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Abstract

In this thesis, problems related to calibration of imperfect reservoir models, biased

parameter estimation and prediction reliability have been addressed. The main objec-

tive of this thesis is to avoid overconfident, inaccurate and unreliable predictions while

accounting for model-error during the calibration process. Accounting for reservoir

model-error in calibration (history matching) can correct/reduce the bias in parameter

estimation and improves the prediction of the subsurface flow model. In this thesis,

several approaches and algorithms have been developed and investigated which could

be applied at different conditions depending on the modelling assumptions. In the

first approach, the parameter estimation problem is formulated as a joint estimation of

the imperfect model parameters and the error-model parameters. The prior distribu-

tions of the error-model parameters are evaluated before calibration through analysis

of leading sources of the modelling errors using pairs of high-fidelity and low-fidelity

simulation models. A Bayesian framework is adopted for solving the inverse problem,

where the ensemble smoother with multiple data assimilation (ES-MDA) is utilized as

a calibration algorithm. In the second approach, two new algorithms to account for

model-error during calibration are developed which are the variants of the first ap-

proach and existing algorithms. The main aim is to develop flexible algorithms that

can handle strong serially correlated outputs of the physical model, variable bound-

ary conditions (i.e. variable well open/shut schedules and rate/pressure controls) and

structured model-errors (i.e. strong correlation in time). In the third approach, the

model-error during calibration is accounted for without knowing any prior statistics of

model-discrepancy. For this purpose, a flexible ensemble-based algorithm is developed

which can reduce bias in parameter estimation after calibration of imperfect models in
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order to improve the prediction capacity/reliability of the calibrated physical model.

The flexible ensemble-based algorithm is quite general and has the capability to cap-

ture unknown model-error uncertainty by relaxing many of the assumptions commonly

introduced in the literature.
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Chapter 1

Background and Literature Review

1.1 Introduction

Box saying, “All models are wrong, but some are useful”, is considered as the aphorism

for the physical and statistical models. This aphorism can also be stated as “All models

are biased, some are more and some are less”. In this thesis physical model refers to

physics based mathematical model. Generally physical models are treated as if they are

perfect during the calibration i.e. the parameter error is assumed as the cause of data

mismatch. However, it is widely known that physical models are imperfect and approx-

imation of reality. These approximations commonly introduce some type of model-error

which is often neglected during calibration of the imperfect physical model. An imper-

fect model is a mathematical model which has the discrepancy from the reality in terms

of description, scale, assumptions and complexity. An imperfect model exhibits data

mismatch due to the parameter error and model-error. The negligence of model-error

can result in biased estimated parameters after calibration of the imperfect model and

as a consequence might result in inaccurate predictions (Brynjarsdottir and O’ Hagan,

2014). Model-error was formally introduced as a source of uncertainty in simulator

predictions by Kennedy and O’Hagan (2001), who referred to it as model inadequacy

(other commonly used names are model-bias, model discrepancy, etc). In this thesis,

we use these terms interchangeably and introduce the algorithms for calibration of im-

perfect models while accounting for model-error under different set of scenarios and

assumptions.

In this chapter, a brief background and literature review are discussed with respect

to approaches and methods of accounting for model-error during the calibration process.

1



Background and Literature Review 2

The outline of this chapter is as follows. In section 1.2, sources of reservoir model-errors

and bias are discussed. Bayesian inference for inverse problems is discussed in section

1.3, with a focus on MCMC and ensemble-based algorithms for history matching and

calibration. Section 1.4 presents various approaches in the literature, which account for

model-error during calibration. In section 1.5, the methods and formulation of model-

error in the literature are discussed. The last section is related to the objectives and

outline of the thesis with a complete summary of the rest of the chapters.

1.2 Sources of reservoir model-error/bias

Oil and gas reservoir modelling exhibits various forms of uncertainties. These uncer-

tainties are related to reservoir parameters, reservoir geology description, measurement

errors and model discrepancy/error. Often the predictions from reservoir models are

not as reliable as expected, because of lack of assessment of all types of uncertainties.

One of the primary reasons of unreliable and inaccurate prediction is the lack of knowl-

edge of the reservoir model discrepancy/error. It is common practice in the oil and gas

industry that model discrepancy/error is ignored during calibration (history matching)

process assuming the reservoir model is perfect. This assumption results in a bias in

the estimated parameters and at the end of the day, the utility of the calibrated models

are significantly reduced as the model predictions would be different from the reality.

Some of the most significant sources of errors, which make reservoir simulation models

imperfect, are listed in the following subsections.

1.2.1 Discretization and upscaling errors

Discretization and upscaling errors in reservoir simulation modelling have been widely

studied. Discretization errors are introduced when the partial differential equations

describing the dynamical evolution of the system states is solved numerically and in

some cases, they could be significant. The discretization errors appear due to the

grid coarsening of the spatial domain or time steps selection for the time domain. In

practice, this problem is solved by utilizing optimal grid size and using automatic time



Background and Literature Review 3

step selection algorithms. Still, there is an inherent discretization error with respect to

the exact solution, which in many cases is not small enough to be neglected (Ertekin

et al., 2001). Upscaling is the process of substituting a heterogeneous property region

consisting of fine grid cells with a homogeneous region made up of a coarse-grid cell

with an effective property value such that the error related to mass balance or energy

balance between fine and coarse grid cell becomes negligible or acceptable. A number

of efficient upscaling techniques exists in the literature (Farmer, 2002; Durlofsky, 2003),

which have corresponding pros and cons. The goal of the upscaling is also to reduce the

effect of errors from discretization. However, if the find scale model has some missing

information in terms of boundary conditions or spatial distribution of the grid block

properties, the upscaling could also be inaccurate.

Solving with optimal grid dimensions might be very computationally expensive for

history matching, optimization, and uncertainty quantification problems. Various tech-

niques have been proposed in the literature to assess this problem, which includes

reduced order models or proxy models etc (Silva et al., 2007; Rammay and Abdulra-

heem, 2014; Cardoso et al., 2009). The other way is to upscale the fine-scale simulation

model in such a way that the up-scaled (coarse scale) model becomes computationally

inexpensive. If the up-scaling error is neglected during inversion then the parameter

inference would be biased and predictions of oil, gas and water rates/pressure would be

inaccurate.

Omre et al. (2004) estimated the up-scaling and grid coarsening error by running

pairs of fine and coarse-scale models. They modelled the reservoir model-error us-

ing multiple regression techniques and these terms were included in the coarse-scale

model during the history matching process and successfully obtained the results near

to the fine-scale model. Lødøen et al. (2005) proposed the same procedure as Omre

et al. (2004) with different case studies and showed the benefits of the more accurate

up-scaling procedure. Lødøen and Tjelmeland (2010) used multiple linear regression

algorithm to model-errors, where the residual part for the multiple regression was as-

sumed to depend on the model input parameters. The residual terms were modelled

using a zero-mean Gaussian Process. They assumed the fine model as a perfect model
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and did not consider measurement errors in their observations. These two assumptions

can be very strong in the context of uncertainty quantification for simulation models

of real reservoirs.

1.2.2 Wells location variations due to grid coarsening

Well locations are usually shifted during the up-scaling and grid coarsening process.

This shift also induces some form of model-error and causes imperfection in the reservoir

model. Usually, in practice, this is avoided by multiplying connection factors with

Peaceman’s model (Peaceman et al., 1983) or Abou-Kassem and Aziz model (Abou-

Kassem et al., 1985). However, these corrections and models are approximations and

have an inherent assumption, therefore, the error is still present. During up-scaling

and discretization error quantification, these errors also contribute to the estimated

distribution of the quantities of interest. Usually, it would be difficult to separate these

errors from up-scaling and discretization errors. We can say that these three sources

of errors have some sort of combined effect and can be treated as a combined source in

the context of simulation models of oil and gas reservoirs.

