. As Erlang is a functional language, tasks correspond to low-level threads

that can fail and get restarted at any time throughout the execution; as such there

can be no side-effects from partially executed tasks. Chapel’s runtime on the other

hand, is layered, abstracting tasks from their executing threads, and to this end we

introduce task atomicity as one of our assumptions detailed in Section 4.2.1. Erlang’s

fault-tolerance is aimed at tackling task failures irrespectively of their location in

the system, while in Chapel we focus on locale failures that closely match the loss

of a node in a large-scale system and we require the communication API to handle
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any lower-level errors. As such, the difference in the runtime implementations of the

two languages does not allow direct comparisons.

FT-SR

FT-SR (Schlichting and Thomas, 1995) is the augmented version of the Synchroniz-

ing Resources (SR) (Olsson, Andrews, Coffin, and Townsend, 1992) distributed pro-

gramming language with features for replication, recovery and failure notification.

The programming model is based on the fail-stop model and focuses on processor

failures with fail-silent semantics (Andrews and Olsson, 1993). The fault tolerant

design is based on the replication of fail-stop modules that perform short atomic

operations despite failure. For an N-fold configuration the application can tolerate

N-1 failures, while failure notifications are generated when the Nth fail-stop compo-

nent fails. The main applications of the language regard two-phase commit server

protocols and atomic operations in banking systems.

FT-SR is a domain-specific language with older design principles. There are

two main similarities between our work and the FT-SR implementation. Firstly,

both approaches work on the same level of the runtime system, attempting to tackle

node failures and secondly, the system can use N backup nodes, similarly to the

multiple buddy nodes used in this work. In contrast, Chapel is a general-purpose

programming language and its use cases cover more than transactional schemes.

In that sense, our work is aimed at handling failures on systems with complicated

communication patters, compared to server-client models.

2.5.2 Runtimes with resilience capabilities

Apache Hadoop YARN’s Resource Manager

In Hadoop version 0.23, MapReduce has been reconstructed to MapReduce 2.0 and

renamed to YARN (Vavilapalli, Murthy, Douglas, et al., 2013). The driving design

idea is the separation of resource management and scheduling, with the use of a

global Resource Manager (RM) and one Application Master (AM) per application.

The RM distributes resources among applications in the system, while the AM

handles resource requests to the RM, coordinates job execution and monitors the
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Node Managers (NM).

Within YARN clusters, the Resource Manager is a potential single point of fail-

ure, although applications may continue to execute uninterrupted. In this direction,

possible restarts of the RM are transparent to the application level. The first step

towards resilience is the preservation of application-queues (Phase I). The second

step is to preserve the running state of the applications and resume work on restart

(Phase II).

Phase I focuses on the reconstruction of the RM to enable it to store application-

queues in a persistent state-store and re-read the states automatically on restart.

This alleviates users from the burden of re-submitting jobs. Also, existing applica-

tions are re-triggered automatically when the RM restarts. If YARN fails to save

the running states, the application is responsible to employ recovery mechanisms

that allow it to continue execution, otherwise the application is restarted.

In Phase II, the RM is able to combine information from application queues

with container-statuses, stored on the Node Managers, and allocation requests from

Application Masters. On restart of the RM, applications only re-sync with the RM

without any work loss.

FTC-Charm++

FTC-Charm++ (Zheng, Shi, and Kalé, 2004) is a fault-tolerant runtime designed

for fast in-memory checkpointing and restart. It is based on Charm++ (Kalé and

Krishnan, 1993), a parallel object-oriented language with high-level parallel con-

structs. On restart, after a failure, the program can continue to execute on the

remaining processors and load balancing is employed to minimize the impact of the

failure. The in-memory checkpointing version is suitable for applications with small

memory footprint, while, for applications with large memory requirements, there is

also an in-disk checkpoint variation.

One of the main design ideas in FTC-Charm++ is the disk-less double check-

pointing. The system does not assume any kind of reliable storage and process state

is stored in-memory in the form of objects. The storing two copies of an object on

two different locations in a distributed manner, alleviates network bottlenecks on

the server machine. This setup resembles our buddy locales system employed for
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Chapel’s distributed remote task spawning, as demonstrated in Chapter 4.

At the same time, Charm++ employs load balancing mechanisms to minimize

post-failure effects. Recovered applications continue execution on fewer processors.

The system uses processor virtualisation (i.e. creates dummy processes in the place

of failed processors) on restart and manages workload imbalances by migrating ob-

jects to less loaded processors. A design overview of the system can be found in

Zheng, Shi, and Kalé, 2004, while in Zheng, Huang, and Kalé, 2006 we find a per-

formance evaluation study.

Resilient Distributed Data Sets

Resilient Distributed Datasets (RDD’s) (Zaharia, Chowdhury, Das, et al., 2012) is

a fault-tolerant abstraction for data sharing in cluster applications. The motivation

behind RDD’s are iterative algorithms; where intermediate results are used across

computations, and interactive data mining tools; where multiple ad-hoc queries are

performed on the same data set. In both cases, in-memory data storage can increase

performance by an order of magnitude.

The main difference of RDD’s compared to other solutions for in-memory stor-

age on clusters (e.g. distributed shared memory (Nitzberg and Lo, 1991), key-value

stores (Ousterhout, Agrawal, Erickson, et al., 2010), Piccolo (Power and Li, 2010))

are the coarse-grained transformations applied to big datasets. Existing abstractions

build on fine-grained updates and are restricted to the use of data replication or the

logging of updates across nodes. As a result, in data intensive algorithms, there is

need for extensive copying, with the subsequent overhead. In RDD’s, fault toler-

ance is provided by logging the transformations instead of the datasets themselves,

allowing for datasets to recover and avoiding expensive replication operations.

An RDD is a read-only partitioned record collection which is created via trans-

formations on data in stable storage or on other RDD’s. Each RDD has information

on its lineage, which is enough to recompute a partition from stable storage. In Za-

haria, Chowdhury, Das, et al., 2012, we find a performance evaluation of RDD’s fault

recovery mechanism using the k-means algorithm on Spark ; a Scala-based system

implemented by UC Berkeley for research and testing. RDD’s are exposed via a lan-

guage API and represented via objects; the objects for lost tasks are reconstructed
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on the failing point. The extra overhead introduced in the particular iteration(s)

with failures, is amortized by the distributed re-run of lost task(s) across machines

leading to a balanced per iteration runtime for the application.

Piccolo

Piccolo (Power and Li, 2010) is a data-centric programming model with fault-

tolerance capabilities aimed at in-memory applications in data-centers. The run-

time system employs key-value tables to store mutable state information across the

participating machines, while updates on the same key are treated as atomic op-

erations. It uses a master-slave model with the master periodically generating a

consistent snapshot of the state. Piccolo, in contrast to our system, requires user-

assistance, for checkpointing additional information on control functions and kernel

point, in order to perform recovery. On machine failure, the master forces restart of

all workers from the latest snapshot. As no information on the state of the master

is maintained, failures of the master are handled as worker failures.

Recovery-Oriented Computing

Recovery-Oriented Computing (ROC) (Patterson, Brown, Broadwell, et al., 2002) is

a joint Berkeley/Stanford research project, investigating novel techniques for build-

ing highly-dependable Internet services. The project is motivated by earlier efforts,

such as IBM’s Autonomic Computing Project in 2001 and Microsoft’s shift to “trust-

worthy” computing as stated by Bill Gates in 2002. ROC differentiates from tradi-

tional approaches for fault tolerance as it emphasizes on failure recovery rather than

failure avoidance. It takes into account human errors, hardware failure and software

ageing, while it also focuses on maintainability. More specifically, maintainability

can be expressed as the ratio of MTTR/MTTF and, in this sense, shrinking the

recovery times has the same effect as stretching the time to failure.

The main study areas of ROC include failure pinpointing to speed up the recovery

process, provision for graceful degradation, system-level undo functions, while the

project also addresses failure categorisation and the design of recovery experiments.

The ROC project has led to the design of undoable systems (Brown and Patterson,

2002) and system-wide undo functionality support (Brown, 2003) and to prototypes

53



Chapter 2: Background

of hardware-level support for recovery (Oppenheimer, Brown, Beck, et al., 2002).

In Table 2.5 we provide an overview of the languages and the frameworks pre-

sented in the Chapter; a summary of the main resilience directions in each system

and finally a high-level comparison to the Chapel resilience framework presented in

the thesis.

Language

/ System

Approach to resilience Resilient Chapel

Resilient

X10
• Failures are realised in the form

of exceptions

• Adoption performed by the

place at the closest synchronisa-

tion point

• Three distinct implementations

of resilient store

• Recording of in-transit commu-

nication

• Node resurrection is not sup-

ported

• Failures are realised as systemic

events

• Task adoption is performed on

buddy locales

• Single implementation of re-

silient store with in-memory

data replication

• Recording of in-transit commu-

nication

• Node resurrection is not sup-

ported

Erlang
• Process-level fault mitigation

• Failure isolation

• Process linking

• Supervisor process

• Restart strategies

• Node-level fault mitigation

• Restart of failed tasks only

• Buddy locales

• Single restart strategy
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FT-SR
• Node replication

• Targets silent processor failures

• Failure tolerance for two-phase

commits

• Configurable backup nodes

• Failure notifications after failure

threshold

• General-purpose programming

• Buddy locales as idle backups

• Failure notification on detection

• Fatal failures threshold

YARN
• Resilient store in-use

• Read state from resilient store

on restart

• Automatic application restarts

• Future work: application re-

sync to YARN without restart

• Restart avoidance

• Continued execution

• Graceful degradation

FTC-

Charm++
• Application restart on remain-

ing nodes

• Load balancing

• In-disk checkpoint variation

• In-memory duplication of ob-

jects

• Processes virtualisation

• Dummy processes as place-

holders for failed nodes

• Restart avoidance

• Continued execution

• No load-balancing capability
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RDD’s
• Focuses on iterative algorithms

with intermediate results

• Logging coarse-grained trans-

formations on the datasets

• No data replication

• Node lineage information per-

sisted in resilient storage

• Reconstruction of lost tasks on

the failure point

• In-memory data replication

• No external storage

• Lost task migration

Picollo
• Persists mutable state informa-

tion across machines

• Support for atomic operations

• Consistent snapshots propa-

gated to slave nodes

• User-assisted checkpointing

• Restart of workers from check-

point on failure

• Persists status information

• Transparency

• Restart from local data on

buddy

ROC
• Targets failure recovery

• Targets hardware errors and

software ageing

• Detection with failure pinpoint-

ing

• Support for system-level undo

functions

• Hardware level recovery support

prototype

• Failure recovery focus

• Software-level support

Table 2.5: An overview of the resilience approaches employed by the languages and
frameworks presented in the section.
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2.6 Summary

In this chapter we have expanded on the issues of concurrency and parallelism,

detailing shared and distributed memory models and the upcoming challenges for

Exascale computing. We have provided an overview of systems’ dependability, dis-

cussing their properties and types of failures and we have detailed widely used failure

metrics. We discussed a range of faults and failure taxonomies, as found in literature.

We reviewed the main challenges of resilient support and addressed the essential

steps required to tackle these challenges across scientific fields. We have expanded

on software-level fault tolerance techniques and emphasized fault recovery as the

main mechanism to achieve system-level resilience. We covered two prominent data

redundancy approaches – external file systems and in-memory replication, using two

concrete representative systems, HDFS and ZooKeeper.

Finally, we have provided a critical review of related projects, focusing on pro-

gramming languages and runtime systems with resilience capabilities. We discussed

their enabling mechanisms and compared their functional characteristics to our de-

sign goals of transparency and automatic task recovery.

In the next chapter, we will discuss Chapel’s design principles, focusing on the

language constructs that introduce locality and parallelism. Drawing from this chap-

ter, we will address the main points that require modifications in order to support

resilience following the forward error recovery approach with in-memory replication,

to allow for graceful degradation of Chapel applications on failure.
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The Chapel Parallel Programming

Language

This chapter serves as an introduction to Chapel, an instance of the Partitioned

Global Address Space class of languages, designed by Cray for general parallelism

on HPC hardware. We provide a brief discussion of Chapel’s origins and the main

programming constructs offered in the base language. We then expand on Chapel’s

key concepts to address HPC: parallelism and locality. We discuss the language con-

structs that support parallelism and locality and detail their internal functionality,

focusing primarily on the communication and tasking layers of the runtime system.

Towards the end of the chapter, we discuss Chapel’s latest experimentation towards

the support of a data distribution for in-memory replication, which gives insight

insight as to Chapel’s future directions regarding resilience.

3.1 A Brief History of Chapel

Cray launched the development of Chapel as part of the second phase of the DARPA

High Productivity Computing Systems (HPCS) program in 2003, alongside four

other teams, each led by a hardware or software vendor. The HPCS program’s

main target was improved productivity for HPC programmers focusing on perfor-

mance, portability, programmability, and robustness, while it encouraged contribu-

tions across the system stack; including proposals for new hardware architectures

and new software, and empirical studies on programmers’ productivity. The teams
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investigated opportunities for improvement in memory, processor and network ar-

chitectures, while also engaged in the design of novel programming languages.

There were three short-listed teams on programming language design, with Cray

pursuing Chapel, IBM working on X10 and Sun developing Fortress. Chapel’s name

was inspired by the Cascade Range, a mountain range at the south east of Seat-

tle. The name is an approximate acronym for Cascade High Productivity Language

(Bernheim, 2007).

3.1.1 Partitioned Global Address Space Programming Model

Chapel is a member of the wider class of parallel programming languages; the Par-

titioned Global Address Space (PGAS) languages. The PGAS programming model

emerged in the early 2000s. Led by DARPA’s HPCS program (Phase II) and moti-

vated by the independent development of Unified Parallel C (UPC) at Berkeley Uni-

versity, around the same period. UPC is another PGAS language; it emerged as an

attempt to combine and refine the successful parallel characteristics and knowledge

gained from previous C99 (ISO/IEC JTC 1/SC 22, 1999) extensions, such as Split-

C (Culler, Dusseau, Goldstein, Krishnamurthy, Lumetta, Eicken, and Yelick, 1993)

and Parallel C Preprocessor (Brooks III, Gorda, and Warren, 1992). Two other rep-

resentative languages of the PGAS model are Co-Array Fortran (CAF) (Numrich

and Reid, 1998; Fanfarillo, Burnus, Cardellini, Filippone, Nagle, and Rouson, 2014),

which is an extension to Fortran 95, and Titanium (Yelick, Semenzato, Pike, et al.,

1998), also developed at Berkeley and closely matching X10’s design.

Based on their core implementation, Chapel, X10, and Fortress are designed and

developed from first principles, while Co-Array Fortran, UPC and Titanium are

language extensions. Another distinction can be made based on their development

time; Co-Array Fortran, UPC and Titanium belong to the first generation while

Chapel, X10, and Fortress are a second generation PGAS. Finally, Co-Array Fortran

and UPC are presumed as mainstream PGAS languages, due to the emerging interest

of the parallel computing community in them. The development of Fortress officially

stopped in July 2012, while the X10 development team have announced their plans

to support direct compatibility to Java, abandoning on the C++ backend.
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PGAS design principles

The PGAS model exposes both data and task/thread locality attempting to improve

on application performance and programmer’s productivity, by providing control

over the lower-level characteristics via high-level abstractions. The predominant

design requirements for modern programming languages, also reflected in DARPAs

HPCS program, can be summarized to the following points (Dongarra, Graybill,

Harrod, et al., 2008):

• Performance: Targeting the improvement in computational power by 10 to 40

times over current performance rates;

• Programmability: Targeting the decrease of development and maintenance

time to 1/10;

• Portability: The results of the HPCS program were required to be applicable

across software and hardware architectures;

• Robustness: Reliability and fault tolerance against hardware and software

defects;

• Heterogeneity: Ability to address a range of emerging architectures, such as

co-processors and GPGPUs and their combinations, with comparable perfor-

mance results;

• Deterministic parallelism: The property of receiving the same results for the

same input in every execution. This is a weaker requirement, though capable

of providing a sound formal basis for the produced applications.

The performance requirement refers to the need for powerful machines and pre-

dates the development of multi-cores, while the portability goal implies performance

portability irrespectively of the underlying software and hardware technologies. In

the next paragraphs, we discuss how Chapel introduces a number of abstractions

and high-level constructs to address the programmability aspect. Throughout the

development of Chapel, a number of releases of the language have focused on per-

formance enhancements but the robustness aspect has not been a focus so far. This

latter aspect has been the motivation for this work.

In the remainder of this chapter we will introduce language constructs of in-

terest and we will identify a number of design directives illustrating the designers’

motivation to address productivity and performance requirements.
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3.2 Chapel Base Language

Chapel is a statically typed and type-safe imperative language. It supports first-

class functions, reflection and method forwarding. Chapel statements, including

procedures (functions) and iterators may have side-effects.

Control Structure

Chapel expresses data and control flow using the Global View Model, where

application code may refer to any lexically visible variable, irrespectively of its lo-

cation in the memory, local or remote. The compiler and the runtime system are

responsible for implementing the load and store operations over the network. In

contrast to commonly used parallel languages, the Global View Model raises the

level of abstraction.

Parallelism is more general than the SPMD model as it imposes fewer restrictions

on how parallel threads operate and it is introduced via multi-threading, while the

low-level thread management is implicitly handled by the compiler, and aided by

the runtime system. This enables Chapel to be architecture-neutral and achieve per-

formance portability ; enabling application execution across different platforms and

maintaining a comparable level of performance (Pennycook, Sewall, and Lee, 2016).

The adoptability goal of the language has been the motivation behind designing

Chapel on top of architecture neutral components (Balaji, 2015); most prominently

the generated C99 executable code, the C++ compiler, and the use of POSIX threads

for parallelism. Chapel runs on both commodity hardware, including laptops and

small clusters from different vendors, and on custom parallel systems, such as Cray

machines.

Task parallelism is supported by constructs that introduce concurrency; begin,

cobegin, and coforall, synchronise tasks (sync/single variables), introduce or

suppress parallelism (block form sync and serial statements) and atomics for

atomic operations. Atomic operations are guided by a transactional memory scheme,

implemented in the compiler and the libraries.

Chapel iterators are another special concept that yield values consecutively or

in parallel. Iterators are used in the underlying implementation of parallel loops,

but they are also a concept that can be used directly on the application level. The

motivation for iterators is to separate the data structure traversal from the com-
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putation and avoid the complexity of nested loops. Parallel iterators are used in

explicit forall loops and they are predefined for ranges, while custom implemen-

tations are provided for domains and arrays. In addition, Chapel allows user-level

zippered iterators, that allow the traversal of multiple ranges and domains within

a single loop. An example of a zippered iterator is demonstrated in Listing 3.1.

1 f o r ( i , j ) in z ip ( 1 . . 3 , 4 . . 6 ) do
2 wr i t e ( i , ” ” , j , ” ” ) ;

Listing 3.1: Example of a zippered iteration.

Sequential Model

Chapel supports a range of widely-used primitive types; bool, int, uint, real,

imag, complex and string, while it also allows type casting and built-in constraints.

The language supports enumerated types, unions and tuples. Similarly to the major-

ity of modern parallel programming languages conditionals, serial loops and break

and continue statements are also available.

Chapel incorporates the concept of objects from object-oriented programming

models to address the programmers’ needs for modularity, but without restricting

the use of other programming styles, such as traditional imperative programming.

Apart from classes, it supports records, which similarly to C#, support value seman-

tics and are allocated in local memory. Procedures (functions) in Chapel support

the use of formal argument intents; such as in, out, inout, const and ref and

support type inference.

Chapel also employs parametric polymorphism to reduce code redundancy and

promote code reuse, while interoperability to C is also supported via the extern

statement. C routines can be inlined in Chapel programs, while also Chapel proce-

dures can be used from external code via the export linkage specifier. Finally, the

language provides a rich set of libraries in the form of base modules, such as Math,

Base and Type, and auxiliary modules such as BitOpts, Search, Sort and Time.
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3.3 Chapel’s Approach to Parallelism

Chapel supports diverse styles of parallelism including task and data parallelism,

cooperative task parallelism and synchronisation based concurrent programming all

of which can be arbitrarily composed.

3.4 Task Parallelism in Chapel

Chapel uses tasks that are able to execute in parallel and express computation.

The target architecture is abstracted via locales: units with storage and execution

capabilities, similar to a core in a multi-core processor, as discussed in our publica-

tion (Panagiotopoulou and Loidl, 2015). A multi-locale program begins execution

on the root locale and spans out to other locales, as remote tasks are spawned.

Chapel uses the term LocaleTree to describe the parent-child relationships and the

dependencies that are created among the participating locales, as a direct result of

the program’s structure. In the following paragraphs, we provide a brief overview

on aspects of relevance to the support of resilience.

3.4.1 Unstructured Task Parallelism

The begin construct introduces unstructured parallelism by forking a new com-

putation to execute on a new thread, while the rest of the program continues. The

result of the task is returned at a later point in the execution and its completion is

tracked either by an enclosing explicit synchronisation (sync) block or the implicit

synchronisation of the main function (join operation). Listing 3.2 demonstrates an

example use of begin. We note that the first call of sumFunct will execute on a

newly created thread and thus the execution order of the two tasks is not guaranteed.

1 // sumFunct: prints the sum of two integer input numbers
2 begin sumFunct (4 , 5) ;
3 sumFunct (2 , 1) ;

Listing 3.2: Example use of the begin construct.
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3.4.2 Structured Task Parallelism

Cobegin employs block-structured task creation; a task is created for each statement

in the block, while the coforall loop creates exactly one task per iteration and is

the loop-form equivalent of the cobegin block. Both cobegin blocks and coforall

loops employ an implicit synchronisation barrier to control the asynchronous tasks

that are launched.

1 const pivotVal = f i n d Pivot ( ) ;
2 const pivotLoc = p a r t i t i o n ( pivotVal ) ;
3
4 s e r i a l thre sh <= 0 do cobegin {
5 // tasks in the block execute asynchronously
6 pqsort ( arr , thresh −1, low , pivotLoc−1) ;
7 pqsort ( arr , thresh −1, pivotLoc +1, high ) ;
8 } // implicit synchronisation point

Listing 3.3: Snippet of the quicksort algorithm implementation in Chapel, with
in-place array modification, using an explicitly synchronised cobegin block (Cray
Inc, 2015a)

The control flow returns when all tasks have reached the synchronisation point

and the program resumes with the execution of the next statement. In Listing 3.3

we demonstrate a part of the main calculation of the quicksort algorithm, as imple-

mented in Chapel using a cobegin block. The serial construct is used to suppress

parallelism for performance tuning purposes.

3.4.3 Remote Task Spawning

Explicit remote task spawning is achieved in Chapel using the on construct. In

Section 3.6.2, we discuss the construct in detail. Figure 3.1 demonstrates the control

flow of the begin, cobegin and coforall constructs when combined with the on

construct. The main difference is the block-wait operation of the master task on the

guiding locale. When begin is used, the parent locale continues with the execution

of other tasks in a non-blocking manner, while when cobegin or coforall is used,

the parent locale block-waits on the completion of every task in the block/loop.

The tasks that are created within a cobegin or coforall execute in a non-blocking

fashion with respect to each other, while the guiding thread of the master task

contributes to the execution of the tasks behind the scenes. Finally, Chapel applies
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Figure 3.1: Program control flow using 3.1(a) the on construct in a serial execution,
followed by its combination with task-parallel constructs (3.1(b) begin and 3.1(c)
cobegin/coforall) to produce distributed parallel execution flows in Chapel. In
order to achieve remote execution of a task in Chapel, the on construct is required for
placement and a task parallel construct is potentially combined to produce forking.
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a compiler optimisation to execute tasks serially when a cobegin block contains less

than three tasks.

3.4.4 Synchronisation and Atomicity

Synchronisation in Chapel is supported via sync and single variables which are

associated with a logical full/empty state. Chapel’s primitive types (excluding

complex), enumerated types and classes can be translated to synchronised types

using the sync and single type constructors.

1 var count$ : sync i n t = n ; // counter which serves as lock
2 var r e l e a s e $ : s i n g l e bool ; // barrier release
3
4 f o r a l l t in 1 . . n do begin {
5 work ( t ) ;
6 var myc = count$ ; // read the count, set state to empty
7 i f myc!=1 {
8 wr i t e ( ” . ” ) ;
9 count$ = myc−1; // update the count, set state to full

10 r e l e a s e $ ;
11 } else {
12 r e l e a s e $ = true ; // release all tasks
13 w r i t e l n ( ”done” ) ;
14 }
15 }

Listing 3.4: Implementation of a split-phase barrier using sync and single variables
(Cray Inc, 2015a)

A synchronisation variable can only be read when in a full state and accordingly

it can be written when its state is empty, while when an initialisation expression is

present in the declaration the state is considered full. The difference between the

two types is that a single variable is immutable, in the sense that it can only be

written once. These concepts are similar to Haskell’s (Peyton Jones, Gordon, and

Finne, 1996) MVar and Ivar data types. The $ notation is used by convention as

suffix for sync and single variable names to provide the programmer with a visual

hint about synchronisation in the code.

Listing 3.4 demonstrates a forall loop with locks. In each iteration the task

reads the count$ variable and attempts to read the release$ variable. All tasks

will block, until the last task writes the release$ variable, thus setting it to a full
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state and allowing all other tasks to unblock.

Chapel provides support for atomic operations for bool, int, uint, and real

types with the use of atomic variables. Common operations on atomic values include

read, write, testAndSet and fetchAdd. On the runtime level, Chapel programmers

can choose among three implementations for atomic operation, via the CHPL ATOMICS

environment variable; cstdlib, intrinsics and locks. Listing 3.5 demonstrates

an example of an atomic variable x with the use of predefined methods for reading

and writing.

1 c o n f i g const n = 31 ;
2 const R = 1 . . n ;
3
4 var x : atomic i n t ;
5 x . wr i t e (n) ;
6
7 i f x . read ( ) != n then
8 ha l t ( ” Error : x ( ” , x . read ( ) , ” ) != n ( ” , n , ” ) ” ) ;

Listing 3.5: Example use of atomic variables (Cray Inc, 2015a)

3.5 Data Parallelism

Data parallelism in Chapel is expressed with parallel forall loops and with a set of

implicitly parallel operations on arrays, such as whole-array assignment and reduc-

tions. These high-level constructs promote an abstract parallel programming style

and assist in the avoidance of common errors, such as deadlocks and race conditions.

3.5.1 The forall loop

Chapel’s forall loop is the parallel version of the for loop, where an arbitrary

number of tasks is used to execute iterations in parallel. This is the main point

differentiating the forall from the coforall loop, where each iteration is executed

by a distinct Chapel task. The number of tasks in the forall is decided by the

iterand based on the available hardware resources, while the user may explicitly set

a maximum threshold on the creation of tasks.
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The iterations in a forall loop are required to be serialisable and thus free from

inter-task dependencies; serialisability is a guarantee that a set of operations that

alter data are equivalent to a serial execution of the same operations. The idea

closely matches the isolation property of the transactional paradigm in database

development (Haerder and Reuter, 1983), alongside the principles of atomicity, con-

sistency and durability. A serialisable execution will preserve correctness, given that

each separate iteration in the forall loop preserves correctness. As the forall loop

must be able to produce the correct output even in the worst case, when executed

by a single task, its serialisability is checked by the compiler during the semantic

analysis phase (type checking).

Chapel users are allowed to write custom iterators (Chamberlain, Choi, Deitz,

and Navarro, 2011) to guide forall loops. To achieve this, users need to supply

the iterators that create the tasks and distribute the iteration space among them.

Iterators can be produced using solely base language and task-parallel constructs.

The implementation details of iterators are discussed in Section 5.1.3.

3.5.2 Domains and Arrays

Domains are another novel Chapel construct representing ordered sets of Cartesian

indices. Domains define iteration spaces, support aggregate operations; such as

slicing, control the shape of arrays and drive loops. A domain is defined by its rank;

indicating the number of its dimensions, idxType; which specifies the index type

for each dimension, and a boolean stridable flag, to indicate whether any of the

dimensions results from a strided range. Domains are first-class language constructs

and can have both regular and irregular base domain types, such as dense, strided,

and associative accordingly. Iteration spaces can be single or multi-dimensional and

domain indices can be distributed across multiple locales.

As a high-level abstraction mechanism, domains support promotion of scalar

operations, which are equivalent to explicit forall loops, with parallel mapping of

functions across the domain’s indices. They can be used as hash tables, dictionaries

and unstructured graphs, while there are also sparse domains that represent subsets

of parent domains. Chapel also supports a fixed set of higher-order custom reduc-

tion and scan operations (sum product, max/min, bitwise operations) on domains,
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as part of its standard modules, similarly to MPI’s collectives. Reductions can flat-

ten the dimension of values, while scans are used to calculate prefix operations in

parallel.

Listing 3.6, demonstrates a snippet of the Jacobi four-point stencil implementa-

tion in Chapel. The code is a standard example of the use of domains as iteration

spaces and demonstrates the basic syntax for array declaration. The two arrays X

and XNew are declared over BigDomain (line 5). A forall loop is used to iterate in

parallel over the indices of ProblemSpace performing the main calculation on the ar-

ray’s values. On line 12, a combination of higher-order functions is used to calculate

the delta value between the two arrays.

1 // representation of the initial problem space and
2 // a superset domain
3 const ProblemSpace = { 1 . . n , 1 . . n} ,
4 BigDomain = { 0 . . n+1, 0 . . n+1};
5
6 // declaration of the initial and result arrays
7 // over BigDomain
8 var X, XNew: [ BigDomain ] r e a l = 0 . 0 ;
9

10 // constants to represent the neighbouring nodes
11 // in every direction
12 const north = (−1 ,0) , south = (1 , 0 ) , e a s t = (0 , 1 ) , west =

(0 ,−1) ;
13
14 do {
15 f o r a l l i j in ProblemSpace do
16 XNew( i j ) = (X( i j+north ) + X( i j+south )
17 + X( i j+ea s t ) + X( i j+west ) ) / 4 . 0 ;
18 // reduction: compute the max of absolute differences
19 // of the next and current approximations to check
20 // if convergence has been reached
21 de l t a = max reduce abs (XNew[ ProblemSpace ] −
22 X[ ProblemSpace ] ) ;
23 X[ ProblemSpace ] = XNew[ ProblemSpace ] ;
24 i t e r a t i o n += 1 ;
25 } while ( d e l t a > e p s i l o n ) ;

Listing 3.6: Chapel’s implementation of the jacobi algorithm using forall loop
and domain operations (Cray Inc, 2015a)
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ProblemSpace
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x x
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x x

x x

3.6 Locality

Chapel enables programmers to control locality on the lower levels, by specifying

the placement of variables and the location of tasks, but also at a higher level

with the use of distributed domains and arrays. Chapel’s support of distributed-

memory data parallelism, stems from this high-level approach. Locality is distinct

from parallelism; in Chapel’s design the two concepts are orthogonal and can be

combined freely.

3.6.1 The locale type

Locales are portions of the targeted parallel architecture with processing and stor-

age capabilities (Cray Inc, 2015b). Locality is the core Chapel design principle to

express an abstraction over both data affinity and the placement of task execution.

A locale in Chapel is a primitive type, which allows control over affinity, while it

allows tasks to have uniform access to local and remote data, due to the global name

space of the PGAS programming model. Locale types support equality operations

and often represent a compute node, such as a multi-core node of a conventional

parallel architecture. The tasks that execute on a locale have access to local and

remote variables, though with different access costs.

Chapel programs execute on a number of locales, specified at execution time.

Locales can be referenced from within the code using their localeId within the

LocalesArray and via predefined methods that query locale properties. Examples of

such methods return the total number of cores, a locale’s name, the call stack limit

and the number of tasks and threads that execute locally at a specific point during

the program’s execution.
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3.6.2 The on construct

In Chapel the programmer can explicitly specify the resource on which a task will

execute by using the on construct and a single operand specifying the target locale.

A variable can also act as an operand, in which case the statement will execute on

the locale where the variable is stored. Controlling locality via variables is a better

programming practice since it disengages the program from the number of locales.

Additionally, programmers can query the locale on which a variable is stored or a

task executes, using the .locale method or the built-in variable here.

1 var x : i n t = 2 ;
2 on Loca l e s [ 1 % numLocales ] {
3 var y : i n t = 3 ;
4 // execution on the locale where x is stored,
5 // syntactic sugar for x.locale
6 on x do
7 task ( ) ;
8 }

Listing 3.7: An example of Chapel’s task migration using the on construct (Cray
Inc, 2015a). numLocales is the execution flag specifying the number of locales on
which the application will execute; available also on application level.

The on construct, demonstrated in Listing 3.7, is the main language mechanism

for task migration. On constructs are used in Chapel to explicitly control task locality

and guide the execution. The migrated task is a logical continuation of the initial

task at a different place in the system. The body of an on block is perceived as a

single blocking task by the controlling thread of the parent locale.

On clauses do not introduce parallelism in the program, hence emphasizing on

Chapel’s distinction between parallelism and locality, however they can be combined

with both task- and data-parallel constructs to generate different parallel styles.

1 c o f o r a l l l o c in Loca l e s do
2 // task migration to loc
3 on l o c do
4 task1 ( ) ;

Listing 3.8: An combination of coforall and on constructs (Cray Inc, 2015b)

Listing 3.8 demonstrates a distributed parallel program with a combination of

on and coforall constructs. On the runtime level, a non-blocking fork operation is
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used to implement the parallel execution, which includes the task migration on the

remote locales.

Fork operations are also used during initialisation of multi-locale programs to

establish communication between the root locale (Locale 0) and the rest of the

locales in the configuration; such tasks include broadcasting of global variables and

locale initialisation on the communication layer.

