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Abstract

Fifth-generation (5G) mobile networks have three main goals namely enhanced mo-

bile broadband (eMBB), massive machine-type communication (mMTC) and ultra-

reliable low latency communication (URLLC). The performance measures associ-

ated with these goals are high peak throughput, high spectral efficiency, high ca-

pacity and mobility. Moreover, achieving ubiquitous coverage, network and device

energy efficiency, ultra-high reliability and ultra-low latency are associated with the

performance of 5G mobile networks. One of the challenges that arises during the

analysis of these networks is the randomness of the number of nodes and their lo-

cations. Randomness is an inherent property of network topologies and could occur

due to communication outage, node failure, blockage or mobility of the communi-

cation nodes. One of the tools that enable analysis of such random networks is

stochastic geometry, including the point process theory. The stochastic geometry

and Poisson point theory allow us to build upon tractable models and study the ran-

dom networks, which is the main focus of this dissertation. In particular, we focus

on the performance analysis of cellular heterogeneous networks (HetNet) and ad-hoc

sensor networks. We derive closed-forms and easy-to-use expressions, characteris-

ing some of the crucial performance metrics of these networks. First, as a HetNet

example, we consider a three-tier hybrid network, where microwave (µWave) links

are used for the first two tiers and millimetre wave (mmWave) links for the last

tier. Since HetNets are considered as interference-limited networks, therefore, we

also propose to improve the coverage in HetNet by deploying directional antennas to

mitigate interference. Moreover, we propose an optimisation framework for the over-
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all area spectral and energy efficiency concerning the optimal signal-to-interference

ratio (SIR) threshold required for µWave and mmWave links. Results indicate that

for the µWave tiers (wireless backhaul) the optimal SIR threshold required depends

only on the path-loss exponent and that for the mmWave tier depends on the area

of line-of-sight (LOS) region. Furthermore, we consider the average rate under cov-

erage and show that the area spectral and energy efficiency are strictly decreasing

functions with respect to the SIR threshold. Second, in ad-hoc sensor networks,

coverage probability is usually defined according to a fixed detection range ignor-

ing interference and propagation effects. Hence, we define the coverage probability

in terms of the probability of detection for localisability. To this end, we provide

an analysis for the detection probability and S-Localisability probability, i.e. the

probability that at least S sensors may successfully participate in the localisation

procedure, according to the propagation effects such as path-loss and small-scale fad-

ing. Moreover, we analyse the effect of the number of sensors S on node localisation

and compare different range based localisation algorithms.
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Chapter 1

Introduction

Fig. 1.1 gives a brief overview of the thesis and its main contents. We analyse

the performance of 5G wireless communication networks namely HetNet cellular

networks and sensor networks using the tools of stochastic geometry. Initially, we

consider the coverage probability analysis of a single-tier cellular network exploiting

directional antenna at the receiver end. Furthermore, we examine the performance

analysis of a multi-tier HetNet cellular network deploying directional antennas in

terms of coverage probability, ASE and EE for the minimum rate model and average

rate under coverage model. Since 5G communication also supports localisation,

we consider homogeneous sensor networks in a 3-d space where we analyse the

performance with respect to detection probability; which can be observed similar to

the coverage probability; and S-Localizability probability i.e. the probability that at

least S sensors may successfully participate in localisation procedure. Finally, based

on the results from the analysis of the sensor networks, we present a comparison

between conventional range-based localisation algorithms in terms of the minimum

number of sensors required.

1.1 Background

As we approach 2020, it is expected that the number of connected devices will be

more than 50 billion. Moreover, we will be surrounded by the Internet-of-Things

1
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(IoT), for example we will have connections between our home appliances and our

cars. 5G is being designed and built taking this into consideration [1]. The first

goal of 5G is eMBB and the performance measures associated with it are high peak

throughput, high spectral efficiency, high capacity and mobility. The second goal is

mMTC which aims at achieving ubiquitous coverage, high network and device energy

efficiency and a massive number of connections [2]. The final goal of 5G is URLLC

that leads to extremely high reliability and extremely low latency. Furthermore,

privacy and security are also key considerations in 5G and future generations as

well as battery life which is a fundamental facet of mobile connectivity.

Figure 1.1 Thesis overview
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More precisely, 5G standards are expected to have these eight advanced features

[3] :

• 1− 10 Gbps connections to endpoints in the field,

• 1-millisecond latency,

• 1000x bandwidth per unit area,

• 10− 100x number of connected devices,

• 99.999% availability,

• 100% coverage,

• 90% reduction of network energy usage,

• up to ten years of battery life for low power devices.

To attain these performance requirements, numerous technologies [4] are applied to

5G systems, such as small cell multi-tier (Heterogeneous Networks (HetNet) ) [5,6],

massive multiple input multiple output (M-MIMO) [7,8], millimetre wave (mmWave)

communications [9] and device-to-device (D2D) communications [10].

The three key areas that have been investigated for the research of 5G mobile

networks (Fig. 1.2) are

• Millimetre Wave [9]: For 5G, frequencies above 50 GHz are being examined.

This presents challenges with respect to technology, circuit design and the

operation of the system because these frequencies are almost entirely absorbed

by obstacles such as buildings and foliage.

• massive Multiple-Input Multiple-Output (MIMO) [7]: Although

MIMO is exploited in plenty of applications from LTE to Wi-Fi, etc., the

number of antennas is relatively limited. For 5G, there is a high possibility of

deploying a large number of antennas on single user equipment due to antenna

sizes and spacings with respect to the wavelength.
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Figure 1.2 5G-network-architecture.

• Small Cell Networks (SCN) [6,11]: Decreasing the size of cells provides an

effective usage of the available spectrum. The small cell size in the macrocell

network; deploying femtocells or picocells, accomodates different techniques to

ensure that all small cells can operate adequately as needed.

One of the advanced features for 5G is 100% coverage, one solution to achieve this

feature is multi-tier SCN (HetNet) and a more advanced solution is a hybrid network

that consists of microwave (µWave) and mmWave links which will be discussed in

more details in Chapter 3.

First of all, small cell is a term used for low-cost and low-power radio access

nodes that have a limited range of several hundred meters as shown in Fig. 1.3.

SCNs such as femtocells and picocells [12–14], are considered a promising solution

to enhance the system coverage and the smaller size of the network provides high

spectrum efficiency by reusing spatial resources. Moreover, these networks increase

the data capacity and decrease the overall cost by helping the service providers to

eliminate expensive installation and rental costs. Hence, these networks help in

improving the overall performance of the network. A simple example is if a user is

closer to a small cell BS, it transmits at lower power levels, which effectively lowers

the power out of the user terminal.
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Figure 1.3 Different BSs used in different scenarios (Rural, Urban, etc. ).

Recently, more work has been done to overlay these SCN on top of the macrocell

networks that are already being used for a decent amount of time. Incorporating a

layered structure of macrocells, femtocells, and/or picocells is referred to HetNets

(see Fig. 1.4). They are utilised to offer improved wireless coverage in numerous

scenarios ranging from open outdoor environments to homes, office buildings and

underground areas. Apart from improved coverage, there are several benefits to Het-

Nets as opposed to traditional homogeneous wireless networks including improved

spectrum efficiency and increased reliability [5,15–20]. Not only the coverage and re-

liability improve because the BSs in one tier can fill the coverage holes of other tiers

and maintain a connection, but also spectral efficiency is enhanced due to better

load balancing of users across BSs from different tiers.

We observe in Fig. 1.4, that HetNet supports cellular and D2D modes. D2D

refers to direct communication between two user terminals without traversing the

BS. Nowadays, the number of mobile UTs is rapidly increasing which could poten-

tially enhance direct communications, especially for high data rate services. Hence,

D2D communications in such scenarios can greatly increase the spectral efficiency

of the network.

The advantages of D2D communications go beyond spectral efficiency; they can

potentially improve throughput, energy efficiency, delay, and fairness [21].
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Figure 1.4 Heterogeneous Multi-tier Network.
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Therefore, 5G standards are expected to support D2D communication as shown

in Fig. 1.4. Apart from the expected accomplishments related to communications for

5G networks, 5G will also support network-based localisation in 3-dimensional space,

with 1m < accuracy < 10m on 80% of the time and for indoors accuracy < 1m [22].

Relying on such meticulous location information, the first generation to benefit from

localisation in wireless networks design and optimisation would be 5G [23].

Moreover, 5G supports machine-type communication (MTC), wireless sensor

network (WSN) is an example of MTC as shown in Fig. 1.2. In the WSN, sensors are

set up for metering (e.g., energy, gas, and water ) in rural, suburban and urban areas,

lights management of building or city, vehicle traffic control, environment monitoring

(e.g., temperature, pollution, humidity, and noise) and localisation [22,24–31].

To support MTC, several requirements should be met by 5G networks, such as

higher data rate, higher quality of experience (QoE) for users, lower energy con-

sumption and lower end-to-end latency. Furthermore, 5G network topology is ex-

pected to shift from base station centric to a device-centric network, because 5G

requirement is sub-millisecond latency and to avoid the bandwidth limitations in

the traditional wireless spectrum. These device-centric networks are referred to

wireless ad-hoc networks which can be classified into Vehicular Ad hoc Networks

(VANETs) [32, 33], Mobile Ad hoc Networks (MANETs) [34, 35], Smartphone Ad

hoc Networks (SPANs) [36], Wireless mesh networks [37] and so on. These are

networks with no pre-existing infrastructure and easy to install.

Because of the advantages of wireless ad-hoc and sensor networks, wireless ad-

hoc sensor networks are introduced and deployed in various applications [25,38–40].

In [39], an efficient sensor network composed of low power sensor modules was

developed and implemented for biomedical applications. In [38], a sensor network

based on ad-hoc technology was implemented for agriculture applications and an

information platform.
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Figure 1.5 Localisation in Sensor Networks.

Localisation (also called positioning) is a crucial issue in cellular and WSN ap-

plications and deeply embedded in our daily lives [25, 27, 29, 38–43]. It has been

studied for many years in various applications such as locating 911 calls, WiFi,

GPS navigations, etc [22, 30, 31, 44–46]. In cellular networks, the driving force be-

hind localisation research is to enable the location-based application services within

certain accuracy requirements [22]. In [30], 5G-based localisation assisted driving

applications are studied and provide centimetre-accurate positioning by optimising

the network design in a highway scenario. In [31], the radio signals have been used

for position tracking, as well as the reconstruction of a 3-D map of the surround-

ing environment, which is useful to assist people with impaired vision. In wireless

ad-hoc networks, localisation has a wide aspect as many real-life applications such

as improving network connectivity in an urban area, rescue operations and bat-

tlefields. In these scenarios, the most common assumption is having a predefined

sensing range and only the nodes within this range are defined as "active" nodes,

which refer to the nodes that detected the target’s transmitted signal ( Fig. 1.5).

Thus, only these nodes are deployed to locate the target node.

Localisation techniques can be classified into two categories viz. range based and

range free. Range-based techniques rely on distance measurements such as received



9 1.2 Literature Review and Motivation

signal strength (RSS) [47], angle of arrival (AoA) [48,49], time of arrival (ToA) [50],

and time-difference of arrival (TDoA) [51,52].

A comparison between the aforementioned techniques is summarised in Table

1.1. For ToA, usually, multi-lateration approaches are used such as linear least

squares (LLS) [26] and weighted least squares (WLS) [53]. With some modifications,

these techniques are commonly used for TDoA algorithms, as well as squared-range-

difference-based least squares (SRD-LS) [52]. All these algorithms will be discussed

in detail in Chapter 5. Based on the topology, localisation can also be divided into

two approaches viz. centralised and distributed. In the centralised approach, sensors

forward the information to the fusion centre (FC) or the cluster head (CH), which

combines the local decisions to yield a decision about the target. This structure

can be considered suboptimal when there is a communication outage between some

of the sensors and the FC. Thus, the FC does not have enough information to

localize the target. However, in the distributed approach, each sensor can perform

the localisation on its own, but this is approach would have a higher cost because it

requires the use of expensive and smart sensors that are able to do the analysis [54].

To summarise, we exempted a short background for the 5G wireless network

architecture. We pointed out two main networks which are SCN cellular and wireless

ad-hoc sensor networks. In Section 1.2, we present the related work in literature for

these networks and the motivation of this thesis.

1.2 Literature Review and Motivation

Randomness is an inherent property of network topologies, not only for ad-hoc sen-

sor networks, but also for SCN cellular ones, and could occur due to communication

outage, node failure, blockage or mobility of the communication nodes. One of the

tools that enable analysis of such random networks is stochastic geometry, which is a

mathematical research area that provides suitable mathematical models and statis-

tical methods to study and analyse random spatial patterns, where its main subfield

is point process theory [55–57]. Some basic stochastic mathematical preliminaries,

that are being used throughout the thesis, are stated in Appendix A in details with
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the theorems’ proofs.

1.2.1 Single and Multi-tier SCN

In the first part of the thesis, we concentrate on the analysis of single and multi-tier

SCN. In SCN literature, a key result from single and multi tier SCN analysis is the

derivation of the SINR distribution, using the stochastic geometry tools, which is

then mapped to the coverage probability [5,16,58]. A favourable property of HetNets

was shown in [19,20], which declared that the distribution of the SINR is invariant

to the network density, as long as all tiers have the same threshold. Thus, deploying

more BSs would result in increasing the ASE of the HetNet. This demonstrates that

more users can be supported by the network with a higher spatial reuse efficiency.

However, the dense and random deployment of small cells raised questions about the

EE implications. To this end in [18], active/sleep (on/off) modes were introduced

for BSs, leading to improved EE. Another solution based on the joint maximisation

of EE and spectral efficiency while ensuring proportional rate fairness among users

and taking into account the backhaul capacity constraint was analysed in [8].

The improvement of spectrum efficiency and network capacity for homogeneous

and HetNet is at the expense of the increased interference. In SCN with frequency

reuse and several coexisting tiers, there are two types of interferences, namely, the

co-tier and the cross-tier interference. Co-tier interference is the interference of the

same tier, such as interference between users of the same tier. While cross-tier

interference refers to the interference between the users of two different network

tiers such as the FBS and macro base station (MBS).

Thus, interference mitigation and modelling is an area of primary interest to

both industry and academic communities. First, we consider the interference miti-

gation and then we state how stochastic geometry tools are equipped to model the

interference. When traditional omni-directional antennas are deployed in SCN, the

mitigation of the interference is achieved by resource allocation [59, 60] and power

control [61, 62]. But the system complexity increases significantly due to the need

for co-operation across femtocells and/or message exchange. To achieve interference
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mitigation while maintaining minimum cost and complexity, the directional anten-

nas have been considered for femtocells [58, 63–66]. The switched multi-element

antenna has been suggested to be deployed at the FBSs, where one beam pattern

or combination of more is selected dynamically from predefined ones to the serv-

ing UT [63–66]. The exploitation of directional antennas in single tier SCN at the

UT increases the received SINR, thereby enhancing the system capacity [58]. How-

ever, the results in [58] were achieved experimentally and we extended this work in

Chapter 2 using the tools of stochastic geometry to obtain a closed-form expression

for the coverage probability and the corresponding numerical results. There are

several methods used to reduce the interference for multi-tier HetNet as presented

in [67–69], but the required additional infrastructure leads to increased expenditure.

Stochastic geometry tools are used to model the interference, for example when

the nodes are scattered randomly in a certain region following a PPP Φ with density

λ. Based on this assumption some of the well-known theorems such as Campbell-

Mecke (sum over PPPs) and probability generating functional (PGFL) (product over

PPPs) are exploited to find a closed-form expressions for the performance metrics

such as coverage probability, success probability, outage probability, ASE and EE.

For instance, in [70], heterogeneous networks consisting of macrocell and femtocells

were considered and the tools of stochastic geometry were used to derive the general

expressions of the success probability.

The performance of two-tier SCN was analysed and a closed-form expression for

the outage probability was derived in [71] using an approximation for the interference

distribution.

Other performance metrics such as coverage probability, ASE and EE were anal-

ysed using the tools of stochastic geometry, mainly point process theory [5, 16–20].

For example, a flexible and tractable model for a downlink HetNet consisting of

K tiers was presented in [5]. They assumed that the mobile user associates to the

strongest BS and they derived the probability of coverage as well as the average rate

under coverage achieved by a randomly located mobile user. In [17], a multichannel

HetNet was considered and they developed a framework for the uplink ASE analysis
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Table 1.1 Comparison for Different Range-based localisation techniques [72]

Technique Advantage Disadvantage
RSS Easy to implement, cost-efficient, Suffers from multi-path fading and

can be combined with other techniques environmental noise,
low localisation accuracy

AoA Can provide high localisation accuracy Might require directional antenna
and complex hardware,
performance deteriorates
as the distance between
target and sensor nodes increases,
requires complex algorithms
comparatively

ToA Provides high localisation accuracy Require time synchronisation
between target and sensor nodes,
LOS is mandatory for accurate
performance

TDoA Does not require synchronisation Requires synchronisation
between target and sensor nodes between the sensor nodes,

requires larger bandwidth

exploiting a biased cell association scheme with channel inversion power control to

lessen the interference and coordinated sub-channel allocation. The success prob-

ability and EE were derived for homogeneous single-tier and heterogeneous K-tier

wireless networks under different sleeping policies [18]. Furthermore, they showed

the utilisation of small cells generally leads to higher EE, however, this gain saturates

as the density of small cells increases.

While [16–20] focused on µWave HetNets, mmWave communication has emerged

as a key enabler for higher spectral efficiency and EE in the 5G wireless commu-

nication networks. Unlike µWave, they operate at 10 to 300 GHz frequency bands

with available bandwidths of 2 GHz or more [73–78]. A general framework to eval-

uate coverage and a tractable model for rate performance was proposed in [76, 77],

where it was shown that dense mmWave networks can achieve comparable coverage

and much higher data rates than conventional ultra-high frequency (UHF) cellular

systems, despite the presence of blockages.

Recently, because of the advantages of µWave and mmWave communications,

hybrid networks consisting of a HetNet with µWave and mmWave tiers were intro-

duced [7, 79, 80]. In [79], the performance in terms of coverage and rate of hybrid



13 1.2 Literature Review and Motivation

cellular networks consisting of BSs operating at mmWave and sub 6 GHz bands

was investigated. The results showed that the hybrid network achieved an average

rate under coverage which is comparable to that of a mmWave network and much

higher than the stand-alone UHF network. In [7], the downlink performance in

terms of coverage and rate of a three-tier hybrid network where M-MIMO macro

base stations (MBSs) are overlaid with small cells operating at either sub 6 GHz

or mmWave bands was presented and the users were assumed to connect to any of

the tiers according to the association probability. It was observed that the imple-

mentation of M-MIMO on macro tier and deployment of high density of mmWave

small cells led to the enhancement of rate and coverage. A similar system model was

presented in [80], but the MBSs were not equipped with M-MIMO, and the effects

of BS density on ASE and EE were studied. Based on the analysis, introducing

mmWave small cells considerably improved coverage and hence ASE, and EE. This

motivated us to extend the coverage analysis of single-tier SCN to the performance

analysis of a hybrid multi-tier HetNet using the stochastic geometry tools in terms

of coverage probability, ASE and EE in Chapter 3.

1.2.2 Ad-hoc Sensor Networks

In Chapters 4 and 5, we focus on wireless ad-hoc sensor networks specifically de-

tection and localisation analysis. As stated in Section 1.1, ad-hoc sensor networks

are a crucial part of the 5G network architecture. One of the interesting topics in

ad-hoc sensor networks is localisation which is useful for various applications such

as disaster recovery, rescue operation, military communication, environmental mon-

itoring, asset tracking in warehouses, people with impaired vision (WSNs), locating

911 calls and assisted driving (cellular networks).

A very trivial solution for providing accurate location information in the afore-

mentioned networks is the global navigation satellite systems (GNSS), e.g., GPS.

However, such systems are not always reliable and available. Furthermore, this so-

lution is not very efficient especially in WSN which often consists of a large number

of sensor nodes, implying that this solution is not economically viable and costly
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to equip all nodes with GNSS receivers. As an alternative, other localisation ap-

proaches are used based on sensor nodes (anchors) measurements to locate the target

node (node to be localised). These approaches can also be equipped in cellular net-

works, where the BSs are considered the sensor nodes and the user is the node to be

located. We should note that for the cellular network, the communication between

BS and the desired user is considered successful when less interference is available

from other BSs. But in a localisation problem, the main objective is to make sure

that the user to be located can receive signals from a sufficient number of BSs which

is referred to as the hearability problem [81–83].