1.2.3 Imperfect PVT model/lab data of reservoir fluids

Reservoir fluid model and data are among the important parts of simulation modelling.

Oil and gas comprise of various types of the complex mixtures of organic compounds.

Black oil correlations and the Equation of States (EOS) are two widely used methods

to model these complex mixtures (McCain, 1990). Black oil correlations are built using

linear, non-linear regression models or in some cases using neural networks (Rammay

and Abdulraheem, 2016). These correlations are statistically based so they are imper-

fect to unknown data points. EOS are semi-empirical models and better than black oil

correlations, however, they are approximate due to the complexity of the mixture of

oil and gas. EOS requires tuning with lab data for a particular reservoir fluid (Ahmed,

2016).

Lab experiments are another way to generate reservoir fluid properties at the specific
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pressure-temperature condition of the reservoir. The lab data is converted to reservoir

conditions using specific methods (McCain, 1990; Ahmed, 2016). During reservoir simu-

lation modelling, the converted lab data is interpolated or extrapolated to the pressure-

temperature condition, where data points are not known. This PVT lab data can also

be used to tune the black oil correlations or calibration of EOS for interpolation and

extrapolation purposes at unknown pressure and temperature condition. PVT lab data

can also have measurement errors and methods which convert PVT lab data to appro-

priate reservoir conditions also introduce approximations. Therefore PVT modelling

is not completely perfect and can introduce considerable model-error in the reservoir

simulation model.

O’Sullivan and Christie (2006) addressed the issue related to the calibration of oil

viscosity in the biased simulation model. They considered up-scaling and discretization

as a source of reservoir model-error and showed that the calibrated oil viscosity is

significantly far from the true oil viscosity. Similarly, if the reservoir model does not

contain realistic oil viscosity or other PVT properties, then the estimation of other

reservoir parameters is biased and prone to produce inaccurate predictions.

1.2.4 Imperfect relative permeability model/lab data

Reservoir relative permeability model and data are also among the important parts in

simulation modelling and highly sensitive to oil and gas recovery. Relative permeabil-

ity involves a complex interaction between reservoir rock and fluid. Usually, they are

modelled using empirical correlations or obtained using lab data measurement (Ahmed,

2006). The actual number of relative permeability models, required in simulation mod-

elling are not fully known, therefore sometimes they introduce approximation and bias

in reservoir models.

1.2.5 Imperfect reservoir geology description

Accurate reservoir geology description is one of the most difficult and challenging tasks.

It always has uncertainty due to the complexity of channel geometry, fault shape, facies
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proportion, stratigraphic and structural features. Unrealistic geological models could be

history matched, but not capable to produce reliable predictions and prone to mislead

the development plans of a particular reservoir (Hoffman and Caers, 2007). Some

local faults, structural features, channels geometry, and facies discontinuities are very

difficult to model on the geological scale because of the low resolution of the geophysical

information. The local faults can be detected from well testing (Lee et al., 2003), but

not with the complete extent of fault geometry. The imperfect geological description is

one of the important reason that some calibrated reservoir models do not have predictive

capability (Carter et al., 2006) and can introduce significant model-error.

1.2.6 Reservoir model assumptions

Every reservoir model has inherent assumptions of subsurface flow physics. These

assumptions help to solve the complex problem with existing methods. It is not nec-

essary that reality follows these assumptions. For example, constant or linear rock

compressibility is assumed most of the time during reservoir modelling but in reality

compressibility of rock can behave as non-linear way e.g. chalk reservoirs. Therefore

model assumptions can introduce model-error if reality deviates from the assumptions.

In oil and gas literature so far reservoir model assumptions have not been addressed as

a form of model-error.

1.3 Bayesian inference for inverse problems

Bayes rule can be used in the inverse modelling or history matching of subsurface mod-

els. It is useful to estimate the posterior probability of model parameters given observed

data while accounting for various forms of uncertainties. The posterior belief or prob-

ability about model parameters is updated by integrating observations of production

data (Oliver et al., 2008) using the following mathematical description of Bayes rule.

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
, (1.1)
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where p(m) is the prior probability of the model parameters m, p(dobs|m) is the prob-

ability of production data observation given model parameters m and also known as

the likelihood function. p(dobs) is the probability of the observation and refers to the

normalizing constant in Bayes rule. Mathematically p(dobs) can be written as,

p(dobs) =

∫
p(dobs|m)p(m)dm. (1.2)

The prior and likelihood functions in Eq. 1.1 can be represented by the various types

of probability distributions and among that Gaussian distribution is one of the widely

used (Oliver et al., 2008). The details of the multivariate Gaussian distribution and

corresponding mathematical functions are discussed in the later chapters. In recent

research literature, both Markov Chain Monte Carlo (MCMC) (Gamerman and Lopes,

2006) and ensemble-based methods (Oliver et al., 2008) have been used to computa-

tionally solve the Bayesian inference problem (i.e. obtain statistical solution for the

parameter estimation problem). A brief review of both types of methods is discussed

in the following subsections.

1.3.1 Markov chain Monte Carlo (MCMC)

MCMC is an exact method to sample the model parameters from a complex posterior

distribution. Therefore MCMC can be used to solve inverse problems or calibration of

physical models. There are two major steps in MCMC methods.

• Propose new samples from multidimensional random variable or prior probability

distribution.

• Update the sample, after comparing the sample probability to an acceptance

probability.

There are a variety of MCMC methods that exist in the literature (Gamerman and

Lopes, 2006). Most of the MCMC methods have a difference in the proposal step of the

new sample and the computation of acceptance probability. In this work, the following

two versions of MCMC standard and modified random walk methods are discussed

(Cotter et al., 2013).
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1.3.2 MCMC standard random walk

The steps for MCMC standard random walk method are given below.

• Estimate posterior probability p(u(k)|dobs) using Bayes rule by sampling of model

parameters u(k) from prior distribution and corresponding likelihood function

p(dobs|u(k))

• Propose new samples v using v = u(k)+βε where β is the step size (walk step) and

ε is probability distribution of model parameters or if we assume Gaussian distri-

bution then it is normal distribution N (µM , CM) with mean µM and covariance

CM .

• Estimate posterior probability p(v|dobs) using Bayes rule of proposed samples of

model parameters v and corresponding likelihood function p(dobs|v)

• Calculate acceptance probability α using α = min(1, p(v|dobs)
p(u(k)|dobs)

)

• Set u(k+1) = v with acceptance probability

• Otherwise u(k+1) = u(k)

• Repeat the steps upto k = nwalks, where nwalks is the total number of walks or

iterations and k is the iteration index

1.3.3 MCMC modified random walk

The steps for MCMC preconditioned Crank Nicolson (pCN), modified random walk

method are given below.

• Estimate likelihood probability p(dobs|u(k)) by sampling of model parameters u(k)

from prior distribution

• Propose new samples v using v =
√

1− β2u(k) + βε where β is the step size

(walk step) and ε is probability distribution of model parameters or if we assume

Gaussian then it is normal distribution N (µM , CM) with mean µM and covariance

CM .
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• Estimate likelihood probability p(dobs|v) of proposed samples of model parameters

v

• Calculate acceptance probability α using α = min(1, p(dobs|v)
p(dobs|u(k))

)

• Set u(k+1) = v with acceptance probability

• Otherwise u(k+1) = u(k)

• Repeat the steps upto k = nwalks, where nwalks is the total number of walks or

iterations and k is the iteration index

1.3.4 Ensemble smoother

Ensemble-based methods have been gaining popularity in the last two decades to

perform Bayesian inference for inverse problems and data assimilation (Emerick and

Reynolds, 2013). The main advantage of the ensemble-based methods is the low-

computational cost for higher-dimensional data assimilation and inverse problems. En-

semble smoother ES is one of the ensemble-based techniques similar to the ensemble

Kalman filter (Evensen, 2009). ES updates the model parameters by simultaneous as-

similation of all available data. In the ensemble Kalman filter, state variables of the

physical model are required during data assimilation, however, in ES only production

data is required to evaluate the samples of model parameters from the posterior distri-

bution. The ES update equation of model parameters can be represented as follows.

m
(a)
j = m

(i)
j + CMD(CDD + CD)−1(duc,j − dj) (1.3)

where duc ∼ N (dobs, CD) is the perturbed observation, d is the output/response of

physical model, CMD is the covariance of production data and prior model parameters,

CDD is the covariance of predicted data and CD is the covariance of measurement errors

in observed data. Superscript a and i represent updated (analysed) and initial model

parameters respectively. Subscript j represents ensemble member index.
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1.3.5 ES-MDA

Ensemble smoother does not produce satisfactory results for non-linear inverse prob-

lems. However, the simulation models of oil and gas reservoirs are highly non-linear in

nature. Emerick and Reynolds (2013) showed that ensemble smoother can be used for

non-linear problems if the data is assimilated multiple times. They proposed the itera-

tive ensemble smoother which tries to capture the non-linear behaviour of the reservoir

simulation model by using multiple data assimilation or multiple iterations using in-

flated covariance matrix of measurement errors (Emerick and Reynolds, 2013). The

steps of ES-MDA are as follows.