3.6.3 Domain Maps, Layouts, and Distributions

Domains and arrays are governed by domain maps that specify their distribution.

Each domain map specifies the rules that control how domains or arrays are dis-

tributed over a range of locales; how indices and elements are mapped over physically

distributed memory and how operations are performed.

When no domain map is provided all indices of a domain are mapped to the

current locale and stored in local memory, forming layouts. When multiple locales

are targeted Chapel employs distributions to allow distributed mapping of indices

and, consecutively, array elements.

Distributions and layouts are encountered in most PGAS languages as a tool to

query domains and arrays that reside on the same locale or are partitioned across

multiple locales. Chapel offers commonly-used predefined layouts and distributions

as part of its standard module library. In Listing 3.9, we demonstrate example

use cases of the Block and Cyclic distributions. Parallel forall loops are used

to initialise the values of the distributed arrays using the unique identifiers of the

corresponding locales. In Chapter 5 we focus on the internal implementation of the

Block distribution.

Domain maps are a high-level construct in Chapel as they are implemented

on top of other high-level constructs that provide data- and task-parallel features,

locality features and base language constructs. The full power of these constructs

stems from the ability to develop user defined distributions tailored to the target

application (Chamberlain, Deitz, Iten, and Choi, 2010). The explicit placement of

data and computation is the main feature that supports locality.

The block size is calculated in the Blocked distribution by dividing the indices

of the domain with the number of the target locales. If a remainder exists, then a
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larger block size is used, resulting in larger blocks being assigned to the first locales,

per their ordering in the target locales array of Table 3.1.

idx locIdx

low <= idx <= high floor((idx− low) ∗N/(high− low + 1))
idx < low 0
idx > high N − 1

Table 3.1: The index set partitioning into blocks within the Blocked distribution.
Each block is mapped on a locale of the targetLocales array. The boundingBox is
the domain used as guide for the partitions and it is commonly equal to the problem
domain.

1 // distribution modules
2 use BlockDist , Cyc l i cD i s t ;
3
4 // two-dimensional space
5 const Space = { 1 . . 8 , 1 . . 8 } ;
6
7 // block distribution over a
8 // two-dimensional domain
9 const B: domain (2 ) dmapped

10 Block ( boundingBox=Space ) = Space ;
11
12 // cyclic distribution over a
13 // two-dimensional domain
14 const C: domain (2 ) dmapped
15 Cyc l i c ( s t a r t I d x=Space . low ) = Space ;
16
17 // declaration of blockArray over the
18 // block-distributed domain B
19 var blockArray : [B] i n t ;
20
21 // declaration of cyclicArray over the
22 // cyclic-distributed domain C
23 var cyc l i cAr ray : [C] i n t ;
24
25 // parallel loop over blockArray
26 f o r a l l a in blockArray do
27 a = a . l o c a l e . id ;
28 w r i t e l n ( blockArray ) ;
29
30 // parallel loop over cyclicArray
31 f o r a l l a in cyc l i cAr ray do
32 a = a . l o c a l e . id ;
33 w r i t e l n ( cyc l i cAr ray ) ;

Listing 3.9: Example mapping of indices for Chapel’s Blocked and Cyclic
distributions (Cray Inc, 2015a)
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Output (run on 6 locales):

blockArray cyclicArray

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

2 2 2 2 3 3 3 3

2 2 2 2 3 3 3 3

2 2 2 2 3 3 3 3

4 4 4 4 5 5 5 5

4 4 4 4 5 5 5 5

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

4 5 4 5 4 5 4 5

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

4 5 4 5 4 5 4 5

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

The blocks are then calculated based on a the number of indices in the distributed

domain and the block size. The calculation is wrapped inside a forall loop over the

locales. The first iteration of the computation calculates the lower bound of each

of the domain’s dimensions and the second iteration is used to calculate the upper

bound. The cyclic distribution applies a slight variation to the above by using strided

ranges. In Listing 3.9 the block of Locale 0 in the Block distribution is defined by

the range {0..3, 0..2} while for the Cyclic distribution the block is defined by the

range {0..7 by 2, 0..7 by 3}.

Although, the explicit data and task placement contrasts with the shared memory

and the SPMD programming model, it solves valuable control issues in distributed

memory systems. Due to the global namespace, the declaration of a domain is the

only modification required to enable shared-memory code to support distributed-

memory operations. To ensure affinity forall loops are implemented in a way that

allows iteration over the local index set. Finally, Chapel’s compiler does not as-

sist in maintaining memory consistency, it is left to the programmer to enforce it

via synchronisation constructs. As a result of Chapel’s relaxed memory semantics,

memory consistency is only guaranteed for race-free programs.

3.7 Chapel’s Runtime Environment

Chapel depends on a number of runtime libraries and API’s that implement the

low-level features of the language. The runtime layers, as shown in Table 3.2, are
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organised as interfaces; they are implemented in C and linked to the generated code.

Each of the layers implements a subset of the required functionality; communication,

task, memory management and timing. Each interface provides a number of dis-

tinct implementations to support the required semantics. For the remainder of this

section we will discuss the main implementations provided for the communication

and tasking layers.

Runtime Layers

Communication Layer
Tasking Layer

Threading Layer
Timers

Launchers

Table 3.2: Overview of Chapel’s runtime system layered architecture.

3.7.1 The Communication Layer

Chapel’s communication layer is written in C and it is a thin wrapper of GASNet

(Bonachea, 2002), a network- and language-independent communication interface

tailored to the PGAS programming model. GASNet supports multiple communica-

tion protocols (e.g UDP, MPI) for the implementation of the low-level communica-

tion API, with reportedly good performance results (Titus, 2011).

GASNet Core API

The main concepts in GASNet’s Core API are nodes, threads and jobs. Nodes are

the main units of control and return values from gasnet init() calls. A node repre-

sents an OS-level process, associated to local memory and system resources. Threads

within a node share virtual memory and OS-level process identifiers. Threads of a

multi-threaded node are equal, no master-slave distinction is made. Control func-

tions execute using a single thread on the node on behalf of every locale. Finally,

jobs build a parallel execution environment on a set of nodes that often correspond

to physical units.

Errors that occur during a call to the GASNet core functions or the extended

API are fatal, except if otherwise specified. If a node within a GASNet job crashes,
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aborts, or suffers a fatal hardware fault, GASNet attempts to terminate the remain-

ing nodes in a timely manner to prevent the creation of orphaned processes.

As we will discuss in Chapter 4, since GASNet is not designed for resilience, many

of its design choices inhibit the purposes of the resilient implementation, where the

main goal is to enable the runtime to handle the orphaned processes safely on a

higher level, notably on the tasking layer. We will also discuss in detail the required

communication layer changes to ensure that the application does not terminate and

the challenges faced in the design of a testing mechanism to simulate locale failures.

Active Messages

GASNet builds on top of Active Messages (Eicken, Culler, Goldstein, and Schauser,

1992), a library that implements dual-message communication with logically match-

ing request and reply operations. Upon receipt of a request message, a request han-

dler is invoked; likewise, when a reply message arrives, the reply handler is invoked.

Request handlers can reply at most once to the requesting node. If no explicit reply

is issued, the layer may generate one, automatically. Thus a request handler may

reply once to the requesting node, while reply handlers cannot issue requests or

replies.

A high-level description of an ActiveMessage exchange between two nodes, A and

B is described below, where (*) is a wildcard character, used to represent a predefined

system function. Figure 3.2 demonstrates a representation of the message exchange

between the two nodes.

1. A calls gasnet AMRequest*() and sends a request to B. The call includes ar-

guments, data payload, B’s address (node index) and the index of the request

handler to run on B when the request arrives;

2. At a later point, B receives the request, and runs the appropriate request

handler with the arguments and data (if any) provided in the request call.

The request’s handler performs calculation on the arguments and issues a

reply message (gasnet AMReply*()) before exiting. The reply handler copies

the token passed into the request handler, the arguments and data payload

and the index of the reply handler to execute when the reply message arrives.

A node index is not required as the request handler is only permitted to send
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A B

gasnet AMrequest

AM request

gasnet AMreply

AM reply

Figure 3.2: High-level representation of an Active Message communication between
two nodes. Node A sends a request to Node B, including arguments and data
and the index of the handler to execute on Node B on reception of the request.
Node B performs the required calculation and issues a reply message to Node A.
On reception of the reply, Node A calls the corresponding reply handler, performs
necessary calculation and exits. Any further messages from Node A signify the
beginning of a new cycle of communication.

a reply to the requesting node;

3. Later in the execution, A receives the reply message from B and runs the

corresponding reply handler, with the arguments and data provided in the

gasnet AMReply*() call. The reply handler performs any necessary calcu-

lation on the arguments and exits. A is not permitted to produce further

messages.

From a sender’s point of view, request and reply functions are blocked until the

message is sent. A message is perceived as sent, once it is safe for the caller to reuse

the occupied block of memory. For implementations that copy or buffer messages for

transmission, messages are defined as sent, as soon as the message layer has copied

the message.

The layer is best effort and any necessary re-transmissions and buffering issues on

unreliable networks, are handled transparently to the upper levels. This property of

the communication layer is fundamental for our design and relates to our assumption
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about Network partition, as discussed in Section 4.2.1. We require that the failures

of the underlying network are either handled transparently or lead to a system-wide

abort.

In either case, sent does not necessarily imply received. Once the control returns

from a request or reply function, clients cannot assume that the message has been

received and handled at the destination. The message layer only guarantees that if a

request or reply is sent and the receiver occasionally polls for arriving messages then

the message will eventually be delivered. From a receiver’s point of view, a message

is defined as received only once the corresponding handler function is invoked. The

contents of partially received messages and messages with unexecuted handlers are

undefined.

If the client sends an AM Request or AM Reply to a handler index that has not

been registered on the destination node, GASNet will terminate the job. Each

specific implementation defines whether the sending or the receiving end handles

the null check.

Based on the above discussion of the main components of the communication

layer we identify the main issues that require special handling in order to support

resilience. Firstly, the strict GASNet policy regarding node crashes and fatal failures

needs to be tackled in order to allow the runtime to execute the required functions to

perform task adoption and re-execution. The second issue that arises is the testing

mechanism; specifically, the simulation of node crashes without the system-wide

abort dictated by GASNet. We expand on these issues in Sections 4.3.2 and 4.4.2

of the next chapter.

3.7.2 The Tasking Layer

Tasks are the main units of parallelism in Chapel, they express computation that

can execute in parallel. Tasks are defined as processes that form a distinct execution

context, potentially composed of multiple threads. The underlying threading layer

is used to execute tasks. From a programmer’s view, tasks are the predominant

construct and the control of lower-level features, such as scheduling or mapping of

tasks to threads, is deliberately hidden on the application level. The abstraction

of tasks promotes programmability and provides flexibility and low-level control on
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scheduling for the runtime layer while parallelism, both implicit and explicit, is

implemented in Chapel via asynchronous tasks.

The task management interface is primarily responsible to implement the tasks

generated by Chapels begin, cobegin and coforall statements and to implement

the full/empty semantics required for synchronization variables. The tasking in-

terface supplies calls for startup and shutdown, singleton task creation, manage-

ment and execution of task lists, in addition to synchronisation and task queries.

On program startup, the only existing task is main(), while task lists are created

dynamically to manage the tasks associated with begin, cobegin, and coforall

constructs. Accumulating the tasks related to a construct in a task list is beneficial

for executing them in the desirable order with respect to all the other active tasks,

given a potentially limited number of hosting threads. In particular, this practice

allows the thread that hosts the parent task to run all the children tasks resulting

from that construct one after another serially, when all other threads are busy with

the execution of other tasks and the maximum number of threads has been reached.

This prevents one kind of deadlock due to having more tasks than hosting threads.

FIFO tasks over POSIX threads (pthreads), is the most commonly used tasking

layer implementation provided by Chapel and though it is heavy-weight, it maintains

its portability benefits. Another tasking layer implementation is Qthreads developed

by Sandia National Laboratories. The benefit of Chapel tasks over Qthreads is a

light-weight implementation with enhanced support for synchronisation. Qthreads

became the default tasking layer for Linux platforms from Chapel version 1.12 on-

wards. Other alternatives include MassiveThreads (Nakashima and Taura, 2014),

developed by the University of Tokyo and the muxed tasking layer implementation,

which is specific to Cray systems.

FIFO tasks

In the FIFO tasking layer, a Chapel task is mapped to a thread and executes on this

thread until completion. The number of active tasks of a program at each point can-

not exceed the number of existing threads. If the program, creates more tasks, these

are placed into a task pool, until a thread picks them for execution. The name of the

tasking implementation implies that POSIX threads will pick up tasks to execute,
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preserving their order of creation by the program. As POSIX threads (pthreads)

creation is expensive, the scheduler does not destroy them when they become idle.

Instead, threads continue to check the task pool for new tasks. The number of

pthreads to be used in a Chapel program is configurable via environment vari-

ables. The FIFO implementation of the tasking layer can prove more heavy-weight

on some platforms compared to other implementations, mainly because it is tied to

POSIX threads, which typically carry a lot of context and may apply restrictions.

For example, in Linux, user pthreads are implemented as kernel threads; requiring

more time for context switching, and are commonly governed by restrictions on their

pre-emption.

Qthreads

Qthreads is a cross-platform parallel runtime environment designed to support pro-

gramming with light-weight processes. Qthreads supports synchronisation and atomic

operations, while the runtime assumes shared work queues and work stealing. Atomic

operations and the subsequent context switching is performed using function calls

outside the kernel. This results in less state information being persisted, and more

opportunities for the scheduler to hide communication latency (Wheeler, Murphy,

Stark, and Chamberlain, 2011).

Qthreads implements a two level hierarchy with shepherds, that control work

distribution, and workers, that host Qthreads. Processes are assumed not to compete

with other Qthreads over CPU and memory, by default. As Chapel programs often

execute with a configuration of one locale per node, Qthreads is suitable for high-

performance computing applications. Finally, the implementation depends on the

third-party hwloc library, which provides a description of the locale aware hardware.

Tasking Layer’s Subsidiary Role

The tasking layer also performs the subsidiary role of supporting on statements; it

executes a dual-phase synthetic task; by firstly scheduling the body of the on state-

ment for execution on the target locale (child) and on completion of the execution

sets an internal flag on the initiating locale (parent) to mark the completion. The

communication layer on the target locale launches the body of the remote task by
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calling chpl task startMovedTask(), a dedicated function of the tasking layer.

While on statements are the main mechanism to perform task migration in

Chapel, they are part of the design of the communication layer. The implemen-

tation takes advantage of the tasking layer’s capabilities to simplify the intended

functionality. Due to the acknowledgement-based method for execution ordering, a

task within an on statement is not added to the global task list, instead the initiating

(parent) locale is responsible for monitoring the completion of its execution.

Tasking interface

Tasks are assigned unique identifiers (taskID) serially when added to the task pool.

Their data type and default value are used to exchange task identifiers between C

and Chapel code. In contrast, thread identifiers use negative integer values to make

a clearer distinction to tasks.

Two important functions within Chapel’s tasking layer API are addToTaskList,

which appends tasks to the task list as they get created for the construct on the

current locale and executeTasksInList, which ensures that all tasks in the task

list have begun execution.

Chapel implements a task table, on module level, to monitor tasks in the sys-

tem, for debugging purposes. Information about the state of tasks and the file and

line they are created in the original program is maintained, while the task table

is initialised in parallel on each locale, after the initialisation of the tasking and

threading layers. To avoid referencing tasks that are created before the table’s ini-

tialisation, for example the main() task, all operations on the table are checked for

membership. Table 3.3 demonstrates the information that is available in the cur-

rent implementation of the runtime within the task lists and the task pool. The

concepts of task identifiers, state information and task list are used extensively in

the implementation of resilience on the tasking layer in the next chapter.

Number of Threads

The number of threads used to execute a Chapel program can be controlled

by the environment variable NUM THREADS PER LOCALE. The default value is zero,

indicating that the choice of number of threads is left to the tasking layer. Chapel

programs will generate an error if the requested number of threads per locale is out
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Task Info Location Description
taskID task pool Identifier of the task
fn task list, task pool Pointer to the function to be executed
arg task list, task pool Pointer to the arguments of the func-

tion
begun task list Boolean, indicates that a task has be-

gun
filename task list, task pool Filename where the task was started
lineno task list, task pool Line number in the filename

prvData task list Task private data
prev/next task pool Pointer to previous/next task in the

task pool
ptask task list Pointer to the task pool
ltask task pool Pointer to the task list
state task table Task state: pending, active, suspended
tl info task table Information for the tasking layer
sublocale task table Requested sublocale for a moved task
task list

locale

task list, task pool Indicates the locale on which the task
list resides

is begin

statement

task list, task pool Boolean, indicates that the statement is
a begin

Table 3.3: Properties and functions of tasks in the runtime system. All tasks created
within the system are placed in the globally accessible task pool. Tasks that are
created in the context of a block such as a cobegin block or a coforall loop form
task lists.

of bounds. For example, when using the GASNet API on a multi-locale setup, the

number of threads is bound to 127 or 255 threads per locale.

For Qthreads and MassiveThreads, the value of NUM THREADS PER LOCALE speci-

fies the number of system threads, or shepherds, used to execute tasks. If the value

is 0, the tasking layer creates an equal number of threads to the number of processor

cores on each locale.

In the FIFO tasking layer, the value of NUM THREADS PER LOCALE indicates the

maximum number of threads that can be created on each locale. The threads

are created on demand, meaning that in a program with few concurrent tasks the

maximum number of threads may never be reached.

For a program with heavy computational load and few inter-task dependencies,

it is recommended that the number of threads is set equal to the number of physi-

cal cores. On the contrary, a program with fine-grained synchronisation, can use a
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larger number of threads without impacting performance, since idle threads will not

consume CPU cycles. In particular, a larger number of threads in this case is recom-

mended for effective latency hiding. The Qthreads implementation is tuned towards

performance, rather than load balancing, which is beneficial to Chapel programs

that typically execute on one locale. For a program using multiple locales mapped

to a single node though, this scheduling strategy can impact performance negatively

due to resource starvation. To this end, the programmer can enable the oversubscrip-

tion option (CHPL QTHREAD ENABLE OVERSUBSCRIPTION) to introduce load balanced

scheduling of processes. Finally, setting the number of threads very low, can result

in deadlock, if the program produces larger numbers of concurrent tasks.

Task Call Stack

All executing tasks are associated to a call stack, the size of which is specified

by the CALL STACK SIZE environment variable. Tasks that require more space than

the amount provided by their call stack, result to stack overflow. Chapel programs

are designed to check for overflow by default, though at the moment, these checks

are implementation dependent.

For FIFO tasks the typical call stack size is 8MiB, while there is an additional

guard page at the end of each call stack. If a task causes stack overflow the guard

page will return a bad memory reference; in the case of Linux environments this

translates to a segmentation fault and leads to program termination.

3.8 Chapel’s Resilience Directions

In version 1.16 Chapel introduced support and documentation for the Replicated

Distribution where each participating locale stores the entire replicant, domain or

array. As a simplistic example a domain of 4 ({1..4}) distributed with the Replicated

distribution will store 4 indices per locale. Chapel also supports access operations

to the local replicant on each locale, while the consistency between replicants on

different locales is not automatically maintained.

The replicated distribution, although still a work in progress, makes clear the

intention of the Chapel team to support a form of in-memory data redundancy

scheme, and subsequently reveals the interest for resilience support in the future.
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Since the Replicated distribution cannot currently be combined with other standard

distributions, it has not been the focus of experimentation for this work, since our

intention has been to support resilience for a widely used pattern of data distribution,

the Blocked distribution.

3.9 Summary

In this chapter we discussed Chapel’s origins and introduced the main constructs

of the base language. We have focused on Chapel’s parallelism and locality design

directives and discussed the functionality of task- and data-parallel constructs and

mechanisms. We have introduced the main concepts that guide our resilient design,

the explicit placement of tasks with the on construct, the constructs that introduce

parallelism and the data distributions.

In the second part, we expanded on the runtime system, focusing on the com-

munication and tasking layers. We also pointed out the implementation details that

require special handling in order to allow resilient support, such as the strict failure

policy of GASNet. We will be detailing the design and implementation of resilience

in Chapters 4 and 5, for the task- and data parallel part, respectively.
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Resilient Task Parallelism

In this chapter, we present the design and evaluation of our extensions to Chapel’s

runtime system to support resilience for serial and task-parallel constructs. Cen-

tral to our implementation is an in-memory data redundancy scheme. We detail

the internal runtime system functionality and the required additions and modifica-

tions to support uninterrupted program execution in the presence of failures. We

evaluate a prototype for serial distributed execution; serial programs that utilize

on constructs to execute remote tasks, and subsequently extend the functionality

to support Chapel’s task-parallel constructs. We run experiments on a commodity

cluster configured with up to 16 locales. Additionally, a focal point of the resilient

design are buddy locales, a core concept that drives the scheduling of task adoption

and recovery of failed tasks.

4.1 Foundations of Resilience

In Chapter 2 we have discussed the principles of software level fault-tolerance (Sec-

tion 2.3.2) and expanded on the concept of the resilient store as a data structure

able to survive failures. In Section 2.4, we detailed two widely used frameworks for

resilient data storage, HDFS, a representative example of external file systems and

ZooKeeper, a coordination framework for in-memory store.

Earlier in Chapter 2, we motivated our design decision to implement a custom in-

memory data store to ensure redundancy of the data required for task re-execution.

In the context of this work, we are not concerned with providing redundancy of
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the computation, similar to the technique of the N-version programming of Section

2.3.2, though we recognise that the buddy locale mechanism could become the basis

for such an approach. In our design a successful task completes execution once,

and there is no duplication of the produced results. Such an approach to resilience,

is more common either on hardware-level fault tolerance or on software for large

production systems, with spare resources that perform redundant calculations and

decide based on voting algorithms. Here we are concerned with providing a gen-

eral purpose mechanism for resilience, available to the average Chapel user (with

access to commodity hardware), where all available compute resources perform in

the best case scenario (of no failures) only their locally assigned work. In the below

paragraphs we detail the implementation of our in-memory resilient data store.

For the purposes of data redundancy, this work employs in-memory replication

on the networked nodes, as discussed earlier in Section 2.4. We avoid the use of exter-

nal mechanisms, such as file systems. This is primarily a design decision to propose

a resilience mechanism, independent of external systems or third-party software and

in accordance to our goal of transparency ; the Chapel programmer, is able to use

the resilient version of the runtime system out-of-the-box, similarly to any Chapel

release. In Figure 4.1 we port the simple diagram of Chapter 2, to an one-to-one

mapping between nodes and Chapel locales.

Locales Root 1 2 3
Buddy of 3 Root 1 2

Root Loc1 Loc2 Loc3

taskA

taskB

log taskA

log taskB

taskC

log taskC

Figure 4.1: Sample communication flow of in-memory replication of tasks (and data)
among guest and buddy locales. log task{X} represents the copied task descriptor
of the remotely spawned task task{X} on the buddy locale.
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4.1.1 Data Structures and Resilient Store

The resilient in-memory store is implemented within Chapel’s runtime, on the com-

munication layer, using a simple interface and a C singly-linked list. The list stores

in-transit message structures, as shown in Listing 4.1, that capture the context of

task descriptors and it is populated during execution via a runtime-level message-

logging mechanism. The list is updated on execution of the ActiveMessages (AM)

handlers of IN TRANSIT and IN TRANSIT DEL signals. The main operations on the

list are append, delete and linear-time lookup. For serial remote execution we use

a single list which is persisted on the root locale, while for parallel remote execu-

tion, partial shorter lists are created on each locale, as we will explain later in this

chapter.

In an earlier instance of the implementation we attempted the use of separate

structures for the task descriptors and the variable-sized arguments, in order to

provide a cleaner interface. This solution was abandoned due to the overhead of

accessing two data structures on every update and lookup operation, and instead

motivated the composite in-transit structure direction as a low overhead approach.

1 s t r u c t chpl comm transitMsg{ // in-transit message struct
2 c h p l f n i n t t f i d ; // function id
3 i n t mid ; // message id
4 i n t s r c ; // source address
5 i n t dst ; // destination address
6 void∗ ack ; // return address for ack
7 i n t a r g s i z e ; // size of arguments
8 char arg [ 0 ] ; // variable-sized arguments
9 chpl comm transitMsg p next ; // pointer to the next msg

10 } ;

Listing 4.1: Snippet of the definition of the in-transit message the C structure
introduced in our implementation to capture the properties of an in-transit message.

Listing 4.1 details the transitMsg structure which is complemented by a min-

imal API for reading, writing and updating the list. The order of read and write

operations on the list is imposed by the serial processing of the FIFO message queue,

thus consistency is guaranteed.

Furthermore, we implement an array to store information on the status of locales

(failed t structs, Listing 4.2). The status array is of equal size to the number of

locales (numLocales) and is used to track the status of each locale. In contrast
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to the linked list, we allow relaxed consistency for the status array; the array is

updated after the detection of a new failure; when FAIL or TIMEOUT signals arrive

by remote locales or when a failure is detected locally. Since our system does not

currently allow resurrection of failed locales and GASNet prohibits new nodes from

joining the configuration, we can assume the status information to be up to date

only with regard to locales that have already been visited and found failed. Thus, a

locale is certain to have failed when marked as such, but locales that are not marked

as failed may or may not have failed. It is also possible that a failure is detected

simultaneously by multiple locales.

1 typede f s t r u c t {
2 i n t dId ; // node id
3 i n t parentId ; // parent node’s id
4 i n t a l i v e ; // status information
5 } f a i l e d t ;

Listing 4.2: Snippet of the status C structure, introduced by our implementation to
capture status and hierarchy information on locale dID.

For serial remote Chapel operations we store a single copy of the status array on

the root locale, which poses a scalability concern for applications with fine-grained

computation, but lifts the communication costs of broadcasting status updates on

failure detection and the memory overhead of maintaining updated copies across

locales; both non-negligible when scaling to higher locale numbers. On the other

hand, for the non-blocking remote operations, we distribute partial arrays on all

participating locales aiming for scalability. In the following sections we detail the

implementation for both cases.

4.2 Design Aspects

In this section, we discuss a set of assumptions that govern the design of the re-

silient mechanism. We expand on Chapel’s design aspects, control flow and internal

synchronisation mechanisms; concepts that occur throughout the resilience design

and implementation.
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4.2.1 Assumptions

In the context of Chapel, when locales are not structured hierarchically (flat locale

model), failures of networked nodes are realised as locale failures. We perform

recovery using task migration, both for blocking and non-blocking fork operations.

We base our design on a set of assumptions that should be fulfilled for resilience

support on serial and task-parallel Chapel constructs. The same assumptions apply

to Chapel’s data-parallel constructs, discussed in the following chapter. This set of

assumptions is presented below:

• Failure-free root: The root locale (Locale 0, by default) is failure resistant

and acts as resilient store for redundancy and data retrieval. In the context

of baseline (non-resilient) Chapel, the root locale is a single point of failure

for a number of critical services such as I/O handling, initialisation and node

bootstrapping, and auxiliary tasks. Migration of such tasks during program

execution is guaranteed to lead to fatal errors;

• User-code resilience: The resilient implementation is supported and applies

only to the user’s code; we argue that failures during initialisation cannot lead

to a fault-free execution and thus, in the context of this work, we consider

such failures unrecoverable;

• Failure notification: A failing locale explicitly notifies of its failure. While

this can be seen as a contentious design assumption, we argue that it is within

the capabilities of modern HPC hardware, as discussed in Chapter 2. The de-

livery of the failure notification is guaranteed to the extent possible allowed by

the underlying communication framework. At the moment, this is a software-

based solution to compensate for the lack of a hardware capability; in future

implementations this can be complemented by an out-of-band signalling mech-

anism which monitors health metrics of the participating nodes, similar to the

one discussed in our previous work, Panagiotopoulou and Loidl, 2016.

• Task atomicity: As a consequence of the fail-stop model (Section 2.2.2) used

in this work, the body of a task on a failing locale will either execute to com-

pletion or not at all. This is also dictated by Chapel’s modular and layered

runtime structure, which poses obstacles in tracking the progress of tasks on

subsequent layers (tasking and threading) and, additionally, by state mainte-
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nance concerns. This fault model is in accordance to Chapel’s task-parallel

design that employs a fire and forget pattern without tracking task progress.

A similar principle is applied for Resilient X10 (Cunningham, Grove, Herta, et

al., 2014) [pg. 2, Introduction], while in the next chapters we detail the mech-

anisms employed to facilitate the bidirectional exchange of status information

on both the source and target locales. We argue that the above assumption

can be relaxed for side-effect free computation, which can re-execute safely;

• Network partition: We require that any failure of the underlying commu-

nication network leads to system-wide abort. It is left to the communication

API (in this case GASNet) to provide mechanisms for message replay and

apply relevant corrective actions.

4.2.2 Failure Notification

The assumption that a failing locale produces a failure notification is made to sur-

pass the issue of failure detection, as it is not the focal point for the resilient design.

A significant number of studies (discussed in Chapter 2) are focused on the issue

of failure detection. Software based solutions most commonly assume an external

detection or monitoring mechanism that calculates metrics, such as heartbeat fre-

quency, or even historical data of failures. Notably, even mature resilience solutions,

such as checkpoint-restart frameworks, do not address the issue of detection.

This assumption is not a requirement for the resilience mechanism to function

correctly, rather than a convenient addition to allow testing and sanity checking,

as the available testing platform lacks self-monitoring capabilities. The assumption

requires a single systemic signal being sent to one –up to the total number of buddy

nodes– locale. A number of alternatives can be proposed to replace the failure

notification mechanism, all of which require implementation outside the scope of

this work. The signal can be replaced by a call to the GASNet interface that

implements the failure notification (parametric to the identifier of the failed node).

It is also possible to introduce an external mechanism that calculates the identifiers

(based on the buddy calculation algorithm) and notifies only the buddy locales via a

signalling interface. Finally, another alternative could be a publish/subscribe model,

where notifications of failure are received by every node in the system. In the latter

90



Chapter 4: Resilient Task Parallelism

case, our design must be modified to discard failure signals for nodes that are not

guests of the locale.

4.2.3 Tasking Interface

Chapel’s default tasking layer implementation for the majority of its target platforms

is based on Qthreads (Wheeler, Murphy, and Thain, 2008; Wheeler, Murphy, Stark,

and Chamberlain, 2011), a user-level threading package implemented by Sandia

National Laboratories. Qthreads provides a lightweight implementation for Chapel’s

tasks and an optimized implementation of synchronisation variables.

Qthreads implements shepherds that are in charge of the work distribution man-

agement, but do not have any fault tolerance capabilities. Workers host the Qthreads

and correspond to Chapel tasks. A set of environment variables control the distribu-

tion of worker threads on the available hardware. The Qthreads implementation as-

sumes by default that processes cooperate without competing over resources (CPU,

memory). When combined with GASNet, which allows multiple locales to reside on

the same physical node, the Qthreads API applies a set of optimisations, such as

node overloading, to tackle resource starvation.

Chapel’s modular design does not expose the details of the underlying tasking

(and threading) implementation on the wrapping tasking interface. The programmer

is not allowed to alter the scheduling of tasks or access the thread’s stack. As

such, in the context of the resilient design, we do not make any assumptions as to

where recovery tasks execute. Such an assumption would restrict correct recovery

execution, across different threading implementations (where the thread stack is

not in use). In the current design, the modifications for resilience are adjusted to

Chapel’s design directives. Each recovery is handled as a new task and its scheduling

is handled by the underlying implementation, as for any regular Chapel task.

4.2.4 Task Synchronisation

Synchronisation and tracking of parallel tasks in Chapel is achieved with the use

of the internal mechanism of endCounts. The endCount mechanism is implemented

within Chapel’s modules and is used to explicitly, synchronise structured blocks of

parallel tasks, such as sync blocks, as well as the implicit surrounding block of the
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main function. They are also used for joining asynchronous cobegin and coforall

task blocks. The implementation, as shown in Listing 4.3, is based on a protected

atomic counter and a set of auxiliary methods to allocate, increment/decrement the

counter and implement a wait functionality. The initiating task of a synchronised

block increments the counter before dispatching each new task.

A new endCount object is allocated for each synchronised block, while a wrapper

function captures the scope of the block. On creation of a task, the endCount

reference is passed to the wrapper. As tasks are added to task lists for execution

the corresponding atomic counter is incremented and on completion of the task the

counter is decremented. This mechanism introduces added communication both to

and from the initiating locale. The main function itself is governed by an endCount.

1 // endCount class
2 class EndCount {
3 var i : atomic int ,
4 taskCnt : taskCntType ,
5 t a s k L i s t : t a s k l i s t = nu l lTa skL i s t ;
6 }
7
8 // endCount object allocation
9 proc endCountAlloc ( param forceLoca lTypes : bool ) ;

10
11 // free endCount object
12 proc endCountFree ( e : EndCount ) ;
13
14 // increment task counter
15 proc upEndCount ( e : EndCount , param countRunningTasks=true )

;
16
17 // decrement task counter
18 proc downEndCount ( e : EndCount ) ;
19
20 // wait on counter to become zero
21 proc waitEndCount ( e : EndCount , param countRunningTasks=

true ) ;

Listing 4.3: The endCount class constructor with the corresponding method
interfaces to allocate and delete an endCount, update the task counter, and perform
a wait operation.

The master thread of each block of tasks block-waits on the counter to become

zero. The method executeTasksInList(void) is invoked, during the wait period,

to allow the main thread to contribute to the execution of tasks. When all tasks

have completed, the method freeTaskList(void) is invoked to free the memory
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occupied by the task list.