Since localisation performance fundamentally depends upon the number of par-

ticipating nodes and the accuracy of the measurements. In literature, if these

aforementioned factors are considered deterministic, the localisation performance

is analysed using the Cramer-Rao lower bound (CRLB) for a specific topology of

the nodes [84–86]. Recently, it has been shown in cellular networks that none of

the aforementioned factors can be considered deterministic [81–83]. In [81], a new

tractable approach for analysing localisation performance was developed using the

tools from stochastic geometry to obtain easy-to-use expressions for the base sta-

tion (BS) hearability, with and without base station coordination. Moreover, an

improvement in the device localisability through the collaboration among BSs was

investigated in [83].

When discussing localisation for wireless ad-hoc sensor networks, the studies dif-

fer from the cellular scenario. Because in ad-hoc sensor networks literature almost

certainly ignores the interference and propagation effects, instead the coverage (de-

tection) probability is defined using some fixed detection range [87]. A novel three-

dimensional localisation algorithm was proposed in [88], that improves the accuracy

of node localisation and reduces the impact of positioning error by decreasing the

communication radius and increasing the density of sensor nodes (anchors). How-

ever, as shown in Fig. 1.5, this approach assumes that all the sensor nodes inside

the detection range are "active" and participating in the localisation. This is not

an accurate assumption, because the sensor nodes within this fixed detection range
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might experience a communication outage, blockage or sensor node failure. This

results in a random number of active nodes, not deterministic, which confirms the

work conducted in cellular localisation literature.

To this end, our work in Chapters 4 and 5 is related to the localisation prob-

lem in 3-D MASNET (a class of WSN) which is divided into two steps. The first

step is the detection analysis using the stochastic geometry tools for the minimum

number of nodes required for successful localisation under the effect of path-loss and

small scale fading (Chapter 4). The second step is to analyse and compare between

the conventional range based ToA and TDoA localisation algorithms in terms of

the effect of the minimum number of sensor nodes participating in the localisation

procedure (Chapter 5).

1.3 Contributions of the Thesis

The contributions of this thesis are summarised as follows:

• In Chapter 2, we present a performance analysis of a single-tier femtocell

network with directional and omni-directional antennas at the UT. We show

the impact of the usage of directional antennas to mitigate interference and

increase SIR. The SIR is then mapped to the coverage probability, which is

used to analyse the performance of the considered network, using a simplified

mathematical model. This model provides an approximate distribution for

femtocell signal to co-channel interference ratio by approximating the number

of interfering FBSs to a binomial distribution. This analysis shows that using

a directional antenna at the receiver end improves the coverage performance

of the network. This framework can be used for an indoor scenario as well by

taking into account the wall penetration losses [11].

• In Chapter 3, we extend this model into multi-tier and also study the effect

of adding the directional antenna at both transmitter and receiver ends. This

model is a downlink three-tier hybrid cellular HetNet using µWave links for the

first two tiers and mmWave links for the last tier. We examine the impact of
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the usage of directional antennas for the wireless backhaul network and analyse

the performance of the considered network in terms of coverage probability,

ASE and EE using the conventional minimum rate model.

We formulate an optimisation problem to find the optimal SIR threshold that

maximises the ASE and EE for the entire network. Our system model enables

us to separate this problem into two independent subproblems correspond-

ing to µWave backhaul link and mmWave user links, respectively. We show

that the ASE and EE optimisation problems of the wireless backhaul HetNet

results in an optimum solution that is only dependent on the path-loss ex-

ponent of the µWave network. Unfortunately, the optimisation problem for

mmWave communications is not analytically tractable. Therefore, the optimal

SIR threshold is evaluated numerically and an analytical plot for the ASE of

the mmWave link with respect to different SIR thresholds is presented. For

both subproblems, we use Monte-Carlo simulations to demonstrate the prox-

imity of our analytical results with the experimental ones.

We also analyse the ASE and EE for the µWave link considering the average

rate under coverage. The average rate under coverage refers to the average rate

achieved by the picocells conditioned that they are covered, i.e., the received

SIR is greater than a predefined threshold. This metric is greater than the

minimum rate and closer to the rate observed in practical deployments. More-

over, we will show that using the average rate under coverage, ASE and EE

will be strictly decreasing functions and are maximised by choosing the lowest

possible SIR threshold in the system. Furthermore, since we use µWave link

as the wireless backhaul, we analyse its average rate under coverage separately

in order to determine its suitability as a reliable wireless backhaul [6].

• In Chapter 4, we present a tractable stochastic geometric approach to perform

the analysis of ad-hoc sensor networks in 3-dimensional space. We examine not

only the pass-loss effect but also the small scale fading. We analyse the per-

formance of the considered network in terms of detection and S-localisability

probabilities. The S-localisability probability P S
L is defined as the probability
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that at least S sensors may successfully participate in the localisation pro-

cedure. We formulate an optimisation problem to find the optimal density

of sensors λs that maximises the minimal S-localisability probability for the

considered network. Furthermore, we compare between the PPP model and a

fixed model, where the number of nodes is fixed with random locations. The

experimental results of both models are close, however, the analytical results

for the fixed model are computationally intensive which is another benefit of

using the tools of stochastic geometry [89].

• In Chapter 5, we present an analysis of the localisation error with respect to

the number of active nodes participating in the localisation procedure. Specif-

ically, we consider range based localisation techniques that rely on distance

measurements between nodes based on ToA and TDoA. For ToA, we present

an alternating rank-based EDM algorithm and compare its results with the

conventional LLS (multi-lateration) approach. For TDoA, we compare be-

tween the performance of LLS, WLS and SRD-LS [42].

1.4 Thesis Structure

This thesis consists of six chapters. Specifically, each chapter is organised as follows.

In Chapter 2, a downlink femtocell network is considered which consists of FBSs

and UTs. Both FBSs and UTs are modelled as independent PPP. We derive a

closed-form expression for the coverage probability by using a simplified mathemat-

ical model introduced in [71]. This model provides an approximate distribution

for the femtocell signal to the co-channel interference ratio by approximating the

number of strong interfering FBSs to a binomial distribution. We compare between

Model 1 and Model 2, wherein Model 1, we assume both FBS and UT are equipped

with omni-directional antenna. However, in Model 2, we assume the UT is equipped

with a directional antenna which helps in the mitigation of interference. Finally, the

simulated and the analytical closed-form of the coverage probability are compared

for various intensities of the PPP of the proposed femtocell networks and we show
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that considerable improvement can be achieved when a directional antenna is de-

ployed at the UT (Model 2).

In Chapter 3, a three-tier hybrid cellular HetNet is considered using µWave

links for the first two tiers and mmWave links for the last tier. The two-tiers with

µWave links form a wireless backhaul to the last tier with mmWave links. The

main challenge in having a wireless backhaul is to suppress interference. Thus, we

propose a novel and practical model where we can reuse the µWave infrastructure,

but equip the BSs with directional antennas to have a robust wireless backhaul

network. To solve the bottleneck rate problem, we assume that the rate required

by the mmWave users is comparable to that offered by the µWave links. Different

configurations based on the placement of the directional antennas at each tier are

explored. The analysis of the key performance indicators, namely, the coverage

probability, area spectral efficiency, and energy efficiency using the conventional

minimum rate model, and the simulation results associated with these parameters

are presented. In order to analyse this hybrid network with a wireless backhaul, an

optimisation problem for the overall ASE and EE with respect to the optimal acsir

threshold required for µWave and mmWave links is investigated. Results indicate

that the optimal SIR threshold required for the µWave tiers (wireless backhaul)

depends only on the path-loss exponent and that for the mmWave tier depends on

the area of LOS region. Finally, instead of the conventional minimum rate model,

we consider the average rate under coverage and show that the ASE and EE are

strictly decreasing functions with respect to the threshold, thereby concluding that

they can be maximised by choosing the lowest possible SIR threshold available in

the system.

In Chapter 4, a three-dimensional ad-hoc sensor network consists of a large

number of inexpensive sensor nodes distributed over a large region. The consid-

ered network is typically used for target detection and localisation to provide a

greater level of situational awareness for units in the operational region. Although

the number of sensors might be fixed, yet due to communication outage or node

failure, the actual number of participating sensors in localisation is random, which
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makes the localisation analysis intractable. Therefore, in this chapter, we propose

a tractable model to analyse the localisation performance metrics such as detection

probability and S-localisability probability. S-localisability probability is defined as

the probability that at least S sensor nodes participate in the localisation procedure,

successfully. Using the tools of stochastic geometry, we derive closed-form and easy-

to-use expressions for these metrics, which agree with the simulations. Further, to

optimise the localisation process, we obtain the density of sensors to maximise the

minimal S-localisability probability. This density can be used as a lower bound for

the minimum number of sensor nodes required for higher PSL . Finally, considering

a practical fixed model for MASNET, we demonstrate that the performance met-

rics have the same behaviour as the derived expressions using stochastic geometry.

Moreover, we observe that obtaining the performance metrics for the fixed model is

computationally intensive, thereby concluding the benefit of the derived expressions

in the practical sense.

In Chapter 5, we analyse the effect of the number of sensors on the non-cooperative

target node localisation for ToA and TDoA. This work examines the target locali-

sation using a centralised range based approach. For ToA, we consider a search and

rescue scenario, this work leverages an algorithm based on a class of matrix structure

called EDMs for the specific purpose of improving localisation performance when

the fusion centre (FC) cannot receive certain sensors’ information due to fading or

shadowing, etc. While this interesting approach to the problem of localisation has

been found to be successful, it is also shown at high delay values the presented al-

ternating rank-based EDM algorithm [90] outperforms the conventional LLS based

algorithm for the minimum number of sensors. The localisation error decreases when

the conditioning of EDM is better, i.e., when the sensors are further apart from each

other and closer to the target. When no clock synchronisation is available between

the target and sensor nodes, then the TDoA range based is a better approach. We

extend the LLS algorithm [26,91] to TDoA. The LLS performance is compared with

WLS [53], and SRD-LS [52]. Although the LLS algorithm is known to be of low

complexity, its main disadvantage is that its performance is sensitive to the outliers.
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Thus, in order to have a better performance, outliers must be identified and their

effect should be minimised. Once the outliers are identified, WLS can be used such

that the outliers have smaller weights and hence have minimum impact on the final

result. In general, the performance of WLS is dependent on the choice of weights.

However, it has been shown in [52] that SRD-LS demonstrates the best performance

with respect to finding the estimated target node position. SRD-LS uses a different

approach than multi-lateration to estimate the target node location. The approach

is based on the minimisation of the least squares (LS) criterion. The results show

that the localisation error can be minimised if the sensors are scattered enough and

are not too far from the sensors.

Finally, Chapter 6 states the overall conclusions for the thesis and proposes

various ideas for future work and Appendix A summarises the mathematical pre-

liminaries used in the main chapters with more details.



Chapter 2

Single-Tier SCN Analysis

In this chapter, we analyze the single-tier SCN in terms of coverage probability

under the impact of the usage of directional antennas to the UTs. We analyze the

performance of the considered network in terms of coverage probability, using a

simplified mathematical model. This model provides an approximate distribution

for femtocell signal to co-channel interference ratio by approximating the number of

strong interfering FBSs to a binomial distribution. The results show a considerable

improvement in the coverage probability when exploiting directional antennas. As

the density of PPP increases, the coverage probability decreases due to the increase

of the interference. However, the results show that this degradation decreases when

exploiting directional antennas [11].

2.1 Introduction

As stated in Section 1.1 in Chapter 1, SCN such as femtocells and picocells, are

considered a promising solution to improve coverage. The small cells size of femtocell

and picocell not only provides high spectrum efficiency by using spatial reuse of

resources, but also decreases the transmission range and hence results in higher

probability of connectivity [92]. Furthermore, the key advantage of SCN (femtocell

and picocell) is the minimum required upfront cost to the service provider. However,

the main disadvantage of SCN is the interference vulnerability which is caused by

21
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aggressive frequency reuse, dense deployment and cell-size reduction.

To this end, this chapter analyses the coverage performance of downlink single-

tier SCN, where we use sectored directional antennas for the reception at the UT.

The FBSs are assumed to be distributed as a homogenous spatial Poisson point pro-

cess (SPPP) and each FBS is equipped with an omni-directional antenna. Please

note that this analysis is applicable to any sectored directional antenna but we com-

pare the analytical results with the simulation results by using an ESPAR antenna.

The ESPAR antenna uses only a single radio frequency (RF) chain surrounded by

passive elements to form electronic beampatterns. Thus, it is practical to fulfil

the requirements of wireless user terminals constrained by low-cost, low-power and

small-size [58]. Considering our presented system model, we derive a closed-form

formula for coverage probability by using a simplified mathematical model [71]. This

model provides an approximate femtocell co-channel interference distribution by ap-

proximating the number of FBS to a binomial distribution by considering only the

strong interfering FBSs. The strong interferes are defined within a specified distance

R from the typical user. Moreover, because the UT is equipped with a sectored direc-

tional antenna which forms receiver beampatterns that divide the receiving angular

space into several sectors. We add one more constraint for choosing the strong in-

terferes, i.e. the FBSs whose angles of arrival (AoA) to the UT lie within the desired

and neighbouring sectors. Hence, the usage of directional antenna plays a role in

the mitigation of interference. Finally, the simulated and the analytical closed-form

of the coverage probability performance are compared for various intensities of the

PPP of the proposed femtocell networks and we show that considerable improvement

can be achieved when a sectored directional antenna is deployed at the UT.

2.2 System Model

In this section, we define our system model for the coverage analysis of the single-

tier SCN. The system model is shown in Fig. 2.1, which consists of the typical

UT communicating with the desired FBS whose location is fixed and known. The

other interfering FBS are randomly located and the total area is divided into sec-
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Figure 2.1 System model consists of multiple FBSs, UTs, desired FBS and typcal UT.

tors according to the sectored directional antenna located at the typical UT. The

interfering FBSs are considered strong interferers when they are located within a

certain distance from the typical UT. The detailed mathematical formulation and

underlying assumptions are discussed in the following subsections.

2.2.1 PPP BSs and Users

The considered network is a downlink scenario, it consists of FBSs and UTs, which

are both modelled as an independent PPP Φk with density λk, where k ∈ {f, u}

indicating FBSs and UTs, respectively.

2.2.2 Directional beamforming modelling

For each UT, a directional antenna is approximated by a sectored antenna model

which renders the analysis tractable [76]. In the sectored antenna model, antenna

gains are assumed to be constantM for all angles within the beamwidth of the main

lobe, and another constant S otherwise. The beampatterns of directional antenna
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are formed to divide the whole angular space into several sectors.

Mathematically, the antenna gain (transmit/ receive) is given as

GT/R(θ) =


MT/R if |θT/R| ≤ θM

ST/R otherwise,
(2.1)

where T is the transmitter and R is the receiver, θT/R is the transmit/receive angle

of antenna directivity and θM is the beamwidth of the main lobe width for the

directional antenna.

However, we assume that FBSs (transmitters) are equipped with omni-directional

antenna, then their antenna directivity gain would be unity and the total antenna

directivity gain for the desired link is Gmax = MR.

The total antenna directivity for the interfering links are given as

Gint =


MR, with pM = θR

2π
SR, with pS = 2π − θR

2π ,

(2.2)

where pM and pS denotes the probability that antenna gains M and S are seen

by the receiver, respectively.

It should be noted that although employing directional antennas improves per-

formance, it incurs additional cost. Therefore, we advocate the use of ESPAR as

the directional antenna for the considered network.1 As a result, Model 2 is indeed

physically realisable.

2.2.2.1 ESPAR configuration

We consider a 7-element circular ESPAR array, that consists of an active element

surrounded by 6 parasitic elements on equal angular separation on a circle of radius

r. The ESPAR is a parasitic antenna that uses a single RF chain to transmit and

receive data, and as such is a practical solution to the constraints of size, power,

weight and cost on a variety of radio equipment [93].
1Note that the performance analysis holds for any sectored directional antenna
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Table 2.1 Modelling Notations

Notation Description
PT Transmit power,
Φk PPP, where k ∈ {f, u}
λk Density of PPP, where k ∈ {f, u}
β Path-loss exponent
D0 Intended link length between desired FBS and typical UT
Di Distance from the ith interferer to the typical UT
Ψ0 Desired Shadowing
Ψm Interference Shadowing
Gmax Maximum (assuming perfect alignment) distributed directivity gain (DDG)
Gint Interfering (non-intended links) DDG
ζ Received SINR from µWave tiers
N0 Noise power
γth SIR threshold
E[.] Expectation

Furthermore, the antenna system requires mutual coupling between the active

and parasitic elements; this requires closely spaced antenna elements, which makes

the ESPAR antenna suitable for small mobile equipment applications, such as UT

as stated in our problem.

The ESPAR antennas have been studied for a variety of applications [11,58,94–

97]. For example, the ESPAR antenna has been used as a switched-beam antenna to

implement alignment of blind interference [98] and to perform spectrum sensing for

cognitive radio systems [94,95]. Furthermore, the ESPAR has the ability to estimate

signal direction by reactance domain multiple signal classification (MUSIC) [99].

2.2.3 Channel modelling

The channel model consists of lognormal shadowing and path loss components [71].

In particular, we assume that the received power PR is given as

PR = PTGmaxD
−βΨ, (2.3)

where D denotes the distance between the transmitter and the receiver and the rest

of the notations are stated in Table 2.1. The random variable (RV) Ψ represents the

lognormal shadowing distributed as LN (0, σ2) lognormal random variable with a
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mean of 0 dB and a standard deviation of σdB. The shadowing is assumed to be in-

dependent of the positions of the transmitters and the receiver and also independent

across channels [71].

2.2.4 SINR modelling

Using Slivnyak’s theorem [100], we assume that the typical UT is located at the

origin. The received SINR of the typical UT at a distance D0 can be expressed as

ζ = PTGmaxD
−β
0 Ψ0

N0 + ∑
i∈Φf\{0}

P i
TGi

intD
−β
i Ψi

(2.4)

where Φf\{0} indicates the exclusion of the node located at the origin and the rest

of the notations are given in Table 2.1.

For the rest of this chapter, we assume an interference-limited network, where

the background thermal noise is ignored [101]. This assumption is valid for indoor

networks and dense small cell networks similar to our system model in Fig. 2.1.

Thus, (2.4) reduces to

γ = PTGmaxD
−β
0 Ψ0∑

i∈Φf\{0}
P i
TGi

intD
−β
i Ψi

. (2.5)

2.3 Coverage Probability Analysis

In this section, we compute the coverage probability of the considered network.

Directional antennas are equipped to increase SIR and hence improve the coverage.

The coverage probability is referred to as the probability that the received SIR γ is

greater than the required threshold γth.

The considered system model is evaluated under two different configurations

according to the type of antenna (Omni or directional) and its placement at the

UT, as shown in Table 2.2. The FBS always uses an omnidirectional antenna.

Instead of working with γ, its inverse Z = 1/γ is considered, which can be defined

as the co-channel interference power normalised by the desired signal power [71].
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Thus, the coverage probability for UT located at distance D0 can be written as

Pc = P (γ > γth) = P
(
Z < γ−1

th

)
= FZ

(
γ−1

th

)
, (2.6)

where FZ
(
γ−1

th

)
is the CDF of Z. From (2.6), we observe that the coverage proba-

bility can be defined as the CDF of the random variable Z.

Table 2.2 Antenna configurations for different models.

Node type
Model 1 2

UT Omni Directional
FBS Omni Omni

Unfortunately, the interference term ∑
i∈Φf\{0}

P i
TGi

intD
−β
i Ψi has no closed-form

expression for its CDF [102], thus it is difficult to find the distribution FZ(γ−1
th ) in

(2.6).

In order to find the distribution FZ(γ−1
th ), we follow the approach proposed in [71],

where the femtocell distribution is expressed approximately and then the coverage

probability FZ
(
γ−1

th

)
is derived using the approximate distribution. This is explained

in more detail in Proposition 1.