• Select the number of iterations (number of data assimilation) Na and set α = Na

• Initialize the selected ensemble members of model parameters and perturb the

observation data for each ensemble member using,

duc,j = dobs +
√
αC

1/2
D zd (1.4)

where duc is perturbed observation and zd is the standard normal distribution

N (0, I)

• Update each ensemble member j using,

m
(k+1)
j = m

(k)
j + CMD(CDD + αCD)−1(duc,j − dj) (1.5)

Superscript k is the iteration index and α is the inflated parameter during multiple

data assimilation.

• Repeat the above steps for all iterations, from k = 1 to Na

1.4 Approaches to account for model-error during

calibration

In the literature, different approaches have been used to account for model-error during

calibration. These approaches can be used for modelling of reservoir model-error. From

the literature, these approaches can be classified into three categories.
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1. Input parameters-dependent versus output dependent

2. Deterministic versus stochastic

3. External bias description (EBD) versus internal noise description (IND)

4. Joint (coupled) calibration versus postprocessor (uncoupled) calibration

1.4.1 Input parameters-dependent versus output dependent

In input parameters-dependent approach, the model-error is defined as the function of

the uncertain parameters of the model, which are estimated after calibration of the

physical model. Reservoir model-error can vary with different permeability realizations

or other uncertain parameters, which have to be estimated. O’ Sullivan and Christie

(2005) used this type of approach of accounting for model-error in their study. They

estimated the oil viscosity while accounting for viscosity dependent model-error using

linear interpolation. Lødøen and Tjelmeland (2010) used the multiple linear regression

algorithm to formulate model-error. In their study, the residual of multiple regression

is dependent on permeability realizations and they used Gaussian process regression

(GPR) to model input dependent residual. Giudice et al. (2013) used input dependent

model-error to improve uncertainty estimation in urban hydrological modelling. They

used the variance of model-error dependent on the input (rainfall in their case). The

general input dependent model-error/bias can be written as follows.

y(x) = ym(x) + bm(x, β), (1.6)

where y is the truth function, x is input parameters, ym is model response, bm is the

model-error/bias and β represents parameters of the model-error.

Output dependent model-error is the function of the model response/output. The

output from the dynamic reservoir simulation model is in the form of time series of

the well rates or pressure. In reservoir modelling context this model-error is only re-

lated to the outputs and its variation with respect to time. Omre et al. (2004) used

this approach of model-error using multiple linear regression. They considered there
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fine model as accurate (unbiased) and used linear regression to map the relationship

between the coarse and fine grid. They only used outputs, which is in the form of

time series, generated from fine and coarse-scale simulations. Evin et al. (2014a) used

output dependent model-error/bias to improve uncertainty estimation in urban hydro-

logical modelling and estimated the heteroscedasticity of model-error dependent on the

outputs time series. Reichert and Schuwirth (2012a) linked statistical bias description

to multiobjective model calibration. They used output dependent model-error/bias

to improve uncertainty estimation in environmental modelling. The general output

dependent bias can be written as follows.

y(x) = ym(x) + bm(ym, β), (1.7)

where y is the truth function, x is input parameters, ym is model response, bm is the

model-error and β represent parameters of the model-error.

1.4.2 Deterministic versus stochastic

The deterministic approach depends on the algorithm, which is used for modelling

bias/error. If the algorithm is deterministic for modelling of model-error then the ap-

proach can be considered as deterministic. The deterministic approach can be both

input parameter-dependent and output dependent. Originally model-error/bias was

introduced as a deterministic approach by Kennedy and O’Hagan (2001). The deter-

ministic form can be written as follows.

y(x) = Am(β)ym(x) +Bm(β) + ei, (1.8)

where Am and Bm are the parameters to map imperfect physical model to truth and ei

represents the measurement error.

The stochastic approach consists of a formulation which has some form of random

component for the model-error. Giudice et al. (2013) used auto-regressive (AR) error-

model in order to improve uncertainty estimation for urban hydrological modelling.

They accounted for model-error/bias autocorrelation by stochastic approach using the



Background and Literature Review 13

AR model. The explanation for the AR model is given in the model-error formulation

section.

1.4.3 External bias description (EBD) versus internal noise

description (IND)

EBD is the description of model-error/bias externally to the simulators during cal-

ibration. The bias/model-error has already been described as EBD in the previous

sections, whether it is input/output dependent or deterministic/stochastic. The EBD

was developed using the background of statistical inference in a regression type frame-

work (Giudice et al., 2015). The mathematical forms of EBD is already mentioned in

Eqs. 1.6, 1.7 and 1.8.

IND is the description of model-error/bias internally into the state space of the

physical model instead of adding bias externally to the simulators or model outputs

(Giudice et al., 2015). This approach is also known as state space modelling or stochastic

gray-box modelling (Moradkhani et al., 2012; Kristensen et al., 2004). Mathematically

the use of IND with simulators can be described as follows.

dS = ym(x, S, t)dt+ σ(x, S, β, t)dW (t), (1.9)

where S is the state, dW (t) is the standard Wiener process, σ represents diffusion

term/state noise/level disturbance and accounts for modelling errors by making the

uncertain or random states. The standard Wiener process is the random variable that

depends on time i.e. dW (t) ∼
√
dtN (0, 1). This process is used to generate realizations

of the errors with respect to time. Equation 1.9 shows the state evaluation using sim-

ulator with the addition of error realizations generated from standard Wiener process.

Giudice et al. (2015) concluded that EBD has some advantages over IND in terms of

long-term predictions.
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1.4.4 Joint (coupled) calibration versus post-processor (un-

coupled) calibration

Joint (coupled) calibration refers to the parameter estimation of the physical model

and error-model simultaneously. The joint calibration approach had been used in most

of the research work related to model-error (Giudice et al., 2015, 2013; Kennedy and

O’Hagan, 2001; Lødøen and Tjelmeland, 2010). This approach could produce good

results and have the ability to reduce the bias in estimated parameters when the prior

of the model discrepancy is realistic (Brynjarsdottir and O’ Hagan, 2014). However,

sometimes joint calibration can be non-robust due to the unrealistic prior of the model

discrepancy (Brynjarsdottir and O’ Hagan, 2014) and the strong interaction between

the physical model and the error-model (Evin et al., 2014a).

Post-processor (uncoupled) calibration refers to the parameter estimation of the

physical model and error-model sequentially. Evin et al. (2014a) used the post-processor

(uncoupled) calibration, where the parameters of the hydrological model were esti-

mated in stage 1, followed by stage 2 where the parameters of a more complex residual

error-model are estimated keeping the hydrological parameters fixed at the values es-

timated in stage 1. Evin et al. (2014a) compared the joint calibration approach to

a post-processing approach of accounting for the model-error and concluded that the

post-calibration approach was found to be more robust. However, this approach has

limitation in the scenarios where model-error exhibits strong structural features and

non-linear heteroscedasticity.