4.3 Communication Protocol Extensions

In this section, we provide a detailed discussion of the resilient mechanism for

Chapel’s serial and parallel remote task execution, focusing mainly on the com-

munication layer. We expand on the extensions of the resilient implementation and

discuss an optimisation for fast local recovery of failed tasks.

4.3.1 Serial Remote Task Execution

Base Chapel An overview of the function invocations that take place within the

communication layer during the execution of an on statement on a remote locale

is demonstrated in Figure 4.2. The operation that takes place under the hood is

a blocking fork (chpl comm fork). A fork t struct, which contains the function

and data to execute on, is sent to the child locale for execution. Once the signal is

received on the remote locale (child), the corresponding AM fork signal handler ex-

ecutes and the task is wrapped in a new fork wrapper context. The fork wrapper

looks up the task identifier in the globally accessible function table and retrieves

the arguments of the fork. Subsequently the task is handed to the tasking layer and

scheduled for execution. On completion of the task a new active message (SIGNAL) is

dispatched to the initiating parent locale to indicate the successful remote execution.

Back to the parent locale, there is a pending block-wait on the remote task. The

parent locale periodically polls for new messages until it receives the SIGNAL message.

GASNet’s API requires bootstrapped nodes to poll for incoming signals, both as

means to handle new requests and as a heartbeat mechanism to indicate that they

remain functioning. On receipt of a signal, the parent executes the corresponding

handler function and builds a done t struct, of similar functionality to the endCount

mechanism. Finally, the block-wait is released and the control flow continues with

the next statement on the parent locale. Adhering to GASNet’s documentation it

is assumed that the condition of a BLOCKUNTIL call, can only be modified by the

execution of an Active Message handler, in this case the AM signal handler function.
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parent child

chpl comm fork

FORK

AM fork

SIGNAL

AM signal

Figure 4.2: Execution flow of a blocking remote on statement from a parent to a
child locale. The blocking fork operation is initiated from the parent locale. The
child locale indicates the completion of the remote task with a SIGNAL message.
Signals are handled by the corresponding Active Message handlers.

Resilient Chapel Figure 4.3 demonstrates the added functionality, including

communication, signal handlers and data structures, that support resilience for the

blocking fork operation of Figure 4.2. We provide four new signals: FAIL UPDATE,

FAIL UPDATE REP, FAIL and TIMEOUT and their corresponding handlers. The first

two signals are exchanged between the parent locale of a remote task and the re-

silient store (in this case, the root locale) and are required to query the status of

the remote locale, before dispatching the new task. In the case of multiple locale

failures in the system, each parent locale will refrain from detecting already known

failures, and thus spawning remote tasks that are certain to fail. The latter two sig-

nals complement the in-memory resilient store mechanism, as they propagate status

information to the resilient store.

The root locale acts as store for status information using the failed table;

the status information is updated on detection of failures. The first action on the

parent’s side is to request an update on the status of the child locale. This is a

proactive detection mechanism to help save additional communication and execution
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root parent child

chpl comm fork

FAIL UPDATE

FAIL UPDATE REP

FORK

AM fork

SIGNAL

AM signal

Normal execution

root parent child

chpl comm fork

FAIL UPDATE

FAIL UPDATE REP

FORK

AM fork

TIMEOUT

AM timeout

FAIL

AM fail

Child failure

Figure 4.3: Execution flow of the resilient blocking on statement from parent to
child locale without (left) and with (right) a single failure on the child locale. The
root locale maintains information on the status of every other locale in the system.
An update (status query) operation precedes the spawning of the fork operation. In
the event of a failure (right) the child locale sends a TIMEOUT signal to notify of it’s
failure.

overhead, in the case that the child locale has been detected to have failed during

execution of a previous task. In case of failure, this mechanism helps to save one

additional message. We handle the exchange of information between the parent

and the root locale using FAIL UPDATE and FAIL UPDATE REP signals. The root

locale looks up the child’s identifier in the failed table and retrieves the status

information.

If the child locale has not been marked as failed, the parent proceeds with dis-

patching the remote task to the the child. On the child locale, the fork signal is

received and the fork wrapper is constructed. On the right of Figure 4.3, we demon-

strate the case where a failure occurs on the child locale. In this case, the child
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locale notifies the parent for local failure with a TIMEOUT signal. On receipt of the

TIMEOUT, the parent sends an update to the root locale for the newly detected failure

(FAIL). In the case that the parent is the root locale, the update is consumed locally

without any communication.

Recoveries of both previously known and newly detected failures are handled on

the parent locale, making use of the function and data information that the parent

already owns, by executing the task wrapper. The motivation behind this design is

the availability of the evaluation context (function and arguments) on the parent’s

local memory. Failure of the parent locale, is handled on its immediate live ancestor

(as a child failure), one level closer to the root locale.

According to our task atomicity assumption and the fail-stop model, a locale

will either fail or will execute a local task till completion. When a new remote task

is received for execution, the child locale has to obtain information on the current

local status. Because our failure injection mechanism is message-based, and since

the messages are stored in a queue and processed in order, the processing of a failure

signal might be delayed. Thus, we add a detection capability in the local mechanism

of message polling (present on every locale) to handle failure signals immediately,

by updating the local status information. As such, a locale is always aware of its

status and can notify the parent at any point prior to or between the reception of

the remote task and the execution of the main body of the task.

In the context of recursive task spawning, drawing from task atomicity assump-

tion, we are only concerned with the execution of the top level task. If the initial

parent task does not complete then both the parent and children tasks are consid-

ered lost. When children subtasks have been spawned to remote locales previously

to the parent locale’s failure, then these tasks do not execute (since there is no par-

ent to return the execution control), until the top level parent task is rescheduled

for recovery. If the children locales have not failed by the time that the subtasks ex-

ecute, then they will execute as normal tasks, but spawned from a different location

–the buddy locale.

The above signals are sufficient to support the exchange of status information

and the propagation of newly detected failures. The failed table is maintained up

to date, while it is also a single source of truth (SSOT) for already detected failures.
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The alternative approach would be a decentralised design where status informa-

tion is maintained locally on every node. We argue that such an approach would

require data structure management on every node, and would eventually produce

more communication for the synchronisation of locally stored status information.

Furthermore, following one or multiple failures, the location where a recovery task

will execute cannot be know statically, so an additional mechanism would be re-

quired to query the locale with the most up to date information, or using a more

simplistic approach an one-to-all communication pattern would be required to ac-

cess that information. Our design with the centralised status information and the

new signals introduces communication, but alleviates the need for synchronisation

of locally stored status information on every node. It also requires minimum data

management on the parent locales, since only the status of the prospective child

needs to be known at every instance of remote task spawning.

4.3.2 Distributed Remote Task Execution

Base Chapel In Figure 4.4 we demonstrate the non-blocking fork operation with-

out resilience capabilities, implemented within Chapel’s communication layer, which

results from the combination of the on statement with any of the task-parallel con-

structs (begin, cobegin or coforall). The parent locale launches the remote fork

operation and continues with the execution of the next local statement without

waiting on a completion signal. Instead, the endCount mechanism (Section 4.2.4) is

employed to track completion of the remote task at a later point in the execution.

Signals that arrive later are handled in the context of the endCount on the next

synchronisation point or at the end of the user’s code.

Design Challenges

Resilient Chapel The first important difference when comparing to the Serial

Remote Task Execution, of Section 4.3.1, is that the parent locale does not block

wait on the completion of the remote task(s). As such, there is no guarantee that the

task descriptor (function and arguments) will be available on the parent’s memory

after the dispatch of the remote task, in case re-execution is required. Therefore, it

is of relevance for resilience that this information is stored redundantly in a resilient
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parent child

chpl comm fork

FORK

AM fork

SIGNAL

endCount

Figure 4.4: Execution flow of a remote non-blocking on statement from parent to
child locale. The parent initiates the fork operation and proceeds with the execution
of local tasks, until a completion signal is received.

store.

The lack of acknowledgements of remote tasks on the parent locale, complicates

the tracking of live locales. On one hand, the parent locale does not have information

on the status of the remote locale where the task is about to be launched. On the

other hand, after launching the task the parent does not wait on task completion

(and subsequent acknowledgement), that would verify that the remote locale remains

functional. The parent continues execution, possibly launching further remote tasks,

and ultimately exiting.

It becomes clear that the idea of sending a failure notification signal to the

parent locale is not sufficient in this non-blocking environment, as recovery is not

guaranteed in any of the two prevailing scenarios. In the first case, the parent locale

may have exited after completing local work. As a result, local memory is garbage

collected and when a failure notification arrives, it does not correspond to any local

records of the task.

In the second case, the parent locale is in progress of executing local tasks when
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the failure notification arrives; presumably task descriptors are available in local

memory and can be reused. The challenge then becomes, to ensure that all chil-

dren tasks either complete successfully, or fail within the lifespan of the parent

locale, so recovery tasks can be relaunched. Since, this is a strong requirement for

a distributed system operating on top of an asynchronous message-based commu-

nication network, a different mechanism is required to relaunch the tasks that fail

after the parent has completed local work and exited. The lack of such a mecha-

nism and the complexity of applying different recovery strategies based on merely

timing constraints, poses concerns on the state of the computation and complicates

the maintenance of correctness of the program and the evaluation of the recovery

mechanism. We address this challenge by introducing the concept of buddy locales

in the following paragraphs.

Another challenge in the context of the distributed remote-task execution is the

design of an efficient mechanism to track the status of locales. On one hand, the

parent may receive failure notifications for a task it maintains no record of. On the

other hand, the child locale might forward a failure notification to a failed parent

locale, risking the loss of information.

A naive brute-force approach would be to attempt to maintain the entire system

up-to-date with liveness information. This would require the broadcasting of new

failures to every locale in the system, resulting in one-to-all blocking operations on

every failure, in addition to the overhead of managing the internal status tables on

each locale. Assuming that these broadcasting operations do not lead to message

congestion and that failure messages do not exceed the limits of local message queues,

we would still need to ensure a low execution overhead. Assuming the overhead

remains within the acceptable threshold, this approach would still fail to maintain

a real-time picture of failures throughout the system due to the FIFO processing of

the message queue. As a side-effect, locales that have no links or task dependencies

to a failed locale, are burdened with the management of status information.

An example scenario is presented in Figure 4.5. We use a sample program where

non-blocking tasks are spawned on Locales 0 to 3. Locale 2 executes task2 initiated

on Locale 1 and spawns task3 to Locale 3. During execution Locale 2 fails, initiating

a set of notifications to every participating locale, including Locale 0. In the next
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instance, Locale 3 fails, spawning failure notifications to Locales 0 and 1. Based on

the sample program shown in the figure, we note that Notifications 1, 4 and 5 are

redundant, since the locales do not share any tasks.

Loc0 Loc1 Loc2 Loc3

Loc0 Loc1 Loc2 Loc3

Loc0 Loc1 Loc2 Loc3

task1

task4

task2 task3

notification 1

notification 2 notification 3

notification 4
notification 5

1 begin on Loca l e s [ 1 ] do
2 task1 ( ) ;
3 begin on Loca l e s [ 2 ] do
4 task2 ( ) ;
5 begin on Loca l e s [ 3 ] do
6 task3 ( ) ;
7 begin on Loca l e s [ 3 ] do
8 task4 ( ) ;

Figure 4.5: An example scenario with two failures (first, on Locale 2, then on
Locale 3) in a multi-locale task-parallel Chapel program, using one-to-all failure
notifications.

Based on the reasons explained above, we introduce buddy locales as an imple-

mentation of in-memory redundancy with data replication on a subset of the net-

worked nodes. We create partial in-transit message lists on each buddy locale, which,

when combined, cover status information on the entire system. In this setup, each

buddy locale performs local housekeeping tasks and implements the data-structure

management within the runtime system. We should clarify that buddy nodes are

not idle, they perform local computation, apart from the computation of adopted

tasks.

We adapt our resilient design to address the requirements of the distributed

remote task execution according to the following design considerations:

1. The available task descriptors on the parent locale, during the launch of a

remote task, are not reused for task recovery;

2. We perform in-memory replication of data on the buddy locales to achieve

redundancy;

3. Only buddy locales receive notifications of a new failure, as opposed to system-

wide failure broadcasts;

4. Buddy locales are responsible for task recovery in the event of a failure and

notify the root locale for newly detected failures;
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5. Only the root locale maintains system-wide status information.

root buddy parent child

chpl comm fork

IN TRANSIT

AM in transit FORK

AM fork

SIGNAL

AM signal

IN TRANSIT DEL

AM in transit del

Normal execution

root buddy parent child

chpl comm fork

IN TRANSIT

AM in transit FORK

AM fork

TIMEOUT NB

AM timeout nb

FAIL

AM fail

Child failure

Figure 4.6: Execution flow of a resilient non-blocking fork from parent to child
locale, without failures (left) and with (right) a single failure and recovery on the
buddy locale. The parent locale notifies its buddy locale of a new fork operation
(IN TRANSIT message) and initiates the operation. On successful completion of the
remote operation and following the receipt of the SIGNAL from the child locale, the
parent notifies the buddy locale to delete the locally stored task descriptor. In the
event of failure, the buddy locale is notified and the remote task executes from
locally stored data on the buddy locale.

Figure 4.6 demonstrates the non-blocking fork operation with the modifications

to support resilience. We reuse the linked list, introduced earlier in Section 4.1, for

the blocking fork case. The list captures the core part of the task descriptor with

information on the parent and child locale, the function identifier and the variable-

sized arguments; this data is sufficient to perform task recovery following the failure

of an executing locale.

Similarly to the blocking fork case, we use a singly-linked list to store the task

descriptors and an API to perform the required operations (read, write, update,

delete) on the list. Each of the buddy locales maintains information only for a

portion of the system; those task descriptors that belong to its guest locales. As

such, each list in local memory is shorter in length, alleviating memory overheads

and contributing to faster information retrieval. Finally, we maintain the centralised

status array, stored on the root locale, which tracks the status of the system and is
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of size equal to the number of locales (numLocales).

For the non-blocking fork operation we require that the parent locale establishes

one-way communication to the buddy of the child locale prior to launching the fork

operation. To store the data redundantly, the parent sends the task descriptor to the

buddy locale using an IN TRANSIT active message. The arguments are copied using

a memcpy operation; which is expensive but essential in order to retrieve the argu-

ments. It would be, otherwise, unsafe to use references or single element assignment

to the parent locale to retrieve the task descriptor, since the parent is also suscep-

tible to failure. Such a design decision would open the system to the possibility of

unrecoverable tasks. The average size of the exchanged task descriptors is 44 + x

bytes, where x is the length of the arguments array. The use of the primitive memcpy

operation is generally optimized by compilers for larger data chunks. Nevertheless,

Chapel’s backend also defaults to memcpy for any size, as a clearer simple statement

to allow any hardware-level optimizations.

The memory is freed either on successful completion of the task, as signalled by

the child locale with an IN TRANSIT DEL signal or after the successful recovery of an

orphaned task. On execution of the ActiveMessages (AM) handlers for IN TRANSIT

and IN TRANSIT DEL signals, the in-transit list, discussed in Section 4.1.1, is updated.

In the event of a failure, the primary buddy locale is responsible for the adoption

of the tasks on the failed locale (child). The buddy notifies the root locale for any

newly detected failure; information that is persisted in the status array. In turn, the

buddy locale employs mechanisms to reconstruct the task from local memory and

continues with the relaunching of the task.

For load balancing purposes we may choose to re-execute the task either as a

new local task on the buddy locale or re-launch the task in a non-blocking manner

on another locale in the system (possibly the parent locale), as long as it is known

to be alive. Our current implementation complies with the first strategy in order

to avoid creating more communication and data copying from further non-blocking

fork operations.

The implementation is designed in such way that the number of buddies per locale

is configurable. When N buddies are used, the application is guaranteed to tolerate

N–1 failures within the same group of buddies. At the same time, we define the
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order in which the buddy locales will attempt task adoption, defining primary and

secondary buddies.

Though, the choice of the number of buddies is left to the programmer, the

above communication and data management costs should be considered; for example

a configuration with N buddies, will produce on average 2N additional messages

per remote task in the application, during a failure-free execution. The additional

messages correspond to one IN TRANSIT signal from the parent to each buddy locale,

in order to store the data of the remote task, and an additional IN TRANSIT DEL

signal to notify each buddy locale to delete the entry in local memory, following the

task’s successful execution. The additional amount of data that needs to be stored,

communicated and managed in the system accounts for another N ∗ numTasks,

where numTasks is the number of remote tasks in the application.

Furthermore, there is a trade-off between the total number of tasks created in

the Chapel program and the number of added messages to support resilience. For a

small number of independent tasks, a configuration with a maximum of two buddies

per locale would be recommended, as it is sufficient to support recovery on a system

with low/medium failure rates, while introducing runtime overheads.

As an additional feature to the buddies’ mechanism, we require that the selec-

tion algorithm is programmable, within certain limitations, thus adding a layer of

abstraction and allowing the systems programmer to adjust these parameters ac-

cording to the application and the configuration. For example, for the execution of

a Chapel program on a state-of-the-art HPC system, the programmer may choose to

use a single buddy for each locale, aiming to minimize the memory and performance

overheads. Regarding the systems configuration, when setting a compute node to

act as locale, it would be cost-efficient to pick the neighbouring nodes as buddies,

while in a hierarchical node set up, where a locale represents for example one of

two NUMA regions on a node, an off-host buddy would be preferable to avoid un-

recoverable data loss, as the possibility of both the primary and the buddy locale

suffering failures is increased.

In order to allow the system to tolerate multiple failures within the same group

of buddies, the buddy selection algorithm needs to fulfill a set of requirements. We

consider the first locale in the list of buddy locales to be the primary buddy, while
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all other locales are secondary buddies.

1. The selection algorithm needs to ensure that all locales are unique within the

list of buddies;

2. The list of buddies of locale L cannot contain L itself;

3. Secondary buddies need to maintain information on the status of the primary

buddy to ensure task recovery when multiple failures occur, thus it is required

that secondary buddies are also buddies of the primary buddy locale.

When the buddy selection algorithm adheres to the above requirements the sys-

tem is guaranteed to recover each orphaned task only once, as expected. The latter

requirement ensures that when a primary buddy fails before executing a recovery

task, the secondary buddy will be able to adopt the failed recovery task, thus no

tasks are lost due to multiple failures. We should note, that the primary buddy is

at every point in the execution the first functioning locale within the buddies array.

root 2nd buddy 1st buddy parent child

chpl comm fork

IN TRANSIT

AM in transit FORK

AM fork

TIMEOUT NB

AM timeout nb

AM timeout nb

REC COMPLETE

FAIL

AM recovery completed

AM fail

Child failure

Figure 4.7: Execution flow of a resilient non-blocking fork task recovery with multiple
buddy locales. After completion of the recovery task, the primary buddy notifies
the secondary buddy (buddies) with a signal of completion.
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To accommodate for the latter requirement we introduce a new REC COMPLETE

signal. The signal is used by the primary buddy to notify the secondary buddies for

the completion of a recovery task. The secondary buddies are by default notified of

any status changes of the primary buddy with a FAIL signal; i.e. when the primary

buddy fails. Based on these two signals, the secondary buddy is able to identify

whether to perform recovery for both the newly failed task and the previously de-

tected recovery task. We use Figure 4.7 to demonstrate this functionality.

To clarify the above requirements we consider the example of Table 4.1. The

system is configured with four locales and two buddies per locale. In Table 4.1 (A) we

demonstrate the buddies per locale, i.e. Locale 2 acts as primary buddy for Locale 1,

while Locale 3 is secondary buddy for Locale 1. Assuming that Locale 1 fails, both

Locales 2 and 3 are notified. Locale 2 is responsible for performing recovery. As

shown in Table 4.1 (B), Locale 3 is responsible for recovering primarily Locale 2 and

secondarily Locale 1, thus Locale 3 has information on the status of both locales.

When Locale 1 fails, Locale 2 begins recovery of the failed task of Locale 1, and

sends a REC COMPLETE signal to Locale 2. In the case that the primary buddy has

also failed, Locale 3 will apply recovery for both the initial tasks of Locale 1 as well

as for the orphaned tasks of Locale 2. For a configuration with multiple buddies per

locale, buddy groups can overlap. Currently, the implementation does not support

assignment of new buddy locales during program execution. When the buddy locales

configuration complies to the above pattern, we eliminate redundant communication

for recovery coordination on secondary buddy locales.

(A) Buddy Locales (B) Guest Locales
Locales 0 1 2 3
primary 1 2 3 0

secondary 2 3 0 1

Locales 0 1 2 3
primary 3 0 1 2

secondary 2 3 0 1

Table 4.1: Example configuration of 4 locales with two buddies per locale as captured
(A) on the side of the locales and (B) on the side of buddy locales.

4.3.3 Optimisations and extensions

Earlier in the chapter we discussed the failure detection capabilities we have imple-

mented within the polling functionality of the incoming communication. In order

105



Chapter 4: Resilient Task Parallelism

to take full advantage of this mechanism we have added a fast recovery capability

on the parent locale, which we refer to as recovery on-the-fly. On the parent locale,

before launching the non-blocking remote fork, we check the following two boolean

conditions:

1. failed table[node].alive == 1

2. buddyLocales[0] == chpl nodeID

In the local status table, the alive attribute is initially set to 0 for all locales. For

the prospective child locale in the non-blocking fork operation we check whether the

locale is known to have failed. If there is a known failure, we calculate the identifiers

of the buddies of the child node and locate the primary buddy. If both conditions are

satisfied and the current node is the primary buddy we proceed to perform recovery

locally on the parent locale, without launching a remote fork operation.

A common technique to support fault recovery in large HPC systems is to main-

tain backup nodes, which are initially idle and replace the main nodes as they fail.

In our system, the choice of buddy locales is based on the number of locales present

in the configuration, persisted in Chapel’s targetLocales array and configured in the

SSH SERVERS list when building the runtime system. As such, we can configure

Chapel programs to execute on a larger number of locales than the locales required

in the program. Our design allows the additional locales to act as buddy locales,

able to adopt tasks of failed locales, although they do not perform local work. Thus,

our software-based solution can also be used on a system configured with back up

nodes without modifications. As an example, we could build the non-blocking snip-

pet of Listing 4.4 with SSH SERVERS=node0,node1,node2,node3, choosing the next

node as buddy locale and executing on four locales (−nl4). In the event of failure

of Locale 3, Locale 2, even though it does not perform any local work, is responsible

for the recovery of task2().

1 on Loca l e s [ 1 ] do begin
2 task1 ( ) ;
3 on Loca l e s [ 3 ] do begin
4 task2 ( ) ;

Listing 4.4: Example Chapel snippet using two non-blocking remote tasks on two
target locales.
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4.4 Testing Interface

In this section, we present the constructed micro-benchmarks, used in the perfor-

mance evaluation of the resilient task-parallel implementation. We discuss the design

of the failure injection mechanism and detail the experimental setup. We also de-

fine the acceptable threshold of overhead for our resilient mechanism, taking into

account the performance results of Resilient X10 as reported in bibliography.

4.4.1 Micro-benchmarks

We present a set of synthetic micro benchmarks to evaluate the resilience mecha-

nism for serial and task-parallel Chapel programs. Figure 4.8 provides a graphical

representation of the remote tasks launched in each micro-benchmark. We note that

all Chapel programs begin execution on Locale 0.

(a) (b) (c)

Locale 0

Locale 1 Locale 2

Locale 0

Locale 1 Locale 2

Locale 0

Locale 1 Locale 2

(d) (e)

Locale 0

Locale 1

Locale 2

Locale 3

Locale 0

Locale 1

Locale 2

Locale 3

Figure 4.8: Graphical representation of the constructed micro-benchmarks used in
functionality and overhead testing.

Listing 4.5 demonstrates a condensed version of the distributed serial micro-

benchmarks for the blocking fork case. We later modify the code to introduce

parallelism. The complete programs can be found in the Appendix (Section B.1).
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simpleons.chpl simpleontest.chpl back.chpl

on Loca l e s [ 1 ] do
monteCarlo ( ) ;

on Loca l e s [ 2 ] do
monteCarlo ( ) ;

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do{

monteCarlo ( ) ;
on Loca l e s [ 1 ] do

monteCarlo ( ) ;
}

}

three on.chpl two two on.chpl

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;

on Loca l e s [ 2 ] do{
monteCarlo ( ) ;
on Loca l e s [ 3 ] do

monteCarlo ( ) ;
}

}

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}
on Loca l e s [ 3 ] do{

monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}

Listing 4.5: Snippets of the serial constructed micro-benchmarks used for per-
formance testing. The micro-benchmark functionality can be summarized to the
following: simpleons.chpl: two respective tasks launched on two distinct lo-
cales; simpleontest.chpl: a pair of nested tasks launched on two distinct locales;
back.chpl: three nested tasks, where the first and the last are launched on the same
locale; three on.chpl: two pairs of nested tasks launched on three distinct locales
and two two on.chpl: four tasks, nested in pairs, with the inner tasks launched on
the same locale.

We name our constructed programs to concisely indicate their structure as fol-

lows: (a) simpleons: two respective tasks launched on two different locales; (b)

simpleontest: a pair of nested tasks launched on different locales; (c) back: three

nested tasks, where the first and the last are launched on the same locale; (d)

three on: three nested tasks launched on three different locales and finally, (e)

two two on: two pairs of tasks, nested in pairs, with the inner tasks launched on

the same locale.

Subsequently, we construct the task-parallel non-blocking versions using begin

and cobegin constructs, as shown in Listing 4.6 for the simpleons micro- bench-

mark.

For the construct combination of coforall+on we launch one independent task
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simpleons.chpl simpleons.chpl

begin on Loca l e s [ 1 ] do
monteCarlo ( ) ;

begin on Loca l e s [ 2 ] do
monteCarlo ( ) ;

cobeg in {
on Loca l e s [ 1 ] do

monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}

Listing 4.6: The task-parallel version of the simpleons constructed micro-
benchmark using begin and cobegin constructs

per locale and execute the programs on an increasing number of locales, as shown

in Listing 4.7, while the corresponding graphical representation is shown in Figure

4.9.

Locale 0

Locale 1 ... Locale N-1 Locale N

Figure 4.9: Representation of task spawning during the execution of a coforall+on

loop. The loop initiates on Locale 0 and all locales execute the same task in parallel.
When the iterable expression is Locales (i.e. every locale in the configuration)
Locale 0 also executes local computation.

1 c o f o r a l l l o c in Loca l e s
2 on l o c do
3 monteCarlo ( ) ;

Listing 4.7: Task-parallel coforall loop executing the Monte Carlo Pi
approximation algorithm

The micro-benchmarks are designed with deep and shallow nesting of tasks,

to be used as stress tests for the evaluation of the task recovery mechanism. We

use the Monte Carlo Pi approximation method as the independent long running

computation, launched on multiple locales, serially and in parallel. The same input

size and same seed value are used on every locale.

The focus of this part of the evaluation is to study the overhead of the task

parallel resilient mechanism, both in the absence and presence of failure. We have

opted for a small number of locales, that enables us to demonstrate overheads with

respect to the nesting of locales, for each task parallel construct. We are also able
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to pinpoint the impact of failure on specific locales, taking into account factors

such as the overall workload and the buddy locale correlations (Figures 4.16 and

4.20). The small scale of the micro-benchmarks allows us to discuss the resilient

mechanism design in more depth, while also studying the performance penalties

in configurations with increasing numbers of buddies per locales and cases with

multiple failures (latter part of Section 4.5.2). Especially in the cases of begin and

cobegin constructs, scaling up the number of locales would result in bulkier and

difficult to study benchmarks with deeper nesting patterns, while these cases would

not be representative of common idioms in real applications, as per our goal here.

4.4.2 Failure Injection Mechanism

As part of our assumptions, discussed in Section 4.2.1, we require that failing locales

explicitly notify of their failure. This assumption is based on the rationale that mod-

ern HPC provides hardware monitoring devices that facilitate graceful degradation.

In order to emulate failure(s) in the system, we use a signal-based failure-injection

mechanism, written in Python and bash shell. We override the default behaviour

of the POSIX User defined signal 1 (SIGUSR1) handler, as specified in GASNet,

and instruct the communication layer to ignore the signal via GASNet’s environ-

ment variables. A similar mechanism for node shutdown is implemented on the

lower communication layer. GASNet (Bonachea, 2002) utilizes a SIGQUIT signal

when it detects a node that has called the exit function or has crashed. Upon signal

reception, nodes perform system-specific shutdown (if applicable) and call the exit

function to end the local process.

We run the error injection script alongside the application, using Python’s multi-

threading module. As specified in the flat locale model, the common and best

performing case is the direct one-to-one mapping of locales to nodes in the system.

As a first step the script iterates over the nodes, specified in the SSH SERVERS en-

vironment variable during Chapel’s multi-locale setup. We choose one or multiple

node Id’s and login remotely to the node(s). We also use a secondary testing mode

(random), in which node identifiers are chosen pseudo-randomly, using Python’s

random value generator.

The fault injector is abstracted from the application execution, in order to be
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generic enough and reusable throughout the experiment. Furthermore, the failure

injection mechanism looks into Unix-level processes executing within a set of nodes.

Implementing an in-app fault-injection mechanism would require non-trivial effort

on application level; the added functionality should not be taken into account in the

overhead results, while we would also need an effective mechanism of mapping locales

to lower-level processes; a direction opposite to the language’s layered architectural

design.

On each node, we obtain the process identifier (pid) of the executing Chapel

program, using bash commands (ps, grep, awk) and send USR1 signals to the

corresponding processes. Once the USR1 signal is received by the process(es), the

locale(s) will produce the failure notification and exit. As discussed in Section 3.7.1

the node will not shut down as this would lead to system-wide abort, according

to GASNet’s failure policy. On the runtime level though the locale is considered

inoperative; it will not process any further signals and it will cease execution of

ongoing tasks and signal handlers. As a realistic node shutdown cannot be emulated

without causing disturbances in the execution of the program, and for the purposes

of testing the resilient implementation, we consider this testing interface flexible

enough to emulate locale failures, in order to assess our implementation.

We use two testing modes: all and rand. The first mode simulates failures on

every locale apart from the root locale and it qualifies as a stress test, while the

latter simulates failures on a random number of locales within the bootstrapped set

of nodes. The locales are picked pseudo-randomly using Python’s random generator

module, hence rand emulates a failure scenario, where a random number of locales

fails independently, following a pattern of uniform random selection from locales in

the list without replacement.

The main goal of our testing is to evaluate the overhead introduced by the

resilient implementation, while the testing interface itself poses two limitations.

Firstly, the interface is not able to simulate failures at different times during ex-

ecution; thus the failures occur serially with respect to each other, and are clustered

in time. Secondly, we need to allow a short time frame in the beginning of the exe-

cution, after initialisation and before launching the remote tasks, to send the failure

signals. We assume that the runtime requires fixed and comparable initialisation
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time across locales, iterations, and test cases. The fixed delay is not accounted for

in the demonstrated runtime results of the next section.

The evaluation section demonstrates a failure injection pattern with a left-skewed

distribution over time. Locales will often fail early rather than late. This could

potentially lead to an underestimation of overhead but taking into account the

overhead of local updates for buddy locales, late failures also mean that the locales

that will eventually fail, will perform administrative work for buddy locales for longer

periods, thus introducing a larger overhead.

4.4.3 Experimental Setup

We present two sets of results representing the two different stages in the implemen-

tation. The first set addresses our prototype implementation for serial remote tasks

(blocking fork operations) and it is built with Chapel version 1.9.0 and GASNet

(v1.22.0). The rest of the setup for the serial remote tests is configured as follows:

default flat locale model; where locales are homogeneous in terms of cores and cores

have equal distance from memory, fifo tasks over POSIX threads; default memory

(standard C malloc commands) and intrinsics. We use the GNU compiler suite (gcc

v 4.4.7) and the amudprun launcher for 64-bit Linux platforms.

The second experimental set demonstrates the performance of the resilient dis-

tributed remote task spawning (non-blocking fork implementation). We use version

1.12 1 of Chapel, configured with Qthreads, and for our resilient version we test with

one buddy per locale. As in the previous case, we use the flat locale model and

the default memory configuration. In this setup, our system can tolerate one failure

within each group of buddies.

We map locales to nodes and select the next neighbouring locale in the boot-

strapped set to act as the buddy (Locale 2 is the buddy of Locale 1 and so on).

We note that the system nodes that represent Locale 1 and Locale 2 might not be

adjacent within the SSH SERVERS list.

We perform 20 iterations for each test case using up to 16 nodes and present the

1Between implementation phases, we ported our mechanism to the latest at the time Chapel
version (version 1.12). From version 1.12 onwards, Chapel adopted Qthreads as the default task-
ing layer implementation, but the switch between implementations has been kept transparent on
Chapel’s tasking layer. We use version 1.12 for the remainder of the thesis, while, at the time of
writing this thesis, the latest stable release is 1.18.
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arithmetic mean for each test case. The experiments were performed on a 32-node

Beowulf cluster (Sterling, 2003). Each node comprises of two Intel Xeon E5506

quad-core CPU’s at 2.13 GHz, sharing 12 MB of RAM and connected via Gigabit

Ethernet. The nodes run CentOS Linux release 7.5.1804 (Core) x86 64. Each core

uses a 32KB L1i cache for instructions and 32KB L1d cache for data and an L2

cache of 256KB. Each quad-core also shares an L3 cache of 4096KB. A snapshot

of the internal topology of a Beowulf node, as produced by the hwloc package, is

available in the Appendix (Section A.2).