Proposition 1 We consider a circular region denoted as R as shown in Fig. 2.1.

This assumption is valid because the received signals from FBSs outside this region

will be minimal due to path-loss and blockage effects. Femtocells are randomly dis-

tributed according to a PPP in R with a density λf . We assume that R is equally

divided into N subregions, such that R = ∪Nn=1An and |An| = |R|/N , where |.|

denotes the area. One FBS is placed in An with probability p = λf |R|/N , if p < 1.

Then, the total number of FBSs in R is approximated by a binomial distribution

with parameters N and p.

Proof 1 The proof is obtained by induction as stated in [71]. According to Proposi-

tion 1, the distribution of FBSs is approximated with N independent Bernoulli trials

with a success probability p = λf |R|/N . To numerically express the approximate
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femtocell distribution, y is defined as a random vector of N independent Bernoulli

RVs, where the nth element indicates whether an FBS is placed in An or not, as

1 or 0, respectively. The probability of having 1 as an outcome is p. A realisation

of y is denoted as ym = [ym1, ...., ymN ], which represents an approximate femtocell

configuration. The range of y is denoted by Y with a cardinality of 2N [103].

The distribution of FZ(z) in (2.6) is obtained from the weighted sum of the dis-

tribution of Z conditioned on the given femtocell configuration ym over all possible

realisations Y as

FZ (z) =
∑

ym∈Y
FZ|Y (z|ym) P(Y = ym). (2.7)

Since equal subdivisions are assumed, P(Y = ym) is calculated using p = λf |R|/N

as

P(Y = ym) = pk(1− p)N−k, (2.8)

where k = ∑
i∈N ymi and N = {1, 2, ...., N}.

Now that the distribution P(Y = ym) is known, in order to have an expression

for the coverage probability, the conditional distribution needs to be computed. To

calculate the distribution FZ|Y (z|ym) which is expressed as

FZ|Y (z|ym) = P
(∑
i∈N

P i
TGi

intΨiD
−β
i ymi

PTGmaxΨ0D
−β
0

> z|Y = ym
)
. (2.9)

We define Zm as

Zm =
∑
i∈N

P i
TGi

intΨiD
−β
i ymi

PTGmaxΨ0D
−β
0

=
∑
i∈N

κie
Xi = eXm , (2.10)

where

κi = P i
TGi

intD
−β
i ymi

PTGmaxD
−β
0

,

eXi = Ψi

Ψ0

and eXi is lognormal RV distributed as LN (0, σ2
Xi

), σ2
Xi

= σ2
i +σ2

0. The distribution
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FZ|Y (z|ym) can be obtained as

FZ|Y (z|ym) ≈ 1−Q
(

ln (z)− µf,m
σf,m

)
(2.11)

where µf,m and σf,m are the mean and standard derivation, respectively. Q(.) is the

complementary cumulative distribution function (CCDF) of the standard normal

distribution defined as

Q(x) = 1√
2π

∫ ∞
x

e−t
2/2dt. (2.12)

Fenton-Wilkinson (FW) approximation [104] is used to obtain the mean µf,m

and variance σ2
f,m of eXm. The FW approximation is a lognormal probability density

function (PDF) with parameters

E[eXm ] = e(µf,m+0.5σ2
f,m) (2.13a)

E[e2Xm ] =
(
e(2µf,m+σ2

f,m)
) (

eσ
2
f,m − 1

)
(2.13b)

The mean µf,m and standard deviation σf,m in (2.11) are obtained from (2.13)

as

µf,m = 2 lnE[eXm ]− 0.5 lnE[e2Xm ] (2.14)

σ2
f,m = lnE[e2Xm ]− 2 lnE[eXm ] (2.15)

Therefore, the coverage probability for the considered network can be obtained as

Pc(λf ) =
∑

ym∈Y

(
1−Q

(
− ln (γth)− µf,m

σf,m

))
pk(1− p)N−k, (2.16)

where p = λf |R|/N .

This concludes the proof.

Although we could only derive an approximation for the closed-form expression for

the coverage probability as given in (2.16). However, this formula can be considered

as a good assumption for the analytical results which can be confirmed from the

results in Section 2.4.
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Figure 2.2 Sector beampatterns of the 7-element ESPAR [58].

2.4 Results

We compare the numerical results derived in Section 2.3 with the experimental

results obtained using Monte-Carlo simulations. The values for the parameters used

in simulation and analytical results are transmit power PT = −10 dB, the path-loss

exponent β = 3, the intensity of PPP λ = 0.001 per m2, the lognormal shadowing

for all FBSs are considered i.i.d with mean µf = 0 dB and standard deviation σf = 4

dB.

As mentioned in Section 2.3, the model configurations presented in Table 2.2

enables us to show the effect of adding directional antenna at UT to enhance the

performance of the considered network. In Model 1, FBSs and UT use omnidirec-

tional antennas, which increases the interference signal received by the typical UT,

leading to reduced SIR and hence reduced coverage probability. However, in Model

2, directional antenna at the typical UT receiver ensures that the amount of inter-

ference received is limited to the angular spread of the main lobe of the antenna.

This in-turn increases the SIR and hence results in improved coverage.

The antenna directivity gains for the ESPAR in simulation results are calcu-
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Figure 2.3 The coverage probability P[γ > γth] for different SIR thresholds γth for
Models 1 and 2.

lated by considering a low-complexity approach where the ESPAR is exploited as

a switched-beam antenna capable of predefining directional beampatterns accessing

to different angle sectors. In [58, 94], it is shown that reactance loads of parasitic

elements can be optimised to maximise the beampattern gain to a specific direc-

tion. Because of the symmetric antenna structure, the beampattern can be rotated

to different angular positions by shifting the optimal reactance loads circularly as

shown in Fig. 2.2. However, for the analytical results, we do not use the directional

antenna as a switched beam antenna and choose the values for the maximum and

average directivity gains approximately using the beam pattern in one particular di-

rection. Hence, there is a small difference between simulation and analytical results

for the directional antennas.

In Fig. 2.3, the coverage probability of the considered network is plotted with

respect to the SIR threshold γth comparing the two Models in Table 2.2. From Fig.

2.3, we observe that Model 2 outperforms Model 1, resulting in higher coverage

probability at the typical UT, as expected. In Figures 2.4 and 2.5, the effect of

increasing the intensity λ of PPP on the coverage probability is presented for Models

1 and 2, respectively.
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Figure 2.4 The coverage probability P[γ > γth] for different SIR thresholds γth for
Model 1 at different intensities λf .
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Figure 2.5 The coverage probability P[γ > γth] for different SIR thresholds γth for
Model 2 at different intensities λf .
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As the intensity increases, the number of FBSs increases as well as the interfer-

ing power. This results in a decrease in coverage probability as the received SIR γ

decreases. This might seem as a counterintuitive result, however, this result holds

for not scaling the power. Therefore, by increasing the intensity, the interference

increases, hence, the coverage probability decreases. Although the coverage prob-

ability decreases in both models. However, in Model 2, the decrease of coverage

probability is less than Model 1.

This is because in Model 2, having a directional antenna at the UT ensures that

the amount of interference received is limited, as identified. Therefore, the number

of interfering FBSs is less in Model 2 and hence the coverage probability is better.

2.5 Summary

To summarise this chapter, we analysed the coverage probability of downlink fem-

tocell networks in presence of omnidirectional and directional antennas at the UT.

Because directional antennas introduce additional cost. We proposed to exploit a

7-element ESPAR antenna which uses a single RF chain and is a practical solution

for power, cost and size constraints. We assume that the channel model consists of

path-loss and shadowing components. The coverage probability is calculated using

the distribution for the ratio of femtocell co-channel interference to desired signal,

which doesn’t have a closed-form expression. Thus, we propose to obtain an approx-

imation for the coverage probability of the considered network. First, we defined a

circular region which contains the strong FBSs and ignore the interfering signal re-

ceived from the other FBSs. In this region, we exploited a simplified mathematical

model which presents an approximate distribution for femtocell co-channel inter-

ference to desired signal ratio by approximating the number of strong interfering

FBSs to a binomial distribution. In addition to that, we used FW approximation

to calculate the mean and the variance of the sum of lognormal distributions. The

simulated and analytical results showed that the coverage performance of femtocell

networks improves considerably when directional antenna was used at the UT, as

expected. We presented also the results of varying the intensity of the PPP and its
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effect on the coverage performance. The intensity of the PPP with the considered

area gives an indication of how dense the network is. The denser the network, the

worse the coverage performance due to the increase in the interference especially

from the closer FBSs.2 However, using the directional antennas showed that this

degradation can be minimal, as identified.

2Under the assumption of no power scaling.



Chapter 3

Multi Tier SCN Analysis

In Chapter 2, we analysed the performance of a single-tier SCN in terms of coverage.

In this chapter, we extend this work to the performance analysis of multi-tiers

SCN in terms of coverage probability, ASE and EE. In Chapter 2, the channel

model consisted of lognormal shadowing and path-loss components. However, in

this chapter we assume small scale fading (Rayleigh) and path-loss components for

our channel model. The reason for this assumption is that we already observed

in Chapter 2, that assuming lognormal shadowing does not lead to a closed-form

expression for the coverage probability. Moreover, the multi-tier HetNet is a more

complex system model, thus we wanted to work with simple assumption for the

channel conditions to give us a better understanding of the performance analysis.

This work could then be continued with more complex assumptions that mimics

the real-world scenarios. In this chapter, specifically, we consider a three-tier hybrid

cellular HetNet using microwave (µWave) links for the first two-tiers and mmWave

links for the last tier. The two-tiers with µWave links form a wireless backhaul to

the last tier with mmWave links. Different configurations based on the placement of

the directional antennas at each tier are explored similar to our approach in Chapter

2.

35
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3.1 Introduction

As stated in Chapter 1 [Section 1.1], a layered structure of macrocells, femtocells,

and/or picocells can be incorporated in a HetNet to offer more improvement for the

wireless coverage in various scenarios ranging from open outdoor environments to

office buildings, homes and underground areas. Apart from the improved coverage,

there are several benefits to HetNet, including increased reliability and improved

spectrum efficiency [5, 16,17].

In this chapter, we study the performance of a three-tier hybrid cellular HetNet

using µWave links for the first two-tiers and mmWave links for the last tier. This

system model resembles the system model used in [80] which consists of small cells

overlaid with macrocells. However, in our model the UTs can only communicate to

mmWave tier and have no direct access links to the µWave tiers. We assume that the

rate required by the mmWave users is compared to that offered by the µWave links.

In previous works [7,79,80], the end-users were assumed to have the ability to operate

in µWave or mmWave, which implies that the user’s radio equipment operates over

a wide frequency range. Practically, this assumption increases the cost of end-user’s

equipment. Therefore, we considered the scenario where end-users have mmWave

equipment only and hence can connect to the last tier. Moreover, we use the µWave

links as the wireless backhaul to the mmWave users.

Wireless backhaul recently gained a lot of attention in multi-tier networks to

overcome the expensive cost of wired backhaul architecture and the installation dif-

ficulty [67–69,105–109]. One of the main challenges in having a wireless backhaul is

to mitigate interference. The proposed methods in [67–69] tried to reduce the inter-

ference, but these methods required additional infrastructure that led to increased

expenditure.

This motivated us to propose a novel and practical model where we can reuse

the µWave infrastructure, but equip the BSs with directional antennas to have a

robust wireless backhaul network. The use of directional antennas not only sup-

presses interference and increases SINR, but also leads to lower system complexity



37 3.2 System Model

as discussed later in Section 2.2.2.1 in Chapter 2.

Therefore, we equip directional antennas to mitigate the interference and differ-

ent configurations based on the placement of the directional antennas at each tier

are explored. The analysis of the key performance indicators, namely, the cover-

age probability, ASE and EE using the conventional minimum rate model, and the

simulation results associated with these parameters are presented. Since we want

to analyse the considered hybrid network with a wireless backhaul, we investigate

an optimisation problem for the overall ASE and EE with respect to the optimal

SIR threshold required for µWave and mmWave links. Results show that the opti-

mal SIR threshold required for the µWave tiers (wireless backhaul) depends only on

the path-loss exponent and that for the mmWave tier depends on the area of LOS

region.

Finally, we consider the average rate under coverage instead of the conventional

minimum rate model, and present that the ASE and EE are strictly decreasing func-

tions with respect to the threshold, thereby we conclude that they can be maximized

by choosing the lowest possible SIR threshold available in the system [6].

3.2 System Model

In this section, we define our system model for the performance analysis of the hybrid

HetNet. We focus on evaluating a two-tiers µWave network as a wireless backhaul

network for a non-dense mmWave network in terms of coverage, rate under coverage,

ASE and EE. The system model is shown in Fig.3.1. The mathematical formulation

and the underlying assumptions are discussed in the following subsections.

3.2.1 Poisson Point Process (PPP) BSs and Users

The µWave tier consists of MBSs and FBSs and the mmWave tier consists of picocell

base station (pBS)s. Each tier of the HetNet is modelled as an independent PPP

Φk with density λk, where k ∈ {m, f, w} indicating macro, femto and pico tiers,

respectively. All base stations (femto and macro) are considered to operate in open



38 3.2 System Model

Figure 3.1 A three-tier hybrid cellular HetNet using µWave links (wireless backhaul
links) for the first two-tiers and mmWave links for the last tier

.

access. Open access refers to the scenario that a typical pBS is allowed to connect to

base stations from any µWave tier [5]. The decision criteria on whether to connect

to a MBS or to a FBS will be discussed in more detail in Section 3.3.

The end-users, referred by the term user equipments (UEs), are also modelled as

a PPP Φu with density λu. The UEs only communicate with pBSs in the mmWave

band. In other words, the pBSs relay the information from the first two-tiers

(µWave) to the UEs. It is assumed that the rate required by the mmWave UE

is comparable to that offered by the µWave links.

3.2.2 Directional beamforming modelling

For µWave and mmWave tiers, all directional antennas are approximated by a sec-

tored antenna model which renders the analysis tractable [76]. In the sectored

antenna model, antenna gains are assumed to be constant M for all angles within

the beamwidth of the main lobe, and another constant S otherwise. Mathematically,

the antenna gain (transmit/ receive) is given in (2.1).

As discussed in Chapter 2 [Section 2.2.2], when the transmitter node is equipped
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with omni-directional antenna, then its antenna directivity gain would be unity and

the total antenna directivity gain for the desired link is Gmax = MR. The total

antenna directivity for the interfering links Gint as in (2.2).

For both transmit and receive nodes equipped with directional antennas, we

assume perfect alignment between the desired and typical nodes. Then for the

desired link, Gmax = MTMR, but for other interfering links, θT and θR are assumed

to be independent and uniformly distributed in (0, 2π], which results in a random

directivity gain Gint. Therefore, the directivity gain in an interference link Gint is a

discrete random variable, as shown in (3.1)

Gint =



MTMR pMM =
(
θT
2π

)(
θR
2π

)

MTSR pMS =
(
θT
2π

)(
2π − θR

2π

)

STMR pSM =
(

2π − θT
2π

)(
θR
2π

)

STSR pSS =
(

2π − θT
2π

)(
2π − θR

2π

)
,

(3.1)

where plk, with l, k ∈ {M,S} denotes the probability that the corresponding antenna

gains are seen by the receiver.

3.2.3 Small-Scale Fading

We assume independent small-scale Rayleigh fading channels1 Ψk where k ∈ {f,m,w},

with β as the path-loss exponent for the two µWave links. But in mmWave networks,

measurements have shown difference between the path-loss exponents for LOS and

non-line-of-sight (NLOS) links [76].

Therefore, the path-loss exponents in mmWave links are αL and αN , for LOS

and NLOS, respectively. Due to the thinning property in stochastic geometry [56],

the density of pBSs Φw can be split into two marked PPPs ΦL
w with density pLλw

and ΦN
w with density (1− pL)λw. All notations are listed in Table 3.1.

1Small scale fading on mmWave networks is applicable for some particular cases of mmWave
networks [110].
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Table 3.1 Modelling Notations

Notation Description
P k
T Transmit power, where k ∈ {m, f, w}

Φk PPP, where k ∈ {m, f, w}
λk Density of PPP, where k ∈ {m, f, w}
Dj Intended link length between

jth BS and typical pBS, where j ∈ {m, f}
Dw Intended link length between

pth BS and typical mmWave UE
β Path-loss exponent of µWave tiers
αL LOS path-loss exponent for pBSs (mmWave tier)
αN NLOS path-loss exponent for pBSs (mmWave tier)
pL LOS probability
Di Distance from the interferer i to the typical pBS
hk0 Desired fading channel, where k ∈ {m, f, w}
hki Interference fading channel, where k ∈ {m, f, w}
Gk

max Maximum (assuming perfect alignment)
DDG, where k ∈ {m, f, w}

Gk
int Interfering (non-intended links) DDG,

where k ∈ {m, f, w}
ζµ Received SINR from µWave tiers
ζw Received SINR from mmWave tier
σ2 Thermal noise
rw Radius of LOS region in mmWave tier
γthj µWave SIR threshold, where j ∈ {m, f}
ζthw mmWave SINR threshold

3.2.4 LOS BS and path-loss Model for mmWave links

Let the length of the mmWave link between pth BS and the typical UE be denoted by

Dw. Since the distribution of blockages is stationary and isotropic, the probability

that the link is LOS, indicated by pL, only depends on the link length Dw [111].

Considering the LOS area to be within a circular ball of radius rw centered around

the pBS location (where rw denotes the maximum distance for LOS communication),

we get

pL =


1 if Dw ≤ rw

0 otherwise.
(3.2)

Since the LOS and NLOS probabilities are complementary, the NLOS probability

pN = 1− pL.



41 3.2 System Model

Different path-loss laws apply to LOS and NLOS links. Given a link length Dw

between intended pth BS and typical mmWave UE, the path-loss value L(Dw) can

be computed as in [76].

3.2.5 SINR modelling:

3.2.5.1 µWave tiers

Using Slivnyak’s theorem [100], we assume that the receiver for the first two µWave

tiers, the typical pBS, is located at the origin. The received SINR of the typical pBS

at a distance Dj associated with its jth tier BS, for j ∈ {m, f} can be expressed as

ζjµ =
P j
T |h

j
0|2Gj

maxD
−β
j

σ2 + ∑
j∈{m,f}

∑
i∈Φj\{0}

P j
T |h

j
i |2G

j
intir

−β
i

(3.3)

where the notations and descriptions are given in Table 3.1.

3.2.5.2 mmWave tier

µWave and mmWave tiers are independent, therefore, we can apply Slivnyak’s the-

orem to the last tier by considering a typical UE at the origin. Thus, the received

SINR of a typical UE at distance Dw from pBSs can be expressed as

ζw = Pw
T |hw0 |2Gw

maxL(Dw)
σ2 + ∑

z∈{L,N}

∑
y∈Φzw\{0}

Pw
T |hwy |2Gw

intyL(ry)
(3.4)

where L(ry) is the path loss value with respect to the interfering pBSs and L(Dw) is

defined in Section 3.2.4. The rest of the notations and definitions are given in Table

3.1.
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3.3 Performance Analysis for µWave and

mmWave tiers

We analyse the coverage probability, ASE and EE in the proposed system using

the stochastic geometry tools. For the µWave tier, pBSs are considered as receivers

and for the mmWave tier, the UEs are considered as receivers. Directional antennas

are equipped at the µWave tiers to increase SINR and hence improve the coverage.

The coverage probability is referred to as the probability that the received SINR is

bigger than a required threshold and it is considered as the base building block for

the analysis of all other parameters such as average rate, ASE and EE [16,17]. ASE

can be quantified as the total rate in the unit area normalised by the bandwidth. EE

can be measured as the ratio of the ASE to the average network power consumption.

In this section, we consider the minimum average rate model for both µWave and

mmWave tiers [112, 113]. Our objective is to find the optimal SINR threshold that

maximises ASE and EE.