1.5 Methods for formulation of model-error/bias

Following methods and there variants have been used in literature for formulation of

model-error/bias.

1. Auto-regressive integrated moving average (ARIMA)

2. Generalized auto-regressive conditional heteroscedastic (GARCH)
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3. Multiple linear regression models

4. Gaussian process regression (GPR)

5. Approximate Bayesian computation (ABC)

1.5.1 ARIMA

Auto-regressive integrated moving average (ARIMA) models are widely used in econo-

metrics and computational finance fields (Montgomery et al., 2015) for forecasting and

prediction purpose. These models have been used for the formulation of the model-

error/bias related to water resources research, rainfall prediction and environmental

modelling (Giudice et al., 2013, 2015). These are useful methods when the model-

error/bias shows random behavior and correlated outputs with respect to time. There-

fore these methods are successfully used in hydrological and environmental models

because most of the times the model-error of these physical systems shows random

behavior and correlated outputs with respect to time.

ARIMA models are efficient only when the time-series are stationary and have con-

stant variance with negligible heteroscedasticity. If there is heteroscedasticity, variance

volatility with respect to time, the ARIMA model may not be a good choice to model

time series (Montgomery et al., 2015). Non-stationary time series can be modeled us-

ing ARIMA if data is transformed in such a way that the time-series process becomes

stationary. One of the most efficient ways to obtain a stationery distribution of the

data is to apply a difference operator of the data of order D. Mainly ARIMA models

consist of three parts; auto-regressive (AR), moving average (MA) and difference. The

autocorrelation and partial autocorrelation functions are used to find out the order of

MA and AR respectively (Montgomery et al., 2015). The general form of the ARIMA

model is given in the following equation.

∆Dyt = c+ φ1∆
Dyt−1 + ....+ φp∆

Dyt−p + εt + θ1εt−1 + ....+ θqεt−q, (1.10)

where c is the constant, φ is the coefficient of previous lag observations, p is the order of
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AR, q is the order of the MA, εt is the uncorrelated innovation or random component,

θ is the coefficient of previous lag innovations and ∆D is the difference (D order) of the

time series to deal with the non-stationary condition. The model-error shows very well

structured behaviour with small noisy components and often shows heteroscedasticity

for subsurface systems. Therefore ARIMA methods for the formulation of subsurface

model-error may not be a good choice.

1.5.2 GARCH

It is possible that the model-error/bias has heteroscedasticity and variance volatility.

(Evin et al., 2014a) discussed this effect and considered error auto-correlation and

heteroscedasticity in hydrological uncertainty estimation. Generalized auto-regressive

conditional heteroscedastic (GARCH) can be used to formulate the type of model-errors,

which show heteroscedasticity and variance volatility. The general GARCH model of

order (p,q) is given in the following equation (Montgomery et al., 2015).

σ2
t = κ+ γ1σ

2
t−1 + ....+ γpσ

2
t−p + α1ε

2
t−1 + ....+ αqε

2
t−q, (1.11)

where κ is the constant, σt is the variance, γ is the coefficient of previous lag variance

observations, p is the order of AR, q is the order of the error terms, ε represents the

error terms or random component, α is the coefficient of previous lag error terms. The

model for conditional variance resembles an ARMA model. However, it should be noted

that the GARCH model is not a proper ARIMA model, as this would have required

a white noise error term with a constant variance for the MA part as shown in the

following equation.

εt = σtzt, (1.12)

where zt is independent and identically distributed with mean 0 and variance 1.
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1.5.3 Multiple linear regression models

Linear regression is one of the classical statistical methodologies to predict outputs of

variables of interest given inputs. Multiple linear regression models are the same as

linear regression but instead of one type of output, it is used to predict multiple sets

of outputs given inputs (Johnson et al., 2002). The general form of linear regression is

given below.

y = β0 + β1z1 + β2z2 + β3z3 + ....+ βrzr + ε, (1.13)

where y is the output, β represents the parameters of linear regression, z is input, r is

the total number of input parameters, ε is the residual error. Multiple linear regression

models consist of more than one linear regression model. The number of regression

models depends on the number of output variables. Suppose there is a number n

output variables require to predict. The general form of multiple regression models for

multiple outputs y1 to yn are given below (Johnson et al., 2002).

y1 = β0 + β1z11 + β2z12 + β3z13 + ....+ βrz1r + ε1, (1.14)

y2 = β0 + β1z21 + β2z22 + β3z23 + ....+ βrz2r + ε2, (1.15)

y3 = β0 + β1z31 + β2z32 + β3z33 + ....+ βrz3r + ε3, (1.16)

yn = β0 + β1zn1 + β2zn2 + β3zn3 + ....+ βrznr + εn. (1.17)

In terms of matrix notation, multiple linear regression models can be written as

follows. 

y1

y2

y3

...

...

yn


=



1 z11 z12 z13 ..... z1r

1 z21 z22 z23 ..... z2r

1 z31 z32 z33 ..... z3r

. ...... ...... ...... ..... .....

. ...... ...... ...... ..... .....

1 zn1 zn2 zn3 ..... znr





β0

β1

β2

...

...

βr


+



ε1

ε2

ε3

...

...

εn


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Above matrix-notation can be written as the equation form in the following way.

Y = Zβ + ε, (1.18)

where Y is the column matrix of output variables of order n×1, β is the column matrix

of linear regression parameters of order (r + 1) × 1, Z is the matrix of input variables

of order n× (r + 1), ε is the column matrix of residual errors of order n× 1.

Omre et al. (2004) used the multiple linear regression model to fit the model-error

obtained from pairs of coarse and fine-scale model outputs. They tried to fit multiple

regression models at multiple points of time series outputs generated by fine and coarse-

scale simulation models. They considered the diagonal input matrix, which means that

they did not consider the correlation between different points of time series outputs

from the reservoir model. Lødøen and Tjelmeland (2010) also used multiple regression

technique. Their approach was similar to Omre et al. (2004). The main differences

are, they transformed their coarse-scale model with the multiple regression technique

similar to Kennedy and O’Hagan (2001) and they modelled residual errors part of

multiple regression using a zero-mean Gaussian Process.

1.5.4 Gaussian process regression

Gaussian process regression has the same use as linear regression or multiple regression

models. In GPR instead of defining the model as a form of linear, quadratic, trigono-

metric, exponential or some parametric regression model, the model is defined as a

non-parametric way using kernel functions (Rasmussen, 2006). One of the advantages

of GPR, we don’t need to define any function with a parametric regression model. This

is achieved by defining the Gaussian process as function space with associated mean

and covariance (Rasmussen, 2006). The general form of GPR is written in the following

way.

f(x) ∼ GP (m(x), k(x, x′)), (1.19)

m(x) = E[f(x)] (1.20)
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k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (1.21)

Bayesian linear regression model is a Gaussian process with mean zero and covari-

ance k(x, x′) and can be implemented with any appropriate kernel function (Rasmussen,

2006). This form of GPR can be written in the following way with zero mean and co-

variance function of squared exponential form.

E[f(x)] = 0, (1.22)

k(xp, xq) = σ2
fexp(−

1

2l2
|xp − xq|2), (1.23)

where σ2
f and l are the hyper-parameters of GPR. Hyper-parameters are the free param-

eters in GPR, which can be adjusted or trained to match the data. Equation 1.19 can be

applied by computing and sampling from the covariance function of the quantity of in-

terest, where the function f(x) can be used to map the errors with respect to time. The

reservoir models produce the outputs in terms of time series which can be mapped us-

ing GPR by adjusting hyperparameters related to particular model-error/bias. For the

well-structured model-error/bias, GPR has the advantage over ARIMA and GARCH,

but for random and stochastic model-error/bias ARIMA and GARCH have the advan-

tage over GPR.