HPC platforms

Both in the following evaluation section (Section 4.5) and in Section 5.4 of the

next chapter, we provide an extended discussion of overheads, often focusing on

the communication costs. We do not provide experimental evaluation results on a

modern HPC system both due to constraints imposed by the testing interface (linux-

level signaling permissions) and due to time constraints. Nevertheless, we argue that

the communication overheads that contribute to a large part of the fixed cost of the

resilient mechanism, would not benefit from a high performance interconnect (HPI)

of an HPC system.

In Bortolotti, Carbone, Galli, et al., 2011 the authors demonstrate comparative

results for UDP over Ethernet and Infiniband interconnects for point-to point data

transfers. The main conclusion is that for UDP frames smaller than 1500 Bytes the

throughput is the same between the systems. Infiniband (RC mode) outperforms

the Ethernet link for frames larger than 4000 Bytes, while the receiver’s side is often

burdened with higher CPU workloads. Based on the above study, and taking into

account that the size of the exchanged messages in our task-parallel implementation

is on the lower spectrum (44 + x, x being the variable sized arguments), we believe

that the system would not benefit from a faster message rate of an advanced HPI.

The bottleneck is in our case the communication protocol imposed by GASNet and

Active messages. As we discussed in Section 3.7.1, on the sender’s side the protocol

imposes CPU idle time while blocking to send a message, while on the receiver’s side

there are delays introduced by the queueing and ordered processing of messages.
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4.4.4 Benchmarking and Threshold Standards

In order to provide context for the evaluation of the resilient implementation we

define a threshold of acceptable overhead. As Resilient X10 is closely related to

our work, we look into the overheads, reported in Cunningham, Grove, Herta, et

al., 2014; Grove, Hamouda, Herta, et al., 2017, as a baseline for our evaluation.

As discussed in Section 2.5.1, Resilient X10 provides a Place Zero-Based Finish

and a Resilient Distributed Finish implementation. Our resilient implementation

shares common semantics with both approaches. The Place-Zero Based Finish,

assumes that the first place (X10’s equivalent construct to Chapel’s locale) never

fails, which is similar to our Failure-free root assumption, although in our resilient

implementation we only store status information on Locale 0, instead of data used in

the computation. In that matter, our implementation is comparable to the Resilient

Distributed Finish approach, since we use the internal mechanism of buddy locales

to maintain the data redundantly on the memory of the networked nodes and X10,

uses two places to store the state, one of which is always the parent place of the

remote task.

The initial results as presented by the X10 team are based on a set of micro-

benchmarks, representative of common patterns in X10 calculations and are per-

formed on a 23 node AMD Linux cluster and on a 13 node IBM Power775 cluster.

For executions with the resilient version without failures the place-zero implementa-

tion for tasks that initiate on place zero is reported to perform closely to the default

X10 implementation, whereas for other parent places, the overhead increases by one

order of magnitude. For micro-benchmarks where each place spawns 100 local tasks,

the overhead of the resilient implementation increases by two orders of magnitude

compared to regular X10. This is attributed to the added synchronous communi-

cation to Place 0. The distributed implementation is reportedly more scalable and

faster; an overhead of more than one order of magnitude is introduced in the case

without failures.

The X10 team also reports on an iterative sparse matrix dense vector multiply

calculation, used in analytics applications. As part of the computation each matrix

element is read from memory and a multiply-add instruction is performed. Fig-

ure 4.10 demonstartes the mean runtime of 30 iterations for variable input sizes for
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regular X10, Resilient X10 without failures and Resilient X10 with 1 Dead Place,

while they also provide results on a Hadoop implementation for comparison.

Figure 4.10: Runtimes in seconds of the sparse matrix dense vector multiply calcu-
lation over 23 places for the Resilient X10 implementation, as reported by Cunning-
ham, Grove, Herta, et al., 2014.

We note that the X10 resilient version without failures produces small speedups

for the variable input sizes, with the larger speedup of 6.45% for the input size of

400K elements. The authors do not analyse the possible causes of these speedups.

These small speedups also appear in the next section in our evaluation discussion

for resilient task-parallelism in Chapel and in the evaluation of the data-parallel

implementation in Sections 5.4.2 and 5.4.3 of Chapter 5.

Throughout the results the resilient version’s runtime is comparable to the regu-

lar X10 version, while for the case with a single place failure, the overhead increases

by an average of 7.62%. In the worst case, for the input of 100K elements the

overhead increases to 15.38%. The authors also report on runtimes with 3 failures

(Grove, Hamouda, Herta, et al., 2017) with an average runtime overhead of 3.26%.

The latter result of lower overheads with a larger number of failures, also comes up

in the evaluation of our mechanism.

The X10 team has not, to the best of our knowledge, published detailed results

with multiple failures but one of their main conclusions is that the total number of

failures and the time that failures occur in the execution, directly affect the cost of

resilience support. In other words, they point out a direct link between performance

and the number of recoveries required. Based on Resilient X10’s design, a parent

place that initiates tasks on multiple children places, will be burdened with the

115



Chapter 4: Resilient Task Parallelism

cost of recovery management as more children places suffer failures. The time that

failures occur is another factor that affects performance; for example, a place failure

that occurs just before completion of a long-running task, will introduce larger

overheads, compared to an early failure.

Based on X10’s design principle that results from failed tasks are discarded and

the tasks are scheduled for re-execution, we expect the time for recovery to be equal

to the time required to successfully complete the task plus the time spent from the

beginning of the task execution till the time of the failure. Though, the X10 team

does not provide relevant empirical data to quantify the above costs, when we look

only at the runtime of a single task, we need to factor-in the time till the detection

of the failure, the time spend in the management of the internal data structures and

the re-execution scheduling time.

The authors also report on results of the K-means algorithm, using the decima-

tion technique. According to this technique, when a place failure occurs, the remain-

ing state is used to continue with the execution. For a small number of independent

failures the calculation produces equivalent results with the trade-off of accuracy,

but the correctness of the results is affected when adjacent places fail. This part

of the implementation is not comparable to our Chapel resilient implementation,

firstly because checkpointing is required to preserve the state of the computation

on the different places and secondly because failure recovery is not performed. It is

clear, that the viability of this approach depends on the algorithm. Since, we aim

for a general solution to resilience for Chapel, we follow a more conservative de-

sign approach, where we require that the accuracy of the results remains unchanged

even in the presence of failures. As such we have excluded the reported results on

decimation, from our discussion.

Considering that our implementation shares common design directives with both

the Place-Zero Based Finish and the Distributed Finish of Resilient X10, we take into

account the reported overheads. Based on the worst case overhead as reported by

X10 for the K-means micro-benchmark and the overhead of one order of magnitude

for both design approaches without failures, we consider a 30% overhead increase

a reasonable threshold to set across our testing cases for Chapel’s resilient runtime

implementation.
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In the following sections (Sections 4.5.1 and 4.5.2) and in Chapter 5 we will

report on performance results on a range of Chapel programs, including constructed

micro-benchmarks, the STREAM triad benchmark (Section 5.4.2) and the N-body

algorithm (Section 5.4.3). We discuss overheads using the resilient implementation

without failures, to evaluate the initial costs of resilient support and results with

single and multiple locale failures.

4.5 Evaluation of the Resilient Task Parallel Im-

plementation

In this section, we present a performance evaluation of the runtime-level resilient

implementation2. We are concerned mainly with Chapel’s serial and task-parallel

constructs and their combinations with remote task spawning language constructs.

The discussion focuses primarily on the overheads introduced for the set of micro-

benchmarks presented earlier in Section 4.4.1, with the use of the resilient mecha-

nism. We analyse the results taking into account the different testing modes (Section

4.4.2) and execution parameters.

4.5.1 Blocking Fork

Functionality and Correctness As a first step, we demonstrate the functionality

of the resilient serial remote task spawning (blocking fork) implementation for the

programs of Section 4.4.1, looking into the correctness property of the program (i.e.

the correctness of the results). This metric serves the purpose of a sanity check for

the implementation and it is not meant to assess its quality. We use the Monte

Carlo Pi approximation as the independent long-running computation, we execute

30 iterations with both testing modes; all and rand, and validate that the output

matches the result of the non-failing computation. In the all testing mode, we

inject failures on every locale in the execution, apart from Locale 0, while in the

rand mode, failures are injected on a random number of pseudo-randomly selected

locales in the execution.

2The datasets and the source code used in the evaluation sections of Chapter 4 and Chapter 5
are uploaded on Github: https://github.com/konsP/ChapelTransparentResilience.
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Figure 4.11: The plots demonstrate the success rate (%) of the failure recovery
mechanism for the resilient blocking fork implementation. The data corresponds to
the full set of measurements (30 iterations) performed per micro-benchmark and for
both testing modes. The cases marked Missed indicate a failure on Locale 0 and
lead to system-wide abort.

Figure 4.11 shows the success rates of failure recovery in five plots; the results cor-

respond to each micro-benchmark and we present results for the all and rand testing

modes respectively. In this plot we considered an execution successful (marked as

Success in the figure) when all locale failures are handled and the program reaches

completion with correct results. This requirement implies that the runtime success-

fully detects the locale failures and performs the recovery of tasks transparently with

respect to the application domain.

According to our design of the resilient blocking fork, recovery is undertaken by

the parent locale. In the all testing mode, recovery tasks are handled on the root

locale, following failures on all other locales in the execution. In the rand testing

mode, a failure of both the parent and the child locale will result in recovery on the

immediate ancestor of the parent locale, assuming that this ancestor is alive, or one

level higher on the locale tree. As more failures occur, recovery tasks are handled
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further up towards the root locale, and in the worst case, the rand mode becomes

equivalent to the all mode.

As shown in the figure, we obtain high success rates up to 100% on both testing

modes confirming the correctness of the calculation in the presence of failures. The

behaviour also demonstrates that the produced implementation is in accordance to

our design, while the cases marked as Missed in Figure 4.11 are an immediate result

of the limitations of the testing interface.

On one hand, Chapel’s multi-locale initialisation mechanism (driven by GASNet)

dictates that locale identifiers are assigned to bootstrapped nodes transparently to

the rest of the implementation and the application code. The connection between

locale identifiers and node identifiers is not exposed to the programmer or the Chapel

application code. On the other hand, the failure injection mechanism is based on

Linux OS-level process identifiers where the Chapel computation is seen as a black

box. As far as the failure injection mechanism is concerned, locales are OS-level

processes. Though, in the common case the first node of the bootstrapped set is

chosen to act as the root locale (Locale 0), such a convention is not explicitly stated

in the GASNet specification – showing the developers’ intention to provide a general

API for transparent cross-platform integration. Thus, in the test cases where the

root locale is not the first node in the SSH SERVERS list, the testing interface will (all

mode) or may (rand mode) simulate failures on the root locale, resulting in system-

wide abort. In order to comply to our assumption that the root locale is failure-free,

such cases are excluded from the performance evaluation of our mechanism. This

case remains currently a limitation of the testing interface (see also Section 6.3).

Finally, we observe the absence of logical failures in the results, for example

locale failures that remain unhandled or task recoveries that occur on other than

the intended adopting locale. This fact is evidence of the ability of the resilient

implementation to tolerate locale failures and apply corrective action, within the

above stated scope of limitations. Furthermore, all failures are handled on the

expected adopting locale, in compliance with our design.

Runtime and Overhead In Figures 4.12 and 4.13 , we demonstrate the run-

time (measured in seconds) and the respective runtime overheads introduced by our
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resilient blocking fork implementation for each of the micro-benchmarks. We use

Chapel version 1.9 as the baseline and we observe small overheads ranging between

0.29% and 1.29%, compared to the regular Chapel implementation, when no locale

failures are introduced (red bar). We attribute these overheads to the added com-

munication, the management of the internal data structures, and the serial lookup

operations for status checks, required to support resilience. The results exhibit that

an application with remote task spawning that executes on a reliable system with-

out failures, will experience small performance penalties by due to the use of our

resilient mechanism.

Figure 4.12: Runtime (in seconds) of the micro-benchmarks using the resilient block-
ing fork implementation. The plot demonstrates the runtimes of regular Chapel,
resilient Chapel without failures, and the runtimes when using the all and rand

testing configurations.

The next two bars in the plot of Figure 4.13 represent the two testing modes,

rand and all. The overhead rates on failure depend highly on the structure of the

LocaleTree in each micro-benchmark, especially with respect to shallow and deep

nesting. We make the implicit assumption that the independent Monte Carlo Pi

calculations perform similarly on every locale. For three out of the five test cases,
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failure with the all mode performs better compared to failures of a random number

of locales, as the recovery of the latter results in one or multiple straggler task(s) on

the adopting locale(s).

Figure 4.13: Overhead (%) of the five micro-benchmarks using the resilient block-
ing fork implementation. The graph demonstrates the runtimes of regular Chapel,
resilient Chapel without failures, and the runtimes with the all and rand testing
configurations.

In detail, for simpleons the mean overhead across executions in the all testing

mode introduces an overhead of 6.25% compared to the 8.15% of the rand mode.

When both Locales 1 and 2 fail, the root locale is immediately notified and initiates

the recovery process for the two independent tasks. The back micro-benchmark

performs comparably in both test modes (16.79% and 16.87% respectively) due to

the reuse of Locale 1 in the code. For simpleontest and threeon, we note small

speedups of 1.45% and 1.58%. Similarly to the case of simpleons, and due to the

nesting of tasks the root locale does not establish costly communication to Locale 1

and instead handles local recoveries immediately. As more locales fail, the recovery

rolls back towards Locale 0; due to the lack of communication costs, the replacement

of status checks by the local array lookup and the increased task granularity on
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Locale 0, we demonstrate increased performance.

Apart from cases where both the parent and the child locale fail, when multiple

failures occur on independent locales, the recovery tends to be balanced, without

straggler tasks. Furthermore, recovery tasks that execute on the root locale tend

to be cheaper when detected early in the execution. As the root locale is up to

date with the failures that occur across the system, a failure of an immediate child

locale allows for early detection. It is hence possible to skip the communication

phase (to the failed child) and perform local recovery. Due to the structure of our

micro-benchmarks, the root locale does not perform any local computation, thus

recovery is cheaper than recoveries on other locales.

For the threeon benchmark we note a higher overhead (15.27%) for the rand

mode. Due to the structure of this benchmark, with the three nested tasks, we can

get unbalanced execution patterns, depending on the locales that fail each time. In

the worst case the first failure occurs on Locale 2, followed by task adoption on

Locale 1 and a subsequent failure on Locale 3. As a result, Locale 1 is burdened

with the execution of two recovery tasks on top of its local workload.

For the twotwoon benchmark, there are two nested tasks executing on the same

inner locale. The high overhead of the all mode shows that communication between

parent/child pairs is established before any failures are detected. It is also worth

noting the case where the order of failures is {Locale 2, Locale 1, Locale 3}. When

Locale 2 fails, both Locales 1 and 3 begin the recovery process. After their failure, the

root locale will adopt all the tasks, accumulating the costs of the previous recoveries.

Eventually, all four tasks will execute on the root locale, leading to the increased

overhead of 26.86%. The mean overhead is thus highly affected by scenarios as the

above, but remains within the 30% threshold, as defined in Section 4.4.4.

4.5.2 Non-blocking Fork

In this section we focus on Chapel’s non-blocking remote task spawning mechanism.

Programmatically, non-blocking distributed Chapel programs use combinations of

begin, cobegin and coforall with the on construct, to achieve task migration

and asynchronous execution. We re-use the micro-benchmarks of Section 4.4.1 and

apply the above construct combinations to produce parallel versions. The complete
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micro-benchmarks can be found in the Appendix (Section B.1).

For the resilient non-blocking fork implementation we focus on results with the

injection of a single failure. This experimental setup has been chosen instead of the

all and rand testing modes in order to more clearly demonstrate the effects of a

failure in a non-blocking environment. In the discussion we do not report on the

cases with failure of the root locale, both due to the critical role of Locale 0 –dictated

by Chapel’s design– and also in accordance to our failure-free root assumption. As

per our conclusions from the blocking fork prototype and the evaluation results of

Resilient X10, later in this section we discuss how the placement of failures affects

the performance of the execution.

begin We demonstrate the mean, maximum and minimum runtime of (i) the base-

line implementation, (ii) the resilient version without failures and (iii) the resilient

version with a single failure, for the combination of begin and on constructs over

20 iterations. Each individual task in the micro-benchmarks is launched in a non-

blocking fashion. The runtime system is configured to use the two subsequent locales

in the configuration as buddy locales in a circular order. For example the buddies of

Locale1 are Locales 2 and 3, while the buddies of Locale 3 are Locales 0 and 1. We

focus mainly on the mean overheads, demonstrated in Figure 4.14, but we present

the execution runtimes in Figure 4.15 for completeness.

The error bars mark the minimum and maximum runtime that occurred across

iterations for each test case. In the case of overhead graphs the average, minimum

and maximum are calculated with respect to the corresponding average, minimum

and maximum runtimes of the baseline. For this reason the average overhead appears

outside the error bar range. For example for the simpleontest micro-benchmark with

1 failure shown in Figure 4.14, the average overhead is close to 6% (comparing to

the average runtime of the baseline) while the minimum overhead is 7% slower

comparing to the minimum runtime of the baseline.

For the first micro-benchmark (simpleons) the average overhead of the resilient

implementation in the case without failures is 0.7% compared to the baseline and

an overhead of 1.34% is introduced in the case with a single failure. The results

suggest that in programs with parallel tasks that execute on locales without inter-
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Figure 4.14: Overhead (%) of the resilient non-blocking fork for the combination
of begin+on. The plot demonstrates the runtime mean overheads of the resilient
implementation without failures and with a single failure, compared to the base-
line Chapel implementation. The maximum and minimum values in each case are
shown with error bars, and correspond to the percentage difference of the respective
maximum, and minimum values of the baseline.

locale dependencies, recovery is cost-effective and the use of the resilient version

when no failures occur achieves comparable performance to the baseline Chapel

implementation, a result that agrees to the figures reported for Resilient X10.

In the case of the simpleontest benchmark, where the two tasks are nested we

note average overheads of 5.7% and 6.27% for the case without failure and with

a single failure, respectively. In the next two micro-benchmarks we launch three

nested tasks, thus increasing the number of parent/child pairs and the inter-locale

communication. For back, the average case with failure remains close to 6.18%,

achieving comparable performance to the failure-free case.

For threeon, the average overhead with failures accounts for a runtime increase of

6.83%, while the minimum runtime with recovery is close to the baseline’s average

runtime. When no failures occur, we note larger overheads (16.9%) with negligible
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Figure 4.15: Runtimes (in seconds) of the resilient non-blocking fork for the com-
bination of begin+on. The plot demonstrates the runtime average results for the
baseline (regular Chapel) implementation, the resilient implementation without and
with a single failure. The maximum and minimum values in each case are shown
with error bars.

divergence between maximum and minimum runtimes. The overheads in this case

approach the maximum overhead of the back micro-benchmark in the failure-free

execution.

Both programs showcase a triple-nesting pattern of tasks and locales, though

in back there is a locale dependency between locales 1 and 2. In the failure-free

case, the inter-dependency of locales in back alleviates some of the communication

costs, regarding the status checks –Locale 2, as the primary buddy, has information

on the status of Locale 1. In the threeon micro-benchmark, the liveness check

needs to be performed for each non-blocking task, since the task nesting follows the

opposite order of the buddies structure. This means that none of the parent locales

possesses liveness information on the child locale, since the children are primary or

secondary buddies of the parent, a fact that is also suggested by the low (close to

1%) divergence of the maximum and minimum overheads, when no failures occur.
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Thus, the communication established to obtain liveness information before each of

the four tasks is launched, contributes to the larger overhead.

When comparing the two micro-benchmarks in terms of runtime (Figure 4.15)

in the single failure case, we notice different execution behaviour. For the back

micro-benchmark, as Locale 1 appears twice in the program and according to the

next neighbour recovery pattern, there is limited variability between the minimum

and the maximum overhead. After Locale 1 fails, Locale 2 is burdened with the

recovery of two tasks on top of the local workload, less communication is required

and task granularity is increased. Similarly, when Locale 2 fails, the recovery is

handled immediately on Locale 0, where there is no local workload. The runtime

results show improved performance of the threeon benchmark as there are only two

failure scenarios. Firstly, failures that occur on Locales 1 or 2 which will increase

task granularity on the buddy locales (Locales 2 or 3 respectively) and secondly a

failure on Locale 3 which is handled on the root locale.

Finally, for the last micro-benchmark (twotwoon) the average overhead in the

case with failure is 1.98% and in the failure-free case it reaches 7.55%. The results

of the failure-free case show high variability, with the minimum case demonstrating

a 7% speedup. According small speedups are also reported in Resilient X10’s results.

In an effort to understand how the runtime is affected by the failures on the

different locales we use Figure 4.16 to showcase the runtime of the execution for the

separate failures on each locale. We note small divergence for the first three micro-

benchmarks (simpleons, simpleontest and back) in the average case, showing that the

cost of failure on any of the two participating locales is comparable. In the case of

threeon, failure on any of the three participating locales introduces smaller overheads

compared to the failure-free case, as demonstrated in Figure 4.16(d). Here, each

locale failure is handled on the subsequent locale, which results in decreased inter-

locale communication, since no new communication originates from the failed locale,

after the failure notification.

In Figure 4.16(e), we note that the larger overheads occur in the case of failure

on Locale 2. This outcome is expected as Locale 2 appears twice in the program for

both the inner nested tasks, so the buddy locale’s workload (in this case, Locale 3)

triples, thus increasing the total runtime. The overhead compared to the failure-free
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(a) simpleons (b) simpleontest

(c) back (d) threeon

(e) twotwoon

Figure 4.16: The plots demonstrate the average, maximum and minimum runtimes
of the micro-benchmarks, as obtained by the previous experimental configuration,
with respect to the location of a single failure on the locales on the x-axis. Runtimes
(in seconds) of constructed programs for (i) the baseline (regular Chapel 1.18),
(ii) resilient Chapel without failures and (iii-v) resilient Chapel with failure on the
participating locales.
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case is increased by 11.7%.

Finally we point out that for the non-blocking tasks created by the combination

of begin and on the mean overhead across test cases with a single failure is at

most 6.83% and occurs in the case of triple nesting. For the failure-free case, the

mean overhead is 16.9%, which occurs, as before, in the case of triple nesting, with

minimal divergence between minimum and maximum values.

cobegin In this section, we discuss the runtimes of our cobegin+on micro-benchmarks.

The main point that differentiates the cobegin construct compared to the case of

begin of the previous paragraph, is that cobegin is designed with the producer/-

consumer pattern in mind. The produced parallelism matches closely OpenMP’s

execution model (demonstrated in Figure 4.17)with a parallel region of tasks and a

synchronisation point to join threads (or tasks in Chapel’s context).

Figure 4.17: Fork-join execution model as implemented by OpenMP (Barney, 2017).

According to Chapel’s documentation, programs that contain less than three

tasks in the cobegin block, are optimised by the compiler to execute serially. For

the micro-benchmarks with nested tasks we have used cobegin constructs on the

inner nested levels, to force the creation of multiple parallel tasks. For example,

in Listing 4.8 we demonstrate the final version of the threeon micro-benchmark

following the above refactoring. Another example is the case of triple-nested tasks,

where we use one cobegin in the scope of each locale on top of the surrounding

cobegin. For some of the micro-benchmarks we have also used begin constructs to

enforce the non-blocking execution of tasks, so for this set of experiments we expect

higher overheads for the micro-benchmarks that create more non-blocking tasks.
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1 on Loca l e s [ 1 ] do cobegin{
2 montCarlo ( ) ;
3 on Loca l e s [ 2 ] do cobegin{
4 montCarlo ( ) ;
5 on Loca l e s [ 3 ] do {
6 montCarlo ( ) ;
7 }
8 }
9 }

Listing 4.8: The three on micro-benchmark using a cobegin+on combination on
nested tasks.

Figure 4.18: Overhead (%) of the resilient non-blocking fork for the combination
of cobegin+on. The plot demonstrates the runtime average overheads of the re-
silient implementation without and with a single failure, compared to the baseline
Chapel implementation. The maximum and minimum values in each case are shown
with error bars, and show the percentage difference to the respective maximum and
minimum values of the baseline.

Figure 4.18 demonstrates the runtime overheads of our micro-benchmarks with

the construct combination of cobegin and on, while Figure 4.19 demonstrates the

absolute runtimes in seconds.

We observe that the failure-free and single failure cases perform comparably;
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indeed small overheads, of up to 1%, are introduced for the first three micro-

benchmarks, simpleons, simpleontest and back in the average case.

For the micro-benchmark with three nested tasks (threeon) the average overhead

increases significantly approaching 24.9% on average for the single failure case. The

structure of threeon, as demonstrated in Listing 4.8, employs two cobegin blocks,

which by design introduce two synchronisation points. When failures occur on lo-

cales that initiate a cobegin the recovery is bound by the implicit synchronisation.

More specifically, in the case of threeon this translates to Locales 1 and 2. Our expla-

nation is validated by the data of Figure 4.20(d), where the failures of Locales 1 and

2 show significantly high maximum runtimes; thus impacting the mean overhead of

the entire micro-benchmark.

Figure 4.19: Runtimes (in seconds) of the resilient non-blocking fork for the combi-
nation of cobegin+on. The plot demonstrates the runtime average results for the
baseline (regular Chapel) implementation, the resilient implementation without and
with a single failure. The maximum and minimum values in each case are shown
with error bars.

The micro-benchmark with two nested tasks (twotwoon) is the worst performing

case in our setup for the cobegin and on combination, where in the average case
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(a) simpleons (b) simpleontest

(c) back (d) threeon

(e) twotwoon

Figure 4.20: Non-Blocking ’On’ : Failures on the participating locales for the com-
bination of cobegin+on. Runtimes (in seconds) of constructed programs for (i)
the baseline (regular Chapel 1.12), (ii) resilient Chapel without failures and (iii-v)
resilient Chapel with failure on the participating locales.
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without failure the overhead is close to 24%. In the case with a single failure the

runtime doubles compared to the baseline , with a 120% overhead. The maximum

runtime occurs, as expected, in the case of failure on Locale 2, as this locale is

reused in the execution of the inner nested tasks. Thus, the computational workload

triples for Locale 3, while Locale 3 is also bound by the synchronisation point of the

cobegin, turning it into a straggler for the application.

As the last micro-benchmark performs significantly slower in the case with fail-

ure, we inspect Figure 4.20, showing the separate runtimes obtained by the failures

of each locale. As confirmed by the plot of Figure 4.20(e), we demonstrate the

increased runtime of the program in the cases of failure on Locale 2.

coforall For the combination of coforall and on the results are balanced across

executions, showing negligible variability between min and max runtimes, as demon-

strated in Figure 4.21 with the error bars. In the coforall case, tasks are indepen-

dent and span up to 16 locales. For the case without failure, the overheads of the

resilience mechanism remain fairly low, between 0.4% and 2.6%.

# messages #2 #4 #8 #12 #16

coforall+on
(i) baseline 6 18 42 66 90

(ii) 0 failures 6 20 48 76 104
(iii) 1 failure 7 21 49 77 105

Table 4.2: Number of messages exchanged among locales in the coforall+on exe-
cution, when executing on 16 locales.

We note slightly larger overheads in cases with failure, between 0.9% and 4.69%

as shown in Figure 4.22. The latter occurs when using 4 locales, while when the

maximum number of locales is used (16 locales) the overhead remains close to 3%.

In contrast to previous experiments, when using the coforall loop, Locale 0

participates in the execution by performing local computation, hence recovery costs

are equivalent across locales. As demonstrated in Table 4.2, there is increased com-

munication between locales with 90 messages exchanged for the baseline case, when

the computation spans up to 16 locales. The communication is comprised of one

message per buddy group for copying of the task descriptors, the initial bootstrap-

ping of up to 16 locales and the fork/join operations. The case with failure produces
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Figure 4.21: Runtimes (in seconds) of the resilient non-blocking fork for the combi-
nation of coforall+on. The x-axis represents the number of participating locales
in each execution, while the y-axis represents the runtime in seconds. The plot
demonstrates the runtime average results for the baseline (regular Chapel) imple-
mentation, the resilient implementation without failures and with a single failure for
a distributed parallel loop executing the Monte Carlo Pi approximation algorithm
on every locale. The maximum and minimum values in of each run are shown with
error bars.

one extra communication operation compared to the failure-free case; the failure no-

tification message. For the resilient version with a single failure, we can assume that

the maximum performance penalty will occur in the case of task recovery on the

slowest buddy locale.

Multiple failures In Figure 4.23 we showcase the runtimes of the combination of

the coforall and on constructs, when run on 16 locales with an increasing number

of failures (up to 6 failures). We use two buddies per locale in the configuration and

the application can tolerate up to two failures within each group of buddies.

As shown in the plot of Figure 4.23, we obtain the maximum mean overhead of

25.9%, compared to the baseline version of Figure 4.21, when injecting four random
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Figure 4.22: Overhead (%) of the resilient non-blocking fork for the combination of
coforall+on. The plot demonstrates the runtime average, maximum and minimum
overheads of the resilient implementation without failures and with a single failure,
compared to the baseline Chapel implementation for a distributed parallel loop
executing the Monte Carlo Pi approximation algorithm on every locale.

failures. We note, as expected, that although the overheads remain within the 30%

threshold, as multiple failures occur the overheads tend to increase.

The results show high variability between minimum and maximum values. The

fact that this variation is present in the case without failures and the comparison

to the execution on 16 locales without failures and a single buddy per locale of

Figure 4.21, leads to the conclusion that the high variability is introduced by the use

of multiple buddies; in this case two buddies per locale. The high variability is also

present in the next paragraph (Figure 4.24) where we increase the number of buddies.

The communication and copying of remote data across multiple locations, appears

to impact the worst case performance with a fixed penalty, close to 30% compared

to the average case, when moving from single to multiple buddy configurations.
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Figure 4.23: Runtimes (in seconds) for the coforall+on combination on 16 locales,
with an increasing number of failures. The plot demonstrates the average, maximum
and minimum runtime for executions with 0 to 6 failures.

Multiple buddies In Figure 4.24 we demonstrate the case of coforall and on

constructs executing on 16 locales without failures and with varying numbers of

buddies per locale. The results show that the number of buddies in the configura-

tion does not impact the runtime with added overheads in the cases without failure,

despite the management of larger internal data structures and the added communi-

cation for the exchange of in-transit messages, as the processing of the additional

messages does not alter the per locale execution flow.

From the above experiments we conclude that when using a coforall loop to

launch independent fine-grained tasks on multiple locales the runtime does not in-

crease linearly to the number of failures; though the placement of failures can intro-

duce high variability. Furthermore, in an execution without failures, larger numbers

of buddies per locale do not introduce performance overheads.
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Figure 4.24: Runtimes (in seconds) for the coforall+on combination on 16 locales,
with an increasing number of buddies. The plot demonstrates the average, maximum
and minimum runtime for executions without failures, when using 2 to 4 buddies
per locale.

4.6 Summary

We have presented the design and implementation of our transparent resilience

mechanism for Chapel’s remote spawning task-parallel constructs. We have de-

tailed the focal points of our design; the internal data redundancy scheme and the

buddy locales mechanism and we have presented the required implementation within

Chapel’s runtime system to support the two mechanisms. All aspects of the imple-

mentation including the detection and recovery mechanism remain transparent to

the programmer. The resulting version of the runtime allows Chapel programs to

execute till completion, despite the occurrence of failures on one or multiple par-

ticipating locales. We have also discussed the resilient mechanism for serial remote

task execution as the prototype implementation.

We have provided an evaluation of our mechanism primarily with respect to

the overheads introduced by the implementation of resilient support. We presented

evaluation results for five synthetic micro-benchmarks, representative of patterns of
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nested task-parallelism in Chapel applications. Our performance results show low

overheads, with a maximum of 25% performance decrease, on a 32-node Beowulf

distributed-memory architecture. when using the resilient Chapel version without

failures, which demonstrates that out mechanism can be used on reliable systems

without introducing prohibitive performance penalties.

For the cases with failures, we note that the overheads of the different construct

combinations vary, depending on the structure and nesting depth of the micro-

benchmarks in use. For 80% of the testing cases the average overheads remain below

7%, while we also demonstrated two cases with larger overheads when performing

experiments with the task-parallel cobegin construct, with implicit synchronisation.

As a measure of comparison we report on published overhead measurements for

Resilient X10 using the Place-Zero resilient store. In Kawachiya, 2014, the authors

report on the performance penalties of using the resilient (compared to base X10)

version without failures on eight places. For MontePi; the calculation of π using

the Monte Carlo algorithm, with two remote tasks spawned per place, the overhead

of Resilient X10 is 2.2 %. For the KMeans benchmark, Resilient X10 introduces

a 9% overhead, while for the Heat Transfer benchmark, which includes a stencil

computation with frequent creation of remote tasks, the authors report on a 6.5-

fold slowdown. While an one-to-one comparison is not possible, our cobegin on

micro-benchmark uses multiple remote tasks and synchronisation points, similarly

to the smaller benchmarks reported for Resilient X10. With the exception of the

twotwoon micro-benchmark, we demonstrate negligible mean overheads of up to 1%

for the case without failures when executing on four locales, compared to the 2%

best result reported for MontePi and 9% of KMeans in X10. In the case of deeper

nesting of remote tasks with dependencies among locales (twotwoon) the overhead

increases up to 24% but remains lower than the 6.5-fold slowdown of HeatTransfer

in Resilient X10.

The evaluation results presented in this section are representative of usages of

Chapel’s task parallel constructs within other applications. Some of the micro-

benchmarks; particularly three on and two two on, serve as stress tests for deep

nesting of tasks, since in Chapel programs one would rarely find deeper than two-

level nesting patterns. We are at this point, unable to provide a formula to statically
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calculate the produced overheads, as these primitive tasking constructs can be used

in larger more complex applications. The existence of multiple synchronisation

points, the scheduling of tasks as it arises by a certain algorithm, the frequent writes

to memory, are only some of the factors that can impact application performance.