3.3.1 Coverage Probabilities Pcµ and Pcw

3.3.1.1 µWave tier Coverage Probability Pcµ

For the rest of the µWave analysis, we consider SIR ζ instead of SINR γ. This is

because it was shown in Section V of [5] that in multi-tier HetNets, self-interference

dominates thermal noise. Hence, thermal noise has a very limited effect on the

coverage probability of multi-tier HetNets. We consider instantaneous SIR based

scheme [18], where the pBS connects to the µWave tier j if the instantaneous SIR

γj exceeds γthj , where j = {m, f}. In the case where both tiers have a connection

with the typical pBS, then this typical pBS is covered by the tier with the highest

SIR. We assume that the SIR can connect to at most one tier and that γthj > 1 [5].
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Table 3.2 Antenna configurations for different models.

BS Type
Model 1 2 3 4

FBS Omni Directional Omni Directional
pBS Omni Omni Directional Directional

3.3.1.1.1 Model Configuration

The considered system model is evaluated under four different configurations ac-

cording to the type of antenna and its placement at FBS and FBS, as shown in Table

3.2. The MBSs always use an omni-directional antenna and the UEs always employ

a directional antenna for all the configurations. Evaluating different configurations

enables us to show the effect of adding directional antenna at one or more tiers to

enhance the performance of the considered network.

Proposition 2 Following the model in [114], the analytical coverage probability for

directional antenna used at different tiers can be derived as

Pcµ = π

C(β)

∑
j∈{m,f}

λj(P j
TG

j
max)2/βγ

−2/β
thj∑

j∈{m,f}
λj(P j

TG
j
min)2/β

, (3.5)

where C(β) = 2π2

β
csc(2π

β
), csc(.) = 1

sin(.) , G
j
min is the average interfering directivity

gains, where Gf
min = ∑

plk(lTkR) where l, k ∈ {M,S}, and Gm
min = pMM + pSS.

Proof 2 The coverage probability in a K-tier wireless backhaul network under in-

stantaneous SIR based scheme for directional antennas equipped at FBSs and typical

pBS can be derived as follows:

Pcµ
(a)=

K∑
i=1

E

 ∑
xi∈Φi

1 (γi > γthi)


(b)=
K∑
i=1

λi

∫
R2

P

P i
TG

i
max|hi0|

2
x−βi

Ixi
> γthi

 dxi,
(c)=

K∑
i=1

λi

∫
R2
LIi

(
γthix

β

PTGi
max

)
dxi, (3.6)

(a) follows Lemma 1 [5] under the assumption that θi > 1, (b) follows Campbell-
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Mecke Theorem [55], and (c) follows the assumption of Rayleigh distributed channel

coefficients. Since the point processes are stationary, the interference is independent

of the location of the nodes. Thus, the total interference Itotal = ∑K
i=1 Ix∈Φi, where

Ii = ∑
j∈Φj

P j
TG

i
int|hj|2x

−β
j for i = (1, 2, 3...K). Then, LIi (s) is given by.

LIi (s) =
K∏
j=1

E
Φj

 ∏
j∈Φj

Eh exp
(
−sεxβP j

TG
j
int|hj|2x

−β
j

) ,
(a)=

K∏
j=1

E
Φj

 ∏
j∈Φj

1(
1 + sρx−βj

)
 ,

(b)=
K∏
j=1

exp
−2πλjpj

∫
∞

0

1− 1(
1 + sρx−βj

)
 dxj

 , (3.7)

where ρ = εxβP j
TG

j
int, ε = γith/P

i
TG

i
max, (a) follows the assumption of Rayleigh

fading, and (b) follows from PGFL of PPP [55]. By substituting (3.7) in (3.6) and

under the assumption of Rayleigh fading and neglecting the noise, a closed-form

expression for the total coverage probability is given by

Pcµ = π

C(β)

∑
j∈{m,f}

λj(P j
TG

j
max)2/βγ

−2/β
thj∑

j∈{m,f}
λj(P j

TG
j
min)2/β

. (3.8)

This concludes the proof.

The total coverage probability can be calculated as the sum of all the individual

coverage probabilities of all tiers given that γj > 1 [5]:

Pcµ = Pcm + Pcf , (3.9)

Our system model is based on the assumption that the probabilities of different tiers

are mutually exclusive, .i.e., if Pcm = 1, then Pcf = 0. Then, the individual coverage
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probabilities are given as

Pcf = π

C(β)
λf (P f

TG
f
max)2/βγ

−2/β
thf∑

j∈{m,f}
λj(P j

TG
j
min)2/β

, (3.10a)

Pcm = π

C(β)
λm(Pm

T G
m
max)2/βγ

−2/β
thm∑

j∈{m,f}
λj(P j

TG
j
min)2/β

, (3.10b)

3.3.1.2 mmWave tier Coverage Probability Pcw

For the mmWave analysis, unlike the µWave analysis, we consider SINR threshold

ζth. Because mmWave is a single tier and we assume non-dense network, therefore

the thermal noise can not be ignored [76]. Hence, the coverage probability for the

mmWave links (UEs) based on the highest received SINR is analysed. We consider

the UE to be covered by the pBS with the highest SINR [113]. Note that in mmWave

networks, different path-loss laws are applied to LOS and NLOS links [9, 75].

Proposition 3 The total coverage probability of the mmWave tier, Pcw, is given by

Pcw = PcL + PcN , (3.11)

where PcL and PcN are the LOS, and NLOS coverage probabilities, respectively.

The LOS and NLOS coverage probabilities PcL,PcN can be written mathemati-

cally as,

PcL = e−sL−2πλwΘ1 (3.12a)

PcN = e−sN−2πλwΘ2 (3.12b)

respectively,



46
3.3 Performance Analysis for µWave and

mmWave tiers

where

sL = ζthwr
αL
w σ2

Pw
T G

w
max

, sN = ζthwr
αN
w σ2

Pw
T G

w
max

, (3.13a)

Θ1 =
[
pL

∫ rw

0

y

1 + s−1
1 yαL

dy + pN

∫ rw

0

z

1 + s−1
1 zαN

dz

]
, (3.13b)

Θ2 =
[
pL

∫ ∞
rw

y

1 + s−1
2 yαL

dy + pN

∫ ∞
rw

z

1 + s−1
2 zαN

dz

]
, (3.13c)

s1 = ζthwr
αL
w Gw

min
Gw

max
, s2 = ζthwr

αN
w Gw

min
Gw

max
. (3.13d)

where pL and pN are defined in Section 3.2.4, Gw
max and Gw

min are the maximum and

minimum antenna directivity gains, respectively, that can be calculated as described

in Section 3.2.2 and Proposition 2. The rest of the notations are defined in Table

3.1.

Proof 3 The mmWave typical user is always connected to the nearest mmWave

pBS. The nearest mmWave pBS can be located either in the LOS or NLOS regions.

The LOS region is denoted as a circle surrounding the mmWave UE with a certain

radius r. If the mmWave pBS is within this circle, then it is a LOS mmWave pBS. If

this circle is empty, (i.e. there is no mmWave pBS in it), then the nearest mmWave

pBS is a NLOS pBS. We consider the PPP of the mmWave pBSs divided into

two-tiers network, consisting of the LOS PPP (ΦL) with intensity λpL and NLOS

PPP (ΦN) with intensity λpN . These two marked PPPs are homogeneous due to

the assumption of fixed LOS probability. Therefore the coverage probability can be

written as

Pcw =
∑

i∈{L,N}
Er [1(ζi > ζthw |r ≤ rw)] fr(rw),

=
∑

i∈{L,N}

∫
r>0

P
(
Pw
T Gmax|g0|2x−αii

σ2 + Ii
> ζthw |xi < rw

)
fxi(rw)dxi,

=
∑

i∈{L,N}

∫
r>0

P
(
|g0|2 >

ζthwx
αi
i (σ2 + Ii)
Pw
t Gmax

|xi < rw

)
fxi(rw)dxi. (3.14)

Since the mmWave channel experience Rayleigh fading, then the channel gain is
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exponentially distributed. Therefore, (3.14) becomes

Pcw =
∑

i∈{L,N}
e
ζthwx

αi
i
σ2

Pw
t
Gmax Exi∈Φi

e ζthwx
αi
i
Ii

Pw
T
Gmax

 , (3.15)

where the total interference I is the sum of the interference from LOS and NLOS

mmWave pBSs given as

I =
∑
j∈ΦL

Pw
T Gminj |gj|2y

−αL
j +

∑
n∈ΦN

Pw
T Gminn|gn|2y−αNn . (3.16)

By substituting in (3.15) using (3.16), and using the stochastic geometry steps similar

to the HetNet case, (3.12a) and (3.12b) are obtained. This concludes the proof.

3.3.2 Average Rates Rµ and Rw

In literature, typically the minimum rate model is used for µWave tiers, which is

Rµ = log(1 + γthµ), where γthµ = γthm = γthf is the predefined threshold common to

all the µWave tiers [112]. Furthermore, the mmWave is a single tier with a single

threshold ζthw , that is the same for LOS and NLOS pBSs. Therefore, the minimum

achieved rate by the typical UE only depends on the required threshold ζthw is given

by [115]

Rw = log(1 + ζthw). (3.17)

3.3.3 ASE and EE Analysis in terms of minimum rate model

3.3.3.1 ASE η and EE Ω Optimisation

Our objective is to find the optimal threshold 2 for the considered system model that

maximises ASE and EE. Because the µWave and mmWave tiers operate at different

frequencies, they are considered independent and they have different thresholds.

Thus, the overall ASE ηtot and EE Ωtot for the three tier hybrid cellular network are
2Please note that the optimal threshold mentioned here is not the quality of service (QoS)

threshold.
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the sum of these metrics for each tier. Mathematically,

ηtot =
∑

j∈{m,f}
λjPcj (γµ)Rµ + λwPcw(γw)Rw, (3.18a)

Ωtot =

∑
j∈{m,f}

λjPcj (γµ)Rµ + λwPcw(γw)Rw∑
j∈{m,f}

λj(Pj0 + ∆jPj) + λw(Pw0 + ∆wPw) , (3.18b)

where Pk0 is the static power, Pk is the RF output power, and ∆k is the slope of

load-dependent power consumption [116], for k ∈ {f,m,w}, indicating femto, macro

and pico tiers. Since we assume here that the density is fixed, the optimisation is

with respect to the SIR threshold. This SIR threshold represents a value that acts

as the minimal value the received SIR threshold should be to ensure coverage and

communication. Moreover, this threshold not only affects the coverage probability

(which implies that the transmission links are reliable), but also the rate at which

the nodes are communicating. Moreover, since the µWave tiers operate as wireless

backhaul to the mmWave tier, the rate of backhaul transmissions in µWave tiers

should be greater than the rate of access transmissions in mmWave tier.

Therefore, the overall optimisation problems for the ASE (ηtot) and EE (Ωtot)

are given, respectively, as

maximize
γthµ ,γthw

ηtot, (3.19)

subject to Rµ > Rw,

maximize
γthµ ,γthw

Ωtot, (3.20)

subject to Rµ > Rw,

Considering that the µWave and mmWave tiers operate at different frequencies

and the two-tiers are independent, the overall optimisation problem can be split into

two independent problems as shown in the following.3

3Please note that we present the analysis for ASE only. This is because both EE and ASE
are related by a constant (power consumption) which is independent of the required threshold.
However, in the results section we present both metrics.
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3.3.3.1.1 µWave tier

In order to find the optimal SIR threshold that maximises the ASE for the µWave

tier, the optimisation problem is stated as in (3.19), where the constraint insures

higher data rate for wireless backhaul information than access information [68].

The solution to the optimisation problem (3.19) is shown in the proof of the

following Proposition.

Proposition 4 The optimal threshold γ∗µ of µWave tier to obtain the maximum

ASE ηµ is only dependent on the path-loss exponent β of the µWave tier,

γ∗µ = eξ
∗ − 1, (3.21)

where ξ∗ =
a ∗W (−e

−1/a

a
) + 1

a
, a = 2/β, and W (.) is the Lambert Function.

Proof 4 The optimisation problem can be formulated as the following :

maximize
γµ,γw

[
λfPcf (γµ) + λmPcm(γµ)

]
log(1 + γµ) + λwPcw(γw)Rw,

subject to log(1 + γµ) > log(1 + γw), (3.22)

or as an equivalent problem,

maximize
γµ,γw

[
λfPcf (γµ) + λmPcm(γµ)

]
log(1 + γµ) + λwPcw(γw)Rw,

subject to γµ > γw. (3.23)

To solve this problem, we first assume a fixed value for γw = γthw and the final

optimisation problem is given as

maximize
γ∗µ

[
λfPcf (γµ) + λmPcm(γµ)

]
log(1 + γµ) + ηw,

subject to γµ > γthw . (3.24)
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Using the Lagrangian function [117], we get

L(γµ) =−
[
λfPcf (γµ) + λmPcm(γµ)

]
log(1 + γµ)− ηw − ε1[γµ − γthw ], (3.25)

where ε1 is the Lagrange multiplier. The derivative of the Lagrangian function with

respect to γµ is computed as :

∂ L
∂γµ

= γµ
1 + γµ

− 2
β

ln(1 + γµ)− ε1. (3.26)

Using the Karush-Kuhn-Tucker (KKT) conditions [117], and in particular the com-

plementary slackness condition, ε1(γµ − γthw ) = 0 and applying a change of variable,

i.e., setting ln(1 + γµ) = §, the optimal solution can be found as

ξ∗ =
a ∗W (−e

−1/a

a
) + 1

a
, (3.27)

where a = 2/β, and W(.) is the Lambert Function. Therefore, γ∗µ = e(ξ∗)− 1, which

shows that the optimal SIR threshold γ∗µ only depends on the path-loss exponent β.

This concludes the proof.

3.3.3.1.2 mmWave tier

We need to find the optimal SINR threshold for mmWave BSs (γw) that maximises

the ASE with the threshold of the µWave tiers fixed as γthµ . To this end, we define

a new optimisation problem,

maximize
γ∗w

ηµ + λwPcw(γw)Rw,

subject to γw < γthµ . (3.28)

The Lagrangian function is given by

L(γw) = −(ηµ + λwPcw(γw)Rw) + ε2[γw − γthµ ], (3.29)
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where ε2 is the Lagrange multiplier. The optimal SINR threshold can be computed

by differentiating (3.29) with respect to γw, and equating the result to zero.

The integrals in (3.13) can be computed as

∫ y

1 + s−1
1 yαL

dy = s1

2 log(|1 + s−1
1 r2

w|), (3.30a)∫ z

1 + s−1
1 zαN

dz = 1
2r

2
w 2F1 (aN , b; c;T1) , (3.30b)∫ y

1 + s−1
2 yαL

dy = s2

2 log(|1 + s−1
2 r2

w|), (3.30c)∫ z

1 + s−1
2 zαN

dz = 1
2r

2
w 2F1 (aN , b; c;T2) , (3.30d)

where αL = 2, αN 6= 2, 2F1 (aN , b; c;T ) is the Hypergeometric function and aN =

2/αN , b = 1, c = aN + 1, T1 = −s−1
1 rαNw and T2 = −s−1

2 rαNw , where s1 and s2 were

defined in Proposition 3. Unfortunately, this problem is not analytically tractable.

Therefore, we only show a plot of different SINR thresholds and their corresponding

ASE in Section 3.4.

3.3.4 ASE and EE Analysis in terms of average rate under

coverage

3.3.4.1 Average Rate under Coverage Rc

In this section, we redo the analysis of the ASE and EE 4 for multi-tier µWave links

considering the average rate under coverage instead of the minimum rate model.

Please note that this parameter is not the same as the classic ergodic rate, because

the rate is calculated conditioned that the typical pBS being in coverage.

Proposition 5 The average rate under coverage is greater than or equal to mini-
4Please note that we present the analysis for area spectral efficiency only. This is because

both energy and area spectral efficiencies are related by a constant (power consumption) which is
independent of the required threshold. However, in the results section we present both metrics.
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mum average rate and can be analytically computed as

Rc
µ = log(1 + γmin) +

∑
j∈{m,f}

λj(P j
t G

j
max)2/βA(β, γj, γmin)

∑
j∈{m,f}

λj(P j
t G

j
max)2/βγ

−2/β
j

, (3.31)

where

A(β, γj, γmin) =
∫ ∞
γmin

max(γj, x)−2/β

1 + x
dx

and γmin = min(γm, γf ).

The rest of the notations and definitions are given in Table 3.1.

Proof 5 We denote the coverage event ∪j∈{m,f} ∪x∈Φj (γ(x) > γj) by V({γj}), the

achievable average rate by a randomly chosen user when it is under coverage is given

as

R̄ = E
[
log

(
1 + max

x∈∪Φj
γ(x)

)
|V({γj})

]
. (3.32)

First, the conditional CCDF of maxx∈∪Φj(γ(x)) is derived as follows:

P
(
maxx∈∪Φj(γ(x) > T |V({γj}))

) (a)=
P
(
maxx∈∪Φj(γ(x) > T,V({γj}))

)
P(V({γj}))

,

(b)= P(V({max(T, γj)}))
P(V({γj}))

,

(c)=



∑
j∈{m,f}

λj(P jTG
j
max)2/β max(T,γj)−2/β∑

j∈{m,f}
λj(P jTG

j
min)2/βγ

−2/β
j

T > γj

1 otherwise,
(3.33)

where γmin denotes min{γm, γf}, (a) follows from Bayes’ theorem, (b) follows from

the assumption γj > 1 ∀j and (c) follows from Proposition 2. We denote the random
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variable maxx∈∪Φ(γ(x)) by X, then R̄ is evaluated as follows

R̄ =
∫ ∞

0
log (1 + x))fX(x|V({γj}))dx

=
∫ ∞
x=0

∫ x

y=0

1
1 + y

fX(x|V({γj}))dydx,

(a)=
∫ ∞
y=0

(∫ ∞
x=y

fX (x|V({γj})dx) 1
1 + y

dy

)

=
∫ ∞

0

P (X > y|V({γj}))
1 + y

dy, (3.34)

where (a) follows from changing the order of integration. By substituting (3.33) in

(3.34), we obtain the average rate under coverage as

R̄ =
∫ γmin

0

[
1

1 + y

]
dy

+ 1∑
j∈{m,f}

λj(P j
TG

j
min)2/βγ

−2/β
j

∑
j∈{m,f}

λj(P j
TG

j
max)2/β

∫ ∞
γmin

max(x, γj)−2/βdx,

= log(1 + γmin)

+ 1∑
j∈{m,f}

λj(P j
TG

j
min)2/βγ

−2/β
j

∑
j∈{m,f}

λj(P j
TG

j
max)2/β

∫ ∞
γmin

max(x, γj)−2/βdx.

(3.35)

This concludes the proof.

The second term in (3.31) shows that at different thresholds for the multi-tier

µWave network, the average rate under coverage is density dependent at different

thresholds (γf 6= γm). As mentioned in Section 3.1, since the multi-tier µWave

links are deployed as the wireless backhaul, the rate under coverage is required to

be separately calculated for µWave link in order to determine its suitability as a

reliable wireless backhaul.

The computation of the average rate under coverage for each tier is not as straight

forward as the coverage probability. This is due to the split of the constant term

log(1 + γmin).
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Proposition 6 The separated average coverage rate for each tier can be given as

Rc
f = λf (P f

TG
f
max)2/β∑

j∈{m,f}
λj(P j

TG
j
max)2/βγ

−2/β
j

[
γ
−2/β
f log(1 + γmin) +A(β, γf , γmin)

]
, (3.36a)

Rc
m = λm(Pm

T G
m
max)2/β∑

j∈{m,f}
λj(P j

TG
j
max)2/βγ

−2/β
j

[
γ−2/β
m log(1 + γmin) +A(β, γm, γmin)

]
. (3.36b)

Proof 6 Given the HetNet average coverage rate as

R̄ = log(1 + γmin) +
∑K
i=1 λi(PiGmaxi)2/αA(α, γi, γmin)∑K

i=1 λi(PiGmaxi)2/αγ
−2/α
i

,

where

A(α, γi, γmin) =
∫ ∞
γmin

max(γi, x)−2/α

1 + x
dx.

Since Pcf + Pcm = Pcµ, therefore
Pcf + Pcm
Pcµ

= 1.