1.5.5 Approximate Bayesian computation (ABC)

Sargsyan et al. (2015) introduced the approximate Bayesian computation (ABC) method-

ology for the statistical calibration of imperfect physical models. They described syn-

thetic likelihood function, which considered the misfit between mean prediction from

physical models and observation data, and an additional constraint of misfit between

the standard deviation of physical models outputs and deviation of observation data

with mean prediction. The synthetic likelihood function for ABC methodology is shown

below.

LABC(α) =
1

ε
√

2π

N∏
i=1

exp(−(µi(α)− yi)2 + (σi(α)− γ|µi(α)− yi|)2

2ε
), (1.24)
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where α is the model parameters, µi is the mean prediction, yi is the observations from

the real system, N is the total number of observations, ε is the tolerance parameter and

γ is the weight parameter. Approximate Bayesian computation (ABC) does not require

joint calibration or model-error formulation and is useful for physical models where the

realistic prior of model discrepancy is unknown. However, so far approximate Bayesian

computation (ABC) is implemented using MCMC methods and the implementation is

not clearly understood using ensemble-based methods. Moreover, the extent of accu-

racy of ABC is not known for the calibration of complex oil and gas reservoir models

especially in the presence of both measurement error and model-error/bias.

1.6 Thesis objectives

The primary research objective of this thesis is to develop a flexible Bayesian framework,

which accounts for model-error during the calibration process in order to improve the

prediction capacity of the imperfect reservoir models. In the Bayesian framework, the

modelling error can be considered as a random variable, and by using an estimate of the

probability distribution of the unknown, one may estimate the probability distribution

of the modelling error and incorporate it into the calibration process (Calvetti et al.,

2014, 2018). However, the model-error may also have a systematic bias especially

when it is related to numerical dispersion or coarse-scale representation of real physical

system. Sometimes this bias is obtained as a mean but it could be deterministic.

In this work, the novel algorithms are introduced which represent model-error in the

form of principal component analysis based error-model in the Bayesian framework.

The proposed Bayesian framework leads to a joint estimation of the physical model

and error-model parameters which has the capacity to reduce or eliminate bias in the

estimated approximate posterior distribution of the physical model parameters that

shows the potential to capture the underlying truth with increasing accuracy. In order

to achieve this objective, the research program is divided into three major parts. In

the first part, sources of the model-error are assumed to be known so that the prior

model-error statistics can be estimated before calibration. The first part of the thesis
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objective is further elaborated by following points.

• Principle component analysis is used to formulate the model-error.

• Joint calibration approach is used to estimate subsurface flow model and error-

model parameters.

• This procedure is flexible for large scale models with variable boundary conditions,

which fills the significant gap in the literature.

The second part of the thesis objective is related to the investigation and compar-

ison of the different algorithms for the calibration of imperfect reservoir models while

accounting for the model-error. In this part, two new algorithms are introduced which

are the variants of the proposed methodology of the first part of the thesis objective

and published algorithms. These algorithms are extensively evaluated and compared

to recently published algorithms which have the capacity to handle:

• Large scale models (e.g. subsurface oil and gas reservoirs).

• Physical systems which have strong serial correlated (structured) outputs.

• Physical systems with variable boundary conditions.

• Model-errors, which have strong correlation in time (i.e. structured errors).

The third part of the thesis objective is related to account for unknown sources

of the model-error during calibration. These situations are challenging and different

formulations/approaches are required to account for unknown model-error other than

joint calibration of physical model and error-model. Therefore a flexible ensemble-based

algorithm is developed for the calibration of the imperfect model which can account for

the unknown model-error from the residual (data mismatch) of the simulation model.

1.7 Summary of the thesis Chapters

The summary of each chapter of the thesis is given below. Each chapter was initially

written as separate paper, therefore it intends to be self-contained.
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1.7.1 Summary of Chapter 2

Chapter 2 presents the first part of the objectives of the thesis, where the sources of

the model-errors are known and prior model-error statistics could be estimated be-

fore calibration. The main motivation of this chapter is to account for model-error of

low-fidelity reservoir models because subsurface reservoirs are more heterogeneous and

complex than the simulation models in terms of scale, assumptions and description. In

this chapter, the issue of prediction reliability while calibrating imperfect/low-fidelity

reservoir models has been addressed. The main goal is to avoid over-confident and

inaccurate predictions by including a model for the bias terms (i.e. error-model of a

predefined form) during the history matching/calibration process. The aim is to obtain

nearly unbiased posterior distributions of the physical model parameters thus improv-

ing the prediction capacity of the calibrated low-fidelity reservoir models. In order to

achieve this aim, the Bayesian framework is adopted for the inversion of the imperfect

physical model. The Bayesian approach could provide a natural framework to the in-

version of the imperfect physical model if model-error is mapped in the form of function

approximation and defined as the prior error-model. In this chapter, the idea is to com-

bine the imperfect physical model and error-model in the form of one combined model

such that the error-model would take into account the discrepancy of the imperfect

physical model. This theory leads to the approach of the joint estimation of param-

eters of the imperfect physical model and error-model in order to obtain the nearly

unbiased posterior distribution of the parameters of the imperfect physical model and

reliable predictions. The posterior distribution of the error-model parameters could po-

tentially yield a better approximation of the posterior distribution of imperfect physical

model parameters and has the potential to provide the predictions of higher accuracy.

In this chapter, the principal component analysis (PCA) based error-model for-

mulation is proposed to improve the calibration and prediction capacity of imperfect

subsurface flow models. The model-errors of the subsurface reservoirs are not com-

pletely random in nature, therefore the error-model is formulated using PCA. The

coupled calibration approach is used as a joint estimation of the parameters of the
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imperfect subsurface flow-model and the error-model parameters. The structure of

the error-model and the prior distributions of the error-model parameters are evalu-

ated before calibration through analysis of leading sources of the model-errors and the

prior statistics of the model-error. The Bayesian framework is adopted for solving the

inverse problem using ensemble smoother with multiple data assimilation (ES-MDA)

algorithm.

In this chapter, two types of history matching procedures are investigated: history

matching while neglecting model-discrepancy (i.e. standard history matching proce-

dure) and joint history matching of the model parameters and the parameters of an

error/bias model. The standard history matching procedure relies on an implicit as-

sumption that the model-errors are generally small and could be neglected (i.e. the

simulation model is perfect). For the joint history matching procedure, an EBD and

input/output independent error-model formulation are utilized as it is more suitable for

large scale models (e.g. subsurface oil and gas reservoir models) and variable boundary

conditions (e.g. different well controls and open/shut schedules). Several typical sources

of model-errors are present in the test cases investigated in this chapter, including a

coarse grid, less detailed geological representation (i.e. upscaling of different types of

geological features including variogram based and channelized geology), discretization

errors and a slight change in well locations due to grid coarsening. The model-errors of

subsurface reservoirs are dominated by structured components, these errors are param-

eterized using smooth basis functions obtained by principle component analysis (PCA)

method. The prior realizations of the model-errors are computed from the difference

of the simulation output from pairs of models, accurate/high-fidelity versus approxi-

mate/low-fidelity. These prior realizations of the model-errors are used to obtain the

basis functions and the prior statistics of the coefficients of the PCA basis functions.

This limits the applicability of the developed approach to the cases for which an accu-

rate/high-fidelity model is available. However, the accurate/high-fidelity model is only

used to estimate the prior model-error statistics and is not used during the calibra-

tion process in the proposed methodology. The error-model formulation presented here

assumes that the total modelling errors consist of two components: structural compo-
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nent and noise-like component. The noise-like part of the model-error is also accounted

for during the history matching process to avoid over-fitting of the error-model. The

noise-like part is quantified using error-model misfits ζ which are estimated by taking

the difference of the prior realizations of actual model-error and corresponding fit of

the error-model. In this chapter prior to model calibration, the structure of the model-

error is estimated and represented by using several basis functions. The magnitude

of the noise-like component is accounted for using covariance of error-model misfit CT

and added into the measurement-noise covariance Cd. This step introduced additional

perturbation to the ES-MDA algorithm because of the effect of the total error covari-

ance i.e. CD = Cd + CT . During history matching, the weights of the basis functions

are jointly calibrated with the physical model parameters using data observed at well

locations. The presented formulation is general and can be applied to other sources of

modelling errors when dealing with low-fidelity subsurface models.