The evaluation of the micro-benchmarks explicitly looks into the specified patterns

of task parallelism. To that end, one can obtain an indication of overhead for the

task-parallel sections, but it is left to the application programmer to obtain an

estimate of the overheads of the entire application (when resilience is enabled) via

testing.

As explained in Section 3.4.3, we have provided a single implementation of re-

silience to cover Chapel’s non-blocking execution model, irrespectively of the con-

struct used to introduce task parallelism (begin, cobegin or coforall). The dif-

ferent runtime behaviour is expected as the internal design of each construct differs

by default in baseline Chapel. In this work we take a holistic approach to resilience,

using the constructs as the test cases, rather than as tools to design custom resilient

versions. We currently consider an implementation of resilient constructs outside

the scope of this work, and instead we focus on the runtime-based approach.

To the best of our knowledge, this is the first attempt to support transparent re-

silience for task parallelism within Chapel’s runtime system. While our performance

results have been obtained from a set of micro-benchmarks, the implementation is

general enough to apply to uses of task parallelism within larger Chapel applications.

In the next chapter (Chapter 5), we will discuss two more substantial benchmarks,

as part of our performance evaluation of the resilient data-parallel implementation

for the Block data distribution.
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Resilient Data Parallelism

In this chapter, we discuss the implementation of resilience in the context of Chapel’s

data-parallel support. Reflecting Chapel’s design, our resilient design focuses on

data distributions and the parallel forall loop; both core components of data par-

allel support in Chapel and in other PGAS languages (X10, UPC). Chapel’s data

distributions are central to data parallelism, as discussed earlier in Section 3.6.3,

while forall loops are based on the concept of parallel iterators (Section 3.5.1).

To demonstrate our approach to resilience we focus on one of Chapel’s built-in

data distributions; the Blocked distribution (BlockDist), and detail the required de-

sign modifications to support resilience. The implementation builds on our resilient

runtime support, as presented in Chapter 4, with the modifications that support

failure discovery, and expands on library-level module, in the internal design of the

Blocked distribution. The implementation targets two focal points; the distribu-

tion and management of redundant data across locales (Section 5.2) and the tuning

of parallel iterators to support adoption and recovery (Section5.3) building on the

buddy locales mechanism.

5.1 The Block Distribution

Earlier in Section 3.6.3, we discussed a simple Chapel program of initialisation and

parallel iteration over a block distributed two-dimensional array.

When executing on six target locales the program of Listing 5.1 will produce

the output shown in the array (left-hand side). The iteration space is distributed
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use BlockDist ;

const Space = { 1 . . 8 , 1 . . 8 } ;
const A: domain (2 ) dmapped

Block ( boundingBox=Space ) = Space ;
var blockArray : [A] i n t ;
f o r a l l a in blockArray do

a = a . l o c a l e . id ;

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3
2 2 2 2 3 3 3 3
2 2 2 2 3 3 3 3
4 4 4 4 5 5 5 5
4 4 4 4 5 5 5 5

Listing 5.1: The listing demonstrates a snippet of a distributed rectangular two-
dimensional array declaration mapped with the block distribution. The array is
initialized using a parallel forall loop, and the value of the owning locale identifier is
assigned in each array cell. On the right side, we provide a sample mapping of the
index space over 6 locales using Chapel’s block distribution. The number of locales
is specified using the numLocales or nl parameter on program execution. When
executing on a distributed system the number of locales used in the program must
match or be smaller than the number of hosts in the configuration.

across the available locales (right-hand side) in a blocked manner. The distribution

captures all the required data to execute (and recover) the distributed tasks, while

global variables are stored on the root locale and are accessible via global references

from other locales. Where provided, the size of the bounding box is taken into

account for the calculation of the block size, while by default the blocks are computed

to span across all the available locales, aiming for equal -or closely matching- block

sizes.

Formally, the formula to compute the index locIdx of the locale on which

a domain array index idx will be mapped, in the one-dimensional case, where

the boundingBox defines a {low..high} index range of the problem domain; and

targetLocales[0..N − 1]locale define the array of locales that participate in the ex-

ecution, is shown in Table 5.1, below.

idx locIdx

low <= idx <= high floor((idx− low) ∗N/(high− low + 1))
idx < low 0
idx > high N − 1

Table 5.1: The index partitioning formula of the Block distribution. Each block is
mapped to one of the locales in the targetLocales array. The boundingBox is the
domain used as guide for the partitioning and defaults to the problem domain (Cray
Inc, 2015b).

In the case of multidimensional arrays, both idx and locIdx are index tuples, so
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the above formula is applied to each dimension. Domain indices outside the bound-

ing box are mapped to the same locale as the nearest index within the bounding

box.

Chapel distributions provide a set of methods to facilitate queries on the under-

lying distributed space such as the localSubdomain method which returns the index

set on the current locale, when the sub-domain is represented as a single sub-domain

and .localeId, which when called on a variable, returns the identifier of the locale

on which the variable is stored.

5.1.1 Overview

The Block distribution adheres to the Object Oriented programming paradigm,

using classes to define its internal structure. Parent classes are accessible via global

references from any location in the program during execution, and build upon the

concepts of domains and domain maps of Section 3.6.3. Local instances of the parent

classes are automatically created across the participating locales to capture the local

sub-domains and sub-arrays, as defined by the data distribution. The distributions

maintain information on the above mentioned local instances, via auxiliary data

structures; mainly internal arrays.

Internally, the block distribution uses forall loops for parallel iteration over do-

main indices, array elements and locale arrays. Locality constructs, especially the

on construct, are used extensively for data placement and for the coordination of

remote read and write operations. Finally, remote copying is also used extensively

during the initialisation phase of the distribution.

5.1.2 Implementation Details

Base Chapel The Block distribution is comprised of six classes; the Block dis-

tribution class, the BlockDom domain class, the BlockArr array class and their per

locale instances; LocBlock, LocBlockDom and LocBlockArr, respectively. When a

parent class instance is created (distribution, domain, or array), a corresponding

local class instance is created on each locale (loc0 to locN ) in the target locales.

As demonstrated in Figure 5.1, each of the local classes is mapped by the parent

class, using the auxiliary arrays; locDist, locDoms and locArr, respectively. In the
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BlockArr

BlockDom

Block locDist

...

loc 0

loc N

locDoms

...

loc 0

loc N

locArr

...

loc 0

loc N

localChunk

LocBlock

localBlock

LocBlockDom

locDom
localElems[ ]

LocBlockArr

dist

dom

Figure 5.1: The layout of the internal classes of the blocked distribution, imple-
mented within the BlockDist module.

following paragraphs, we detail the main components of the Block distribution and

their internal functionality.

Block Distribution Class, Block: The rank of a block class defines the number

of dimensions of the domain mapped by the distribution. Each Block class defines a

boundingBox parameter; a local domain used to assist the partitioning of the index

space across locales, and a local targetLocDom domain over which it defines the

array of targetLocales and the array of local distribution classes. Finally, locDist is

a local array of per locale distribution classes. Each of these classes points to the

participating locale’s LocBlock, a per locale object representing the locally owned

block.

The block distribution also defines a set of configuration flags to control the

number of tasks used on each locale during parallel iteration: the dataParTasksPer-
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Locale option limits the number of running tasks to the available parallel resources;

the dataParMinGranularity option defines a minimum threshold of granularity per

parallel task and the dataParIgnoreRunningTasks option controls the creation of

new tasks.

Local Block Distribution Class, LocBlock: During the setup of the Block

distribution a local LocBlock class is created on each target locale. LocBlock inherits

the rank of the block distribution and defines a domain, representing the local set of

indices; localChunk. For resilience, we extend this logic to redundantly persist the

index sets of each locale on the buddy locales.

Block Domain Class, BlockDom: The BlockDom class inherits from BaseRectan-

gular, the base class of all rectangular domains in Chapel. BlockDom describes the

indices of the blocked domain. It maintains a reference to the parent Block class and

specifies the layout of indices (normal or sparse). The BlockDom class maintains

an auxiliary array (locDoms) of per locale domain classes and a domain (whole)

that represents the complete index set of the distribution. Using the combination

of local arrays, the system and the application code are able to query the location

of a domain index, with respect to the index space, defined by the distribution over

the target locales.

Local Block Domain Class, LocBlockDom: LocBlockDom represents the local

part of BlockDom on each locale. It defines localBlock, a local rectangular domain,

that locales may query to access their local index set.

Block Array Class, BlockArr: The class defines the elements of specified type of

the distributed array. dom is a reference to the parent domain class and myLocArr

is an optimized reference to the current location’s (as specified by the here locality

construct) array of elements. BlockArr also defines an array of per locale block array

class instances, LocBlockArr.

Local Block Array Class, LocBlockArr: The local block array is the sub-array

of the distributed array, and it is assigned to each of the locales in the execution.
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Local element values are stored in the localElems local array, while there is also a

reference from this class to the parent local domain class. This class represents the

remote block of the array where element values are stored during array initialisation

and are read and/or updated during application execution. For the resilient version,

we support a new local array to persist the element values of the remote locales.

5.1.3 Leader-Follower Iterators

In Section 3.2 we introduced the concept of iterators as a construct of the base

language. Iterators are the building blocks of data-parallel forall loops. They are

essential to the internal functionality of distributions, but also a powerful user-level

construct.

In the baseline implementation of Chapel, zippered forall loops, such as the

one demonstrated in Listing 5.2, are based semantically on leader-follower iterators

(Cray Inc, 2015b). The leader iterator handles the higher level iterable construct,

either a range or a domain, that is iterated over.

1 f o r a l l ( a , b , c ) in z ip (A, B, C) do {
2 task ( ) ;
3 }

Listing 5.2: A sample zippered forall loop with A in the role of the leader iterator

Leader and follower iterators have distinct roles in the execution of parallel loops.

The leader is responsible for the creation of parallel tasks and their association to

target locales. A single leader guides each forall loop and assigns work using Chapel’s

main task-parallel constructs; begin, cobegin, coforall. A leader iterator uses

locality constructs, such as the on construct, to place parallel tasks on locales. Each

task yields locally owned work to assist the leader in the distribution of tasks. The

follower iterator receives input work as yielded by the leader. The follower iterates

and yields the values of each iteration serially and in the order indicated by the

leader.

The block distribution implements a pair of leader/follower iterators for the

parallel traversal of the distributed domain (BlockDom) and another pair for the

distributed array (BlockArr). In the context of the distributed domain, the leader
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iterator, traverses the target locales, slicing and assigning per locale blocks of indices,

the follower then iterates over the indices of each local block. The same logic applies

to the distributed array, with iterations over the distributed and local element arrays.

For distributed multi-locale executions, Chapel will normally map one locale per

system node. This behaviour is compatible with the Qthreads implementation of the

tasking layer, as Qthreads prioritizes performance over load-balancing and assumes

that tasks do not compete over system resources, as we detailed in Section 3.7.2. As

such in the context of parallel iterators, the leader will create only a small number

of tasks per locale —lower than the number of available cores per node, to prevent

resource starvation. The above runtime behaviour provides opportunities to hide

recovery latency in the case of the resilient implementation, by parallelising recovery

and local tasks within buddy locales. We will discuss this behaviour in detail in

Section 5.3.4.

5.2 Resilient Block Distribution: Data redundancy

In Chapter 4, we discussed the concept of buddy locales, as the central mechanism

to assist recovery of failed tasks. In the context of distributed arrays, we reuse the

mechanism of buddy locales and implement additional functionality to persist the

copies of the index sets redundantly within the Block distribution module. In the

next paragraphs, we detail the module-level design and implementation.

5.2.1 Data structure additions to the Block distribution

Resilient Chapel In contrast to the task-parallel resilient implementation, where

locales have uniform access to the task pool, in the data-parallel implementation we

need to persist essential data to allow recovery in the event of a failure. Following

the design of the block data distribution of Section 5.1.2, we require that each local

block instance (LocBlock) computes and persists in local storage the remote chunks

of guest locales, apart from the locally owned chunk. The chunks will be used to

perform adoption and recovery in the case of guest locale failures. To this end, we

introduce an one dimensional array of remote chunks with size equal to the number

of guests per locale. We name this array localResChunks to conform to the naming
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conventions in place.

Similarly, on the local block domain class, a new data structure is required

to store the blocks of guest locales. We also require a mechanism to point to

the location of guest locales within the array of target locales. The latter array;

localResIndices, stores rank * int integers, where rank is the underlying domain’s

dimension. For an initial 2-dimensional array mapped with the block distribution,

each locale requires an index set or tuple to refer to every other location, as shown

in Listing 5.2. Using the buddy’s index, we are able to specify the location to copy

to during the initialisation of the local block domain class. We also introduce the

localResBlocks array, to store the index blocks of guest locales.

target
Locales

L0 L1

L2 L3

lower bound

(0, ...) (0, ...)

(1, ...) (1, ...)

upper bound

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 5.2: The layout of indices of the BlockDom class when mapping a two-
dimensional array on four locales. It is used to compute the location of each chunk
in the distribution.

Finally, on array level, we create an array of arrays to persist the element values

of each guest locale. Remote element values are copied into the localResElems

array during the initialisation of the elements on the source (guest locale). We

maintain the redundant copies up to date with the source’s element values. After

the adoption of a failed locale by a buddy, the array serves as the source to perform

task recovery. This is a critical step towards the correctness of the computation, as

it ensures that in the case of failure, a recovery task will execute using valid data.

The array also serves as source for the update of redundant copies on secondary

buddy locales, thus ensuring correctness in the case of further failures within the

same group of buddy locales.

On the local part of the block array, we also maintain the identifiers of the

adopted locales and the indices of the locales under recovery, to avoid duplicate

recoveries.

146



Chapter 5: Resilient Data Parallelism

5.2.2 Buddy locale configuration

Resilient Chapel For the implementation of resilient task parallelism the buddy

configuration required a calculation of the buddy identifiers of each locale, taking

into account only the locale’s index, as this was sufficient to adopt tasks from the

distributed task list, as maintained by the runtime level. The base calculation

provides functionality to return the index of the guest locale. In this implementation

we provide a simple round-robin assignment of buddy locales, where a locale adopts

the next numberofbuddies locales in the incremental order of locale identifiers.

As shown in Listing 5.3, place specifies the order of a buddy locale, the first to

N-th buddy of the current locale. This ordering is not exposed to the user, but it

is required for the management of auxiliary data structures, as introduced earlier in

Section 5.2.1. Furthermore, the order of buddies exposes a primary-secondary buddy

relationship between locales.

1 proc computeBuddyId ( l o c : int , numberofbuddies : int ,
2 p lace : int , numlocs : i n t ) : i n t {
3 a s s e r t ( p lace <= numberofbuddies ) ;
4 i f ( l o c+p lace >=0 && l o c+place<=(numlocs−1) ) then
5 re turn l o c+p lace ;
6 else
7 re turn l o c+place−numlocs ;
8 }

Listing 5.3: Computation of the id of a buddies based on loc; the current locale
index

As an example, and building on the previous configuration of four locales of Fig-

ure 5.2 with a setup of two buddies per locale, we calculate the guests’ local domain

positioning, as shown in Table 5.2. A functional example of this configuration, is

described in Section 5.3.2

5.2.3 Initialisation of the Block distribution

Resilient Chapel During the execution of application code, the declaration of

a distributed array on a multi-locale setup, triggers the initialisation of the block

distribution and the subsequent instantiation of its comprising classes. A sample

block distributed array declaration is shown in Listing 5.4.
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Locale Primary
guest

Primary
guest’s do-
main

Secondary
guest

Secondary
guest’s do-
main

Loc0 Loc3 (1, 1) Loc2 (1, 0)
Loc1 Loc0 (0, 0) Loc3 (1, 1)
Loc2 Loc1 (0, 1) Loc0 (0, 0)
Loc3 Loc2 (1, 0) Loc1 (0, 1)

Table 5.2: A sample configuration of four locales with two buddy locales and their
corresponding remote locations to be persisted during the initialisation of the Block
distribution.

The code snippet triggers the instantiation of the six main classes of the block

distribution. The constructors are enhanced to support the declaration of the new

data structures, as discussed in Section 5.2.1. The per locale instances of LocBlock,

and LocBlockDom are populated during initialisation, since the target locales, their

indices and the indices of their buddy domains are known or can be computed at

this stage.

1 const n : i n t = 100 ; // the domain’s size
2 const space = { 1 . . n } ;
3
4 // the number of locales to use in the execution
5 var l oca l eView ={0..#numLocales} ;
6 var myLocales : [ l oca l eView ] l o c a l e =
7 reshape ( l o c a l e s , l oca l eView ) ;
8
9 const ProblemSpace =>space dmapped

10 Block ( boundingBox=space , t a r g e t L o c a l e s=myLocales ) ;
11
12 var A: [ ProblemSpace ] i n t ;

Listing 5.4: Declaration of the block distributed array A of rank 1 over the
distributed domain ProblemSpace

A detailed snippet of the implementation, demonstrating the calculation of guests’

blocks, is provided in the following section (Section 5.2.4). As the distributed ar-

ray A of Listing 5.4 (line 10) is initialised with element values, we use the array

localResElements of the BlockArr class as the redundant copy destination. We

describe the implementation details in Sections 5.2.4 and 5.2.5, while Figure 5.3

provides an overview of the data structures that have been added to the Block

distribution.
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BlockArr

BlockDom

Block locDist

...

loc 0

loc N

locDoms

...

loc 0

loc N

locArr

...

loc 0

loc N

localChunk
localResChunks[ ]
localResIndices[ ]

LocBlock

localBlock
localResBlock[ ]

LocBlockDom

locDom
localElems[ ]

localResElems[ ]

LocBlockArr

dist

dom

Figure 5.3: Layout of Chapel’s Block distribution classes of the BlockDistRes mod-
ule. The additions to each class to support resilience are shown in bold italics.

5.2.4 Redundant domain initialisation

Resilient Chapel Within the Block constructor (Block.Block) the locDist array

is populated at runtime with the instances of local blocks, using a task-parallel

coforall loop. We introduce a nested zippered iteration to compute the indices of

the guest locales and define the array localResIndices. On each of the local block

classes a locale computes the local chunk; the bounds of the locally owned index

set, and the redundant chunks using the auxiliary function computeBlock, passing

the local and remote locale’s indices as parameters. At this point we maintain

information on the bounds of each blocked domain, including the bounds of the

domains of guest locales.

The next point which requires enhancements to support the functionality of

buddy locales is the place where the global and local domains are populated. The de-

fault Chapel implementation provides the auxiliary method getChunk(domain, id)

149



Chapter 5: Resilient Data Parallelism

to allow locales to calculate their local sub-domains. Drawing on the above, we

implement a new method to access the chunk of a guest locale, using the locale’s

identifier. With the above constructs we are able to initialize the local instances of

the block domain, by setting the lower bounds of the blocks on each locale. The

first step towards this calculation is to compute the identifiers of each guest locale.

Once the lower bounds of the blocks are set, we proceed with computing the upper

bounds, assigning them accordingly in the arrays localBlock and localResBlocks.

We finally, iterate over the target locales, copy the guests’ identifiers in the resilient

indices array and the remote guests’ local blocks into the local resilient blocks array.

1 i f locDoms ( d i s t . targetLocDom . low ) == n i l {
2
3 // Creation/calculation of the lower bound of the
4 // local domain on each locale and the
5 // corresponding guest locales
6 c o f o r a l l l o c a l e I d x in d i s t . targetLocDom do {
7 on d i s t . t a r g e t L o c a l e s ( l o c a l e I d x ) do{
8
9 locDoms ( l o c a l e I d x ) = new LocBlockDom ( rank , idxType ,

s t r i d a b l e ,
10 d i s t . getChunk ( whole , l o c a l e I d x ) ,
11 d i s t . l o c D i s t [ l o c a l e I d x ] . loca lResIndex ,
12 new l o ca lResB locks [ ] ) ;
13
14 f o r i in 1 . . numBuddies do
15 loca lResB locks [ i ]= d i s t . getResChunk ( whole ,

l o ca l e Idx , i ) ;
16 }
17 }
18 } else {
19 // Calculation of the upper bound
20 c o f o r a l l l o c a l e I d x in d i s t . targetLocDom do {
21 on d i s t . t a r g e t L o c a l e s ( l o c a l e I d x ) do{
22
23 locDoms ( l o c a l e I d x ) . l o c a l B l o c k = d i s t . getChunk ( whole ,

l o c a l e I d x ) ;
24
25 f o r i in 1 . . numBuddies do
26 locDoms ( l o c a l e I d x ) . l oca lResBlock = d i s t . getResChunk (

whole , l o ca l e Idx , i ) ;
27 }
28 }
29 }

Listing 5.5: Computation of a guest locales’ remote sub-domain by the buddy locale
loc; the buddy locale’s index. This is part of the block distribution’s internal
functionality, with the addition of the guest sub-domains calculation (Lines 14-16
and 25-27).
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Listing 5.5 demonstrates a snippet of the computation of the redundant local

chunks of guests on each buddy locale (Lines 14-16 & 25-27). Each buddy iterates

over the local one-dimensional array of guest locales, calculating the local resilient

blocks. Since the chunks are not statically known, the computation of redundant

chunks must take place during program execution.

Listing 5.6 demonstrates the calculation of a remote chunk, based on the local

identifier, the guest locale’s identifier and Chapel’s internal utility methods.

1 chunk = l o c D i s t ( l o c i d )
2 . localResChunk ( ( . . . inds . g e t I n d i c e s ( ) ) ) ;

Listing 5.6: Snippet of the getResChunk method calculation of remote index set.

Based on the above code, for an example configuration of four participating

locales with two buddies per locale, each locale is required to persist the domain of

two guest locales in local memory.

5.2.5 Redundant array initialisation

Resilient Chapel Following the configuration of buddy locales, we require a

mechanism to persist the guests’ element values on the buddy locales. The re-

silient configuration does not currently support array slicing or re-assignment to

a different-sized array, as such we can assume that index blocks that are assigned

to each locale during the initialisation of the block distribution, continue to belong

to that locale throughout the implementation; i.e. index sets belong to the initial

locale until program completion. As discussed earlier in Section 5.2.1, in order to

ensure application correctness, we require that the redundant element values remain

up-to-date with the elements on the source locale.

Chapel provides uniform access to arrays; whether local or distributed, on user-

level, allowing transparent access and update of local and remote element values, a

design principle that stems from the PGAS programming model. The simplest form

is single assignment of elements, while the user can also iterate serially or in parallel

over distributed arrays and assign element values. A second common operation is

bulk copying between arrays (A = B), performed by a task-parallel loop over the

target locales, in the form of an aggregate operation.
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Single element assignment The read and write operations on an array element

in Chapel are performed by calls to the dsiAccess method. The method yields

the value of the specified element, as part of the localElems array or in the case of

remote elements, using a global reference to the element, which requires the remote

locale’s index. In terms of updating the redundant copies on the buddy locales,

single element access is an expensive operation; the current implementation requires

numberofbuddies remote write operations on each dsiAccess call.

Bulk array copying For bulk array copying, Chapel performs a zippered task-

parallel iteration over the locales and the source and destination arrays. If both

arrays comprise of local elements, then the operation is handled as a regular lo-

cal copying operation. The implementation tackles remote arrays based on their

dimension. For arrays of rank ==1, Chapel uses the consecutive chunks of the un-

derlying domain as the iterable expression to perform copying. In the case of multi-

dimensional arrays each of the ranks is calculated and copied separately. Chapel

uses the internal method array get to provide a this object reference functionality

for classes and to optimize copy operations. As bulk copying element assignment is a

more complex operation compared to single element assignment, we introduce a new

updateBuddies method to update the values on buddy locales. The method call

follows the bulk transfer call and involves the calculation of guest locales’ indices.

The above operations are used throughout the program to propagate value up-

dates and maintain redundant copies up to date with the values on the guest locale

(source). Accesses of an array element on application level directly affect the local

elements array on module level, more specifically, the local part of the distributed

array assigned to the operating locale. On initialisation of a blocked array, and in

order to initialise the redundant data, in the general case, we require (number of

buddies) * (domain indices) copy operations.
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5.3 Resilient Block Distribution: Recovery and

adoption

5.3.1 Iteration over redundant data: Forall loop

Resilient Chapel To support task recovery, we require that the guiding iterators

of the parallel forall loop are redirected, as discussed in Section 5.1.3, to yield the

indices and data of the in-memory redundant copies, in the event of a failure.

The design of resilient leader iterators, builds on the same assumptions we dis-

cussed in Section 4.2.1 for the resilient task-parallelism part; task atomicity and the

fail-stop model. The task atomicity requirement is a guard against memory incon-

sistencies, to ensure that partial data updates from an incomplete execution are not

propagated to the redundant copies on the buddy locales.

The leader iterator of the block array class, yields the array elements accessed by

the application code, using an internal call to the underlying blocked domain leader

iterator. The BlockDom iterator yields the required element indices to perform the

calculation. We have introduced two enhancements on leader iterators to assist the

recovery from redundant data.

Firstly, when a failure is realised on a primary buddy locale, the leader itera-

tor will yield the required indices corresponding to the failed locale after its local

indices. The buddy locale prioritizes local over recovery work, similarly to our task-

parallel recovery strategy. The possible re-ordering of tasks after a failure does not

pose state maintenance concerns, since the tasks within a forall loop are by design

independent, as guaranteed by the compiler. Thus, the relative time of computation

of a data block, compared to other blocks, does not affect the correctness of the

overall computation.

The second modification, arises mainly from the requirements of the evaluation

mechanism; since locale failures are only simulations in our testing framework and

locales are signalled to interrupt local execution, we need to ensure that the locales

considered as failed by the system and the testing interface, remain idle. Thus,

we have added a local status check within the BlockDom iterator. If the status

indicates local failure then the method exits without yielding values. In the scope

of a realistic failure, a node would be unable to perform local computation, or the
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results would be lost, for example in the case of a network partition; as a result the

indices of the local block would not be propagated. Outside the scope of this work,

on system level, we assume either a communication layer method set to perform

retries to reconnect to the node and/or a system wide abort event; the latter is the

policy currently applied by GASNet on locale failure.

As a result of the above, the testing infrastructure is not limited to the external

mechanism that kills system processes, but expands on the runtime level in the form

of a graceful degradation mechanism. The internal hooks into the Chapel compo-

nents can be used to potentially integrate added functionality, including dynamic

load-balancing with reconfiguration of the number of executing tasks, or possibly

the detection of data corruption assisted by a resilience-enabled external module.

The data indices and values to be yielded are accessed on leader level. Since the

leader iterator is instrumental to the implementation of the forall loop, we are able

to guide the iterations that are propagated to the follower iterators.

On leader-level the data indices are calculated dynamically, based on the amount

of local data, the size of the local chunks and the available resources. The indices

are then propagated to the follower iterators, at which point the application code

dictates the type of data transformation to be applied. Neither the leader nor the

follower iterators maintain historical data on the indices accessed in each iteration.

The part of the local data that is accessed and/or modified in the context of the

calculation is only available at the time of the calculation, while the leader does

not maintain any lineage of the data that have been updated. The fact that the

data transformations cannot be recovered at a later point, and changes to the task

state are difficult to rollback in the existing language infrastructure, has led our

implementation towards embedding the remote buddy updates within the context

of local updates. We additionally guard the correctness of our resilient design by

the task atomicity assumption, as stated in Section 4.2.1. As such we maintain a

relatively synchronous snapshot of the original and redundant copies, throughout

the calculation.

Taking into account our task atomicity assumption, another design direction

would be to perform update of remote copies after the successful completion of a

task. The first performance issue arises from the implementation of bulk copying
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operations in Chapel, since they are performed as single element writes. The second

performance consideration is the requirement for a synchronisation point to separate

the local calculation from the remote update phase. Although the operative domain

is accessible on leader-level (and the remote domains can be calculated), the update

phase would require a new type of follower iterator, dedicated to remote element

updates. This would lead to the internal restructuring of the block distribution

to include the update phase; following the synchronisation point. The essential

modification on the leader iterator would require the calculation of the remote buddy

(sub)domains and the propagation of both the local and remote domains to the

follower. The new follower iterator would then perform the remote write operations

using the local domain as source and the remote domains as target.

As the addition of a synchronised update phase would be costly and would change

the semantics of parallel iterators within the data distributions, we have decided to

combine the remote updates with the local calculation. In our design, we perform

the remote write operations we dynamically calculate remote indices on the follower

iterator and we use data that is available in memory during the calculation.

5.3.2 An example of multi-failure recovery

Building on the next neighbour buddy locale configuration (demonstrated in Ta-

ble 5.2) Locale 2 is the primary guest of Locale 3, while also the secondary guest

of Locale 0. There is also a primary buddy relation between Locales 3 and 0. This

setup ensures data availability on the buddy locales after multiple locale failures.

The recovery strategy in the case of multiple-failures, is summarized in the following

stepped timeline of Figure 5.4.

In the general case, the event of a failure on the first guest locale, will trigger the

adopting locale (primary buddy) to retrieve the index block and element values in the

first position of the arrays localResBlocks and localResElems, and accordingly

for subsequent guest locales.

More specifically for the above sample configuration, after the first failure (Locale

2) is realised on the primary buddy (Locale 3) (step 2), the buddy will begin recovery

action; Locale 3 will yield the requested values corresponding to the locally stored

copies for Locale 2 (step 4). Locale 0, as the secondary buddy, continues with local
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Figure 5.4: A timeline of multiple locale failures and recovery on the buddy locales.
The x-axis represents points in time and the y-axis represents the participating
locales.

work, until the second failure (Locale 3) is realised (step 7). Locale 0 now begins

recovery action for Locale 3 (step 9). At this point we require a mechanism to

differentiate between a previously discovered failure that has been recovered and a

failure for which task adoption has not begun. In the former case, Locale 0 will only

perform recovery for Locale 3.

In order to ensure that secondary buddies have enough information to decide

on whether to begin or skip a recovery task, each primary buddy locale signals the

secondary buddies of the adopted locale with the completion of recovery tasks. In

the above example, on step 7 of Figure 5.4, if Locale 0 has not received the signal of

recovery completion by the time Locale 3 fails, then Locale 0 will uptake the recovery

of Locale 2 as well, by yielding the elements of Locale 2 from local redundant copies.

Locale 0 can begin recovery for Locale 2, based on the following information:

1. Locale 2 has failed

2. Locale 3 is the primary buddy of Locale 2
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3. Locale 3 is alive; recovery has begun or is scheduled to begin

4. Locale 3 has failed

5. Recovery for Locale 2 has not completed

Table 5.3 demonstrates an abstracted snippet of the decision making process

on Locales 0 (right side) and 3 (left side), as multiple failures occur, based on the

events of Figure 5.4. More specifically, the snippet gives an overview of the required

coordination on the different layers, to support resilience. Firstly, events such as

failure signals and recovery completion notifications are realised on the communi-

cation layer and handled by the registered Active Message handlers. Secondly, the

information on the status of locales is maintained on the tasking layer, and the re-

covery (and regular) tasks are initiated on the tasking layer, while the distributed

data are maintained on module-level within the Block distribution. Each time a

recovery completion signal arrives, the according guest locale’s status is marked as

recovered. From the above discussion and pseudo-code, we can summarize that

in order to make decisions about recovery, we require information on failure state

including:

1. The status of each locale, within each buddy group;

2. The array of guest locales (on each buddy locale);

3. The array of secondary buddy locales; (on each buddy locale) and

4. The recovery completion information by the primary buddy locale.

We note that this simple mechanism of maintaining information on locales’ sta-

tuses, can also accommodate a resilient strategy with node resurrection or replace-

ment. The required adjustments are a new signal and corresponding signal handler

to indicate that a node has re-joined the system and is ready to perform work and

a bulk-copy operation to restore the local data from remote copies.

5.3.3 Failure Tolerance Threshold

Due to data availability constraints, as opposed to the task-parallel resilience mecha-

nism, we require a calculation for the maximum number of failures that the resilient

data-parallel implementation can tolerate, without compromising the correctness

requirement. In the task-parallel implementation the computational context is as-

signed from a centralised task pool, and are available to every executing task via
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// Loca le 3
2 // consume messages from queue

// event 2
4 // c a l l AM signal handler

gue s t s [ 0 ] = 1 ; // s t a t u s F a i l e d
6

// event 4
8 // recovery from l o c a l data

computation ( myResElems [ 0 ] [ 1 . . N] ) ;
10

// s u c c e s s f u l r ecovery
12 // send REC COMPLETE

// to Locale0
14

// event 4
16 // l o c a l f a i l u r e

l o c a l S t a t u s = 1 ;
18

// send SIGNAL to Locale0
20 // send SIGNAL to Locale1

// Loca le 0
2 // consume messages from queue

// event 2
4 // c a l l AM signal handler

gue s t s [ 1 ] = 1 ;
6 gues t s [ 0 ] = 0 ;

8 // c a l l AM Recovery Completed
// handler

10 gues t s [ 1 ] = 2 ;

12 // event 7
// c a l l AM signal handler

14 gues t s [ 0 ] = 1 ;

16 // event 9
// recovery from l o c a l data

18 computation ( myResElems [ 0 ] [ 1 . . N] ) ;

20 // event 11
i f ( gue s t s [ 1 ] != 2) {

22 // recovery from l o c a l data
computation ( myResElems [ 1 ] [ 1 . . N] ) ;

24 }

Table 5.3: Pseudo-code of the design for multi-locale failure recovery as implemented
on the tasking layer and on the block distribution module level assisted by the
ActiveMessages signals of the communication layer implementation. The pseudo-
code demonstrates the decision making process triggered by the events of Figure 5.4
on Locale 3 (left side) and Locale 0 (right side).

global references. Here, the system is able to tolerate at most N-1 failures within

each buddy group, where N is the number of locales per group, but in the general

case, we need to take into account the overlaps of buddy groups, especially for con-

figurations with multiple buddies. We need to consider the first and last locales in

the target locales array, since they also form buddy groups. In order to calculate

the number of locale failures that the system can recover from, we provide the below

formula:

Fail max = (numLocales/ (numBuddies+ 1))× numBuddies+

(numLocales mod numBuddies)

(5.1)

where

numLocales = Number of locales in the execution and

numBuddies = Number of buddies per locale
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The maximum number of failures (Fail max), as per Formula 5.1, requires that

at least one locale within each buddy group remains live. This requirement applies

also to the locales in the beginning and end of the locale range. The requirement

could also be considered to set the Fail min threshold; the minimum number of

failures that is guaranteed to bring the system down. In other words, any number

of failures larger than Fail max, or failure of all buddies within a buddy group, is

guaranteed to terminate the execution.