The first term in (3.31) can be written as

log(1 + γmin) =
Pcf log(1 + γmin)

Pcµ
+ P

c
m log(1 + γmin)

Pcµ
. (3.37)

By substituting equation (3.5) of Pcµ, and equations (3.10a) of Pcf ,Pcm, respectively,

in (3.37), the first term in equations (3.36a) and (3.36b) is obtained. The second

term in (3.31) can be divided into two independent parts for the 2 tier following the

same assumption in Lemma 1. Therefore, (3.31) can be splitted into (3.36a) and

(3.36b).

This concludes the proof.

Alternately, these two equations can be re-written with respect to the individual
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probability of coverage Pcf ,Pcm and the total probability of coverage Pcµ, as follows

Rc
f =
Pcf
Pcµ

[
log(1 + γmin) + γ

2/β
f A(β, γf , γmin)

]
, (3.38a)

Rc
m = P

c
m

Pcµ

[
log(1 + γmin) + γ2/β

m A(β, γm, γmin)
]
. (3.38b)

Although the individual average rates under coverage were derived based on the as-

sumption of different thresholds, we show that this split still holds for same thresh-

olds. This can be proven by substituting γf = γm = γµ in (3.38), which results in

Rc
f =
Pcf
Pcµ

[
log(1 + γµ) + γ2/β

µ A(β, γµ, γµ)
]
, (3.39a)

Rc
m = P

c
m

Pcµ

[
log(1 + γµ) + γ2/β

µ A(β, γµ, γµ)
]
. (3.39b)

3.3.4.2 ASE ηcµ and EE Ωc
µ Analysis

Proposition 7 Under the assumption of γj > 1 [5], ASE and EE are strictly de-

creasing functions with respect to the threshold, thereby they can be maximised by

choosing the lowest possible SIR threshold available in the system.

Proof 7 To have a comparison between our previous analysis in Section 3.3, we

consider the case of same thresholds γf = γm = γµ. Hence, the ASE and EE will be

given as:

ηcµ =
[
λfPcf (γµ) + λmPcm(γµ)

]
Rc
µ(γµ), (3.40a)

Ωc
µ =

[
λfPcf (γµ) + λmPcm(γµ)

]
Rc
µ(γµ)∑

j∈{m,f}
λj(Pj0 + ∆jPj)

, (3.40b)

where all the parameters are defined previously in Section 3.3 and Table 3.1. By

substituting (3.31) in (3.40), we obtain

ηcµ =
[
λfPcf (γµ) + λmPcm(γµ)

] [
log(1 + γµ) + γ2/β

µ A(β, γµ, γµ)
]
. (3.41)
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After simplification, we obtain

ηcµ = C
[
γ−2/β
µ log(1 + γµ) +A(β, γµ, γµ)

]
, (3.42)

where C = (λfcf + λmcm),

and cj = π
C(β)

λj(P jTG
j
max)2/β∑

j

λj(P jTG
j
min)2/β , where j = {f,m}. The rest of the notations are given

in Table 3.1.

The derivative of ηcµ with respect to γµ is given as

∂ηcµ/∂γµ = −aγ−a−1
µ log(1 + γµ), (3.43)

where a = 2
β
. Since γµ > 1, ∂ηcµ/∂γµ < 0. Thus ηcµ is a decreasing function.

3.4 Results

In this section, we compare the numerical results derived in Section 3.3 with the

experimental results obtained using Monte-Carlo simulations. The values for the

parameters used in simulation and analytical results are specified in Table 3.3.

Table 3.3 The values for parameters used in simulation and analytical results [5, 77].

Parameter Value Parameter Value
total area 4 km2 P f

t 30 dBm
λm 2 /km2 Pm

t 46 dBm
λf 50λm rw 100 m or 150 m
λw 100 /km2 N0 -117 dBm/Hz
β 3 αNw 3.3
αLw 2 Pw

t 30 dBm

The coverage probability plots have the same behaviour to the work presented

in [5], [80]. For ASE plots, similar curves have been obtained in [17] but for different

system model and settings. The EE results are expected to behave as ASE, since

both are related by a constant (power consumption) which is independent of the

required threshold.
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Figure 3.2 The coverage probability (P[SIR > γµ]) of µWave tiers for different SIR
thresholds γµ for models 1 and 4.
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Figure 3.3 The coverage probability (P[SIR > γµ]) of µWave tiers for different SIR
thresholds γµ for models 2 and 3.
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As mentioned in Section 3.3.1.1.1, the model configurations presented in Table

3.2 enables us to show the effect of adding directional antenna at one or more tiers

to improve the performance of the considered network.

For example, in Model 2 when the directional antenna is deployed at the FBSs

only (assuming a random direction for the beam), we expect that the performance

will be slightly better than Model 1. This is because in Model 1, all BSs use omni-

directional antennas, which increases the interference signal received by the typical

pBS, leading to reduced SIR and hence reduced coverage probability.

However in Model 2, the use of directional antennas at FBSs results in lower

interference to the typical pBS. In Model 3, directional antenna at the typical pBS

receiver ensures that the amount of interference received is limited to the angular

spread of the main lobe of the antenna. This in-turn increases the SIR and hence

results in improved coverage. Similarly, further improvement can be obtained using

Model 4 where both FBSs and pBS have directional antennas.

Since in Models 1 and 2 (3 and 4) pBSs are equipped with omni-directional

(directional) antennas, respectively, we expect the results to be close results for

Models 1 and 2 (3 and 4). It should be noted that although employing directional

antennas improves performance, it incurs additional cost as stated in Section 2.2.2.1

in Chapter 2. Especially, in Model 3, directional antennas, for µWave and mmWave

communication, equipped at the pBS cause more complexity, which would result in

a physically unrealisable scenario. Hence, there is a trade-off between the cost and

performance. To this end, we advocate the use of ESPAR as the directional antenna

for the µWave communication.5 As a result, Model 3 is indeed physically realisable.

As in Chapter 2, for the analytical results, we do not use it as a switched beam

antenna and choose the values for the maximum and average directivity gains ap-

proximately using the beampattern in one particular direction. Hence, there is a

small difference between simulation and analytical results for the directional anten-

nas.

5Note that our performance analysis holds for any sectored directional antenna
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Figure 3.4 Average rate multiplied by Probability of Coverage (Rµ ∗ P cµ) at different
SIR threshold γµ for models 1 and 4.
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Figure 3.5 Average rate multiplied by Probability of Coverage (Rµ ∗ P cµ) at different
SIR threshold γµ for models 2 and 3.
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In Figures 3.2, and 3.3, the coverage probability of the µWave is plotted with

respect to the SIR threshold γµ comparing all four Models in Table 3.2. First from

Fig. 3.2, we observe that Model 4 outperforms Model 1, resulting in higher coverage

probability (almost double) at the typical pBS, as expected. In Fig. 3.3, we show

the results for having the directional antenna at FBS (Model 2) and pBSs (Model

3), respectively. As identified before, the coverage probability of Model 1 is closer

to Model 2 and Model 3 is close to Model 4.

3.4.1 µWave tiers

3.4.1.1 Results for minimum rate model analysis

In Figures 3.4 and 3.5, we present a plot for the overall average rate multiplied

by the probability of coverage. This metric is considered as the ASE divided by

the overall density of the µWave link. These results show a decrease as the required

SIR threshold increases, because coverage probability decreases as the SIR threshold

increases as shown in Figures 3.2 and 3.3. As expected, the results for Models 1 and

2 (3 and 4 ) are close.

The results of the optimisation problem of the ASE and EE for the wireless

backhaul µWave tiers discussed in Section 3.3.3.1.1 are presented in Figures 3.6 and

3.7. According to the value of β defined in Table 3.3, and using (3.27), the analytical

optimal SIR threshold γ∗µ = 1.3970 dB for all four models. As mentioned earlier, the

slight difference in the simulation results with respect to analytical results (especially

for Models 3 and 4) can be attributed to the way with which the analytical directivity

gains was calculated.

3.4.1.2 Results for average rate under coverage

Following the analysis in Section 3.3.4, we present the results of the average rate

under coverage multiplied by coverage probability, ASE and EE in terms of average

rate under coverage. The results show that ASE and EE are decreasing function for

γµ > 1.
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Figure 3.6 µWave link ASE ηµ for different SIR thresholds γµ.
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Figure 3.7 µWave link EE Ωµfor different SIR thresholds γµ.
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Figure 3.8 µWave rate under coverage multiplied by Probability of Coverage (Rcµ ∗ P cµ)
at different SIR threshold γµ.

In Fig. 3.8, we present a plot for the overall average rate under coverage multi-

plied by the probability of coverage. This metric is considered as the average rate

achievable by a random pBSs when it is in coverage. Fig. 3.8 shows a decrease as

the SIR threshold increases, because coverage probability decreases as the threshold

increases as shown in Figures 3.2 and 3.3.

As identified before, the way in which the analytical gain of ESPAR antenna was

calculated might have resulted in the slight difference in the simulation results with

respect to analytical results (especially for Models 3 and 4).

The coverage probability is the key parameter for calculating the ASE and EE.

Therefore, we expect the same behaviour in Figures 3.2 and 3.3 for Figures 3.9 and

3.10. ASE and EE results presented in Figures 3.9 and 3.10 are considering the

average rate under coverage. According to Proposition 7, the maximum ASE and

EE occurs at γµ = 0 dB. From these results, we conclude that the performance

of the µWave tiers as wireless backhaul can be improved by exploiting directional

antennas. This improvement depends on the placement of directional antenna on

the transmitter and/or receiver.
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Figure 3.9 µWave tier ASE in terms of average rate under coverage for different SIR
thresholds γµ.
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Figure 3.10 µWave tier EE in terms of average rate under coverage for different SIR
thresholds γµ.

Moreover, the results in Figures 3.9 and 3.10 confirm what we stated in Propo-

sition 7.
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Figure 3.11 mmWave tier ASE ηw for different SINR thresholds γw.

-10 -5 0 5 10

w
 (dB)

0

1

2

3

4

5

w
 (

b
it

/J
/k

m
2
)

r
w

 = 100 m (Sim.)

r
w

 = 100 m (Ana.)

r
w

 = 150 m (Sim.)

r
w

 = 150 m (Ana.)

Figure 3.12 mmWave tier EE Ωw for different SINR thresholds γw.
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3.4.2 mmWave tier

In Figures 3.11 and 3.12, we present the results for ASE and EE of mmWave network

γw. This plot is under the assumption that the distance between the desired pBS

and UE is fixed. Although the optimisation problem explained in Section 3.3.3.1.2

didn’t have a closed form, but the results show the dependence of the optimal SINR

on the radius of LOS region. As the radius of the LOS region increases, more pBSs

are considered LOS pBSs. This increase results in a smaller SINR threshold.

Thus, the curves for rw = 150m have an optimal SINR threshold smaller than

the case of rw = 100m. There is a slight difference between the simulation and

analytical results. This is because of the accuracy of calculating the numerical

integrations in (3.13).

3.5 Summary

As a summary for this chapter

• We considered a three-tier hybrid cellular HetNet using µWave links for the

first two-tiers and mmWave links for the last tier. The µWave links were used

as wireless backhaul to the last tier with mmWave links. It was assumed that

the end-user could only connect to the last tier.

• Because the main challenge in having a wireless backhaul is mitigating inter-

ference, we proposed a novel and practical model where we reused the µWave

infrastructure, and equipped the BSs with directional antennas to have a ro-

bust wireless backhaul network. Moreover, equipping the µWave tiers with

directional antennas showed an improvement in the performance metrics, such

as, coverage probability, average rate under coverage, ASE and EE. Further-

more, different placements for the directional antennas were presented, in order

to have a robust wireless backhaul as well as an overall low system complexity.

• We studied an optimisation problem for the overall ASE and EE with respect

to the optimal SIR threshold for µWave and mmWave links in terms of min-
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imum rate model. The results indicated that the optimal threshold required

for the µWave tiers (wireless backhaul) depends on the path-loss exponent and

that for the mmWave tier depended on the area of LOS region.

• Furthermore, we studied the average rate under coverage, and its effect on

ASE and EE. We proved that using the average rate under coverage model,

the optimal threshold is the minimum, as ASE and EE are strictly decreasing

functions. We concluded that the proposed hybrid HetNet model with µWave

links as the wireless backhaul and mmWave based end-users can be made

practically feasible for deployment with the appropriate choice/placement of

directional antennas and with suitable setting of thresholds at different tiers.



Chapter 4

Wireless Ad-hoc Sensor Networks:

Detection

In Chapters 2 and 3, we presented the performance analysis for single-tier and multi-

tier HetNet cellular networks, respectively. However, as stated in Chapter 1 [Section

1.1], device-centric (ad-hoc) networks are of interest in future generations due to

their requirements of low latency and wider spectrum. Furthermore, sensor networks

are used in different areas for different applications such as metering, environment

monitoring and localisation. 5G and the future generations are considering to benefit

from localisation in wireless network design and optimisation [23]. Therefore, in

this chapter, we study the localisability for wireless ad-hoc sensor networks. These

networks are infrastructure-less, require minimal configuration and exhibit random

topology, [25,29,38–40,42,43]. The first step in localisation is the detection process,

where the sensor node detects the target’s signal (i.e. the sensor node is covered by

the target). In the literature, [87,118], detection probability is defined according to

a fixed scenario. A fixed scenario refers to the configuration of fixed sensors with

fixed detection range; neglecting the channel variations and interference; where the

"active" sensors are located. "Active" sensors are referred to as the sensors which

are the closest to the target when channel variations (e.g. small-scale fading) are

neglected. Then, these sensors successfully participate in the localisation process.

However, in a practical scenario, random channel variations and all possible sensors

67
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configurations should be considered for accurate detection and localisation analysis.

The second step in the localisation process is the usage of the "active" sensors’ range

based measurements to localise the target node which is discussed in more detail in

Chapter 5.

4.1 Introduction

In this chapter, we consider a three-dimensional MASNET consisting of a large

number of inexpensive sensor nodes distributed over a large region. MASNET is

typically used, for target detection and localisation to provide a greater level of

situational awareness for units in the operational region. Although the number of

sensors might be fixed, yet due to communication outage, node failure or blockage,

the actual number of participating sensors in detection and localisation is random,

which makes the analysis intractable. Therefore, in this chapter, we propose a

tractable model to analyse the localisation performance metrics such as detection

probability and S-localisability probability. S-localisability probability is defined as

the probability that at least S sensor nodes detected the target’s signal and suc-

cessfully participated in the localisation procedure. Using the tools of stochastic

geometry, we derive closed-form and easy-to-use expressions for these metrics. To

accurately design a wireless ad-hoc sensor network that can be exploited in locali-

sation, it is essential to know the minimum number of sensors that maximises the

localisability. Towards that, we maximise the minimum S-localisability to obtain

the optimal sensors’ density λ∗s. The results show that the MASNET must have λ∗s
sensors per unit volume for at least S sensors to be able to detect, .

To observe the utility of the expressions in a practical scenario, we consider a

MASNET with a fixed number of sensors that are randomly located. First, it is

shown that it is an NP-hard difficult to compute the aforementioned performance

metrics for a large number of sensors. Second, the expressions, which are derived

and averaged for random numbers and locations, accurately provide the perfor-

mance metrics of the fixed network, which emphasises the benefits of the stochastic

geometry tools.
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Figure 4.1 3-dimensional System Model MASNET with red cross as the typical target
node, blue and black circles are sensors and "active" sensors, respectively.

4.2 System Model

We consider a three-dimensional region, where a target located in an unknown lo-

cation communicates to a typical destination located at an unknown location. The

sensors are scattered randomly in the region, following a PPP Φs with intensity λs,

i.e., the locations of the sensors are independent and identically distributed (i.i.d.)

uniformly over the region and the number of sensors (N), the cardinality of Φs,

is a Poisson random variable with mean λs|V|, where |V| = πR2h is the volume

of the cylindrical region with R and h being the radius and height of the region,

respectively as shown in Fig. 4.1.

This assumption reflects the practical nature of WSNs since the number of active

sensors change randomly due to the communication outage and node failure. This

is denoted in Fig. 4.1, where the black circles indicate the "active" sensors, i.e., the

sensors that detected the transmitted target signal. This is the main difference be-

tween our work and the literature, wherein literature the number of sensors detected

the target signal is assumed to be deterministic and defined according to a certain

sensing (detection) range. However, in our work, we consider the number of "active"
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Table 4.1 Summary of Notations

Symbol Description
Φs PPP
λs Intensity of PPP
Pt Transmit power
Pr Received power
σ2
n Variance of noise
α Path-loss exponent (α > 2)
ri Distance from the ith sensor node to the target
hs Small-scale fading channel
R Radius of region of interest (ROI)
h Height of ROI

sensors is random because we take into account the channel effects such as path-loss

and small-scale fading.

Due to Slivnyak’s theorem [57] and the stationarity of the homogeneous PPP, the

target to be localised can be considered at the origin. Each sensor node, equipped

by a single antenna, collects measurements from the transmission from the target.

The assumption of a single antenna per sensor is well-matched with the MASNET

in military field applications where we use inexpensive sensors dropped in a certain

region with large numbers.

In this chapter, first, we consider the target detection problem. In Chapter 5, we

compute the localisation error using different range based localisation approaches.

Assuming Rayleigh fading, the received signal at sth sensor, based on the presence

of the target, can be written as a binary hypothesis testing problem as

H0 : ys = ns, (4.1)

H1 : ys = a hs

r
α/2
s

+ ns, (4.2)

where ns is the additive white Gaussian noise (AWGN) with zero mean and σ2
n

variance, a is the target’s transmitted signal, hs ∼ CN (0, 1) and rαs are the small

scale fading coefficient and the path loss governed by the exponent α, respectively.

Under the sufficient statistics (|ys|2) with the threshold γth, the false alarm and
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detection probabilities at each sensor are obtained as [119],

pf = e
− γth
σ2
n , (4.3)

pd = e−εr
α
s , (4.4)

where ε = γth−σ2
n

E[a2] .

After the target detection, each sensor node forwards its decision to the FC,

which fuses these decisions using a fusion method such as OR-rule to provide the

final decision. In the following section, we analyse the detection performance at the

FC for the PPP based sensor network.

4.3 Performance Analysis

For a target detection problem, at least one sensor is enough to detect the presence

of a target. But for a target localisation problem, a minimum number of sensors

is required to detect the location of the target. This minimum number depends on

the localisation technique (AoA, ToA, TDoA) and the dimensional space (2D or

3D). For example, the minimum numbers of "active" sensor nodes S in R2 are 2,

3 and 4 for AoA, ToA and TDoA, respectively. While for R3, we need 3, 4 and 5

"active" sensor nodes for AoA, ToA and TDoA, respectively. To combine the sensors’

decisions, we assume OR-rule at FC and compute the probability when at least S

sensors detect the target.

4.3.1 Detection Probability Analysis

As a start for the detection analysis, we consider the hard-decision detection because

it is simple and will provide us with some useful information through the closed-

form expressions derived. However, for the future work, we plan to analyse also the

soft-decision detection as stated in Chapter 6 [Section 6.2]. Because, in literature,

soft-decision is known to outperform the hard-decision but the disadvantage of soft-

decision is that it requires huge bandwidth, large delay and complex analysis at the
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FC. The detection probability of the network at the FC is defined as the probability

that at least one sensor detects the target’s transmission. From (4.4), we observe

that the detection probability for each sensor depends on the distance between the

sensor node and the typical target rs. Under the assumption of a PPP network, this

parameter is a random variable.

Proposition 8 Hence the detection probability of the considered network is ex-

pressed as

Pd = 1− exp (−υ) , where υ = 2πλsh
α

ε
−2
α Γ

( 2
α
, εRα

)
, (4.5)

Γ(., .) in the lower incomplete Gamma function and the rest of the notations are in

Table 4.1.

Proof 8 The probability of detection at the FC is defined as the probability that at

least one sensor detects the target’s transmission given that the target transmits H1.

This can be written mathematically as,

Pd = P(at least one sensor heard|H1),
(a)= EΦ

1−
∏
i∈Φ

(
1− pid

)
= 1− EΦ

∏
i∈Φ

(
1− pid

) ,
(b)= 1− exp

(
−
∫
R3
λs(1− (1− pid))dx

)
,

(c)= 1− exp
(
−
∫ 2π

0

∫ h

0

∫ R

0
λs exp (−εrα) rdrdρdθ

)
,

(d)= 1− exp
(
−2πλsh

∫ R

0
exp (−εrα) rdr

)
, (4.6)

where (a) follows from the Binomial distribution [120], (b) follows the PGFL given

in Appendix A [57], (c) follows the substitution of (4.4), (d) follows the computation

of the 3-D integral and the closed-form expression is denoted as given in (4.5).