In this chapter, the subsurface reservoir has the dimensions of 7500 ft × 7500 ft × 20

ft in the x, y and z directions, respectively and has the two-phases (oil and water) in the

porous media. The initial reservoir pressure is 5000 psi and the reservoir has a uniform

porosity of 20%. The reservoir contains one injector well (I1) and three production

wells (P1, P2, P3) and is simulated using a 2D grid with Matlab Reservoir Simulation

Toolbox (MRST) (Lie, 2016). In the historical period, the flow rates at the production

wells and the bottom hole pressure of the injector well are used as the historical data

for the calibration process. One of the production wells is only used in the forecast

phase in order to assess predictions from calibrated models on wells drilled in future

development plans. Two test cases have been used in this chapter to investigate the per-

formance of the joint calibration of simulation and error-model parameters. These test

cases have typical model-errors originating from grid coarsening/up-scaling and from

utilizing an imperfect geological model description. The first test case is related to

the estimation of the uncertain log-permeability field originating from two-point statis-

tics. The distributed log-permeability fields are parameterized by retaining two leading

principal components obtained by singular value decomposition of the covariance of

the log-permeability fields. The prior statistics of the model-error are estimated by us-
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ing one hundred model discrepancy realizations generated from pairs of fine-scale/high

fidelity and coarse-scale/low fidelity models. The fine-grid/high-fidelity model uses a

2D grid with 75× 75 cells and used to generate the observed data perturbed with the

measurement noise. The coarse-grid/low-fidelity reservoir model contains only 5 × 5

grid blocks and is used for the calibration/history matching procedures. The second

test case is related to the estimation of the uncertain log-permeability field originat-

ing from multi-point statistics. The fine-scale/high fidelity model contains channelized

features of the log-permeability fields and these channels are disappeared in coarse-

model/low fidelity due to the aggressive up-scaling/coarsening of the log-permeability

field. The prior statistics of the model-error are estimated by using one hundred model

discrepancy realizations generated from pairs of channelized permeability images of

size 75× 75 grid blocks and the corresponding up-scaled permeability field with 5× 5

grid blocks which do not have geological channels due to aggressive up-scaling of the

log-permeability field. The observed data is generated from the fine-model with the

channelized permeability field by the addition of random perturbation of the measure-

ment noise. The coarse-grid/low-fidelity reservoir model (5× 5 grid blocks) is used for

the calibration/history matching procedures.

In this chapter, the results are obtained using the ES-MDA algorithm with eight

iterations for calibration of test cases 1 and 2 with and without accounting for the

model-discrepancy. In the case of joint calibration with error-model, two PCA compo-

nents were retained per each output time series to parametrize the model-discrepancy.

The results for test case 1 show that the posterior distribution from the calibration

while neglecting model-error are biased and the estimated basis weights of the log-

permeability field do not capture the true weights. Therefore, the predictions for

all wells are inaccurate from the calibrated model neglecting model-error. However,

the posterior distributions obtained by the joint inversion procedure are less biased

(i.e. nearly unbiased) and successfully cover the true model parameters, which result

in better matches and predictions for all wells. Similar results are obtained for test

case 2, which show the generality and consistency of the proposed methodology. The

calibrated models are evaluated using three different forecasting metrics to assess the
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quality of the estimated parameters and the capacity of the calibrated models in mak-

ing future predictions. The utilized forecasting metrics are: coverage probability (CP),

mean continuous ranked probability score (CRPS) and mean square error (MSE). CP

indicates the fraction of the actual data that lie within the specified confidence inter-

val of the estimation. Mean CRPS quantifies both accuracy and precision (Hersbach,

2000) and higher values of CRPS indicate less accurate results. MSE is widely used as

a metric for parameter estimation problems. However, MSE measures the quality of

data-fitting and is not enough to provide a probabilistic assessment of the estimation

and prediction from an ensemble of models. These metrics provide a good assessment

on the consistency, reliability, and accuracy of the forecasting capacity of the calibrated

models. With the joint inversion procedure, the CP is improved for all three quanti-

ties investigated (log-permeabilities, historical data, future prediction). Similarly, the

mean CRPS and MSE measures also show significant improvement by accounting for

model-error using the joint inversion procedure.

The methodology proposed in this chapter can be extended to different fine-scale

(high fidelity) reservoir simulation, which would be very expensive to run and may

not be feasible for uncertainty quantification and history matching problems, and its

corresponding coarse-scale (low fidelity) simulation. The methodology is also useful

for history matching of realistic geological models by accounting errors with respective

up-scaled imperfect geological descriptions or parametrization. In this chapter, prior

statistics of model-errors are estimated from known sources of errors and incorporated

in the calibration of imperfect reservoir models. There are some limitations of the

proposed methodology, that one must know the corresponding prior statistics of the

model-error. If prior statistics of model-error are not known, then the error-model may

dominate the simulator and estimated parameters would be under-predicted. This may

also result in bad predictions. It is also possible that the fine-scale model and assumed

geology are also wrong or highly biased. In that case, the first methodology can only

improve parameter estimation and prediction up to the limit of the fine-scale model,

which is used to learn prior statistics of model-error.

The idea of the joint calibration of the physical model with PCA based error-model
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was introduced by the candidate’s (main author) supervisor. The candidate imple-

mented the joint calibration approach and obtained all corresponding results related to

two different test cases of the imperfect reservoir models. The idea to account for addi-

tional covariance of the truncation error of the PCA based error-model was introduced

by the candidate. The truncation error of the PCA based error-model is termed as

error-model misfit in the Chapter 2. There is an additional co-author from Geoscience

Research center, TOTAL (sponsors of the candidate’s PhD work). She suggested the

test cases for the evaluation of proposed joint calibration approach of the physical

model and PCA based error-model. The test cases were inspired by the fact that the

subsurface reservoirs are more heterogeneous and complex than the simulation models

in terms of scale and description. Therefore the suggestion was to take the test cases

which is related to the coarse-scale and imperfect geological description. Furthermore

she also suggested forecasting metrics to evaluate and quantify the performance of the

proposed joint calibration approach. The forecasting metrics were implemented by the

candidate which allows to quantify the performance of the ES-MDA while neglecting

and accounting for model-error. The candidate wrote the published paper related to

Chapter 2, which was critically reviewed and edited by the second and third author.

1.7.2 Summary of Chapter 3

Chapter 3 presents the investigation and evaluation of six different algorithms for cal-

ibration (history matching) of imperfect physical models with the second part of the

thesis objective. The main focus is on flexible algorithms that can handle strong seri-

ally correlated outputs of the physical model, variable boundary conditions (i.e. variable

well open/shut schedules and rate/pressure controls) and structured errors (i.e. strong

correlation in time). Among those flexible approaches, Algorithms 3 and 4 are related

to the methodology proposed in Chapter 2. Algorithms 5 and 6 are newly introduced

approaches which are variants of the methodology proposed in Chapter 2 and the ap-

proaches by Köpke et al. (2018) and Oliver and Alfonzo (2018) respectively. The novelty

in Algorithms 5 and 6 is introduced in terms of identifiability of model-error parameters

and the use of joint calibration of both the pre-determined error-model and the physical
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model. The evaluation is performed on a test case representing model discrepancy due

to grid coarsening and upscaling of geological features. This test case is motivated by

the fact that generally geological models are a coarse representation of reality. Ensem-

ble smoother with multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013)

is used as a Bayesian inversion algorithm.