Locale Id Locale Id Locale Id
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

X X X X X
X X X X X
X X X X X

X X X X X
X X X X X

X X X X X
X X X
X X X

Figure 5.5: The set of recoverable combinations on a sample configuration of 8
locales with 2 buddies

Accordingly, Figure 5.5 demonstrates the set of recoverable failures on the shaded

locale Id’s for an execution with 8 locales the system is guaranteed to tolerate up

to (8/3× 2) + (8 mod 3− 1) = 5 failures. The combinations shown, comply to the

requirement that the failures do not affect all N nodes of an N-buddy group, and

Locale 0 is failure-free. In Appendix A.1, we provide a Python script to calculate

159



Chapter 5: Resilient Data Parallelism

all the combinations of a range of Id’s, while we also demonstrate the full set of

combinations for the configuration with 8 participating locales.

Another conclusion is that, if the programmer requires a different algorithm for

the assignment of buddy locales; for example a two buddy configuration of previous

and next neighbours, then they will also need to implement a mechanism to query

the identifier and the status of the primary buddy of each guest locale. This step is

essential to avoid recovery duplication and preserve the integrity of the redundant

data.

5.3.4 Parallelisation of Recovery

In Section 5.1.3, we have discussed how the leader iterator of a parallel loop is

tuned to prevent resource starvation in the system. This strategy is applied across

the participating locales, but also within each locale, since the leader will normally

create less tasks compared to the available processors on a node. In contrast to

Chapel’s task-parallel constructs which allow the programmer to force the creation

of new tasks, for example when using begin or coforall, the number of tasks in a

data-parallel forall loop is governed solely by the leader iterator.

In the context of resilient Chapel, we are concerned with how the system’s ca-

pacity, which reduces with each new locale failure, may affect the overall runtime of

a program. In the hypothetical case, of an embarrassingly parallel algorithm that

executes without communication and recovery costs, we would expect that the re-

duced capacity, when losing one node in the setup, would lead to the re-execution

of this task after the completion of local work on the buddy node. Essentially, this

would lead to a single straggler task —corresponding to a single failure, and the

subsequent increase of the overall runtime by the execution of the recovery task.

In Table 5.4 we demonstrate the above scenario. We show two instances of the

same execution in the failure-free case (top) and in the case with a single failure (bot-

tom). In the latter case, Locale 2 fails (step 1) and the recovery task is restarted on

the buddy locale (Locale 3) after the completion of local work, on step 4. Again, we

assume 0% communication costs and 0% overhead for the management of redundant

data, so the recovery task can begin immediately after the local work has completed.

Also, in this case, the total capacity of the system is reduced after the failure (step
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Table 5.4: A hypothetical program execution run on 4 locales, perfectly load-
balanced and using full capacity. The x-axis represents the stepped execution time,
while the y-axis represents the execution on the distinct locales. The first plot (top)
demonstrates a load-balanced execution of a parallel forall loop on 4 locales without
failures, while the second plot (below) demonstrates the case with one failure on
Locale 2 and the subsequent execution of recovery on the buddy locale (locale 3)
after completion of the local work.
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1) by 25%, leading to an average overall capacity of 325%.

In order to further investigate the effect of reduced total capacity on the over-

all execution runtime, we run a data-parallel version of the Mandelbrot micro-

benchmark1 on 4 locales. We use an input set of 2010 rows and columns, corre-

sponding to pixels in the produced representation of the complex fractal set. We

run with the resilience enabled version of the runtime, using a single buddy per

locale and four failure configurations:

(a) execution without failures;

(b) a failure injected before 10% of the total runtime of the failure-free execution;

(c) a failure injected at exactly 10% of the execution; and

(d) a failure injected at 15% of the execution.

Configuration (a) (b) (c) (d)
Mean runtime (mins) 309.50 306.28 312.3.40 287.10

Table 5.5: Average runtime (in minutes) of the Mandelbrot data-parallel micro-
benchmark on a set of different failure injection configurations, with execution on 4
locales.

We run 10 iterations for each setup and present the mean runtimes in Table 5.5.

Our results for this realistic example show small speedups for configurations (b)

and (d) and a small overhead for configuration (c), when comparing to the failure-

free execution (case (a)). We use the default size of arrays (2010 x 2010), which

leads to one bulk task being created per locale. We also consider the communication

costs and the internal management of the data structures introduced by the resilient

version. The results clearly contradict the hypothetical runtime we demonstrated

in Table 5.4, and show that the overall runtime does not increase by the runtime of

the additional execution (recovery task). In contrast, the overall runtime benefits

from the reduced communication and remote copying costs, when one locale in

the system is lost. When injecting a failure at 15% of the execution we note a

speedup close to 7.5%, which shows that for larger local chunks and frequent data

updates (as required by the algorithm), there is a heavy communication penalty.

This is particularly evident in this example, following the failure of the guest locale

1The Mandelbrot micro-benchmark is included in Chapel’s release. The code can be found
under https://github.com/chapel-lang/chapel/tree/master/test/exercises/Mandelbrot/
solutions.
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(Locale 2) there is no communication for data updates, since no secondary buddies

are configured. Furthermore, the increased workload on the buddy locale, leads to

the creation of more parallel tasks, which execute on previously idle processors. In

the Appendix (Section A.4) we provide the data-parallel micro-benchmark and the

output of the Mandelbrot execution for the above four configurations.

Figure 5.6: A hypothetical program execution run on 4 locales, perfectly load-
balanced, before the failure. The x-axis represents the stepped execution time,
while the y-axis represents the execution on the distinct locales. The recovery task
on the buddy locale begins executing immediately after the failure has occurred
and alongside the local tasks on the buddy. Thus the total runtime of the program
(bound by the implicit synchronisation of the forall loop), is increased by a small
percentage, until the recovery task completes.

Based on the above discussion of design choices both in Chapel and in the

Qthreads tasking library, but also from the empirical data of the Mandelbrot micro-

benchmark, we conclude that the increase of workload on a buddy locale due to task

recovery, guides the leader iterator of a forall loop to create more tasks, thus taking

advantage of the idle cores. In Figure 5.6 we demonstrate how the recovery task of

the hypothetical scenario of Table 5.4 would be handled within Chapel’s resilient

runtime. The above considerations will assist in the discussion of our evaluation

results of the resilient block distribution in the following section (Section 5.4).
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5.4 Evaluation of the Resilient Data Parallel Im-

plementation

In this section we report on the performance results of the two benchmarks used in

our experimental evaluation for Chapel’s data-parallel resilient implementation, the

STREAM benchmark (5.4.2) and the N-body algorithm (5.4.3). We validate that the

system can recover every time for failures below the Fail max threshold and within

the limitations in place. We are particularly interested in the costs associated to the

resilient support mechanism when multiple failures below the Fail max threshold

occur during execution.

For the STREAM benchmark we initially use a small number of locales to assess

the overheads of the resilient implementation. We have chosen a set of fixed input

sizes that we can use across testing cases when scaling the number of failures. We

then move to larger configurations demonstrating results with significantly increased

input sizes, up to 1 million elements 2. For the N-body application, we have chosen

to scale the number of iterations on two different datasets, in order to demonstrate

the correctness and adaptability of our resilient mechanism when employing graceful

degradation, due to multiple failures. The smaller size of the datasets has allowed

us, with respect to time constraints, to test with multiple failure configurations and

provide a larger set of measurements for comparison.

The choice of benchmarks in this section is guided by two main factors; firstly,

we require data-parallel applications, since our goal is to verify and evaluate the

resilient design of parallel iterators. Secondly, since our mechanism addresses the

blocked data distribution, the datasets must be in the form of dense rectangular ar-

rays or matrices. We have also opted for applications in which the calculation or the

input data do not introduce unbalanced loads, as the most appropriate candidates

for a blocked distribution. We have reviewed existing benchmarks that are com-

monly used on blocked datasets; linear solvers such as Linpack (Dongarra, 1992),

vector operations such as in STREAM triad (McCalpin, 1995) and transforms such

as the FFT (Cochran, Cooley, Favin, et al., 1967). In this work we have chosen

STREAM triad due to the larger memory requirements of the benchmark, to enable

2Use of one million element arrays for the execution of STREAM is the general recommendation
provided by the creator and maintainer of the benchmark (McCalpin, 2002)
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us to evaluate the memory overheads when combined with the data replication of

the resilient mechanism. For our larger benchmark, we have chosen the N-body

simulation, as it is a commonly used application for benchmarking data parallelism

across programming languages. The base algorithm is easy to implement and the

datasets to execute on are straightforward to produce.

We begin by detailing the experimental setup and we provide empirical evidence

to demonstrate the runtime and performance of applications, under different failure

configurations. We discuss the results and provide analysis on the sources of the

demonstrated overheads.

5.4.1 Experimental setup

For the resilient data-parallel evaluation we have used the same hardware as de-

scribed in Chapter 4; a 32-node Beowulf cluster. We re-state the specifications for

completeness, here. Each node comprises of two Intel Xeon E5506 quad-core CPU’s

at 2.13 GHz, sharing 12 MB of RAM and connected via Gigabit Ethernet. The

nodes run CentOS Linux release 7.5.1804 (Core) x86 64. Each core uses a 32KB

L1i cache for instructions and 32KB L1d cache for data and an L2 cache of 256KB.

Each quad-core also shares an L3 cache of 4096KB.

5.4.2 STREAM: Sustainable Memory Bandwidth in High

Performance Computers

The STREAM benchmark is a synthetic algorithm designed as a memory bandwidth

(in MB/s) stress test. STREAM evaluates the performance of four simple vector

kernels. Memory bandwidth affects the performance of read and write operations

and, as a result, it drives the performance of data-intensive applications; programs

with regular access to in-memory stored data. High bandwidths ensure that data

can be retrieved or written by the processor with small performance penalties.

STREAM is composed of four micro-benchmarks; copy, scale, sum and triad.

Table 5.6 details the four kernels and the number of bytes read or written per itera-

tion. The table also summarizes the floating point operations per second (FLOPS)

required per kernel.
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In this section, we provide some background on the composition of the benchmark

and its impact on memory and compute components of an executing processor.

Name Kernel Bytes/Iteration FLOPS/Iteration

copy a(i) = b(i) 16 0
scale a(i) = q ∗ b(i) 16 1
sum a(i) = b(i) + c(i) 24 1
triad a(i) = b(i) + q ∗ c(i) 24 2

Table 5.6: The vector kernels that compose the STREAM benchmark (McCalpin,
2002). For each kernel we provide the total bytes that are read and written per
iteration and the number of floating point operations required.

The copy benchmark measures transfer rates in the absence of arithmetic. It is

one of the least expensive, but also common memory operations, and consists of the

retrieval of two values from memory and a write operation on one of the values.

The scale micro-benchmark adds a simple arithmetic operation, by updating

element b before writing it to a. This simple scalar operation serves as the basis for

building more complex operations, thus scale’s performance is an indicator of the

performance of larger calculations.

Sum adds a third operand; with three values being retrieved from memory. For

larger arrays, the processor’s pipeline will fill quickly, so memory bandwidth can be

tested. The benchmark approximates a computation often used in real-life applica-

tions and it was originally used to perform multiple load/store operations on vector

machines.

Finally, the triad micro-benchmark uses fused multiple-add (FMA) (Fog, 2012)

operations. It builds on sum by adding an arithmetic operation to the values re-

trieved from memory. The triad micro-benchmark is directly associated with appli-

cation performance (McCalpin, 2002; McCalpin, 1995) given that FMA operations

are regularly part of basic computations, such as dot products, matrix multiplica-

tion, polynomial evaluation, Newton’s function evaluation method and digital signal

processor (DSP) (Verbauwhede, Schaumont, Piguet, and Kienhuis, 2004) operations.

A common experimental configuration for STREAM is to execute the four micro-

benchmarks and then construct an average value, such as the geometric mean, as

a way to compare performance on different platforms using a single metric. A

set of historical measurements for STREAM on Intel processors can be found in
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Appendix A.5.

In this work, we focus on the triad benchmark, as it more closely resembles

computations that take part in practical applications. The triad is used as a stress-

test to the efficiency of the resilient implementation. Due to the extensive use

of read and write operations on in-memory data, we do expect higher overheads

compared to applications with heavier computation, such as the N-body algorithm

of Section 5.4.3.

Figure 5.7: Runtime (in seconds) of the STREAM triad execution on four locales
with regular Chapel and resilient Chapel for input arrays A and B of size 4K up to
20K and 0 to 2 failures. The end-to-end execution runtimes are measured.

Figure 5.7 demonstrates the execution times for STREAM triad on 4 locales using

the resilient blocked distribution. The results show runtimes (in seconds) for input

array sizes of 4K up to 20K elements for the initial one-dimensional arrays A and B.

We measure the end-to-end execution runtime and in Table 5.7 we provide the full

set of percentage differences of the different configurations (0-2 failures) comparing

to the regular Chapel version. We also provide the mean overhead percentage across

input sizes per failure injection setup.
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We plot the runtime (in seconds) with respect to the number of failures and we

use the regular version of the block distribution for comparison, for five different

input sizes, as the main graph to assess the overhead of resilience on an increasing

number of failures (Figure 5.7). The baseline regular Chapel version is marked in

the x-axis as Regular, followed by the resilient version without failures and the cases

with failures.

A. Runtime (seconds)
m 4000 8000 12000 16000 20000

Regular 48.19 62.67 63.89 65.38 66.19
No
failures 164.12 175.24 185.09 246.23 207.96
1 Failure 171.60 161.28 181.97 241.66 195.14
2 Failures 165.19 187.72 199.63 225.70 261.79

B. Percentage difference to baseline (%)
m 4000 8000 12000 16000 20000 Mean

No
failures 109.20% 94.63% 97.34% 116.07% 103.41% 104.13%
1 Failure 112.29% 88.06% 96.05% 114.82% 98.68% 101.98%
2 Failures 109.66% 104.42% 103.01% 110.15% 119.27% 109.30%

C. Percentage difference to resilient version without failures (%)
m 4000 8000 12000 16000 20000 Mean

1 Failure 4.45% -8.30% -1.70% -20.90% -6.36% -2.09%
2 Failures 0.64% 6.87% 7.55% -8.70% 22.92% 4.84%

Table 5.7: Full measurements set of the mean runtime in seconds (A), mean per-
centage difference (%) to the regular Chapel runtime version (B), on an increasing
number of failures and mean percentage difference (%) to the resilient Chapel run-
time version (C) of the STREAM triad execution on four locales with regular Chapel
and resilient Chapel with 0-2 failures for the input arrays A and B of size 4K up to
20K. We also calculate the mean percentage difference per execution setup compared
to regular Chapel.

The algorithm specifies a precision tolerance e value of 0.1, we perform 10K

iterations and execute 10 experiments per setup. We have used a configuration of

two buddies per locale, and as discussed in Section 5.3.3, for the four participating

locales the system’s Fail max is two locale failures. In other words, injecting more

than two failures is guaranteed to produce incorrect results. In the case of Locale 0,

the failure will lead to fail exit, while failures on other locales, over the Fail max

threshold, cause silent data corruption and possibly deadlocks due to faulty task

counter update.
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In each iteration for the case with failures we introduce a fixed number of failures

on random locales up to Fail max. For example in the case of one failure, the locale

to fail is chosen randomly out of the set of existing locales, excluding Locale 0. We

note from the plot that the input size of arrays affects both the baseline and the

resilient version.

When comparing the regular and resilient version without failures we note that

the difference in input sizes directly affects both runtimes. For regular Chapel the

fivefold increase of the input size (from 4K to 20K elements) produces an overhead

of 29.4%., while for the resilient version without failures the overhead is 23.5%

(Table 5.7 A). Figure 5.7 demonstrates clearly that, irrespectively of failures, there

is a fixed overhead across the different input sizes for the resilient version when

comparing to regular Chapel, ranging between 98.6% and 119.2% as per Table 5.7.

Although, the distinct costs per case depend on the number of buddies and

the input size of the application, we consider this a fixed cost in the sense that

it comes up in every execution with the resilient version. The fixed cost includes

the initialisation of the block distribution on the target locales, the configuration of

the buddy locales, the initialisation of the blocked domains and the blocked array

accesses to produce the redundant copies on the buddy locales, as detailed earlier in

Sections 5.2.2 through 5.2.5. As discussed earlier, the majority of the bulk copying

operations occur during program startup, following the buddy configuration, a fact

that accounts for a higher cost to enable the resilient infrastructure. A notable

source of overhead are the remote memory access operations that occur throughout

the execution to maintain the redundant data up to date; these costs are more

difficult to isolate and measure.

To clearly demonstrate the fixed cost we provide Figure 5.8. The figure shows

a condensed and restructured version of the average execution runtimes over input

size of Figure 5.7, including only the regular Chapel version and the resilient version

without failures, for the different input sizes. The average overhead accounts to

103.4% between the two versions, while there is also a peak in the runtime for the

input size of 16K elements.

For the input of 16K elements we note a larger runtime increase in the setup

without failures; with an overhead of 13% compared to the larger input size of 20K
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Figure 5.8: Absolute overhead Runtime (in seconds). Comparison of the baseline
and the resilient version without failures for STREAM triad for the input size arrays
of 4K to 20K.

elements. Taking into account the underlying hardware characteristics and the fact

that the application occupies a sinlge core per locale, with each locale corresponding

to one node in the execution, we believe that the demonstrated runtime increase is

related to the L2 cache latency effects.

Input size 4K 8K 12K 16K 20K

Local array block size 1K 2K 3K 4K 5K
Local array blocks 3 3 3 3 3

Redundant array blocks 6 6 6 6 6
Total elements 9K 18K 27K 36K 45K

Total memory space 72KB 144KB 216KB 288KB 360KB

Table 5.8: Block sizes persisted per locale per input size. The calculation includes
the local block sizes and the blocks persisted redundantly on each buddy locale for
the configuration with two buddy locales. The array elements are double precision
real’s of 64 bit width.

In Table 5.8 we summarize the total elements persisted per locale during program

initialisation, i.e. the additional memory requirements per locale for the resilient
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block distribution. We take into account the default bit width of 64 of Chapel’s

real (double precision) data type, used for the array elements. The per locale

memory requirements are calculated based on Formula 5.2, below, while in our ex-

periments the local blocks on each locale are of equal size. The memory requirements

are fixed throughout a failure-free execution, while for executions with failures the

total required memory decreases. As less nodes participate in the execution, less

redundancy is maintained as the redundant copies become primary sources of data.

Memory per locale =

(localBlockSize+ firstBuddyBlockSize+ · · ·+NthBuddyBlockSize)

×numArrays× dataTypeLength

(5.2)

where

localBlockSize = The size of the local block after the distribution;

numArrays = The number of block distributed arrays in the application;

dataTypeLength = The memory space required for the data type of array ele-

ments, and

XthBuddyBlockSize = The size of the local block of the Xth buddy after the

distribution.

Each core on our machine is equipped with an L1d cache of 32KB, an L2 cache

of 256KB and a shared L3 cache of 4MB for every 4 cores that form a NUMA

node. The cache line size is 64 bytes and the L1d and L2 caches follow the exclusive

model. According to Intel’s Software Developer’s Manual (Documentation, 2011),

the primary cause of misses on L1d and L2 caches is poor data locality combined

with a large dataset. In this sense, the pipeline is stalled waiting for memory, since

most of the Last Level Cache (LLC) misses end up accessing the RAM.

In the case of STREAM’s resilient execution without failures, although the leader

iterators yield local consecutive chunks to follow within the parallel loop, the accesses

to update the redundant copies as they are retrieved from remote memory locations,

become more expensive, due to the offloading of hot data from the cache. On the

other hand, following a failure, the data accessed by a buddy locale show better
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data locality, as these are accesses to locally stored consecutive chunks, due to the

configuration of the buddies. The latter is an example where modifications to the

runtime system have performance side-effects beyond the immediate overhead of

managing the required data to enable re-computation of results.

For the case of 16K elements the memory requirements of the application in

the failure-free case, account for 288KB which is the combined size of the L1d and

L2 caches. That leads to the conclusion that the loading of a new cache line from

L1d cache is followed necessarily by the eviction of another line to L2, leading to

progressively more expensive offloading operations. In contrast, for the input size

of 20K elements, the data set is larger than the L2 cache (360KB), which makes the

processor pre-fetching more visible, as the wait time for the next cache line is shorter

compared to the access time to the L2 cache, thus leading to smaller runtimes for

the input of 20K elements.

Sources of runtime overhead The main sources for the demonstrated runtime

overhead with respect to the additions and modifications to the Block distribution,

are summarized in the following list:

• Remote copying in the beginning of the execution; for example, for the con-

figuration with 2 buddy locales per locale and for the input size of 12K arrays

each locale is assigned three blocks (arrays A, B, and C) of 3K elements each.

Each locale copies 3K elements per input array per guest locale, resulting in

a 2 guests ∗ 3 arrays per locale ∗ 3K blocksize = 18K of element copying from

guest locales. The overall copying for redundancy when using a two buddy

configuration accounts to 72K elements for all four locales. This is a fixed cost

in the sense that it occurs once in the beginning of each execution.

• Single-element access : each time an element is read or written in the program,

either serially or within a loop, a remote copying operation takes place to

update the corresponding element on the buddy locales. In the regular case, a

remote access in the context of Chapel’s distributions requires a set of checks on

the runtime in order to define whether a local or remote element is written and

a recalculation of the index sets of the participating locales in the remote case.

To allow value updates in the resilient case, we handle the updates of redundant
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data on the guest locales. As such, the update of a single local value requires

one local and two remote write operations. Thus a loop which updates the

values of all elements over the initial problem space of 12K elements, requires

2(arrays) * 3K local write operations + 2(buddies) * 2(arrays) * 3K remote

write operations adding up to 18K write operations in total. In general, the

write operations required for a full update are localChunkSize+numBuddies∗

remoteChunkSize, for a distribution with equally-sized chunks across locales.

This is a variable cost in the sense that is related to memory read/write costs

and communication overheads.

• Added functionality on the runtime level, in the forms of:

– status checks of remote locales, which require on-the-fly recalculation of

buddy indices, as this information is not available on the blocked array’s

level; and

– initial configuration of buddy locales, including the calculation of remote

index sets, which accounts for a low percentage of the overall overhead.

When comparing the resilient version without failures to the cases with failure

injections of Figure 5.7, we note that the costs of task adoption and recovery are

significantly smaller; 4.4% overhead for the input size of 4K elements with one

failure, while in the majority of the cases, these costs are amortized by improved

data locality, thus leading to speedups of up to 8.7% (for the input size of 1K

elements with two failures). This is consistent to our explanation of the cache

effects; as more failures occur and the working data set is accumulated on the single

available (”live”) locale, the program shows better data locality. Our conclusions

of recovery parallelisation of Section 5.3.4 are also applicable in this case, since the

STREAM triad calculation occupies 2 to 3 cores per locale in the failure-free case.

In Figure 5.9, we demonstrate the runtime of the application code as measured

by Chapel’s Time module. The timing includes the STREAM triad calculation. As

before, the element updates on the buddy locales during each iteration and the task

adoption and data-parallel recovery in the cases with failures, are also included. The

difference to the plot of Figure 5.7 is the initialisation cost of the block distribution,

which takes into account the initialisation of the distributed array and the remote

write operations to initialize the redundant copies.
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Figure 5.9: Application code mean runtime (in seconds) of the STREAM triad
execution on four locales with baseline Chapel and resilient Chapel with 0-2 failures
for input arrays A and B of size 4K up to 20K. The runtime is measured using
Chapel’s Time module.

The first thing to note when comparing the Figures 5.7 and 5.9, is that in the case

of regular Chapel, the overheads of the initialisation of the arrays in the distribution

are particularly high. When excluding this part from our measurements the runtime

difference decreases by an average of 54.4% across input sizes. In comparison, the

resilient version without failures shows an average decrease of 35.1% in runtime,

compared to the end-to-end runtime measurements. Since the same input datasets

are used per input size, the approximate 20% difference of the runtime difference

is a rough indication of the average overhead introduced by the initialisation of the

redundant copies on the buddy locales, across input sizes.

The difference is also evident in the cases with failures. Here, for the case with

two failures, the runtime converges between 130-150 seconds across input sizes. The

illustration of the performance of the main calculation indicates that the overhead of

recovering two tasks, when comparing the cases without failures and with 2 failures
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is on average 9.7%, while the largest runtime decrease is 38.8% (demonstrated in the

case of 16K elements), though the latter is affected by the memory latency issues

discussed earlier in this section.

In Figure 5.10 we demonstrate a set of measurements for STREAM triad for

the larger input sizes of 500.000 and 1,000.000 elements. Based on the formula

of Section 5.3.3 for 12 participating locales, the system is guaranteed to recover a

maximum of 8 failures.

The results demonstrate, as before, an initial fixed overhead when using the

resilient block distribution. For the 500K input size of the resilient version, the

overhead accounts for 68.5% while for the larger input of 1 million elements the

overhead accounts for 44.8%, which implies better processor utilization due to the

larger dataset.

We should also note that the recovery of two failures compared to the resilient

version without failures introduces larger overheads compared to the previous exper-

iments. More specifically, the difference between the No failures case and the case of

2 failures demonstrates overheads of 21% and 52.2%, respectively for the two input

sizes. As opposed to the previous experiments, the recovery of two failures for the

case of 1 million elements poses non-trivial overheads. The higher local workload

on the buddy locale does not provide, in this case, opportunities to parallelise the

task recovery.

On the other hand, after the threshold of 2 failures, the cost of further failure

recoveries is normalized, with 8 failures introducing only 6.8% overhead compared to

the case with 2 failures, for the input of 1 million elements. This means that although

the system’s capacity is reduced by 66.6%, the recovery workload is amortised by

the reduced communication for updates of the redundant data and the improved

data locality. As the recovery of 2 failures remains a straggler for the system, the

cost of subsequent recoveries is, in large part, obscured. For completeness, we also

provide the full set of runtime measurements in Table 5.9.

The above results make obvious the fact that the added communication and

the remote copying operations are the main factors that introduce overhead. These

costs, though dependent on the input size and the number of buddy locales per

configuration, are consistently higher compared to the cost of task-adoption and re-
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Figure 5.10: Runtime (in seconds) of the STREAM triad, comparison of the baseline
and resilient version without failures and the resilient version across 2-8 failures for
STREAM triad for the input size arrays of 500K and 1M elements.

m 500000 1000000

Regular 156.7898 188.0277
No Failures 320.48077 296.6098
2 Failures 395.7574 506.3997
4 Failures 402.7511 527.2684
6 Failures 409.7312 535.7154
8 Failures 420.0953 542.5347

Table 5.9: Full measurements set of runtime (in minutes) of the STREAM triad ex-
ecution on twelve locales with baseline Chapel and resilient Chapel with 0-8 failures
for input arrays A and B of size 500K up to 1M.

covery from redundant data. The above are indicated by the reduced performance of

the application with failures when compared to the resilient version without failures.

As stated initially, the memory-intensive STREAM triad benchmark is a stress-

test for our resilience implementation, which results in the above mentioned high

overheads. In the following section, we apply our resilience approach to a real-life

data-intensive application with substantial computational costs.
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5.4.3 N-body: approximation of particle motion

The general N-body simulation problem describes the evolutionary motion of parti-

cles within an isolated system. The particles interact through physical forces; more

commonly the gravitational Newtonian force when describing celestial bodies, but

similar simulations cover the movement of atoms within gas clouds. The problem

has been studied extensively by mathematicians and physicists, including Gauss,

Lagrange and Laplace, but a general analytic solution has not been provided yet by

researchers (Heggie and Hut, 2003; Wisdom and Holman, 1991).

In the bibliography, we find implementations of several Nbody algorithms (such

as all-pairs, Barnes-Hut, and finite multipole) across languages, where in the com-

mon case, the positions, velocities and masses of the participating bodies are ini-

tialised with pseudo-random values. In this implementation we use the all-pairs

algorithm3, a simple solution for Nbody. Though it is not highly tuned for perfor-

mance, it is simple enough to allow a straightforward evaluation of the impact of

the resilient mechanism on performance. We use two predefined input sets of twenty

(20) and forty (40) solar bodies to verify the correctness of our results. The datasets

can be found in Section B.3 of the Appendix.

In each time step, the bodies are forced by the gravitational power to develop

speed and move in the space. The bodies advance for a total number of iterations

and from a physics perspective we are interested in measuring the initial and final

energy produced in the system. For the purposes of this work we are interested in

the completion of the entire set of calculations that describes the movement and

interaction of the bodies, when executing on a parallel system with node failures.

Figure 5.11 demonstrates the mean execution runtime of both the baseline and

the resilient version for datasets of 20 and 40 participating bodies with 5K and

10K iterations on 16 locales. We use a two-buddy configuration per locale and we

introduce up to 10 failures, while we perform 10 experiments per test case.

As demonstrated in previous experiments, the use of the resilient version in-

troduces overheads compared to the regular Chapel runtime, irrespectively of the

presence or the number of failures. This is particularly evident when comparing

3The block distributed parallel version is adjusted from the serial Nbody Chapel implementa-
tion, which can be found under https://github.com/chapel-lang/chapel/tree/release/1.

12/test/release/examples/benchmarks/shootout
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Figure 5.11: Runtime (minutes) of the Nbody execution for the datasets of 20 and
40 bodies with 5K and 10K iterations on 16 locales. We provide the runtime of
the baseline Chapel runtime, the resilient version without failures and the runtimes
with 2-10 failure injections.

the baseline to the resilient version without failures; corresponding to the first two

points on the x-axis of Figure 5.11, for the experiments with 40 bodies.

Figure 5.12 demonstrates the absolute overhead of the resilient runtime version

for the datasets of 20 and 40 celestial bodies with an increasing number of failures

compared to the results of the baseline Chapel implementation for both executions of

5K and 10K iterations. The results demonstrate high variability across the different

input sizes and across the range of injected failures.

The management of the additional data structures and the performance over-

head of remote write operations to initialise the redundant copies during program

initialisation and throughout the execution to update the copies, accounts for the

demonstrated increase of 16.7% in the case of 5K iterations and 7.6% in the case of

10K iterations for 20 bodies, when moving from the baseline to the resilient version
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Figure 5.12: Absolute overhead (%) of the N-body execution with 5K and 10K
iterations for 20 and 40 bodies on 16 locales compared to baseline Chapel, over an
increasing number of failures.

without failures. The overheads for the larger dataset are respectively 28.6% and

27.4%. As discussed earlier, we consider these costs fixed, in the sense that the

additional operations are required to enable the resilient support per our design.

When comparing the test cases (both datasets for 5K and 10K iterations) and

based on Figure 5.12 and Table 5.10 of the full set of absolute overhead measure-

ments, we observe lower overheads and improved overall performance for this real-

istic example, compared to the results for STREAM triad, in the previous section

(Section 5.4.2). For the Nbody calculation, the total execution time is larger and

the computation is less memory-bound compared to STREAM triad. More specif-

ically, for the calculation of 10K iterations with 20 bodies, the cost of resilience is

on average smaller, irrespectively of the number of failures. With the exception of

the case with 6 failures, the plot shows better performance for the execution with

10K iterations compared to the execution of 5K iterations. Specifically, the average
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overhead with failures for 10K iterations is 15.59% while for the 5K execution the

average overhead is 31.04%, close to the 30% threshold set earlier. This is also linked

to task creation as dictated by the leader iterator of the parallel loop.

20 bodies 40 bodies
Iterations 5000 10000 5000 10000

No Failures 16.74% 7.68% 28.65% 27.39%
2 Failures 33.96% 2.78% 50.05% 26.07%
4 Failures 41.52% 18.93% 30.89% 18.52%
6 Failures 19.36% 25.63% 30.12% 43.65%
8 Failures 38.42% 15.46% 53.62% 26.00%
10 Failures 21.95% 15.18% 28.29% 40.78%

Table 5.10: Complete measurements set of absolute overhead (%) of the N-body
execution with 5K and 10K iterations for 20 and 40 bodies on 16 locales when
compared to baseline Chapel, over an incremental number of failures.

Nonetheless, for the version with 20 bodies and 5K iterations we note overheads

of 41.5% and 38.4% when four and eight randomly selected locales fail, respectively.

The smallest overhead occurs in the case of six failures (19.36%) , while the resilient

version without failures introduces a 16.7% on top of the baseline’s runtime. Finally,

the resilient version without failures for the 10K iterations case is on average 7.6%

slower compared to the baseline. We note that the overheads for 5K iterations

present a standard deviation of 9.67 ; a high value compared to the values in the

working set. The high standard deviation shows that the runtime points are spread

out compared to the mean. The main parameter that introduces variability in the

runtime and subsequent overheads is the placement of failures.