This concludes the proof.
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The above expression shows that increasing the density improves detection perfor-

mance. Also for the 3-D model, the height h has the same impact as the sensors’

density λs.

Similarly, the false alarm probability Pf of the network obtained at the FC is

defined as the probability that at least one sensor detects the target given that the

target did not transmit.

Proposition 9 From (4.3), we observe that the false alarm probability of each sen-

sor is fixed and dependent on the threshold and the noise variance σ2
n and is given

as

Pf = 1− e−πλshR2pf , (4.7)

where pf is defined in (4.3).

The false alarm probability of the considered network Pf depends on the mean pa-

rameter of the PPP λs|V| and the false alarm probability of each sensor which we

assume is the same for all sensors. This assumption is valid as we assume a homo-

geneous sensor network, however, a heterogeneous sensor network is an interesting

problem that we can consider in our future work.

Proof 9 The false alarm probability Pf of the network can be computed following

the same steps given in Proof 8 as

Pf = 1− exp
(
−
∫
R3
λs(1− (1− pf))dx

)
= 1− exp

(
−
∫ 2π

0

∫ h

0

∫ R

0
λspfrdrdρdθ

)

= 1− exp
(
−λsπR2he

− γth
σ2
n

)
, (4.8)

This concludes the proof.

It can be noted that the detection problem depends on the chosen threshold.

From the above expressions (4.3) and (4.8), the threshold can be chosen using either

false alarm probability of each sensor pf or the false alarm probability of the con-

sidered network Pf . Since the probability of detection of the network is composed



74 4.3 Performance Analysis

of the detection probability decisions from each sensor, it is reasonable to define the

threshold for each sensor to get a fixed local false alarm probability, given as

γth = −σ2
n ln (pf), (4.9)

which depends only on the noise power. However, intuitively, the threshold should

change based on the density of the sensors to keep the false alarm probability of the

network within a limit. Therefore, the threshold to keep the false alarm probability

of the network fixed can be obtained as

γth = −σ2
n ln

(
ln
(

ln (1− Pf)
−πλshR2

))
, (4.10)

which depends not only on intensity λs, but also depends on the volume of the cylin-

drical region V , representing the global applicability of the threshold in the network.

For the rest of the chapter, we consider the threshold based on the individual false

alarm probability of each sensor.

4.3.2 S-localisability probability

To detect the presence of the target, the detection probability was discussed in

Section 4.3.1. However, in practice, to get a rough estimate about the localisation

metrics, the measurements from multiple sensors are required. In this section, we

analyse the S-localisability probability P S
L which is defined as the probability that

at least S sensors detect the target and participate in the localisation procedure. For

a fixed sensor network, choosing S out of the total number of sensors is an NP-hard

problem. Moreover, considering random location in the PPP network, it adds to

the difficulty of the S-localisability probability analysis.

Proposition 10 The S-localisability probability is defined as the probability that

at least S sensors detected the target’s signal and successfully participate in the
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localisation. Mathematically, expressed as

P S
L = 1−

S−1∑
k=0

υk

k! e
−υ, (4.11)

where υ is defined in (4.5).

Proof 10 According to the definition of P S
L , mathematically it can be denoted as

P S
L = P(at least S sensors heard)

= 1−
S−1∑
k=0

EΦs [P(Ak)] ,

(a)= 1−
S−1∑
k=0

υk

k! e
−υ. (4.12)

where υ is given in (4.5), (a) follows from the derivation of EΦs [P(Ak)] which is

provided in Section 4.4.

This concludes the proof.

The above result shows that the chances of the presence of S "active" sensors are

Poisson distributed with the mean proportional to the sensors’ density, height and

threshold. Note that the height plays the same role as the density in finding the

sensors, which shows the importance of the 3-D model considered.

Remark 1 We observe that the detection probability Pd is equal to the S-localisability

probability when S = 1. This can be verified by comparing (4.5) to (4.12)|S=1 and

also through the Pd and P S
L plots in Figures 4.2 and 4.4, respectively.

4.4 Optimal density for S-localisability

Based on the dependence of density, a natural question arises what should the

density be to guarantee S "active" sensors. The answer to this question is given in

Proposition 12, but before that, we need to compute the minimal S-localisability

probability as shown in Proposition 11.
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EΦs [P(Ak)]
(a)= EΦs

 ∑
U⊆Φs
|U |=k

∏
u∈U

ζil
∏

u∈Φs\U
(1− ζj)


 ,

= EΦs

 1
k!

∑
i1∈Φs

....
∑

ik∈Φs\{i1,...ik−1}

 k∏
l=1

ζil
∏

j∈Φs\{i1,...,ik}
(1− ζj)

 ,
(b)= 1
k!

[∫
R3
...
∫
R3

∫
Nk

k∏
l=1

ζil

∏
j∈Φs\{i1,...,ik}

(1− ζj)Λ(dx1)....Λ(dxk)Px1,...xk(Φs)
 ,

= 1
k!

∫
R3
...
∫
R3

k∏
l=1

ζilΛ(dx1)....Λ(dxk)∫
Nk

∏
j∈Φs\{i1,...,ik}

(1− ζj)Px1,...xk(Φs)
 ,

(c)= 1
k!

k∏
l=1

[∫
R3
ζlΛ(dxl)

]
E!

Φs

 ∏
j∈Φs

(1− ζj)
 ,

(d)= 1
k!

[∫
R3
ζlΛ(dxl)

]k
EΦs

 ∏
j∈Φs

(1− ζj)
 = υk

k! e
−υ. (4.14)

Proposition 11 We define minimal S-localisability probability, which is the prob-

ability that exact S sensors participate in the localisation procedure, and is given

as

P S
Lmin = EΦs [P(Ak)] = υk

k! e
−υ, [k = S] , (4.13)

where υ is given in (4.5).

Proof 11 We state EΦs [P(Ak)] as given in (4.14), where (a) follows from Corollary

1 in [121], (b) follows from the proof of Theorem 1 in [121], (c) follows from Lemma

1 in [122] and (d) follows from the Slivnyak’s theorem [57].

This concludes the proof.

Given the sensors’ density and the sensors’ thresholds, the minimal localisability

expresses the occurrence of S "active" sensors. Therefore, assuming the fixed detec-
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tion threshold, we can maximise the minimal S-localisability to obtain the optimal

sensors’ density λ∗s. Proposition 12 expresses this result.

Proposition 12 The optimal sensors’ density to obtain S-localisable sensors is

λ∗s = αSε
2
α

2πhΓ
(

2
α
, εRα

) , (4.15)

where the notations are stated in Table 4.1.

Proof 12 The optimisation problem can be formulated as the following

maximize
λs

P S
Lmin(λs) = υS(λs)

S! e−υ(λs) (4.16)

subject to λs|V | ≥ S,

where υ(λs) is defined in (4.5). Using the Lagrangian function, we get

L(λs) = −υ
S(λs)
S! e−υ(λs) − ρ[λs|V | − S], (4.17)

where ρ is the Lagrange multiplier. The derivative of the Lagrangian function with

respect to λs is computed as :

∂L
∂λs

=
e−υ(λs)(S − υ(λs))υS−1(λs)∂υ(λs)

∂λs

S! − ρ|V | (4.18)

Using the KKT conditions, and in particular the complementary slackness condition,

ρ[λs|V | > S] = 0, we obtain the optimal υ∗ = S and due to the linear relation between

υ and λs. The optimal λ∗s can be found as

λ∗s = αSε
2
α

2πhΓ
(

2
α
, εRα

) (4.19)

This concludes the proof.

This result shows that to get S "active" sensors, the density should scale with S.

Also if the height increases the density decreases. It implies that with the proper
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Table 4.2 The values for parameters used in simulation and analytical results.

Parameter Value
R 200 m
h 5 m
α 3
E[a2] 1, 0.1
Noise power -30 dBm

3-D modelling, the requirement on the number of sensors can be reduced, which is

important to reduce the cost of the sensor network.

4.5 Results

In this section, we compare the numerical results derived in Sections 4.3 and 4.4

with the simulation results. The values for the parameters used are specified in

Table 4.2.

4.5.1 PPP Model

Fig. 4.2 plots the global probability of detection with respect to the sensors’ den-

sity for different local false alarm probabilities, assuming local detection threshold

expressed in (4.9). It can be observed that the analytical results agree with the

simulations. It can be noted that increasing either the false alarm probability, the

transmission power, or the density, the detection probability increases. A similar

observation can be seen from Figure 4.3, where the detection probability versus the

false alarm probability is plotted by varying the sensors’ density λs. Figure 4.4 de-

picts the S-localisability probability versus the sensors’ density for different values of

S. We observe that the localisability probability increases with the sensors’ density,

which is the same behaviour in Fig. 4.2.
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Figure 4.2 The probability of detection Pd with respect to the intensity of the PPP of
the sensors λs at different false alarm probabilities and different transmit power E[a2].
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Figure 4.3 The probability of detection Pd with respect to the false alarm probability
pf at different intensities λs. Markers are the simulation results and the lines are the

analytical results.
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Figure 4.4 The S-localisability probability PSL with respect to the intensity of the PPP
of the sensors λs.

But for a fixed density, we notice that the localisability probability decreases

with the increase in S sensors (see (4.12)). This is because, for a fixed sensors’

density (λs), the probability for more "active" sensors to reach a consensus decreases

as the S increases (the set {S, S + 1, S + 2, ....., N} decreases).

This result can also be observed in Figure 4.5, which plots the minimal S-

localisability probability for the density λs. As S is increasing, the peaks can be

seen to be reducing. Figure 4.5 points the optimal density which maximises the

S-localisability. Moreover, the optimal densities from the analytical and simulation

are compared in Table 4.3. It can be seen that the analytically optimised density

fits well with simulations. For the present settings, the optimal density can be re-

garded as a lower bound on the minimum number of sensors needed to obtain the

S-localisability probability greater than 0.5 (P S
L ≥ 0.5).

For example, it can be verified by inserting the optimal intensity λ∗1 in Figure

4.4 and conclude that λ∗1 ≈ 9, i.e., at least 9 sensors per meter cubed are needed for

a detection probability ((Pd ≡ P 1
L) as stated in Remark 1) greater than 0.5. This is
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an interesting result as it provides an insight about the required number of sensors

which is a crucial part of a localisation procedure.
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Figure 4.5 The minimal S-localisability probability PSLmin
with respect to intensity of

the PPP of the sensors λs

Table 4.3 The optimal intensities λ∗S

S λ∗Ana.(\m3) (4.19) λ∗Sim.(\m3) (Figure 4.5)
1 8.4 9.4
2 16.8 17.9
3 25.2 26.3
4 33.6 34.86

4.5.2 Fixed Model

To this end, we presented the detection performance results averaged over the ran-

dom PPP networks. In Figure 4.6, we present the same performance results consid-

ering a fixed network [5], where the fixed locations are assumed for a fixed number of

sensors over the same cylindrical region as the PPP network above. In other words,
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this fixed scenario can be regarded as an instance of the PPP network. Figure 4.6

demonstrates the agreement of the analytical results for the PPP network with the

fixed one. It concludes that the PPP assumption is fairly accurate for the practical

sensor networks. Moreover, it can be observed from equation (4.14) that analytically

for the fixed scenario, it is computationally intensive process to compute the global

probabilities due to the requirement for the search of all the possible S-combinations

of sensors out of the total number of sensors (N). Therefore, it highlights the effec-

tiveness of stochastic geometry in the analysis of the performance metrics such as

detection probability and S-localisability probability for the practical networks.
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Figure 4.6 The probability of detection Pd with respect to the false alarm probability
pf at different intensities λs.
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4.6 Summary

To summarise this chapter, we analysed the detection and localisability performance

of a 3-D MASNET. We assumed that the sensors’ positions are modelled as a PPP

and a typical target that is located at the origin. Due to Slivnyak’s theorem, the

location of the target will not affect the results of the analysis. However, in the next

chapter, we assume an unknown target location.

In practice, the active number of sensors that participate in detection and local-

isation vary randomly due to communication outage, blockage and node failure.

Therefore, we proposed a tractable approach for the analysis of the performance

metrics such as detection probability and S-localisability probability for the con-

sidered network. S-localisability probability refers to the probability that at least

S sensors detect that target’s signals and successfully participate in the localisa-

tion. As expected, the detection and S- localisability probabilities increased as the

density of the network increased. However, for a fixed density, we showed that

the S-localisability probability metric decreased as the number S increased, this is

because the probability to have S sensors detecting the target at the same time

decreased as S increased.

As seen from the results, these defined metrics are increasing functions for the

density λ. Thus, we considered the minimal S-localisability probability, which refers

to having exact S sensors that can detect the target and successfully participate in

the localisation process. Using this metric, we proposed an optimisation problem to

find the optimal density of sensors required to maximise the minimal S-localisability

probability. We showed an analytical expression for the optimal density λ∗s that

depends on S sensors, height and radius of the PPP region, path-loss exponent α

and the threshold. Moreover, in the results, we showed that the optimal density

computed analytically fits with the simulations.

Finally, we considered a fixed model, which represents a single instance of the

PPP network. For the fixed model, the number of sensors and their locations are

fixed over the cylindrical region. Simulation results have verified the analytical
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results and demonstrated that for a fixed MASNET the performance metrics have

the same behaviour as the analysed ones. However, obtaining the numerical results

for the fixed model is computationally complex, thereby concluding the benefit of

the stochastic geometry tools in deriving closed-form and easy-to-use expressions.

Furthermore, using the fixed model, a comparison between different range based

localisation algorithms will be presented in Chapter 5.



Chapter 5

Wireless Ad-hoc Sensor Networks:

Localisation

In Chapter 4, we discussed the localisation analysis for ad-hoc sensor networks,

in terms of the detection and localisability probabilities. These probabilities give

an intuition about the number of active nodes that detected the target’s signal

and successfully participate in localisation. Furthermore, in this chapter, we fo-

cus on the analysis of the localisation error concerning the number of active nodes

participating in the localisation procedure and not on localisation algorithms. In

literature, extensive research has been conducted on different localisation algorithms

using range-based or range-free techniques as discussed in Chapter 1. However, less

research is related to the analysis of the minimum number of active nodes participat-

ing in the localisation procedure. Thus, this motivated us to analyse the minimum

number of sensor nodes required to participate in localisation and use these sensors’

measurements in the conventional localisation algorithms presented in literature.

Specifically, we compute the localisation error for urban and rural environments

using a centralised range based localisation techniques relying on the distance mea-

surements based on ToA and TDoA. We define the localisation error as the distance

difference between the estimated target location and the actual (typical) target loca-

tion which is assumed to be at the origin.Please note that this analysis also holds for

any random target location. In localisation literature, as shown in Chapter 1 (Table

85
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1.1), there is always a trade-off between complexity and performance of different

localisation techniques. Thus, we choose ToA and TDoA which are less complex

techniques that results in acceptable performance as demonstrated by the results of

this chapter.

5.1 Introduction

As stated in Chapter 1, localisation techniques can be classified into two cate-

gories. First, range-based techniques rely on measurements of distances between

nodes that are often based on received signal strength (RSS) [47], ToA [42,50,123],

and TDoA [51, 52]. Second, range-free techniques [124], on the other hand, rely on

knowledge of connectivity possibilities, i.e., who is connected to whom, to ascertain

locations. Furthermore, localisation can adopt a distributed approach, where the

sensors perform many calculations and analysis to locate the target node (i.e the

node that needs to be localised), or a centralised approach where sensors perform

limited analysis. For the latter case, there is a greater instance of sensors simply

forwarding information to a central sensor or FC, which can be a CH from one of the

sensors. The FC fuses the local decisions via a global fusion rule to reach a global

decision about the target. This structure is suboptimal, however other strategies

would have a higher communication (energy) cost [54]. In this chapter, we con-

Figure 5.1 2-D top view of System model in Chapter 4 for the two scenarios mixed
(left) and separated (right).
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Table 5.1 Notations and Definitions

Notation Meaning
n Dimensional space
p Position vector of the target node p = [x y z]T
pi Position vector of sensor nodes p = [xi yi zi]T
||.||2 Euclidean norm
AT Transpose of matrix A
[A]j jth element of matrix A
A† Pseudo inverse of matrix A
edm(T) Squared distances between target nodes
edm(S) Squared distances between sensor nodes
edm(T,S) Squared distances between target and sensor nodes
G = PTP Gram Matrix
W Mask matrix
J Geometric Centering Matrix
1 Column vector of all ones
diag(G) Column vector of the diagonal entries of G
||.||F Frobenius Norm
p Degree of polynomial, where p = 2n

sider our system model to be the same as the fixed model discussed in Chapter 4.

In particular, we examine the target localisation using a centralised range based

approaches relying on the distance measurements based on ToA and TDoA. The

ToA range based approach can be used in search and rescue scenario [42], where

the sensor nodes are locating one of their nodes. This approach leverages an algo-

rithm based on a class of matrix structure called EDMs [90]. EDMs are matrices

of the squared distances between points and have many useful properties that will

be discussed in more details in Section 5.3. They are used in different applications

such as psychometrics, crystallography, machine learning, wireless sensor networks,

acoustics, and more. The different EDM properties can be used for the specific

purpose of improving localisation performance when the FC cannot receive certain

sensors information due to fading or shadowing, etc.

While this interesting approach to the problem of localisation is successful, it is

also shown that at high delay values (urban environment) the proposed alternating

rank-based EDM algorithm outperforms the conventional LLS based algorithm for

the minimum number of sensors. Furthermore, the localisation error decreases when
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the conditioning of EDM is better, i.e., when the sensors are further apart from each

other and closer to the target.

On the other hand, when no clock synchronisation is available between the nodes,

then a better approach is the TDoA range based. In Section 5.4, we extend the LLS

algorithm [26,91] to TDoA. Using TDoA results in an alteration in the calculation

of matrix D, which will include not only ∆d but also (∆d)2. The LLS performance

is compared with WLS [53], and SRD-LS [52]. Although LLS algorithm is known

to be of low complexity, its main disadvantage is that its performance is sensitive

to the outliers. Thus, to have a better performance, outliers must be identified and

their effect should be minimised. Once the outliers are identified, WLS can be used

such that the outliers have smaller weights and hence have minimum impact on the

final result. In general, the performance of WLS is dependent on the choice of the

weights.

However, it has been shown in [52] that SRD-LS demonstrates the best perfor-

mance with respect to finding the estimated target node position. SRD-LS uses a

different approach than multi-lateration; that is used for LLS and WLS; to estimate

the target node location. The approach is based on the minimisation of the LS

criterion.

5.2 System Model

We consider the same 3-D MASNET system model proposed in Chapter 4. Two

proposed scenarios are shown in Fig.5.1. One is a mixed scenario where the target

and sensor nodes are in the same region and the other is a separated scenario,

where the target node and sensor nodes are separated by a gap zone. We assume

the location of sensor nodes and the distances between them are known. For the

centralised approach, the sensors acquire the time information of the received RF

signal, then these time measurements are forwarded to the FC. The next task for

the FC depends on which technique being used.

• For ToA, the FC converts the time measurements into corresponding distances.
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• For the TDoA, the first sensor is chosen to be the reference sensor. Then, the

FC subtracts the receiving times of all other sensors from the reference sensor.

Then, these ToA and TDoA measurements are multiplied by the speed of signal

propagation to get the distance and distance differences measurements, respectively.

Since we consider 3-D space, we need at least 4 (5) sensor nodes for ToA (TDoA)

to localise the target node.

5.3 ToA localisation algorithms

In this section, the range based information that is transmitted to the FC from the

sensor nodes are ToA estimates and sensor position information. The FC will then

perform an initial analytical task, which will eventually achieve localisation of the

RF emissions. This task is translating the ToA measurements and sensor nodes’

positions into distances. We compare between the performance of the conventional

LLS algorithm and the proposed alternating rank-based EDM algorithm. In the first

localisation step, the range measurements between the target node and the sensor

nodes

d̂2
i = ||p− pi||22 = (x− xi)2 + (y − yi)2 + (z − zi)2, (5.1)

where the notations are given in Table 5.1.