In this chapter, the first algorithm (base case scenario) relies on Bayesian inversion

while neglecting the model-error using ES-MDA. In the second algorithm, the resid-

ual obtained after calibration is used to iteratively update the total error covariance

combining the effects of both modelling errors and measurement errors. This algo-

rithm is inspired by the work of Oliver and Alfonzo (2018). In this algorithm, the

covariance matrix of the total error is initially set to equal the covariance matrix of

the measurement errors. In subsequent iterations, the covariance matrix of the total

error is updated based on the residual from the previous history matching iteration.

The algorithm is terminated after satisfying a model diagnostic criteria or reaching a

prespecified maximum number of iterations. In the third algorithm, the PCA-based

error-model is used to represent the model discrepancy during history matching. This

leads to a join inversion problem where both the model parameters and the parameters

of a PCA-based error-model are estimated. For the joint inversion within the Bayesian

framework, prior distributions have to be defined for all the estimated parameters and

the prior distribution for the PCA-based error-model parameters are generally hard to

define. In this study, the prior statistics of the parameters of the PCA-based error-

model are estimated using the difference of outputs obtained from prior realizations of

high-fidelity and low-fidelity models. In this formulation, the predictions are made by

summing the simulation outputs using the estimated physical model parameters and

estimated model-errors represented by the PCA-based formulation.

The fourth algorithm is similar to the third algorithm, however, an additional covari-

ance matrix of difference between the PCA-based error-model and the corresponding

actual realizations of prior error is added to the covariance matrix of the measurement

error as shown in Chapter 2. The difference between prior realizations of actual model-

errors and corresponding fit of the PCA-based error-model due to the truncation effect
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are called as second-order errors. This remaining mismatch (i.e. second-order errors)

are loosely captured by inflating the observation noise covariance with a diagonal ma-

trix, which is the variance of the remaining mismatch before history matching CT and

added into the measurement-noise covariance Cd. This step introduced additional per-

turbation and regularization to the ES-MDA algorithm because of the effect of the total

error covariance i.e. CD = Cd + CT .

In this chapter, the fifth algorithm (first newly introduced approach) is the variant

of the third algorithm and the approach proposed by Köpke et al. (2018). In this

algorithm, the data residual (the difference between observations and model outputs)

is filtered to remove the second-order model-error effect. Köpke et al. (2018) used

an orthonormal basis, which is generated from the differences between pairs of high-

fidelity (accurate) and low-fidelity models, to filter the model-error components from

the calibration residuals during the history matching of imperfect models. In this

algorithm, the filtering approach relies on building an orthogonal basis B for the error-

model misfit component ζ, which is obtained from the difference between the PCA-based

error-model and the corresponding actual realizations of the prior error. An additional

orthonormal basis is built on second-order errors using the Gram-Schmidt GS procedure

i.e. B = GS(ζ). These basis functions are projected onto the residual/data mismatch

R using E = BB
ᵀ
R to filter the data residual during the joint calibration process by

updating the observation using Dobs = dobs
−→
1Ne − E. This additional step introduced

additional perturbation and regularization to the ES-MDA algorithm in order to prevent

over-fitting the model parameters to data features that are not captured by the corrected

model. This procedure differs from the work presented in (Köpke et al., 2018), where the

orthonormal basis is built directly from the difference between the approximate physical

model and the perfect model without introducing any functional approximation to the

model discrepancy. In some sense, the second-order errors in algorithm 5 are filtered

before each history matching iteration while in algorithm 4 the second-order errors are

estimated before history matching and remain same during iterations.

The sixth approach (second newly introduced algorithm) is the variant of the algo-

rithm 3 and the approach introduced by Oliver and Alfonzo (2018), where the model
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discrepancy is described by the addition of physically motivated bias corrections terms

with the estimation of the total error covariance matrix of data residuals R obtained

after history matching using CD = 1
Ne

(R)(R)ᵀ. This procedure introduced additional

perturbation to the ES-MDA algorithm during recalibration steps. Oliver and Alfonzo

(2018) added physically motivated parameters for bias corrections and estimated the

total error covariance matrix using an ensemble of data residuals from the calibrated

models. In the current implementation, the PCA-based error-model is utilized as a

physically motivated bias correction term with an iterative update of the covariance

matrix of the total error during calibration.

The calibration performance of these six algorithms are evaluated on a simplified

reservoir model similar to test case 2 presented in Chapter 2. The true permeability field

is a channelized model of dimension 75 × 75 generated using multiple-point statistics

(MPS) (Mariethoz and Caers, 2014). This reference model is used to generate the

observation data with the addition of random perturbation of measurement-noise. The

simulation model used for history matching is a much coarser model with only 5×5 cells

with the corresponding up-scaled (5 × 5) field of the log-permeability. The up-scaled

model is obtained from harmonic averaging of the 75× 75 high-fidelity model. For the

up-scaled model, the physical model parameters are the permeability values at the 25

cells. In this test case, the model-errors are a consequence of aggressive grid coarsening,

slight change in well locations and poor geological representation. The implementation

of the last four algorithms requires extraction of the PCA basis functions for the model

discrepancy and the corresponding prior weights for the parameters of the error-model

based on output differences between pairs of high-fidelity and low-fidelity simulation

models generated from the prior realizations of the permeability field. For this step,

100 realizations of the model discrepancy are created by taking the difference of the

fine-scale model output/response using 100 log-permeability fields (75× 75 ) generated

by multi-point statistics and the corresponding up-scaled model responses (harmonic

averaging). The up-scaling of the permeability fields to a 5 × 5 grid blocks is quite

aggressive which results in large model discrepancies.

An ensemble of 100 members is used with eight number of iterations for calibra-
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tion using these six algorithms. For the last four algorithms, two PCA components for

each time series are retained to parameterize the model-error. The first algorithm re-

sults in the biased posterior distribution of ln(K) due to the negligence of model-errors

during calibration. Moreover, the estimated log-permeabilities show extreme values

(e.g. overshooting) and the posterior distribution failed to cover the reference coarse

log-permeabilities as a consequence the quality of the predictions is very bad due to

negligence of the model-errors during the model calibration process. The overshooting

of the physical model parameters is reduced to a certain degree by using the second

algorithm for calibration, where total errors are estimated at the end of each ES-MDA

calibration step. However, the quality of predictions is also quite biased with slightly

broader uncertainty intervals compared to algorithm 1. Third algorithm results in ad-

ditional improvements in the estimated physical model parameters due to the joint

inversion of parameters of the physical model and parameters of the error-model. How-

ever, the estimated distribution of parameters of the physical model does not cover the

true solution very well due to the limited capacity of the error-model as only two PCA

basis for each time series are retained. The predictions are improved using algorithm

3 due to the inclusion of the error-model term in the calibration process. However, the

quality of the predictions deteriorates with time. This is likely a consequence of a poor

split of the total residual between the error-model and the physical model. Algorithms

4, 5 and 6 show very good results in terms of reducing the bias/overshooting of the

physical model parameters and predictions, due to the inclusion of second-order errors

in addition to joint estimation of parameters of the physical model and parameters of

the error-model. These six algorithms are evaluated using the forecasting measures

of coverage probability (CP), mean continuous ranked probability score (CRPS) and

mean square error (MSE). The obtained results show the improvement in all quanti-

ties investigated (log-permeabilities, historical data, future prediction), which indicates

that a good parameterization of the error-model is needed in order to obtain a good

estimate of physical model parameters and to provide better predictions.

In this chapter, the last three algorithms (i.e. 4, 5, 6) outperform the other al-

gorithms in terms of the quality of estimated model parameters and the prediction
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capability of the calibrated imperfect models. The common feature among algorithms

4, 5 and 6 is the joint calibration along with corresponding variants of accounting for an

additional term that captures some remaining errors (a.k.a. second-order errors) that

are not captured by the error-model. When the calibrated models are used for predic-

tion, accounting for the second-order errors seems to allow for a better split (relative

contribution) between the physical model contributed and the error-model contribu-

tion. The relative contribution of the error-model in prediction can also be used as an

indicator of the magnitude of the model-error. If the contribution from the error-model

is high, this could be used as an indicator of the need for model refinement and/or

re-evaluation of the model assumptions. Algorithms 4, 5 and 6 scale very well with the

model dimension and can be used for large scale problems because the model-error is

parameterized in the output space (production profiles).