For the dataset of 40 bodies, the granularity of the local calculation per locale is

increased, but we also observe irregular initial workloads across the target Locales,

stemming from the distribution of the dataset. The average runtime (in minutes)

and the corresponding absolute overhead of the resilient implementation compared to

the baseline Chapel version, are demonstrated in Figures 5.11 and 5.12, respectively.

For the input set of 40 bodies we demonstrate larger absolute overhead compared

to the baseline, with the largest percentage increase occurring for 5K iterations with

8 locale failures (53.6%). The mean absolute overhead for the dataset of 40 bodies

is 36.9% for 5K iterations and 30.4% for 10K iterations. Although the average

performance remains close to the initial threshold of 30%, Figure 5.12 shows that

180



Chapter 5: Resilient Data Parallelism

the overheads present high variability, with standard deviation values of 10.6 and

8.8 respectively for the 5K and 10K iterations runs.

In Figure 5.13 we demonstrate the relative overheads for both datasets and it-

eration configurations, compared to the resilient version of the runtime. Our goal

here is to investigate the variable cost of the resilient mechanism associated to the

cases with failures and identify its possible causes. In Table 5.11 we also provide

the full set of measurements of relative overhead across test cases.

Figure 5.13: Relative overhead (%) of the N-body execution with 5K and 10K
iterations for 20 and 40 bodies on 16 locales compared to the resilient version, over
an increasing number of failures.

The maximum relative overhead for 20 bodies is 21.2% and occurs for 5K itera-

tions when 1/4 of the total target locales in the execution suffer fatal failures, while

we also note a decrease of 5% in the runtime for the execution of 10K iterations with

2 locale failures. For 40 bodies, the maximum relative overhead of 25.9% occurs for

8 locale failures and 5K iterations.

We attribute the high variability of these results, along with the few cases of
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20 bodies 40 bodies
Iterations i=5000 i=10000 i=5000 i=10000

2 Failures 14.74% -4.54% 22.19% -1.34%
4 Failures 21.21% 10.44% 2.29% -8.97%
6 Failures 2.24% 16.67% 1.49% 16.76%
8 Failures 18.56% 7.22% 25.96% -1.40%
10 Failures 4.45% 6.96% 0.37% 13.77%

Table 5.11: Complete measurements set of relative overhead (%) of the N-body
execution with 5K and 10K iterations for 20 and 40 bodies on 16 locales when
compared to Chapel’s resilient version, over an incremental number of failures.

speedups compared to the case without failures, to factors, related to the character-

istics of the resilient mechanism, but also the configuration of the experiments.

First, we need to clarify that the fixed cost required to introduce the resilience

mechanism is high by our design. The fixed costs include the remote read and write

operations to initialise the additional data structures on top of the regular costs of

initialisation of Chapel. Thus when focusing on the cases with failures the relative

overheads are low, as they are amortized by the initial cost. Furthermore, the small

datasets and the subsequent low workload assigned on each target locale, leads to

lower task creation and thus lower utilisation on the participating nodes. As a result,

the systemic overhead in the event of failures and the subsequent task adoption is

dominated by the communication cost rather than the actual cost of execution of

the recovery tasks, which are in many cases parallelised.

Also, the datasets used in the experiments are distributed in uneven chunks, with

a number of locales in the execution being assigned double the workloads, according

to the formula of the block distribution (Section 5.1). In this sense, the placement

of failures can introduce large variability in the runtime measurements. More specif-

ically, failures on the locales with lower workloads increase task granularity on the

adopting locales, but the total overhead of recovery in this case is obscured in part

by the runtimes of the loaded locales due to the implicit synchronisation point of

the forall loop. In contrast, failures on locales with higher workloads may lead to

unbalanced execution and straggler tasks, for example in the case of 4 failures with

5K iterations.

A secondary factor are early locale failures; failures that are clustered in the

beginning of the execution, due to the limitations of our testing mechanism (Sec-
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tion 1.3). When multiple failures occur early in the execution, primary buddy locales

that adopt the failed tasks are able to begin recovery immediately after the failed

status has been propagated. This also reduces the total communication cost for

updating the remote copies on secondary buddies throughout the execution, since

according to the recovery completion mechanism, discussed in Section 5.3.2, as more

locales fail the size of the buddy sets is reduced, leading to less communication for

updates.

In this section, we have demonstrated comparative runtime and overhead results

of a widely-used scientific application benchmark using Chapel’s resilient block data

distribution on an increasing number of locale failures. The results show that the

penalty for using the resilient version instead of the baseline is associated to the

problem size and the granularity of the distributed tasks. We have also discussed

how the placement of failures can affect the absolute and relative overheads of the

resilient execution, a factor that is also pointed out in the evaluation of Resilient

X10. Specifically, when running 10K iterations of the Nbody algorithm with 20

bodies the runtime of the resilient version is 5.5 minutes higher than the baseline,

where the execution requires on average 75 minutes.

We have discussed the issues of the fixed costs introduced by our mechanism

and the main factors that introduce variability. We have also demonstrated, that

for a program with significant computational load and infrequent memory accesses,

such as the N-body algorithm, the relative overhead of the resilient version without

failures remains below or close 30% across test cases and input sizes.

5.5 Portability to Other Predefined Distributions

The high-level design of the Block distribution, as discussed in Section 5.1.2, is

shared among Chapel’s predefined distributions, such as Cyclic and BlockCyclic.

The distributed and local domains, local chunks, and local arrays are present, while

the major difference is the index sets calculation that is custom per distribution.

The main implementation steps to support resilience for a Chapel distribution,

following the resilient design in this work, can be summarized to the following:

• A buddy locale implementation, with methods to query the status of remote
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locales and methods to calculate the indices of redundant data, customised to

the distribution.

• A set of new data structures to persist the redundant data, calculated in the

previous step. We do not expect the data structures of redundant data to

differ significantly to the ones presented in this work.

• An new implementation of iterators which respects the status of locales (alive

or failed) and handles the traversal of the regular and redundant data struc-

tures, to accommodate the recovery functionality.

Taking into account the shared design principles across Chapel’s predefined dis-

tributions, we believe that the above implementation steps and the resilient design

as discussed throughout the chapter, is flexible enough to enable the resilient mech-

anism within other Chapel predefined distributions. We should note though, that

the mapping of indices to the target locales is specialised to each distribution. We

identify the resilient implementation of the leader and follower iterators, as the most

time consuming part of our implementation, especially concerning the modifications

to allow the retrieval of data from redundant copies.

5.6 Summary

In this Chapter, we have discussed and evaluated our resilient implementation for

Chapel’s block data distribution. The implementation spans across the runtime level

and the block distribution module and allows transparent resilience in the event of

locale failures, on parallel block distributed application programs. While the larger

part of the implementation is integrated within the runtime system; communication

and tasking layers, the tuning of the internal iterators is implemented on library-

level, and more specifically within the blocked data distribution and the distribution

utility modules. We have discussed the implementation details, and described the

need for redundant copies in the system. We have provided a resilient version of

the block distribution with support for task recovery and in-memory redundant data

storage, with the use of buddy locales. Our mechanism provides a guarantee on the

number of failures that can be recovered by the system.

We provided a set of benchmarks to evaluate the performance of our mecha-
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nism. We presented evaluation results for STREAM a micro-benchmark performing

a set of common data operations which is used for memory testing and for the all-

pairs N-body algorithm, a data intensive physics application for particle movement

simulation.

Our results on the STREAM micro-benchmark, the stress test application used

for evaluation, show large overheads for small datasets, accounting to a 220% run-

time increase, when comparing the resilient version without failures to the baseline’s

end-to-end runtime, and slightly smaller overheads when measuring the main cal-

culation’s execution. This cost is directly associated with the management of the

new data structures and the extensive copying used to initialize and maintain the

redundant data up to date. Unless the computation itself depends heavily on remote

memory accesses and after the initial fixed cost of using the resilient block distri-

bution, the results for the cases with locale failures show small variability and even

demonstrate some speedups of up to 10% compared to the case without failures.

In the case of the N-body benchmark, our results show, that although the ini-

tialisation costs of the block distribution account for overheads of up to 40%, as

the input datasets become larger, the overheads in the experiments with failures

decrease significantly down to 13.3% when performing 10K iterations. We note

that, for the cases with failures, the overheads vary significantly, depending on the

placement of the locales that suffer failures and their assigned workloads.

As the main sources of overhead we have identified the additional data structure

management on locale level, and the placement of failures with respect to the per-

locale assigned workloads. We have also provided a parametric formula to calculate

the number of failures that our system is guaranteed to tolerate, based on the number

of target locales in the execution and the configuration of the number of buddies

per locale.

From a programmer’s perspective, it is a question of the type of the application

and the purpose it serves, to make the decision of whether to use the resilient version.

For example, assuming that the N-body program is part of a calculation on a mis-

sion critical system, then a resilience-enabled program is preferable. Furthermore,

resilience is more desirable for long-running parallel applications, in which cases the

high fixed costs are amortised by the longer total runtime with the lower variable
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costs. On the other hand, if there are time constraints or if the program executes

multiple times and only a rough estimate is required, for example if we require only

the order of magnitude of the produced energy in the N-body calculation, then the

baseline version is able to cover this need, as it is sufficient to calculate the average,

taking into account only the results of successful executions.

Another factor to put under consideration is the type of system the application

executes on. A system built for reliability will provide software or hardware mech-

anisms to avoid, mediate or mask failures; transient faults, fatal failures or both,

so the use of a resilience enabled version might be redundant. Vendors will often

distinguish between High Availability (HA) servers and Fault tolerant (FT) server

configurations. High availability servers have independent components with failover

capabilities; the servers monitor one another based on a set of health metrics while in

the event of a failure the application is migrated and restarted on a live server. Win-

dows Server Failover Clustering (WSFC) is an example of a high availability solution

offered in the Windows Server suite. Fault tolerant solutions, on the other hand,

focus on providing redundancy of the computation. Here the hardware is tightly

coupled, executing a single instance of the operating system and multiple instances

of the application in lock step. Every instruction is executed across components,

similarly to a set of mirrored machines. When a failure occurs the surviving system

can take over the application execution with minimum downtime. An example of a

fault tolerant system is the Endurance 6200 by Marathon.

Though the execution platform is an important factor to consider for resilience,

we assume that the average programmer will typically have access to commodity

clusters, with the subsequent high failure risks. In this case, the demonstrated

overhead may not be prohibitive, compared to the delays of abrupt termination.

The most important characteristic of the implementation in our view, is the

programmability aspect. Faced with the above scenarios, or executing on a number

of systems with different reliability factors, a programmer may switch between the

resilient and the baseline implementation only with the modification of the library

module in use, that adds up to modifying a single line of code and recompiling the

application code.

We have worked towards an automated solution that does not require user-
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assistance. To this end, we have not provided comparisons to user-assisted tech-

niques, such as checkpoint-restart. In specific scenarios, checkpointing the redun-

dant data on buddy locales could prove beneficial to performance, since it would

remove parts of the communication required to update remote data. On the other

hand, checkpoint-restart poses new design challenges, such as the choice of when

to perform checkpointing and state correctness considerations. Since we have opted

for a transparent automated solution, we argue that the most important reason for

not supporting checkpoint-restart (or a hybrid solution) is the fact that the mecha-

nism is not automated, it requires user assistance and support on application layer.

For the above reasons, we argue that the use of checkpointing mechanisms remains

outside the scope and goals of this work.

This implementation is to the best of our knowledge the first attempt to sup-

port resilience on module-level and assisted by the runtime for data distributions

in Chapel. Although, we focus on the block distribution, the main concepts are

applicable to other Chapel predefined distributions; such as Cyclic and BlockCyclic,

and possibly to similar constructs in other PGAS, such as X10’s distributed arrays

and CAF’s co-arrays. Finally, we have discussed possible implementation challenges

and we have identified the main steps required for porting the resilient design.
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Conclusion

6.1 Summary

The thesis investigates the design and implementation of embedded transparent

resilience support in Chapel –a modern high-level parallel programming language.

Our goal is to provide graceful degradation for long-running parallel applications,

in the presence of component failures. We have demonstrated that support for

transparent resilience can be embedded in Chapel, as per our key hypothesis, and

that no application-level modifications are required to enable resilience. We have

demonstrated automatic adoption and recovery for orphaned tasks of failed locales,

embedded in the runtime system, primarily on the tasking and communication lay-

ers.

Resilience is identified as one of the main challenges to tackle in order to achieve

exascale performance, as the rapid scaling of component count in HPC systems

introduces increased failure rates. On the other hand, modern parallel languages

strive for programmability, offering powerful abstractions to lift the burden of ex-

plicit synchronization control for application programmers. The thesis is an attempt

to reconcile the conflicting requirements of programmability in a modern program-

ming language and high performance in the presence of failures. A programming

language with embedded resilience lifts many of the programming challenges of tra-

ditional fault-tolerance approaches, such as failure discovery and coordination, while

also alleviates the need for user-assisted mechanisms and third-party monitoring.

Our design focuses on the runtime level; particularly the communication and
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tasking layers, and within the libraries; particularly, within the blocked data distri-

bution. We employ the concept of buddy locales to handle the adoption and recovery

of tasks and to act as a decentralised distributed resilient store. Our resilient design

tackles the main issue of abrupt program termination in the occurrence of fail-stop

failures, and performs automatic task-adoption and recovery, without added pro-

gramming effort or modifications on the application-level. This functionality can in-

troduce higher runtime overheads when compared to other user-assisted approaches,

such as optimised checkpointing.

The basis of the design is the migration of lost calculation on task-level to re-

mote functioning nodes and its rescheduling and re-execution from locally persisted

redundant data, thus taking advantage of the locality property. Our design shares

common principles to a number of other languages and frameworks with resilience

capabilities. Most prominently, the design primarily addresses the runtime layer

and libraries (similarly to Resilient X10); in-memory replication of redundant data

(such as in YARN and Resilient X10); failure mitigation (similarly to Erlang), node

links (such as in Erlang and Resilient X10). A detailed design comparison of Chapel

to other fault tolerant systems has been addressed in Chapter 2 and summarised in

Tables 2.4 and 2.5.

Chapel is a programming language of the Partitioned Global Address Space

programming model. It is actively developed by Cray, built from first principles,

and it supports a variety of programming styles. Chapel builds on a set of high-level

constructs and abstractions, providing opportunities for embedding our resilient

mechanisms. More specifically, we take advantage of the inherent distinction of

parallelism and locality, and use them as the basis for building a task-adoption and

recovery mechanism and a distributed in-memory data redundancy scheme.

Our implementation is embedded within the runtime system and in the case of

data-parallel applications, within the library modules. We extend and modify the

functionality on the communication and the tasking layer to guide the adoption

of tasks. We also extend existing library code to support the resilient mechanism

and to accommodate the resilient store. This allows for portability of the resilient

application code across different systems, only by rebuilding the runtime system and

re-compiling the application code.

189



Chapter 6: Conclusion

We have provided an empirical evaluation of our resilient mechanism and have

demonstrated its applicability on both task- and data-parallel applications, ensuring

uninterrupted program execution and correctness. The design and implementation

of task-parallel resilience are detailed in Chapter 4, while in Chapter 5 we focus on

the resilient blocked distribution. As one core foundational achievement of our work,

we develop a formula (Chapter 5) to calculate the guaranteed number of failures that

can be recovered, based on the number of participating locales and the configuration

of buddy locales. The formula derives from our design and it is validated through

testing.

For resilient data-parallelism, we have implemented an in-memory data redun-

dancy mechanism assisted by buddy locales, to ensure data availability in the event

of failures. The mechanism; implemented within the block distribution module, re-

lies on remote copying operations to initialise and maintain the redundant copies up

to date. Our results show that memory-intensive applications have significant fixed

performance penalties compared to the baseline version of the runtime system, but

execution costs are amortised as more failures are introduced in the system.

The analysis of the experimental results, has revealed a pattern of fixed costs to

enable the resilient mechanism, while the results for the cases with multiple failure

injections show significantly variable costs. The variability of the latter is a strong

indication of how the placement of failures can affect the execution runtime.

More specifically, our results for the task-parallel implementation show that the

resilient mechanism, as tested on a set of synthetic micro-benchmarks, introduces

overheads of up to 17% for unstructured task-parallelism. The task-parallel micro-

benchmarks are designed to test task nesting patterns, commonly used in Chapel

applications. For structured task-parallelism we have demonstrated overheads of up

to 26% for task-parallel loops with up to 6 failures on 16 locales and we have also

shown that the number of buddies in a failure-free task-parallel application does not

affect the execution runtime.

We have also demonstrated experimental results on two more realistic sample ap-

plications using the block data distribution; the STREAM triad memory benchmark

and the N-body all-pairs algorithm. For STREAM triad, as an application with fre-

quent accesses to memory, we demonstrated significant performance penalties with
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higher mean overheads. For N-body, the increased per locale task granularity fol-

lowing the task adoptions on the buddy locales provides the runtime system with

opportunities to hide communication and memory latency. The absolute overheads

of resilience without failures account for 27% of the runtime in the worst case for

small bodies datasets. The relative overheads demonstrate high variability, with a

21.2% maximum overhead for 5K participating bodies with 4 failures and 13.7% for

the input of 10K bodies with 10 failures, both on a 16 locale configuration. For the

larger datasets of 500K and 1M celestial bodies, the initial fixed costs reach 68%,

while the variable costs when multiple failures occur, are bound by the cost of single

recovery.

6.2 Contributions

The main research contributions of the thesis can be summarized to the following:

• We have developed a design for transparent resilience on a representative lan-

guage of a class of high-level programming languages (PGAS), focusing pri-

marily on maintaining transparency and programmability.

• We have implemented our mechanism within the runtime system and within

Chapel’s standard module library, building on top of existing programming ab-

stractions and taking into consideration the design principles of the underlying

programming model.

• We have provided an empirical validation and experimental evaluation of the

proposed mechanism on sample applications on a large-scale system and we

have identified the factors that introduce overhead, aiming to provide context

for programmers on the trade-off’s of using the resilient implementation.

The detailed contributions of the thesis are:

1. The design of a transparent resilience framework for Chapel’s task-parallel

language constructs: covering the begin and cobegin task-parallel constructs

and the task-parallel coforall loop. The design of a transparent resilient version

of the blocked distribution one of Chapel’s pre-defined data distributions. The

system is able to recover from multiple failures, and we provide guaranteed

recovery up to a Fail max threshold.
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2. The design and implementation of an in-memory data redundancy mechanism

with distributed data copies, inspired and guided by Chapel’s data locality

features. We have used the construct of buddy locales, as an alternative solution

to external file systems, to provide a self-contained implementation.

3. An implementation of the resilient design for Chapel’s task-parallel constructs.

The implementation is integrated on the runtime system, more specifically on

the communication and the tasking layers. We have provided an evaluation

of the resilient task-parallel mechanism, with empirical results on a set of

constructed micro-benchmarks.

4. The implementation of the resilient mechanism for the block data distribu-

tion. The implementation builds on the runtime system modifications and

expands on library-level. On module-level, we integrate the data redundancy

mechanism and implement the internal parallel iterators to manage the task

adoption and task recovery on the buddy locales.

5. A fault injection mechanism for simulating node failures in a distributed setup

on top of the GASNet lower-level communication library. This serves as an

auxiliary implementation to facilitate the experimental evaluation. An instru-

mental part of the mechanism embeds status awareness capabilities for the

participating locales in the runtime system. As such, it can serve as the basis

for potential extensions: including the integration of mechanisms that provide

health metrics information, or the design of a checkpointing strategy with the

use of an external file system mechanism.

6. To provide context for our work we have provided a critical review of resilience

and fault tolerance in high performance systems, covering predominantly used

fault detection and recovery mechanisms. We also review existing languages

and runtime systems with resilience capabilities.

6.3 Limitations and Future Work

In this section, we provide a list of current limitations of this work and we propose

improvements and possible topics for extension and future work.

Limitations
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• We have made the design choice to perform re-execution of the lost calculation

from the beginning, as the progress and state of threads is not exposed from

the lower runtime on the tasking and communication layers. Since Chapel is a

language with side-effects, one of the assumptions we use as basis for our design

is task atomicity ; we require that the tasks either complete successfully or fail,

and the entire task is re-run on recovery. The migration of the computation

does not automatically introduce side-effects, with the exception of programs

with explicit synchronisation in the form of locks, which may lead to deadlocks

or livelocks. We do not currently provide a method to statically determine

side-effects.

• The current implementation does not cover programs with explicit computa-

tion placement requirements, as the recovery design is based on the migration

of the computation in the event of failure.

• The out-of-band failure injection mechanism executes alongside the applica-

tion, as such the tunability in the distribution of failure injection is limited.

Failures are injected serially with respect to each other and in a time-clustered

manner.

• Currently, the number of buddies and the algorithm for the placement of bud-

dies is not exposed on application level. This is a limitation in the tunability

of the implementation; the advanced programmer is required to access the

runtime implementation to tune these parameters.

• In this work we assume that dead nodes can be detected, while from a systems

perspective a timeout or lack of heartbeat is only an indication of a failed node.

Slow or unresponsive nodes may resume and make progress.

It is common for resilience implementations to disregard the detection part.

Our assumptions makes clearer the distinction between detection and recovery.

Even mature implementations, such as checkpoint restart, assume a type of

external detection mechanism in order to decide when to perform recovery; in

this case restart from the checkpoint. In the context of a resilient programming

language implementation, the lower runtime layers should be responsible for

the part of detection. Here, the most prominent candidate is the GASNet

communication layer, possibly linked or assisted by an external mechanism.
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The possibility that a dead node does make progress is covered by our design

with the propagation of status information. Once a node is presumed dead

(even falsely) it is no longer part of the execution. Following task adoption

and update of the status tables the incoming signals are programmatically

discarded.

Assuming such a testing case, our experimental methodology would have to

perform modifications within the GASNet implementation for example by

adding delays for outgoing signals from nodes that are considered dead; non-

trivial to implement since GASNet only exposes a minimal API for integration.

New method signatures should be added, while we would also need to define a

new signal to indicate that a node enters slow mode; trivial to implement via

linux-level signals.

On the resilient part though, since the above checks are in place, slow nodes

would be handled in strictly the same way as dead nodes. We should expect

small delays when consuming messages from the message queue, though the

messages from ”dead” nodes would be discarded.

Future Work

Performance To reduce the overheads of recovery, a more sophisticated strategy

could be investigated in the context of multiple buddy locales, to promote load-

balanced re-executions. A possibility would be to use load information during fail-

ure discovery and instruct the least loaded buddy locale to perform task adoption

and recovery, thus introducing a dynamic re-configuration of primary buddy locales

during program execution.

To reduce the initialisation costs, we could investigate the use of parallel loops

for buddy allocation and remote data copying. Another optimization is the use of

zippered parallel loops on the internal arrays that are used to persist guest data.

Nevertheless, this optimization is only applicable to array blocks of the same size,

as instructed by the design of zippered iterators.

To improve performance, we could look into an optimistic remote copying imple-

mentation based on health statistics, historical information on component upgrades,

component life-expectancy, MTBF rates and other per node metrics. As such, we
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could perform bulk data copying from nodes that are identified as more prone to

fail. Alternatively, we could look into a strategy of bulk remote updates, based on

a minimum threshold of individual element updates, or on frequent updates of a

minimum block size, before initiating communication to the buddy locales.

Monitoring On the runtime level, we would be interested in disassembling the

execution of local and recovery tasks within synchronised blocks. Currently, the

endCounts mechanism; responsible for tracking parallel tasks, is based on a task

counter to perform synchronisation (join operations). We would be interested in

the use of separate counters for regular and recovery tasks, both as a debugging

mechanism and as a further refinement of the communication layer implementation.

Tunability We would be interested in providing a user-tunable recovery strategy,

to allow programmers to decide on whether the termination of the application ex-

ecution is preferable compared to the projected costs of resilience. The mechanism

could be designed as a configuration variable or an execution flag, setting a threshold

for recovery, based for example on the maximum number of failures or the maximum

number of recovery tasks that can execute.

Data distributions We have provided discussion of the main steps required to

port our mechanism to other Chapel pre-defined data distributions, such as Cyclic

and BlockCyclic. We would be interested in the implementation of the resilience

mechanism for these data distributions and the evaluation of the associated costs

for suitable applications. We note that the current implementation of the resilient

runtime system does not pose any fundamental obstacles in implementing resilience

within other pre-defined distributions.

Extensions and other directions We would be interested in integrations with

a third-party system or a software/hardware component with health monitoring

capabilities, to use co-operatively with the resilient runtime system. To this end,

we could take advantage of the opportunities provided by our testing mechanism.

For example, the runtime-level hooks could be extended to integrate a signalling

mechanism to support node replacement from backup nodes. We could also integrate
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functionality for performance counters via external libraries or tools. Furthermore,

we could investigate alternative failure injection frameworks, with the ability to

inject spatially distributed and time-stepped failures, to further test our resilient

implementation.

To allow recovery of failed tasks from the failure point, and avoid re-execution

of the entire computation, we could possibly look into combining in-memory check-

pointing of the task state on the threading layer. Ideally, the checkpointed state

information should be available across the system with the use of global references.

We could also take advantage of our assumption of the failure-free root to persist

this information.

Though, outside the scope of this work, and since the GASNet library remains to

this point the most commonly used implementation of the communication layer in

Chapel, another direction of future work would be the implementation of a relaxed

failure policy for GASNet, possibly including the signals and signal handlers we

introduced in Chapel’s communication layer in this work.

Regarding the aspect of false positive locale failures (which are considered failed

in the current implementation), we could look into historical data of node response

times and allow a threshold before launching recovery tasks on the adopting locale.

Drawing from the above point, with a relaxed failure policy in GASNet in-place

and assuming that message queues are not discarded during idle locale time, the

statistical information on each node can be exchanged during application startup.

In the event of a slow node that resumes communication, the status information on

the node should be updated across locales.

In order to relax our Task Atomicity assumption of Section 4.2.1, a possible future

work item would be to look into the detection of side-effect free computation, which

can safely re-execute during failure recovery. Possible approaches may rely on static

analysis or into adding annotations on language-level to identify pure functions.

Another possible enhancement would be to embed the configuration of the num-

ber of buddies, and potentially, the buddy placement, within Chapel applications.

This would require compiler changes to provide support for a system configuration

variable or an execution flag. The idea could also be extended to support predefined

patterns of buddy locale placement, to support hierarchical locales, in the form of
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predefined library modules.
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Supportive Data

A.1 Combinations of failures

To produce the full set of combinations of locale Id’s within the input range of target

locales, we use the Python script of Listing A.1. In Figure A.1, below we provide,

all the combinations of locale Id’s for 8 participating locales when configured with 2

buddies per locale. We mark the combinations that do not comply with our initial

assumptions:

• Combinations that include Locale 0;

• Combinations that include all the locale Id’s of a buddy group.

The rest of the cases, comply to our assumption and can be recovered by the re-

silience mechanism.

#!/ usr / bin /python
2 from i t e r t o o l s import chain , combinat ions

l o c a l e I d s = [ 0 , 1 , 2 , . . ] // input range
4

de f a l l s u b s e t s ( s s ) :
6 re turn chain (∗map( lambda x : combinat ions ( ss , x ) , range (0 , l en ( s s )

+1) ) )

8 f o r subset in a l l s u b s e t s ( l o c a l e I d s ) :
p r i n t ( l o c a l e I d s )

Listing A.1: Python script to produce all the distinct combinations in an input range
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(0,) (0, 1) (0, 1, 2) (0, 1, 2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5, 6)
(1,) (0, 2) (0, 1, 3) (0, 1, 2, 4) (0, 1, 2, 3, 5) (0, 1, 2, 3, 4, 6) (0, 1, 2, 3, 4, 5, 7)
(2,) (0, 3) (0, 1, 4) (0, 1, 2, 5) (0, 1, 2, 3, 6) (0, 1, 2, 3, 4, 7) (0, 1, 2, 3, 4, 6, 7)
(3,) (0, 4) (0, 1, 5) (0, 1, 2, 6) (0, 1, 2, 3, 7) (0, 1, 2, 3, 5, 6) (0, 1, 2, 3, 5, 6, 7)
(4,) (0, 5) (0, 1, 6) (0, 1, 2, 7) (0, 1, 2, 4, 5) (0, 1, 2, 3, 5, 7) (0, 1, 2, 4, 5, 6, 7)
(5,) (0, 6) (0, 1, 7) (0, 1, 3, 4) (0, 1, 2, 4, 6) (0, 1, 2, 3, 6, 7) (0, 1, 3, 4, 5, 6, 7)
(6,) (0, 7) (0, 2, 3) (0, 1, 3, 5) (0, 1, 2, 4, 7) (0, 1, 2, 4, 5, 6) (0, 2, 3, 4, 5, 6, 7)
(7,) (1, 2) (0, 2, 4) (0, 1, 3, 6) (0, 1, 2, 5, 6) (0, 1, 2, 4, 5, 7) (1, 2, 3, 4, 5, 6, 7)

(1, 3) (0, 2, 5) (0, 1, 3, 7) (0, 1, 2, 5, 7) (0, 1, 2, 4, 6, 7) (0, 1, 2, 3, 4, 5, 6, 7)
(1, 4) (0, 2, 6) (0, 1, 4, 5) (0, 1, 2, 6, 7) (0, 1, 2, 5, 6, 7)
(1, 5) (0, 2, 7) (0, 1, 4, 6) (0, 1, 3, 4, 5) (0, 1, 3, 4, 5, 6)
(1, 6) (0, 3, 4) (0, 1, 4, 7) (0, 1, 3, 4, 6) (0, 1, 3, 4, 5, 7)
(1, 7) (0, 3, 5) (0, 1, 5, 6) (0, 1, 3, 4, 7) (0, 1, 3, 4, 6, 7)
(2, 3) (0, 3, 6) (0, 1, 5, 7) (0, 1, 3, 5, 6) (0, 1, 3, 5, 6, 7)
(2, 4) (0, 3, 7) (0, 1, 6, 7) (0, 1, 3, 5, 7) (0, 1, 4, 5, 6, 7)
(2, 5) (0, 4, 5) (0, 2, 3, 4) (0, 1, 3, 6, 7) (0, 2, 3, 4, 5, 6)
(2, 6) (0, 4, 6) (0, 2, 3, 5) (0, 1, 4, 5, 6) (0, 2, 3, 4, 5, 7)
(2, 7) (0, 4, 7) (0, 2, 3, 6) (0, 1, 4, 5, 7) (0, 2, 3, 4, 6, 7)
(3, 4) (0, 5, 6) (0, 2, 3, 7) (0, 1, 4, 6, 7) (0, 2, 3, 5, 6, 7)
(3, 5) (0, 5, 7) (0, 2, 4, 5) (0, 1, 5, 6, 7) (0, 2, 4, 5, 6, 7)
(3, 6) (0, 6, 7) (0, 2, 4, 6) (0, 2, 3, 4, 5) (0, 3, 4, 5, 6, 7)
(3, 7) (1, 2, 3) (0, 2, 4, 7) (0, 2, 3, 4, 6) (1, 2, 3, 4, 5, 6)
(4, 5) (1, 2, 4) (0, 2, 5, 6) (0, 2, 3, 4, 7) (1, 2, 3, 4, 5, 7)
(4, 6) (1, 2, 5) (0, 2, 5, 7) (0, 2, 3, 5, 6) (1, 2, 3, 4, 6, 7)
(4, 7) (1, 2, 6) (0, 2, 6, 7) (0, 2, 3, 5, 7) (1, 2, 3, 5, 6, 7)
(5, 6) (1, 2, 7) (0, 3, 4, 5) (0, 2, 3, 6, 7) (1, 2, 4, 5, 6, 7)
(5, 7) (1, 3, 4) (0, 3, 4, 6) (0, 2, 4, 5, 6) (1, 3, 4, 5, 6, 7)
(6, 7) (1, 3, 5) (0, 3, 4, 7) (0, 2, 4, 5, 7) (2, 3, 4, 5, 6, 7)

(1, 3, 6) (0, 3, 5, 6) (0, 2, 4, 6, 7)
(1, 3, 7) (0, 3, 5, 7) (0, 2, 5, 6, 7)
(1, 4, 5) (0, 3, 6, 7) (0, 3, 4, 5, 6)
(1, 4, 6) (0, 4, 5, 6) (0, 3, 4, 5, 7)
(1, 4, 7) (0, 4, 5, 7) (0, 3, 4, 6, 7)
(1, 5, 6) (0, 4, 6, 7) (0, 3, 5, 6, 7)
(1, 5, 7) (0, 5, 6, 7) (0, 4, 5, 6, 7)
(1, 6, 7) (1, 2, 3, 4) (1, 2, 3, 4, 5)
(2, 3, 4) (1, 2, 3, 5) (1, 2, 3, 4, 6)
(2, 3, 5) (1, 2, 3, 6) (1, 2, 3, 4, 7)
(2, 3, 6) (1, 2, 3, 7) (1, 2, 3, 5, 6)
(2, 3, 7) (1, 2, 4, 5) (1, 2, 3, 5, 7)
(2, 4, 5) (1, 2, 4, 6) (1, 2, 3, 6, 7)
(2, 4, 6) (1, 2, 4, 7) (1, 2, 4, 5, 6)
(2, 4, 7) (1, 2, 5, 6) (1, 2, 4, 5, 7)
(2, 5, 6) (1, 2, 5, 7) (1, 2, 4, 6, 7)
(2, 5, 7) (1, 2, 6, 7) (1, 2, 5, 6, 7)
(2, 6, 7) (1, 3, 4, 5) (1, 3, 4, 5, 6)
(3, 4, 5) (1, 3, 4, 6) (1, 3, 4, 5, 7)
(3, 4, 6) (1, 3, 4, 7) (1, 3, 4, 6, 7)
(3, 4, 7) (1, 3, 5, 6) (1, 3, 5, 6, 7)
(3, 5, 6) (1, 3, 5, 7) (1, 4, 5, 6, 7)
(3, 5, 7) (1, 3, 6, 7) (2, 3, 4, 5, 6)
(3, 6, 7) (1, 4, 5, 6) (2, 3, 4, 5, 7)
(4, 5, 6) (1, 4, 5, 7) (2, 3, 4, 6, 7)
(4, 5, 7) (1, 4, 6, 7) (2, 3, 5, 6, 7)
(4, 6, 7) (1, 5, 6, 7) (2, 4, 5, 6, 7)
(5, 6, 7) (2, 3, 4, 5) (3, 4, 5, 6, 7)

(2, 3, 4, 6)
(2, 3, 4, 7)
(2, 3, 5, 6)
(2, 3, 5, 7)
(2, 3, 6, 7)
(2, 4, 5, 6)
(2, 4, 5, 7)
(2, 4, 6, 7)
(2, 5, 6, 7)
(3, 4, 5, 6)
(3, 4, 5, 7)
(3, 4, 6, 7)
(3, 5, 6, 7)
(4, 5, 6, 7)

Recoverable combinations
Combinations including Locale 0 
Combinations including all locales in a buddy group

Figure A.1: Combinations of Locale Id’s with a configuration of 8 target locales and
2 buddies per locale
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A.2 Snapshot of the internal topology of a Be-

owulf node
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A.3 HDFS integration in Chapel

1 use HDFS;
2 // Connect to HDFS
3 var hdfs = hdfsChapelConnect ( ” d e f a u l t ” , 0) ;
4
5 // Create one file per locale
6 var g f l = hdfs . hdfsOpen ( ” a f i l e . txt ” , iomode . r ) ;
7
8 //...
9

10 // Get the local file of the current locale
11 var f l = g f l . ge tLoca l ( ) ;
12
13 // Create reader channels on the file and
14 // perform read operations
15 // ...
16
17 // Close the files and disconnect from HDFS
18
19 g f l . hd f sClose ( ) ;
20 hdfs . hdfsChapelDisconnect ( ) ;

Listing A.2: Example usage of the HDFS interface in Chapel.
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A.4 Mandelbrot microbenchmark

A.4.1 Mandelbrot Chapel code

// mandelbrot : R e s i l i e n t d i s t r i b u t e d data−p a r a l l e l implementation
2

use MPlot ;
4 use Time ;

use BlockDistResMultiTaskRecovery ;
6

//
8 // Dimensions o f image f i l e

//
10 c o n f i g const rows = 2010 ,

c o l s = rows ;
12

//
14 // Maximum number o f s t ep s to i t e r a t e

//
16 c o n f i g const maxSteps = 50 ;

18

proc main ( ) {
20

// added delay
22 var t= new Timer ( ) ;

t . s t a r t ( ) ;
24 whi le ( t . e l apsed ( ) <20){} /

t . stop ( ) ;
26

// timestamp
28 w r i t e l n ( ”Chapel time : ” , getCurrentTime ( ) ) ;

30 //
// The s e t o f i n d i c e s over which the image i s de f ined . Note that

32 // 0. .#n means ”a range with n i n d i c e s s t a r t i n g at 0” , i . e . , 0 . . n−1
//

34 var LocImgSpace = {0. .# rows , 0. .# c o l s } ;
var ImgSpace = LocImgSpace dmapped Block ( boundingBox=LocImgSpace ) ;

36

//
38 // An array to s t o r e the r e s u l t i n g Image .