5.3.1 LLS algorithm

By reorganising (5.1), and introducing a new dummy variable R = x2 + y2 + z2, we

obtain

−2xix− 2yiy − 2ziz +R = d̂2
i − x2

i − y2
i − z2

i , (5.2)

which can be also written in a matrix form

AΛ = b, (5.3)
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where

Λ = [x y z R]T ,A =



−2x1 −2y1 −2z1 1

−2x2 −2y2 −2z2 1

. . . .

. . . .

−2xS −2yS −2zS 1


,b =



d̂2
1 − x2

1 − y2
1 − z2

1

d̂2
2 − x2

2 − y2
2 − z2

2

.

.

d̂2
S − x2

S − y2
S − z2

S


(5.4)

Due to the linear model in (5.3), the LLS solution and target estimated position p̂

are, respectively, given by

Λ̂ = A†b, p̂ = [[Λ]1 [Λ]2 [Λ]3], (5.5)

where A† = (ATA)−1AT and the rest of the notations are in Table 5.1. Although

LLS is a low complexity algorithm, its main disadvantage is that its performance

is sensitive to the outliers. Therefore, we propose the alternating rank-based EDM

algorithm which is explained in Section 5.3.2.

5.3.2 Alternating Rank-based EDM algorithm

The use of EDMs leads to two key analytical steps :

• Given a matrix with noisy data, test if its structure is EDM or not.

• Given an incomplete set of distances as shown in Figure 5.2, determine whether

a configuration of points exists that generates a matrix that is EDM.

Before explaining the proposed alternating rank-based EDM algorithm, we state

the basic definitions and properties for the EDM in Section 5.3.2.1.

5.3.2.1 Definition and properties of EDM

EDMs are matrices of the squared distances between points, (i.e., distances between

sensor and target nodes, and distances between sensor nodes) and because they

have a certain structure, they have many useful properties and applications such
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Algorithm 1 Alternating Rank Based EDM Algorithm [90]
Inputs: D, W, n, max.tolerance
Output: E
1: Initialisation and Definitions:
2: D11T−W ← µ Initialise unknown entries
3: J← I− 1

k
11T Define Geometric centering matrix

4: repeat
5: G← −1

2 JDJ Compute Gram Matrix
6: U, [λ]ki=1 ← EVD(G) Eigenvalue Decomposition
7:

∑← diag(λ1, .....λn, 0, ...0)
8: Compute G← U∑UT

9: Compute E = diag(G)1T − 2G + 1diag(G)
10: Compute e1 = ||E−D||F
11: EW ← DW Enforce known entries
12: EI ← 0 Set Diagonal to zero
13: (E)− ← 0 Assign zeros to the negative entries
14: Compute e2 = ||E−D||F
15: if (e1 < max. tolerance) ∨ (e2 < max.tolerance) then return E
16: else
17: D← E
18:
19: end if
20: until Convergence or MaxIter
21: EVD(E) = Q∑QT Eigenvalue Decomposition to obtain the target position
22:

∑← diag(λ1, .....λn+2, 0, ...0)
23: X = ∑1/2 QT
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Figure 5.2 Estimated pairwise distances is illustrated with one distance missing [90].

as crystallography, wireless sensor networks, acoustics, etc [90]. The main EDM-

related task is to reconstruct the original node location. This task in an inverse

problem which is more complex than the forward problem of calculating the EDM

given the nodes locations. Therefore, we would like to have an analytic expression

for the EDM in terms of nodes locations.

Consider a collection of S sensor nodes in a n-dimensional Euclidean space,

ascribed to the columns of matrix P ∈ Rn×S, P = [p1,p2, ....pS], pi ∈ Rn. Then

the squared distance between pi and pj can be calculated using (5.1) and when the

norm is expanded then we obtain

dij = (pi − pj)T (pi − pj) = pTi pi − 2pTi pj + pTj pj. (5.6)
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Equation (5.6) can be also written in the matrix equation D = [dij]

edm(P) (def.)= 1diag(PTP)− 2PTP + diag(PTP)1T , (5.7)

where the notations are defined in Table 5.1. From (5.7), we discover an important

property for the EDM, which is stated in Proposition 13.

Proposition 13 Rank of EDMs : The rank of an EDM corresponding to nodes in

Rn is at most n+ 2 [90].

Proof 13 Since the rank of P is at most n (i.e. it has n rows) then the rank of

PTP is also at most n. The rank of the remaining two summands in (5.7) is one.

Using rank inequalities, the rank of the sum of matrices cannot exceed the sum of

the ranks of the summands.

This concludes the proof.

Proposition 13 is powerful as it states that the rank of EDM is dependent on the

n dimensional space which can be {2, 3} and independent of the number of nodes

which can be in the order of hundreds or thousands.

The alternating rank-based EDM algorithm exploits the two pieces of informa-

tion available, which are a subset of potentially noisy distances and the desired

embedding dimension, to calculate the relative position of the target node. This is

done by alternating between these two properties in the hope that the algorithm

converges to an EDM from the produced sequence of matrices. The approach is

shown in detail in Algorithm 1 and appropriate definitions may be seen in Table

5.1.

We consider two sets of nodes, where the first set is a single target node (m = 1)

and the second set comprises the S sensor nodes. Following the approach in [90],

the input distance matrix to the algorithm is defined in the following structure

D =

 edm(T) edm(T,S)

edm(S,T) edm(S)

 , (5.8)
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since we consider a single target, so edm(T) = 0. The squared distances between

the sensor nodes edm(S) are known since we assume that the sensor nodes locations

are known. This is an additional advantage of rank-based EDM approach, where

the distances between sensors and their locations act as reference and additional

information. According to the symmetric property edm(T,S) = edm(S,T), which

are the squared distances between the target and sensor nodes measured using the

time information of received signal at each sensor, these measured distances are

subject to noise (delay) due to multi-path components. The input mask matrix W

is defined as follows

W =

 WT WT,S

WS,T WS,

 (5.9)

where the elements in WT,S and WS,T are defined as follows:

wi,j =


1, if (m, j) ∈ K

0, otherwise,
(5.10)

where m is the index of target node, j is the index of sensor nodes (i.e. j =

1, 2, ....s), and K is the set of observed distances between target and sensor nodes.

Furthermore, the indexing DW is defined as the restriction of D to the entries where

W is non-zero. Thus the goal of the mask matrix, W, is simply to differentiate

between the observed and unobserved entries in D.

To ensure convergence of the algorithm, rank thresholding; i.e. truncating the

eigenvalues [λ] = λ1, .....λd, 0, ...0, is performed on the G = PTP, and then E is

computed as in (5.7) for centered locations. A linear map from G to an E is given

in step 9 in Algorithm 1 [125]. Then, to follow the structure of EDM given in (5.8),

we assign zeros to diagonal and negative elements of matrix E.

After convergence, the next stage is to apply the multidimensional scaling (MDS)

algorithm [53], [26], in order to determine the best point set representation of a

given set of distances. The MDS has analytical solutions that can be obtained via

eigenvalue decomposition of a transform of the EDM. Second, the MDS technique

is relatively resilient to distance errors due to the over-determined nature of the
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problem. Moreover, the results presented in [41], showed that MDS have similar

performance to maximum likelihood estimator (MLE) on condition that all distance

measurements are available. The MDS is shown in the last three steps of Algorithm

1, where we know that the resulting E is an EDM with rank n + 2, so we perform

eigenvalue decomposition and use only the squared root of the first n+2 eigenvalues

multiplied by the eigenvectors matrix Q to obtain the target position. Note that

the position resulting from MDS is a relative position, which may be rotated, or

translated.

Thus, as a final step for the localisation problem, a procrustes analysis [126] is

applied, which is the problem of finding the optimum alteration that happened to

the nodes. Since the initial locations of sensor nodes are known, these locations are

compared to the new locations that we recomputed. After computing the rotation

matrix and the translated vector, these values are compensated on the relative po-

sition of target node to provide a good estimate for the target node location. The

details and proof of this analysis can be found in [90] [Section II (C)].

Finally, algorithm 1 can be summarised as

• Tabulate the known distances between sensors and the measured distances

between that target and the sensors as the structure given in (5.8)

• Using the rank property and the symmetric structure of D, calculate a new

matrix of distances E. This matrix should be checked to have the diagonal

elements zeros and no negative elements. Then compute the error between the

input and the calculated matrices and repeat until convergence.

• The resultant matrix is considered an EDM, so we use MDS to obtain the

relative target position. This relative position may be rotated or translated,

therefore, we use the procrustes analysis and the known positions of the sensor

nodes to find the estimated target position p̂.
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5.4 TDoA localisation algorithms

In alternating rank-based EDM and LLS algorithms used in previous results, the

ToA of the received signals at the sensor nodes were used to localise the target. Our

motivation was based on a similar approach in [127], where joint synchronisation and

localisation for the sensor nodes using EDM approach was performed. However, to

localise the target node, where target location and the transmit time are unknowns

and there is no centralised clock between the target and the sensor nodes. A better

and more practical approach is to use TDoA measurements which only requires

synchronisation between the sensor nodes.

5.4.1 LLS and WLS

For the TDoA, there is a slight alteration in LLS and WLS algorithms in the cal-

culation for matrix ATDoA and vector bTDoA that were calculated in Section 5.12

which is given as

ΛTDoA =[x y z]T ,

ATDoA =2



x1 − xr y1 − yr z1 − zr
x2 − xr y2 − yr z2 − zr

. . .

. . .

xS − xr yS − yr zS − zr


,

bTDoA =



d̂2
r − d̂2

1 − kr + k1

d̂2
r − d̂2

2 − kr + k2

.

.

d̂2
r − d̂2

S − kr + kS


,

(5.11)
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where we assume rth sensor to be the reference node and define ki = x2
i + y2

i + z2
i ,

i = 1, 2, ...., S. The estimated target position for LLS technique is given as

p̂LLS
TDoA = Λ̂TDoA = A†TDoAbTDoA, (5.12)

where the notations are in Table 5.1 and Section 5.12.

While the estimated target position for WLS technique is given as

p̂TDoA = Λ̂TDoA =
(
ATW−1A

)−1
ATW−1b, (5.13)

where W is the weighting diagonal matrix and the rest of the notations are in Table

5.1.

As stated in Section 5.12, LLS is a low complexity algorithm, but its main

disadvantage is that its performance is sensitive to the outliers. In order to have a

better performance, outliers must be identified and their effect should be minimised.

Once the outliers are identified, we can use the WLS such that the outliers have

smaller weights and hence have minimum impact on the final result. Our approach

to identify outliers is by examining the average signal-to-noise ratio (SNR) over

multiple time slots. In such a case, the sensors with lower SNRs are considered to

be the outliers. The weights are calculated by dividing the SNRs of all sensors by the

maximum SNR. This ensures that the outliers (having low SNRs) have low weights.

In general, the performance of WLS is dependent on the choice of the weights. The

procedure suggested is just an intuitive way to obtain the weights. More intricate

methods for determining the weights can be used for improving the results.

5.4.2 SRD-LS algorithm

However, for this problem, it has been shown in [52] that SRD-LS demonstrates

the best performance with respect to finding the estimated target node position.

SRD-LS uses a different approach than multi-lateration to estimate the target node

location. The approach is based on the minimisation of the LS criterion and is given
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by

minimize
p∈Rn

S∑
i=1

(−2pTi p− 2di||p|| − gi)2, (5.14)

where gi = d2
i − ||pi||2. Since this problem is non-convex, finding its exact solution

is in principle a difficult task. So this problem (5.14) is rewritten as a quadratic

problem with two quadratic constraints (5.15) (where a linear constraint is a special

case of a general quadratic constraint) [52].

minimize
y∈Rn+1

||By− g||2, (5.15)

subject to yTCy = 0, yn+1 ≥ 0, (5.16)

where

[y](n+1)×1 =
(

pT ||p||T
)
,

[C](n+1)×(n+1) =

 In 0n×1

01×n −1

 ,
and

[B]S×(n+1) =



−2pT1 −2d1

. .

. .

−2pTS −2ds


(5.17)

It was shown that based on the special structure of (5.15), an efficient algorithm

was derived to find a global solution to this problem [52]. More details about the

SRD-LS algorithm is in [52].

The SRD-LS algorithm solution procedures is shown in Algorithm 2. As stated

in Algorithm 2, if z satisfies zn+1 ≥ 0, then z is a global optimum solution. However,

there is no guarantee that zn+1 will indeed be nonnegative, especially in high noise

levels. In this case, we search for all roots for which the (n+ 1)th element of ỹ(λi) is

nonnegative. The SRD-LS solution is the vector with the smallest objective function.

For large number of sensors and large number of time slots, SRD-LS usually results

in the global optimum. This conclusion will be confirmed using the results in Section
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5.5.2.

5.5 Results

In this section, we present the results of the algorithms proposed in the previous

sections. Our main objective is to compare between the localisation error using the

minimum number of sensors (4 or 5 for ToA or TDoA) and the total number of

"active" sensors that detected the signal (Chapter 4).

5.5.1 ToA Algorithms

In a three-dimensional space, the minimum number of sensors required to localise

the target is four. The total number of "active" sensors is ten (fixed model in Chapter

4). A comparison between the proposed alternating rank-based EDM algorithm and

the conventional method based on LLS [128] is indicated in Fig. 5.3 and Fig. 5.4.

We present a comparison of localisation error for using all ten sensors with that

obtained using four randomly picked sensors out of the available ten. We assume

that all the sensors detected the transmitted signal from the target, i.e., there is no

missing information. The height of the target node is set to 5 m and the heights of

the sensor nodes are varying between 0 and 4 m. The sensors and target nodes are

randomly distributed in an area of 200× 200 m2 for the mixed scenario.

Algorithm 2 SRD-LS Algorithm [52]
Inputs: B, g, C
Output: y
1: Find λ∗ to ỹ(λ)TCỹ(λ) = 0, λ ∈ I1, where ỹ(λ) = (BTB + λC)−1BTg,
2: set z = ỹ(λ∗)
3: if (zn+1 > 0) then return (y)∗ which is the first n elements of (z) (i.e. global

optimum solution)
4: else
5: Find all the roots λ1,....λp to ỹ(λ)TCỹ(λ) = 0, λ ∈ I0 ∪ I2 for which the

(n+ 1)th element of ỹ(λi) is non-negative
6: Let z be the vector with the smallest objective function among the vectors

0, ỹ(λ1),...., ỹ(λp) return y which is the first n elements of z
7: end if
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For the separated scenario, the target node is randomly located in an area of

20×20 m2, whereas the sensors are divided into two equal perpendicular rectangular

areas of 200× 20 m2 and 20× 180 m2 with a gap zone in between as shown in Fig.

5.1. The position of target and the ten "active" sensors nodes are randomly chosen.

The delay parameter, µ is the mean of the exponential random variable in [129,130].

The amount of added delay can be treated as a positive bias to the theoretical

time of flight that a signal would take to travel between the transmitter and the

receiver if they were in free space. Hence, it represents noise included in the time

information measurements. For example, if µ = −8.5, it is equivalent to 10−8.5 ≈ 3

ns and if µ = −7, it is equivalent to 10−7 ≈ 100ns. Consequently, low values of µ

translates to low mean values of additional random time delays and therefore less

noise and vice versa for high values of µ.

Figure 5.3 Localisation error vs µ for the two scenarios: separated (top) and mixed
(bottom), with different number of sensors (Ns = 4, 10). The solid lines are for the ten

sensors and the dotted lines are for two different picks of four sensors.
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5.5.1.1 Localisation error plots versus varying the delay parameter µ

The first set in Fig. 5.3 compares the localisation error over four randomly picked

sensors and when all "active" ten sensors are used, in terms of average location

error, i.e., error between the estimated and actual target node position. First, we

observe that the localisation errors for the separated scenarios are larger than mixed

scenarios. This is because the sensors in the separated scenarios experience similar

receiving time information, hence calculate similar distances. This leads to an EDM

which is not well-separated in terms of distances and hence not well-conditioned

[131]. However, in the mixed scenarios, the sensors experience varying receiving

times and corresponding distances, improving the conditioning of the EDM, leading

to better performance [131].

Moreover, for smaller values of µ (low noise), both the proposed alternating

rank-based EDM algorithm and the conventional LLS algorithm with the minimum

number of sensors (four), achieve localisation errors closer to the ten sensor results.

However, the performance gap between using all ten sensors and only four sensors,

is prominent for higher values for µ. This is because more information (obtained

using all ten sensors) is beneficial at higher noise levels. Also, there are some rare

cases, such as the case using the best four sensors in high noise, where four sensors

perform better than ten using the proposed algorithm. This occurs when these

sensors are close to the target and experience smaller overall delays. As the amount

of noise increases, the proposed alternating rank-based EDM algorithm outperforms

the corresponding LLS algorithm. The high noise levels result in large deviation

of the measured distances from the expected value, thereby causing outliers in the

system. These outliers in-turn degrade the performance of the conventional LLS

algorithm, resulting in large errors in the estimated target node position.

5.5.1.2 CDF plots for random choice of sensors

The random choice of sensors’ behaviour is analysed in detail in Fig. 5.4, where

the CDF of the localisation error is plotted for the proposed alternating rank-based

EDM algorithm evaluated using all possible combinations of four out of ten sensors.
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The figures also show the LLS performance using all ten sensors with and without

outliers. For no outliers case, we assume that all sensors experience the similar

delay.

The delay distribution used for the no outlier case is uniform with small standard

deviation. These results confirm the observations from Fig. 5.3, that for approx-

imately 90% of the combinations, the proposed algorithm outperforms the LLS

algorithm with outliers at high delay µ = −7. However, the LLS algorithm with-

out outliers performs better than the proposed algorithm. This indicates that the

proposed alternating rank-based EDM algorithm is more robust towards handling

outliers than the conventional LLS algorithm.

5.5.2 TDoA Algorithms

In this section, we provide the results for the average localisation error for LLS,

WLS and SRD-LS. For all the algorithms, we calculate the average TDoA and the

average SNR over multiple time slots. The average TDoA is obtained by only using

the TDoA measurements [132] of the time slots in which the sensors detected the

transmission from the target. The detection in these results is based on the received

power at each sensor. If the received power at the sensor is bigger than the threshold

(receiver sensitivity) [133], then the sensor detects the received signal (Chapter 4).

5.5.2.1 Localisation error plots versus varying number of time slots

In Figure 5.5, the average localisation error plots vs. the number of time slots are

presented for mixed and separated scenarios. The localisation error is higher in the

separated scenario due to two reasons. First, there is an increased gap between the

target and sensor nodes locations. Second, the receiving times for all the sensors

are close to each other. As expected, we observe from Figure 5.5 that LLS gives

the worst performance. The use of WLS slightly improves the performance and the

SRD-LS demonstrates the best performance.
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Figure 5.4 CDF plot for the random choice of four sensors from the ten sensors for the
mixed (top) and separated (bottom) scenarios with high delays µ = −7.



104 5.5 Results

Figure 5.5 Localisation error vs. varying numbers of time slots for three localisation
algorithms for the mixed (top) and separated (bottom) scenarios.



105 5.5 Results

Figure 5.6 CDF plots for the localisation error for t = 1 for the mixed (top) and
separated (bottom) scenarios.
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Figure 5.7 CDF plots for the localisation error for t = 10 for the mixed (top) and
separated (bottom) scenarios.
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Figure 5.8 CDF plots for the localisation error for t = 50 for the mixed (top) and
separated (bottom) scenarios.
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Figure 5.9 Localisation error vs different number of sensors for t = {10, 30, 50} for the
mixed (top) and separated (bottom) scenarios.



109 5.5 Results

5.5.2.2 CDF plots for the localisation error

The CDF plots for the localisation error are shown in Figures 5.6, 5.7, and 5.8 at

three different time slots t = {1, 10, 50}. The CDF plots further illustrate how

all three algorithms perform with respect to a predefined acceptable localisation

error of 10 m. In Figure 5.6, for t = 1, the SRD-LS algorithm achieves an error

less than 10 m (x < 10) around 80% and 75% for mixed and separated scenarios,

respectively. For the WLS and LLS the percentages were around 60% and 40% for

mixed and separated scenarios, respectively. As the number of time slots increases,

these percentages increase too. This suggests that using multiple time slots leads

to better localisation. An interesting observation is that for mixed scenarios with

t = 10 onwards (Figures 5.7 and 5.8, the performance of WLS is comparable to that

of the SRD-LS. This is because of the sensors are more scattered in a mixed scenario

than the separated scenario, making it amenable for a weight-based approach.

5.5.2.3 Localisation error plots versus varying number of sensors

Finally, we evaluate the performance of the best algorithm (SRD-LS) with respect

to the "active" number of sensors (Chapter 4), given a fixed number of time slots

(t = {10, 30, 50}). The results are shown in Figure 5.9. As expected, the localisation

error decreases as the number of sensors increases. This is because the amount of

information increases with the increase in the number of sensors.

5.5.2.4 CDF plots for urban and rural environments

We evaluate the best performance algorithm SRD-LS, where the average SNRs and

the probability of detection for all sensors is computed using wireless world initiative

new radio (WINNER) channel [129, 130]. According to the probability of detection

for each sensor, we define a masking matrix W of 1s and 0s, the entry 1 denotes

sensor detected the signal and 0 otherwise. Using only the active sensors’ (detected

the signal) locations (Chapter 4) and their corresponding time measurements, we

follow the procedures in Section 5.4.2 to localise the target.

As expected, the results in Figures 5.10 and 5.11, show that exploiting more
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Figure 5.10 CDF plots for the localisation error for t = {1, 5, 10} using SRD-LS for
mixed (top) and separated (bottom) rural environments.
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time slots improve the localisation performance especially in urban environment

(high delay). The worst localisation results are shown in the urban environments

(Fig. 5.11). This is because SRD-LS does not perform well in high noise levels as

the global optimum solution is not obtained. However, for the rural environment

(Fig. 5.10), using 5 time slots and onwards result in very good localisation results.

Therefore, we conclude that having a large number of sensors and large number of

time slots is needed to have a better localisation performance in urban environments.

5.5.2.5 Results using EM Terrano Software

The results for the estimated target location using EM Terrano measurements is

presented in Figures 5.12 and 5.13 for mixed and separated scenarios, respectively.

These results are obtained by exploiting sensors’ locations and time measurements

and using Section 5.4.2 to obtain the estimated target location. The estimated

target location using all "active" sensors for SRD-LS and LLS is demonstrated. In

Fig. 5.12, we observe that the localisation error is mainly in the height. This is

because the sensors are not scattered which results in having receiving times of

some sensors that are very close to each other. Because there is no outliers, the

LLS is performing well, as expected. Then, using the minimum number of best

sensors for each scenario, the best estimated target location is computed. The

receiving time measurements for these results were averaged over LOS and multi-

path components. Note that best sensors are chosen to be more scattered sensors.

When we looked at the delay experienced by these sensors, we observed that these

sensors also experienced smaller delay values. Therefore, the estimates using only

the five best sensors are better than using all sensors. In addition to that, the results

also show that if we exploit the receiving time measurements for LOS components

only, then a very good estimation of the estimated target location can be estimated.

In Fig. 5.13, the separated scenario results are good due to the placement of the

sensors and the gap is not so big.
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Figure 5.11 CDF plots for the localisation error for t = {1, 5, 10} using SRD-LS for
mixed (top) and separated (bottom) urban environments
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Figure 5.12 Sensor nodes, actual and estimated target locations using EM Terrano
measurements for a mixed scenario (PT = −23 dB).
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Figure 5.13 Sensor nodes, actual and estimated target locations using EM Terrano
measurements for a separated scenario (PT = −23 dB).



114 5.6 Summary

5.6 Summary

In this chapter, a comparison between the performance of ToA and TDoA range

based localisation algorithms was presented. We considered a mixed and separated

scenarios for the locations of the sensors as shown in Figure 5.1.

For ToA algorithms, two centralised localisation algorithms were studied. The

two algorithms are LLS and alternating rank-based EDM. It was shown that at high

delay values the proposed alternating rank-based EDM algorithm outperformed the

conventional LLS algorithm for the minimum number of sensors. The results indicate

that the localisation error depends on the amount of delay and the operating scenario

for the sensors (separated or mixed). The sensor nodes in the separated scenario

experience similar receiving time information which results in larger localisation

error than in the mixed scenario where the receiving times are much different. Also,

the error decreases when the conditioning of EDM is better, i.e., when the sensors

are further apart from each other and closer to the target. Furthermore, unlike the

LLS algorithm, the proposed algorithm is less sensitive to outliers resulting from

larger errors in the measured distances, thereby making it suitable for the required

application.

For TDoA algorithms, three centralised localisation algorithms were examined.

The three algorithms are LLS, WLS and SRD-LS. The LLS and WLS are given as

a multi-lateration problem, while the SRD-LS is based on the minimisation of the

LS criterion. The LLS is low complexity but its performance is sensitive to outliers.

Once we identify the outliers, the WLS was used such that the outliers have smaller

weights and hence have minimum impact on the final result. However, it has been

shown in literature that SRD-LS demonstrates the best performance with respect

to finding the estimated target node position. In low noise levels, for large number

of sensors and time slots, SRD-LS usually results in a global optimum solution.

However, in large noise levels SRD-LS might not result in global optimum. The

number of time slots refer to the number of times at which the target transmits and

also the number of time measurements.
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The results show that LLS gave the worst performance, then WLS slightly im-

proved the performance and SRD-LS gave the best performance. We observed that

as the number of time slots increased, the maximum localisation error decreased, as

expected. Moreover, an interesting observation was that for mixed scenarios at high

number of time slots the performance of WLS was comparable to the performance of

SRD-LS. The reason is at mixed scenarios the sensors were more scattered making

it amenable for a weight-based approach. Finally, as identified, the localisation error

decreased as the number of sensors increased.



Chapter 6

Conclusions and Suggestions for

Future Work

Finally, we conclude this dissertation with a broad set of conclusions related to our

work in Section 6.1. We also discuss some interesting future work in Section 6.2.

6.1 Conclusions

As stated earlier, the goals for 5G mobile networks and the performance measures

associated with them are focusing on the improvement of the future networks in

terms of better capacity, capability and coverage. HetNets incorporating a layered

structure of macrocells, femtocells and picocells, results in better coverage and higher

spectrum efficiency. The coverage increases because the BSs in one tier can fill the

coverage holes of other tiers, while the spectrum efficiency is improved because

of better load balancing of users across different tiers. One of the goals of 5G

mobile networks is URLLC, where ultra-high reliability and ultra-low latency can

be achieved. Thus, 5G considers to benefit from the localisation in wireless networks

design and optimisation, especially wireless ad-hoc sensor networks.

In this thesis, we have analysed the performance of single-tier SCN, hybrid multi-

tier HetNet and ad-hoc sensor networks. One of the challenges of the analysis

of theses networks is random locations and number of communication nodes. An

116
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inherent property of ad-hoc sensors networks and SCN is randomness and it occurs

due to blockage, node failure, mobility of communication nodes or communication

outage. Stochastic geometry is considered one of the powerful tools that enable the

analysis of such random networks. It is a mathematical research area that is used to

analyse and study random spatial patterns to provide mathematical and statistical

models. Point process theory can be considered the main subfield of stochastic

geometry.

To this end, our conclusions regarding the performance analysis of SCN, HetNet

and ad-hoc sensor networks can be summarised as follows:

• We investigated the coverage performance of downlink femtocell networks

when each UT is equipped with a directional antenna. We derived a closed

form expression of the coverage probability using a simplified mathematical

model that provides an approximate distribution for femtocell signal to co-

channel interference ratio by approximating the number of strong interfering

FBSs to a binomial distribution. Finally, the simulated and analytical results

demonstrated that the coverage performance of femtocell networks improves

considerably when directional antenna is used at the UT [11].

• We extended our work in [11], to the performance analysis of multi-tier SCN,

specifically, a three-tier hybrid cellular HetNet was considered using microwave

(µWave) links for the first two tiers and mmWave links for the last tier. The

two-tiers with µWave links formed a wireless backhaul to the last tier with

mmWave links. Because the main challenge in having a wireless backhaul is

to suppress interference. Therefore, we proposed a novel and practical model

where we reused the µWave infrastructure and equipped the BSs with direc-

tional antennas to have a robust wireless backhaul network. We assumed that

the rate required by the mmWave users is comparable to that offered by the

µWave links to solve the bottleneck rate problem. Different configurations

based on the placement of the directional antennas at each tier were explored.

Using the conventional minimum rate model, we analysed the key performance

indicators, namely, the coverage probability, ASE and EE. We presented the
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simulation results associated with these parameters. To analyse the wireless

backhaul exploited in this hybrid network, we investigated an optimisation

problem for the overall ASE and EE with respect to the optimal SIR thresh-

old required for µWave and mmWave links. Results showed that the optimal

SIR threshold required for the µWave tiers (wireless backhaul) depends only

on the path-loss exponent and that for the mmWave tier depends on the area

of LOS region. Finally, we considered the average rate under coverage and

showed that the ASE and EE are strictly decreasing functions with respect

to the threshold, thereby concluding that they can be maximised by choosing

the lowest possible SIR threshold available in the system [6].

• We assumed a 3-D model based MASNET with randomly located sensor nodes.

While many detection and localisation works focused on 2-D models, we in-

cluded the height in the 3-D model to accurately model the high path-loss

in low-powered sensor nodes. For this model, we derived the exact expres-

sions of the detection probability, S-localisability probability and minimal S-

localisability probability, which agree with simulations. To accurately design

a sensor network, it is essential to know the minimum number of the sensors

that maximises the localisability. Towards that, we maximised the minimum

S-localisability to obtain the optimal sensors’ density λ∗s. We presented that to

be able to detect with at least S sensors, the MASNET must have λ∗s sensors

per unit volume. We considered a MASNET with fixed locations, to observe

the utility of the expressions in a practical scenario. First, we know that it

is NP-hard difficult to compute the aforementioned performance metrics for a

large number of sensors. Second, the expressions, which are derived and aver-

aged for random locations, accurately provided the performance metrics of the

fixed network, which emphasised the beneficial use of the stochastic geometry

tools [89].

• We analysed the effect of the number of sensors on the non-cooperative target

node localisation. Our work examined the target localisation using a cen-

tralised range based approach. For ToA, the work leverages an algorithm
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based on a class of matrix structure called EDMs for the specific purpose

of improving localisation performance which can be exploited when the FC

cannot receive certain sensors’ information due to fading or shadowing, etc.

While this interesting approach to the problem of localisation was shown to

be successful, the results presented the proposed alternating rank-based EDM

algorithm outperformed the conventional LLS based algorithm for the mini-

mum number of sensors at high delay values. When the sensors are further

apart from each other and closer to the target, this is referred to as good con-

ditioning of EDM, the localisation error results decreased leading to a better

localisation performnace [42].

• TDoA range based is a better approach, when no clock synchronisation is

available between the target and sensor nodes. Thus, we extended the LLS

algorithm [26, 91] to TDoA. Moreover, we compared the LLS performance to

the WLS [53], and SRD-LS [52]. Although LLS algorithm is known to be of

low complexity, its main disadvantage is that its performance is sensitive to

the outliers. Thus, outliers must be identified and their effect should be min-

imised to have a better performance. Once we identified the outliers, we used

the WLS such that the outliers have smaller weights and hence have minimum

impact on the final result. However, it has been shown in [52] that SRD-LS

demonstrates the best performance with respect to finding the estimated tar-

get node position. SRD-LS uses a different approach which is based on the

minimisation of the LS criterion. Our results showed that the localisation er-

ror decreases when the sensors are not too far from the target node and are

scattered enough. Finally, we achieved better localisation performance as the

number of sensors increased as well as the number of time slots.
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6.2 Suggestions for Future Work

6.2.1 Performance analysis of multi tier hybrid network us-

ing an inhomogeneous PPP

An interesting problem to solve is the performance analysis for multi tier hybrid

network under the assumption of inhomogeneous PPP. An inhomogeneous PPP is

a PPP where its density is not fixed. An example of an inhomogeneous PPP is a

scenario where we have different densities for different subregions. To solve this we

divide the whole inhomogeneous PPP region into finite number of homogenous PPP

subregions.

6.2.2 Soft-Decision Detection Analysis in Ad-hoc Sensor Net-

works

In Chapter 4, we analysed the performance of ad-hoc sensor networks in terms of

detection and S-localisability probability based on a hard decision sent from the

sensors to the FC. This refers to the sensors transmits the decision as a 1 or

0 for detection or not, respectively. We want to extend this work by analysing

the considered network based on soft decision, where the sensors transmit their

received signal or the likelihood of the target to the FC. The FC makes its decision

accordingly by combining the received signal from different sensors.

6.2.3 Localisation analysis for Heterogeneous Sensor Net-

works.

Another possible extension is the usage of HetNet sensor networks to detect and

localise a single target. HetNet sensor networks refer to networks where the sensors

have different capabilities. For example, cheap sensors that have limited analysis

capabilities and smart sensors that are equipped with multiple antennas. As these

HetNet sensors will have different decisions, the FC would have to combine these
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decisions to reach a global decision. In other words, the FC would have to use a

hybrid localisation technique such as AoA/TDoA.

6.2.4 Analysis of multiple target detection and localisation

Multiple target detection and localisation is a challenging and interesting problem.

First step is detection which can be considered as a multi hypothesis problem, from

this step we can have information about the number of targets present. For the

localisation, we exploit the sensors accordingly to localise these targets.



Appendix A

Stochastic Geometry Background

Stochastic geometry is the area of mathematical research that is focused on provid-

ing suitable mathematical models and appropriate statistical methods to analyze

and study random spatial patterns [55–57]. Stochastic geometry has been a rich

branch of applied probability with several applications such as material science, im-

age analysis, astronomy, biology, communications and more. In communications in

particular, stochastic geometry has succeeded in providing a unified mathematical

paradigm in order to model different types of wireless networks, characterize their

operation and understand their behaviour.

One of the strengths of the analysis using stochastic geometry tools is captur-

ing the inherent spatial randomness in wireless networks. This spatial randomness

can occur due to communication outage, node failure, blockage or mobility of the

communication nodes. Furthermore, the models obtained using stochastic geometry

analysis takes into account other sources of uncertainties such as fading and shadow-

ing. In some special cases, the stochastic geometry analysis may lead to closed-form

expressions that governs the behaviour of the system. As a result, these expressions

provide insightful design guidelines and better understanding of network operation,

that is hard to be achieved using computationally intensive simulations.
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A.1 Mathematical Preliminaries

In this section, some of the definitions and theorems that are commonly used in the

analysis are presented.

Definition 1 Point Process (PP) – A point process is a countable random collection

of points that repose in some space, usually the Euclidean space Rd, where d = {2, 3},

for 2 or 3 dimensional space [134]. A point process and an an instance (realisation)

of the PP are denoted by Φ and φ, respectively. The number of points of a PP in

the set A, A ⊂ Rd, is denoted by Φ(A).

Definition 2 Void Probability – Given a PP Φ, its void probabilities over all bounded

sets A are defined as P(Φ(A) = 0), for A ⊂ Rd. Two PPs are equivalent if they have

the same void probability distributions for all bounded sets.

Definition 3 Stationary – A PP Φ = {xn} is stationary if the translated PP Φx =

{xn + x} has the same distribution as Φ for every x ∈ Rd.

Isotropic – A PP Φ = {xn} is isotropic if the rotated PP rΦx = {rxn} has the

same distribution as Φ for every rotation r about the origin.

Motion-Invariant – A PP Φ is motion invariant if it is stationary and isotropic.

Definition 4 Density (Intensity) Measure λ – For a stationary PP Φ, its density

is defined as follows

λ = E[(Φ(A))]
|A|

, (A.1)

for every A ⊂ Rd, where |A| is the area of A. The density of a PP is independent of

a particular choice of the set A. Stationarity of a PP implies a constant density λ.

In wireless networks, a common and analytically convenient assumption for the

nodes’ locations distribution is the homogeneous (stationary) PPP of intensity λ.

Definition 5 Homogeneous Poisson Point Process (HPPP) – A stationary PP Φ of

density λ is PPP if the number of points in any bounded set A ⊂ Rd has a Poisson
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distribution with mean λ|A|, i.e.

P(Φ(A) = k) = (λ|A|)k
k! exp−λ|A|, (A.2)

and the number of points in disjoint sets are independent, i.e. for every A ⊂ Rd and

B ⊂ Rd with A ∩B = ∅, Φ(A) and Φ(B) are independent.

Definition 6 Thinning – The process of removal of certain points from a PP is

referred to thinning, usually removing the points is according to a probabilistic rule.

Independent thinning means that the removal event is independent for all points. An

interesting result can be seen in Proposition 14 when applying independent thinning

to a PPP.

Proposition 14 If g : Rd → [0, 1] is a thinning function and is applied to a HPPP Φ

by deleting each point x with probability 1− g(x), independently of all other points.

This thinning procedure results in an inhomogeneous PPP with intensity function

Λ(x) = λg(x).

An inhomogeneous PPP is defined in a similar manner as the HPPP in Definition 5,

except that the intensity of the PPP is not constant but it is a function as stated in

Proposition 14. There are two main theorems that we exploited in our work of the

performance analysis of cellular and ad-hoc networks. These theorems are stated in

the following Propositions 15 and 16.

Proposition 15 Sum over PPPs: The Campbell Theorem

Let Φ of density λ and f(x) : Rd → R+, then

E

∑
x∈Φ

f(x)
 =


λ
∫
Rd f(x)dx homogeneous PPP∫

Rd f(x)Λ(x)dx inhomogeneous PPP.
(A.3)

Proposition 16 Product over PPPs: Probability Generating Functional (PGFL)
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Let Φ of density λ and f(x) : Rd → [0,∞) be a measurable function, then

E

∏
x∈Φ

f(x)
 =


exp (−λ

∫
R2(1− f(x))dx) homogeneous PPP

exp (−
∫
R2(1− f(x))Λ(x)dx) inhomogeneous PPP

(A.4)

Definition 7 Palm Distribution – Palm distributions are the conditional counter-

parts distributions for the point processes, and they occur when the point process

is conditioned to have a point at x ∈ Rd. The definition of Palm distribution is

provided in terms of the Campbell measure, which is a measure on Rd × N . The

reduced Campbell measure of a PP is given as

C !(A× Y ) =


E
[ ∑
x∈Φ∩A

1(Φ\{x} ∈ Y )
]
, for any set A ⊂ Rdand Y ∈ N

∫
Rd P!x(Y )dΛ(x), if C(.× Y )is continuous with respect to Λ,

(A.5)

where P!x denotes the reduced Palm measure of the process Φ. In other words, this

is equal to conditioning on the PP having a point at the origin and not counting it.

The use of the Palm measure arises in a wireless network, for example when we calcu-

late outage probability which requires conditioning on either receiver or transmitter

location. Based on (A.5), we present the following Proposition 17

Proposition 17 If f(x, φ) is a measurable function on Rd ×N , then

E

∑
x∈Φ

f(x,Φ\{x})
 =

∫
Rd

∫
N
f(x, φ)dC !(x, φ). (A.6)

By combining Mecke’s theorem in Proposition 17 and the definition of Campbell

measure according to the intensity measure Λ, (A.6) can be rewritten as

E

∑
x∈Φ

f(x,Φ\{x})
 =

∫
Rd

E!x[f(x, φ)]dΛ(x). (A.7)

Finally, due to Slivnyak’s theorem
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Proposition 18 The Palm measure of a PPP is given by

P!o = P. (A.8)

Proposition 18 states that an additional point at origin o does not change the dis-

tribution of the other points of the PPP. Therefore, for a HPPP, the Mecke theorem

is given as

E

∑
x∈Φ

f(x,Φ\{x})
 = λ

∫
Rd

E[f(x, φ)]dx. (A.9)

Definition 8 If υ(x) : Rd → (0,∞), then the conditional PGFL is

∼
G[υ] = E!o

∏
x∈Φ

υ(x)
 . (A.10)

For a PPP, due to Slivnyak’s theorem the conditional PGFL is equal to PGFL that

is defined in Proposition 16 for homogeneous and inhomogeneous PPP.
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