//
40 var Image : [ ImgSpace ] i n t ;

42 //
// Compute the image , in p a r a l l e l

44 //
f o r ( i , j ) in ImgSpace do

46 Image [ i , j ] = compute ( i , j ) ;

48 // timestamp
w r i t e l n ( ”Chapel time : ” , getCurrentTime ( ) ) ;

50

//
52 // Plot the image

//
54 p lo t ( Image ) ;
}

56
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//
58 // Compute the p i x e l va lue as de s c r ibed in the handout

//
60 proc compute (x , y ) {

const c = mapImg2CPlane (x , y ) ; // convert the p i x e l c oo rd ina t e s to a
complex value

62

var z : complex ;
64 f o r i in 1 . . maxSteps {

z = z∗z + c ;
66 i f ( abs ( z ) > 2 . 0 ) then

return i ;
68 }

70 re turn 0 ;
}

72

//
74 // Map an image coord inate to a po int in the complex plane .

// Image coo rd ina t e s are ( row , c o l ) , with row 0 at the top .
76 //

proc mapImg2CPlane ( row , c o l ) {
78 const ( rmin , rmax) = (−1.5 , . 5 ) ;

const ( imin , imax ) = (−1 i , 1 i ) ;
80

re turn ( ( rmax − rmin ) ∗ c o l / c o l s + rmin ) +
82 ( ( imin − imax ) ∗ row / rows + imax ) ;
}
Listing A.3: Data-parallel Mandelbrot implementation, adjusted from Chapel’s
release to use the resilient version of the block data distribution. The initial micro-
benchmark can be found under https://github.com/chapel-lang/chapel/tree/
master/test/exercises/Mandelbrot/solutions.
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A.4.2 Mandelbrot Result Fractal Sets

Table A.1: Mandelbrot fractal set output from execution on 4 locales without and
with a single failure at different points in the execution. The results of the executions
with failures (b, c, and d) have been validated for correctness using the Linux diff

utility on the produced .ppm images.
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A.5 STREAM: Historical measurements

Table A.2 lists the memory bandwidth as measured using the STREAM micro-

benchmark over a period of six years, focusing on Intel processors which have un-

dergone a number of changes. The total memory bandwidth measured found is with

the use of all the cores on the node. The Rasberry Pi results provide a comparison

on the lower end of memory bandwidth scale.

Processor No. of
cores/node
(sockets)

Total
Memory
BW(GBps)

Memory
BW/core
(GBps)

Harpertown (2007) 8 (4) 7.2 0.9
Harpertown (2007) 8 (4) 32 4
Nehalem-EP (2009) 12 (6) 42 3.5
Westmere-EP (2010) 8 (4) 42 5.25
Sandy Bridge EP (2012) 16 (8) 78 4.88
Sandy Bridge EP (2012) 12 (6) 78 6.5
Sandy Bridge EP (2012) 8 (4) 78 9.75
Ivy Bridge EP (2013) 24 (12) 101 4.21
Ivy Bridge EP (2013) 20 (10) 101 5.05
Ivy Bridge EP (2013) 16 (8) 101 6.31
Ivy Bridge EP (2013) 12 (6) 101 8.42
Haswell EP (guess) 32 (16) 120 3.75
Haswell EP (guess) 24 (12) 120 5
Raspberry Pi v1 1 0.25 0.25
Raspberry Pi v2 1 0.26 0.26

Table A.2: STREAM triad Memory Bandwidth Results Layton, 2002
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Benchmarks and Data Sets

B.1 Microbenchmarks

1 module MonteCarlo{
2
3 proc monteCarlo ( ) {
4 const n = 100000000 , // number of random points to

try
5 seed = 589494289; // seed for random number

generator
6
7 var r s = new RandomStream( seed , parSafe=fa l se ) ;
8 var count = 0 ;
9 f o r i in 1 . . n do

10 i f ( r s . getNext ( ) ∗∗2 + r s . getNext ( ) ∗∗2) <= 1.0 then
11 count += 1 ;
12 var pi =count ∗ 4 .0 / n ;
13 w r i t e l n ( ” p i=” , pi , ” on l o c a l e ” , here . id ) ;
14 d e l e t e r s ;
15 }
16 }

Listing B.1: MonteCarlo module
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B.1.1 Serial distributed micro-benchmarks

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do {
12 monteCarlo ( ) ;
13 }
14 on Loca l e s [ 2 ] do{
15 monteCarlo ( ) ;
16 }
17 t o t a l . s top ( ) ;
18 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
19 }

Listing B.2: Serial simpleons.chpl

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 var t o t a l = new Timer ( ) ;
8 t o t a l . s t a r t ( ) ;
9

10 on Loca l e s [ 1 ] do {
11 monteCarlo ( ) ;
12 on Loca l e s [ 2 ] do{
13 monteCarlo ( ) ;
14 }
15 }
16 t o t a l . s top ( ) ;
17 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
18 }

Listing B.3: Serial simpleontest.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 var t o t a l = new Timer ( ) ;
8 t o t a l . s t a r t ( ) ;
9

10 on Loca l e s [ 1 ] do {
11 monteCarlo ( ) ;
12 on Loca l e s [ 2 ] do{
13 monteCarlo ( ) ;
14 on Loca l e s [ 1 ] do {
15 monteCarlo ( ) ;
16 }
17 }
18 }
19 t o t a l . s top ( ) ;
20 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
21 }

Listing B.4: Serial back.chpl

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 var t o t a l = new Timer ( ) ;
8 t o t a l . s t a r t ( ) ;
9

10 on Loca l e s [ 1 ] do {
11 monteCarlo ( ) ;
12 on Loca l e s [ 2 ] do{
13 monteCarlo ( ) ;
14 on Loca l e s [ 3 ] do{
15 monteCarlo ( ) ;
16 }
17 }
18 }
19 t o t a l . s top ( ) ;
20 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
21 }

Listing B.5: Serial three on.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 var t o t a l = new Timer ( ) ;
8 t o t a l . s t a r t ( ) ;
9

10 on Loca l e s [ 1 ] do {
11 monteCarlo ( ) ;
12 on Loca l e s [ 2 ] do{
13 monteCarlo ( ) ;
14 }
15 }
16 on Loca l e s [ 3 ] do{
17 monteCarlo ( ) ;
18 on Loca l e s [ 2 ] do{
19 monteCarlo ( ) ;
20 }
21 }
22 t o t a l . s top ( ) ;
23 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
24 }

Listing B.6: Serial two two on.chpl
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B.1.2 Task parallel micro-benchmarks: begin+on

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do begin {
12 monteCarlo ( ) ;
13 }
14 on Loca l e s [ 2 ] do begin {
15 monteCarlo ( ) ;
16 }
17 t o t a l . s top ( ) ;
18 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
19 }

Listing B.7: Task parallel begin+on simpleons.chpl

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do begin {
12 monteCarlo ( ) ;
13 on Loca l e s [ 2 ] do begin {
14 monteCarlo ( ) ;
15 }
16 }
17 t o t a l . s top ( ) ;
18 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
19 }

Listing B.8: Task parallel begin+on simpleontest.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do begin {
12 monteCarlo ( ) ;
13 on Loca l e s [ 2 ] do begin {
14 monteCarlo ( ) ;
15 on Loca l e s [ 1 ] do begin {
16 monteCarlo ( ) ;
17 }
18 }
19 }
20 t o t a l . s top ( ) ;
21 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
22 }

Listing B.9: Task parallel begin+on back.chpl

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do begin {
12 monteCarlo ( ) ;
13 on Loca l e s [ 2 ] do begin {
14 monteCarlo ( ) ;
15 on Loca l e s [ 3 ] do begin {
16 monteCarlo ( ) ;
17 }
18 }
19 }
20 t o t a l . s top ( ) ;
21 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
22 }

Listing B.10: Task parallel begin+on three on.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do begin {
12 monteCarlo ( ) ;
13 on Loca l e s [ 2 ] do begin {
14 monteCarlo ( ) ;
15 }
16 }
17 on Loca l e s [ 3 ] do begin {
18 monteCarlo ( ) ;
19 on Loca l e s [ 2 ] do begin {
20 monteCarlo ( ) ;
21 }
22 }
23 t o t a l . s top ( ) ;
24 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
25 }

Listing B.11: Task parallel begin+on two two on.chpl
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B.1.3 Task parallel micro-benchmarks: cobegin+on

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 cobegin{
12 on Loca l e s [ 1 ] do {
13 monteCarlo ( ) ;
14 }
15 on Loca l e s [ 2 ] do {
16 monteCarlo ( ) ;
17 }
18 }
19 t o t a l . s top ( ) ;
20 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
21 }

Listing B.12: Task parallel cobegin+on simpleons.chpl

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do {
12 cobegin{
13 monteCarlo ( ) ;
14 on Loca l e s [ 2 ] do {
15 monteCarlo ( ) ;
16 }
17 }
18 }
19 t o t a l . s top ( ) ;
20 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
21 }

Listing B.13: Task parallel cobegin+on simpleontest.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10 on Loca l e s [ 1 ] do {
11 cobegin{
12 monteCarlo ( ) ;
13 on Loca l e s [ 2 ] do {
14 cobegin{
15 monteCarlo ( ) ;
16 on Loca l e s [ 1 ] do {
17 monteCarlo ( ) ;
18 }
19 }
20 }
21 }
22 }
23 t o t a l . s top ( ) ;
24 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
25 }

Listing B.14: Task parallel cobegin+on back.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 on Loca l e s [ 1 ] do {
12 cobegin{
13 monteCarlo ( ) ;
14 on Loca l e s [ 2 ] do {
15 cobegin{
16 monteCarlo ( ) ;
17 on Loca l e s [ 3 ] do {
18 monteCarlo ( ) ;
19 }
20 }
21 }
22 }
23 }
24 t o t a l . s top ( ) ;
25 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
26 }

Listing B.15: Task parallel cobegin+on three on.chpl
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1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 cobegin{
12 on Loca l e s [ 1 ] do {
13 monteCarlo ( ) ;
14 on Loca l e s [ 2 ] do {
15 monteCarlo ( ) ;
16 }
17 }
18 on Loca l e s [ 3 ] do {
19 monteCarlo ( ) ;
20 on Loca l e s [ 2 ] do {
21 monteCarlo ( ) ;
22 }
23 }
24 }
25 t o t a l . s top ( ) ;
26 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
27 }

Listing B.16: Task parallel cobegin+on two two on.chpl
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B.1.4 Task parallel micro-benchmarks: coforall+on

1 use Time , Random , MonteCarlo ;
2
3 proc main ( ) {
4 var t = new Timer ( ) ;
5 t . s t a r t ( ) ;
6 while ( t . e l apsed ( ) < 20) {}
7 t . stop ( ) ;
8 var t o t a l = new Timer ( ) ;
9 t o t a l . s t a r t ( ) ;

10
11 c o f o r a l l l o c in Loca l e s {
12 on l o c do
13 monteCarlo ( ) ;
14 }
15 t o t a l . s top ( ) ;
16 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) ) ;
17 }

Listing B.17: Task parallel coforall+on coforall.chpl

217



Chapter B: Benchmarks and Data Sets

B.2 Data parallel micro-benchmarks

B.2.1 STREAM triad

1 //
2 // Use standard modules for Block distributions , Timing

routines, Type
3 // utility functions , and Random numbers
4 //
5 use BlockDistResMultiTaskRecovery , Time , Types , Random ;
6
7 //
8 // Use shared user module for computing HPCC problem sizes
9 //

10 use HPCCProblemSize ;
11
12 //
13 // The number of vectors and element type of those vectors
14 //
15 const numVectors = 3 ;
16 type elemType = r e a l (64) ;
17
18 //
19 // Configuration constants to set the problem size (m) and

the scalar
20 // multiplier , alpha
21 //
22 c o n f i g const m = 400 ,
23 alpha = 3 . 0 ,
24 printDbg = fa l se ;
25
26 //
27 // Configuration constants to set the number of trials to

run and the
28 // amount of error to permit in the verification
29 //
30 c o n f i g const numTrials = 1 ,
31 e p s i l o n = 0 . 0 ;
32
33 //
34 // Configuration constants to indicate whether or not to use

a
35 // pseudo-random seed (based on the clock) or a fixed seed;

and to
36 // specify the fixed seed explicitly
37 //
38 c o n f i g const useRandomSeed = true ,
39 seed = i f useRandomSeed then
40 SeedGenerator . currentTime else 314159265;
41
42 //
43 // Configuration constants
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44 //
45 c o n f i g const printParams = true ,
46 pr intArrays = false ,
47 p r i n t S t a t s = true ;
48
49 //
50 // The program entry point
51 //
52 proc main ( ) {
53 pr in tCon f i gu ra t i on ( ) ; // print the configuration
54
55 var t , t t = new Timer ( ) ;
56 t . s t a r t ( ) ;
57 while ( t . e l apsed ( ) <20){}
58 t . stop ( ) ;
59
60 //
61 // ProblemSpace describes the index set for the three

vectors. It
62 // is a 1D domain that is distributed according to a Block
63 // distribution. In this case, the Block distribution is

1D
64 // distribution computed by blocking the bounding box 1..m

across
65 // the set of locales. The ProblemSpace domain also

contains the
66 // indices 1..m.
67 //
68 const MonoSpace = { 1 . .m} ;
69 var MonoLocaleView={0..#numLocales} ;
70 var MyMonoLocales : [ MonoLocaleView ] l o c a l e = reshape (

Locales , MonoLocaleView ) ;
71 const ProblemSpace => MonoSpace dmapped Block ( boundingBox=

MonoSpace , t a r g e t L o c a l e s=MyMonoLocales ) ;
72
73
74 //
75 // A, B, and C are the three distributed vectors, declared

to store
76 // a variable of type elemType for each index in

ProblemSpace.
77 //
78 var A, B, C: [ ProblemSpace ] elemType ;
79 i n i t V e c t o r s (B, C) ;
80
81 var execTime : [ 1 . . numTrials ] r e a l ; // an array of

timings
82
83 f o r t r i a l in 1 . . numTrials { // loop over the trials
84 const startTime = getCurrentTime ( ) ; // capture the start

time
85 i f ( printDbg ) then
86 w r i t e l n ( ” Tr i a l #” , t r i a l ) ;
87
88 //
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89 // The main loop: Iterate over the vectors A, B, and C
in a

90 // parallel, zippered manner storing the elements as a,
b, and c.

91 // Compute the multiply-add on b and c, storing the
result to a.

92 //
93
94 f o r a l l ( a , b , c ) in z ip (A, B, C) do {
95 a = b + alpha ∗ c ;
96 }
97 execTime ( t r i a l ) = getCurrentTime ( ) − startTime ; //

store the elapsed time
98 }
99

100 i f ( printDbg ) then
101 printTimes ( execTime ) ;
102
103 var v = v e r i f y R e s u l t s (A, B, C) ;
104 w r i t e l n ( ” V e r i f i c a t i o n = ” , v , ”\n” ) ;
105 }
106
107 proc p r e t tyPr in t ( space , A){
108
109 var count =1;
110 f o r i in space do{
111 i f ( i<count ∗1000000) then{
112 wr i t e ( A[ i ] , ” ” ) ;
113 } else {
114 wr i t e ( ” on ” , A[ i ] . l o c a l e . id , ”\n\n” ) ;
115 count=count +1;
116 }
117 }
118 }
119
120 //
121 // Print the problem size and number of trials
122 //
123 proc p r i n tCon f i gu ra t i on ( ) {
124 i f ( printParams ) {
125 i f ( p r i n t S t a t s ) then
126 pr in tLoca l e sTasks ( ) ;
127 pr intProblemSize ( elemType , numVectors , m) ;
128 w r i t e l n ( ”Number o f t r i a l s = ” , numTrials , ”\n” ) ;
129 }
130 }
131
132 //
133 // Initialize vectors B and C using a random stream of

values and
134 // optionally print them to the console
135 //
136 proc i n i t V e c t o r s (B, C) {
137 var r a n d l i s t = new RandomStream( seed ) ;
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138
139 r a n d l i s t . f i l lRandom2 (B) ;
140 r a n d l i s t . f i l lRandom2 (C) ;
141
142 i f ( pr intArrays ) {
143 w r i t e l n ( ”B i s : ” , B) ;
144 w r i t e l n ( ”C i s : ” , C ) ;
145
146 f o r b in B do
147 w r i t e l n (b . l o c a l e . id ) ;
148
149 f o r c in C do
150 w r i t e l n ( c . l o c a l e . id ) ;
151 }
152 d e l e t e r a n d l i s t ;
153 }
154
155 //
156 // Verify that the computation is correct
157 //
158 proc v e r i f y R e s u l t s (A, B, C) {
159 i f ( pr intArrays ) then
160 w r i t e l n ( ”A i s : ” , A, ”\n” ) ; // optionally print A
161
162 //
163 // recompute the computation , destructively storing into B

to save space
164 //
165 f o r a l l (b , c ) in z ip (B, C) do
166 b += alpha ∗c ;
167
168 i f ( pr intArrays ) then
169 w r i t e l n ( ”A−hat i s : ” , B, ”\n” ) ; // optionally print A-

hat
170
171 //
172 // Compute the infinity-norm by computing the maximum

reduction of
173 // the absolute value of A’s elements minus the new result
174 // computed in B. "[i in I]" represents an expression -

level
175 // loop: "forall i in I"
176 //
177 const infNorm = max reduce [ ( a , b ) in z ip (A,B) ] abs ( a − b) ;
178
179 re turn ( infNorm <= e p s i l o n ) ; // return whether the

error is acceptable
180 }
181
182 //
183 // Print out success/failure, the timings, and the GB/s

value
184 //
185 proc p r i n t R e s u l t s ( s u c c e s s f u l , execTimes ) {
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186 w r i t e l n ( ” Va l ida t i on : ” , i f s u c c e s s f u l then ”SUCCESS” else
”FAILURE” ) ;

187 i f ( p r i n t S t a t s ) {
188 const totalTime = + reduce execTimes ,
189 avgTime = totalTime / numTrials ,
190 minTime = min reduce execTimes ;
191 w r i t e l n ( ” Execution time : ” ) ;
192 w r i t e l n ( ” to t = ” , totalTime ) ;
193 w r i t e l n ( ” avg = ” , avgTime ) ;
194 w r i t e l n ( ” min = ” , minTime) ;
195
196 const GBPerSec = numVectors ∗ numBytes ( elemType ) ∗ (m /

minTime) ∗ 1e−9;
197 w r i t e l n ( ” Performance (GB/ s ) = ” , GBPerSec ) ;
198 }
199 }
200
201 proc printTimes ( execTimes ) {
202 i f ( p r i n t S t a t s ) {
203 const totalTime = + reduce execTimes ,
204 avgTime = totalTime / numTrials ,
205 minTime = min reduce execTimes ;
206 w r i t e l n ( ” Execution time : ” ) ;
207 w r i t e l n ( ” to t = ” , totalTime ) ;
208 w r i t e l n ( ” avg = ” , avgTime ) ;
209 w r i t e l n ( ” min = ” , minTime) ;
210
211 const GBPerSec = numVectors ∗ numBytes ( elemType ) ∗ (m /

minTime) ∗ 1e−9;
212 w r i t e l n ( ” Performance (GB/ s ) = ” , GBPerSec ) ;
213 }
214 }

Listing B.18: Data parallel STREAM triad source code.
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B.2.2 N-body all-pairs

1 //
2 // Use the resilience enabled data block distribution module
3 //
4 use BlockDistResMultiTaskRecovery ;
5
6 //
7 // Use the module where bodies datasets are defined
8 //
9 use Morebodies ;

10
11 //
12 // The number of timesteps to simulate
13 //
14 c o n f i g const n = 10000;
15
16 //
17 // The number of bodies to be simulated
18 //
19 const numbodies = bod ie s . numElements ;
20
21 //
22 // The declaration of the distibution domain
23 //
24
25 const MonoSpace = {1. .# numbodies } ;
26 var MonoLocaleView={0..#numLocales} ;
27 var MyMonoLocales : [ MonoLocaleView ] l o c a l e =
28 reshape ( Locales , MonoLocaleView ) ;
29 const ProblemSpace => MonoSpace dmapped
30 Block ( boundingBox=MonoSpace , t a r g e t L o c a l e s=MyMonoLocales

) ;
31
32 //
33 // The declaration of the distributed arrays
34 //
35 var A: [ ProblemSpace ] body ;
36 var C: [ MonoSpace ] body =bodie s ;
37
38 //
39 // The computation involves initializing the sun’s velocity,
40 // writing the initial energy, advancing the system through

’n’
41 // timesteps , and writing the final energy.
42 //
43 proc main ( ) {
44
45 //
46 // Add some delay
47 //
48 var t , t o t a l = new Timer ( ) ;
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49 t . s t a r t ( ) ;
50 while ( t . e l apsed ( ) <20){}
51 t . stop ( ) ;
52
53 //
54 // Initialisation of the distributed arrays
55 //
56 i n i t A r r a y s ( ) ;
57 in i tSun ( ) ;
58
59 t o t a l . s t a r t ( ) ;
60 //
61 // Print the original energy of the system and the

configuration
62 //
63 w r i t e f ( ”%.9 r\n” , energy ( ) ) ;
64 f o r 1 . . n do
65 advance ( 0 . 0 1 ) ;
66 var f i na lEnergy = energy ( ) ;
67 w r i t e f ( ”%.9 r\n” , f i na lEnergy ) ;
68
69 t o t a l . s top ( ) ;
70 v e r i f y R e s u l t s ( f i na lEne rgy ) ;
71
72 w r i t e l n ( ” Conf igurat ion : numbodies= ” , numbodies , ” n=” , n)

;
73 w r i t e l n ( ” Total e l apsed : ” , t o t a l . e l apsed ( ) , ”\n\n” ) ;
74 }
75
76 //
77 // Compute the sun’s initial velocity
78 //
79 proc in i tSun ( ) {
80 const p = + reduce ( f o r b in bod ie s do (b . v ∗ b . mass ) ) ;
81 bod ie s [ 1 ] . v = −p / solarMass ;
82 }
83
84 proc i n i t A r r a y s ( ) {
85 f o r i in 1 . . numbodies {
86 A[ i ] = bod ie s [ i ] ;
87 }
88 i f debug then pr intArrays ( ) ;
89 }
90
91 //
92 // Advance the positions and velocities of all the bodies
93 //
94 proc advance ( dt ) {
95
96 f o r a l l i in 1 . . numbodies {
97 f o r a l l j in i +1. . numbodies {
98 r e f b1 = A[ i ] ,
99 b2 = A[ j ] ;

100
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101 const dpos = b1 . pos − b2 . pos ,
102 mag = dt / s q r t ( sumOfSquares ( dpos ) ) ∗∗3 ;
103
104 b1 . v −= dpos ∗ b2 . mass ∗ mag ;
105 b2 . v += dpos ∗ b1 . mass ∗ mag ;
106 }
107 }
108
109 f o r b in A do
110 b . pos += dt ∗ b . v ;
111 }
112
113 //
114 // Compute the energy of the bodies
115 //
116 proc energy ( ) {
117 var e = 0 . 0 ;
118
119 f o r i in 1 . . numbodies {
120 const b1 = A[ i ] ;
121
122 e += 0.5 ∗ b1 . mass ∗ sumOfSquares ( b1 . v ) ;
123
124 f o r j in i +1. . numbodies {
125 const b2 = A[ j ] ;
126
127 e −= ( b1 . mass ∗ b2 . mass ) / s q r t ( sumOfSquares ( b1 . pos −

b2 . pos ) ) ;
128 }
129 }
130
131 re turn e ;
132 }
133
134 //
135 // Verify the final result
136 //
137 proc v e r i f y R e s u l t s ( f i na lEne rgy ) {
138
139 w r i t e f ( ”%.9 r\n” , energyC ( ) ) ;
140 f o r 1 . . n do {
141
142 f o r i in 1 . . numbodies {
143 f o r j in i +1. . numbodies {
144 r e f b1 = C[ i ] ,
145 b2 = C[ j ] ;
146
147 const dpos = b1 . pos − b2 . pos ,
148 mag = 0.01 / s q r t ( sumOfSquares ( dpos ) ) ∗∗3 ;
149
150 b1 . v −= dpos ∗ b2 . mass ∗ mag ;
151 b2 . v += dpos ∗ b1 . mass ∗ mag ;
152 }
153 }
154
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155 f o r b in C do
156 b . pos += 0.01 ∗ b . v ;
157 }
158 var xx = energyC ( ) ;
159 w r i t e f ( ”%.9 r\n” , xx ) ;
160
161 i f ( xx == f ina lEnergy ) then
162 w r i t e l n ( ” Ver i f y : Success ” ) ;
163 else
164 w r i t e l n ( ” Ver i f y : Fa i l ed ” ) ;
165 }
166
167 //
168 // Compute the energy of the bodies
169 //
170 proc energyC ( ) {
171 var e = 0 . 0 ;
172
173 f o r i in 1 . . numbodies {
174 const b1 = C[ i ] ;
175
176 e += 0.5 ∗ b1 . mass ∗ sumOfSquares ( b1 . v ) ;
177
178 f o r j in i +1. . numbodies {
179 const b2 = C[ j ] ;
180
181 e −= ( b1 . mass ∗ b2 . mass ) / s q r t ( sumOfSquares ( b1 . pos −

b2 . pos ) ) ;
182 }
183 }
184
185 re turn e ;
186 }
187
188 //
189 // A helper to compute the sum of squares of a 3-tuple’s

components
190 //
191 i n l i n e proc sumOfSquares ( x )
192 re turn x (1 ) ∗∗2 + x (2) ∗∗2 + x (3) ∗∗2 ;

Listing B.19: Data parallel Nbody source code.
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B.3 Celestial bodies input datasets

Below we provide the bodies datasets used in the experiments for the N-body all-

pairs algorithm.
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Avižienis, Algirdas, Per Gunningberg, John PJ Kelly, Lorenzo Strigini, Pascal Tra-

verse, Kam Sing Tso, and Udo Voges (1985). “The UCLA DEDIX system: A

Distributed Testbed for Multiple-version Software”. In: Digest of 15th Annual

International Symposium on Fault-Tolerant Computing, pp. 126–134.
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Gärtner, Felix C (1999). “Fundamentals of Fault-tolerant Distributed Computing

in Asynchronous Environments”. In: ACM Computing Surveys (CSUR) 31.1,

pp. 1–26.

Gilbert, Seth and Nancy Lynch (2002). “Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web Services”. In: SIGACT News 33.2,

pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601.

Graham, Richard, Jack Dongarra, Al Geist, Bill Gropp, Rainer Keller, Andrew

Lumsdaine, Ewing Lusk, and Rolf Rabenseifner (2015). MPI: A Message-passing

Interface Standard, Version 3.1.

Gries, M., U. Hoffmann, M. Konow, and M. Riepen (2011). “SCC: A Flexible Ar-

chitecture for Many-Core Platform Research”. In: Computing in Science Engi-

neering 13.6, pp. 79–83. issn: 1521-9615. doi: 10.1109/MCSE.2011.109.

Grove, David, Sara Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya,

Josh Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier

Tardieu (2017). Failure Recovery in Resilient X10. Tech. rep.

Hacker, Thomas J, Fabian Romero, and Christopher D Carothers (2009). “An Anal-

ysis of Clustered Failures on Large Supercomputing Systems”. In: Journal of

Parallel and Distributed Computing 69.7, pp. 652 –665. issn: 0743-7315. doi:

10.1016/j.jpdc.2009.03.007.

Haerder, Theo and Andreas Reuter (1983). “Principles of Transaction-oriented Database

Recovery”. In: ACM Computing Surveys (CSUR) 15.4, pp. 287–317. issn: 0360-

0300. doi: 10.1145/289.291.

235



REFERENCES

Heggie, Douglas and Piet Hut (2003). The Gravitational Million-Body Problem: a

Multidisciplinary Approach to Star Cluster Dynamics. IOP Publishing. isbn:

978-0521774864.

Herlihy, Maurice P and Jeannette M Wing (1991). “Specifying Graceful Degrada-

tion”. In: IEEE Transactions on Parallel and Distributed Systems 2.1, pp. 93–

104.

Hewlett Packard Enterprise (2018). HPE Superdome Flex server architecture and

RAS. Tech. rep. [Technical White Paper]. Hewlett Packard Enterprise. url:

https://h20195.www2.hpe.com/v2/Getdocument.aspx?docname=a00036491enw

(visited on 06/2019).

Horning, James J, Hugh C Lauer, Peter M Melliar-Smith, and Brian Randell (1974).

“A Program Structure for Error Detection and Recovery”. In: Operating Systems

OS 1974, Lecture Notes in Computer Science. Vol. 16. Springer, Berlin, Heidel-

berg, pp. 171–187. isbn: 978-3-540-06849-5. doi: 10.1007/BFb0029359.

Hunt, Patrick, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed (2010).

“ZooKeeper: Wait-free Coordination for Internet-scale Systems”. In: Proceed-

ings of the 2010 USENIX Conference on USENIX Annual Technical Conference.

USENIXATC’10. Boston, MA: USENIX Association, pp. 11–11. url: http :

//dl.acm.org/citation.cfm?id=1855840.1855851.

ISO/IEC JTC 1/SC 22, Programming languages (1999). ISO/IEIC 9899:1999 Pro-

gramming Languages C. Revised by ISO/IEC 9899:2018. ISO/IEIC.

Jeyapaul, Reiley (2012). “Smart Compilers for Reliable and Power-efficient Embed-

ded Computing”. PhD thesis. Arizona State University. url: http://aviral.

lab.asu.edu/bibadmin/uploads/pdf/ReileyJeyapaul_PhDThesis.pdf.

Jin, Xiao-Zheng and Guang-Hong Yang (2009). “Robust Adaptive Fault-tolerant

Compensation Control with Actuator Failures and Bounded Disturbances”. In:

Acta Automatica Sinica 35.3, pp. 305 –309. issn: 1874-1029. doi: 10.1016/

S1874-1029(08)60079-8.

Johnson, Leslie A (1998). “DO-178B, Software considerations in airborne systems

and equipment certification”. In: RTCA, Radio Technical Commission for Aero-

nautic 199.

236



REFERENCES
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