The idea of the evaluation and investigation of different algorithms was introduced

by the candidate’s (main author) supervisor. The candidate introduced two new algo-

rithms based on combining the ideas of the methodology proposed in Chapter 2 and

published algorithms. The candidate implemented all algorithms under consideration

and obtained all corresponding results related to test case 2 of the Chapter 2. There

is an additional co-author from Geoscience Research center, TOTAL (sponsors of the

candidate’s PhD work). She suggested the test case for the evaluation and investigation

of different algorithms under consideration. The test case was inspired by the fact that

generally geological models are a coarse representation of reality. Therefore the sugges-

tion was to take the test case which is related to the coarse-scale representation of the

imperfect geological description. Furthermore she also suggested forecasting metrics to

evaluate and quantify the performance of the different algorithms under consideration.

The forecasting metrics were implemented by the candidate which allows to quantify

the performance of the algorithms. The candidate wrote the published paper related

to Chapter 3, which was critically reviewed and edited by the second and third author.

1.7.3 Summary of Chapter 4

The proposed Algorithms in Chapters 2 and 3 require prior model-error statistics before
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the joint calibration of the physical and error-model parameters. The prior model-error

statistics is usually found by taking difference between high-fidelity/accurate model

and low-fidelity/imperfect model outputs. In real life applications, an accurate model

may not exist, but a high-fidelity model can still be constructed to be closer to real-

ity compared to the low-fidelity/imperfect model and approximate prior model-error

statistics could be estimated. However, in some situations one may have access to only

imperfect/low-fidelity model and there is a possibility that high-fidelity model contains

a large magnitude of the unknown model errors. This complex situation has been ad-

dressed in the Chapter 4, which presents the third part of the thesis objectives, where

the model-error during calibration is accounted for without knowing any source and

prior statistics of model discrepancy. Joint calibration can be non-robust if the prior

statistics of model-error is not realistic (Brynjarsdottir and O’ Hagan, 2014). Therefore,

the third part of the thesis objectives is challenging and requires a flexible ensemble-

based algorithm which can reduce bias after calibration of imperfect models in order to

improve the prediction capability/reliability of the calibrated physical model. The aim

of this chapter is to present the flexible ensemble-based algorithm which can be used

to quantify the unknown model-error uncertainty during calibration of the imperfect

physical model and match the data in case of the perfect model. Generally, we are

uncertain about the extent of the accuracy of the physical model. The main objective

of the flexible ensemble-based algorithm to reduce the uncertainty up to the limit of

the accuracy of the model so that the proposed algorithm could also be used as a di-

agnostic tool check to identify the reliability of the physical models and the need for

model refinement step.

This chapter presents the formulation of flexible iterative ensemble smoother, which

can be used to calibrate imperfect models where model-errors cannot be neglected.

This algorithm is the modification of the ensemble smoother with multiple data as-

similation (ES-MDA) as it has been widely used for calibrating simulators of various

physical systems due to the relatively low computational cost and the parallel nature

of the algorithm. However, ES-MDA had been designed for perfect models under the

main assumption that the specified physical/simulation models have the capability to
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model the reality accurately. The main idea of the proposed algorithm is to extract

the structural features of the model-error from the data mismatch (residual). In the

proposed algorithm, the residual (data mismatch) is split into two parts. The first part

of the residual is used to update the model-parameters and the second part is used to

represent the model-error. The initial split parameter is computed based on the ratio of

the norm of mean residual (mean deviation from observed data) and norm of maximum

residual (maximum absolute deviation from observed data). During calibration (data

assimilation) this split parameter is updated based on the ratio of the norm of mean

residuals obtained in current and previous iterations. The proposed split formulation

shows very close correspondence to best split (computed from true model-error) dur-

ing data assimilation. In this chapter, three test cases have been used to observe the

performance of the proposed algorithm. These test cases are related to the calibration

of polynomial functions, simple machine, and imperfect reservoir models. For compar-

ison purpose, calibration is performed using both the standard ES-MDA (Emerick and

Reynolds, 2013) and the proposed Flexible ES-MDA algorithm. An ensemble of 100

members is used with 8 iterations for the calibration of all test cases.

In the first test case, the cubic function is considered as the perfect model (the data

is generated from a cubic polynomial function and perturbed with an additive measure-

ment noise) and imperfect models are represented by quadratic and linear functions.

In this test case, the objective of the calibration of three models (cubic, quadratic

and linear models) is to obtain the posterior distributions of coefficients of each model

and the corresponding models’ outputs and to evaluate the flexibility of the proposed

algorithm in quantifying the model-error uncertainty for imperfect models as well as

the ability to match the data for the perfect model case. The calibration results show

that both standard ES-MDA and Flexible ES-MDA match the data for the cubic (per-

fect) model case. However, standard ES-MDA fails to match the data and results in

bias estimation of coefficients of imperfect (quadratic and linear) models due to the

negligence of model-error uncertainty during calibration. The proposed Flexible ES-

MDA reduces the bias in estimated coefficients of imperfect models by capturing the

unknown model-error uncertainty during calibration. The prediction interval coverage
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probability (PICP) of posterior distributions is used as one of the calibration metrics.

PICP is estimated by counting the number of observations in the confidence intervals

(10% to 99%) of the posterior distribution normalized by the total number of obser-

vations (Xu and Valocchi, 2015). PICP is a very useful metric for quantifying both

under-estimation and/or over-estimation of uncertainties in the obtained posterior dis-

tributions (Xu and Valocchi, 2015). The posterior distribution of cubic (perfect) model

output obtained by the standard ES-MDA underestimates the uncertainty. However,

the proposed Flexible ES-MDA shows more robust uncertainty quantification. This

effect is due to the efficient coverage of the noisy features of the observation data by

the proposed algorithm. PICP of the posterior distribution obtained from ES-MDA

for the imperfect linear and quadratic models show a severe underestimation of uncer-

tainties as the model-error uncertainties are missing in the formulation. A more robust

PICP values obtained from the proposed algorithm for calibrating the imperfect linear

and quadratic models. Calibration results from the proposed algorithm show lower

CRPS values for linear, quadratic and cubic models as compare to standard ES-MDA,

which indicates more reliable results in terms of precision and accuracy. MSE shows a

more widespread distribution of the posterior ensemble due to the coverage of unknown

model-error uncertainty using Flexible ES-MDA, however lower values of MSE is also

observed as compared to standard ES-MDA due to significant reduction in model-bias.

The second test case is related to the estimation of efficiency of the simple machine

model which lacks physics in terms of friction component. In this test case, the simple

machine model is calibrated with the observation data obtained from the unknown com-

plex machine. The main objective is to test the flexibility of the proposed algorithm for

the cases, where the model lacks some physics. In this test case, standard ES-MDA and

the proposed Flexible ES-MDA match the historical/training data, however, the predic-

tions obtained from the calibrated model using ES-MDA are overconfident, inaccurate

and unreliable. This is due to the estimation of the biased posterior distribution of

efficiency (parameter) of the simple machine. This bias in the efficiency (parameter) of

the machine is reduced significantly and posterior distribution covers the true efficiency

of the machine using the proposed Flexible ES-MDA. Due to this effect, more reliable
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predictions are obtained from a calibrated simple machine model using the proposed

algorithm. The PICP of training data shows more robust uncertainty quantification of

training data using the proposed Flexible ES-MDA. The prediction PICP is also im-

proved by the Flexible ES-MDA, which shows the increase in predictions reliability from

calibrated imperfect models (which lacks some physics). Similar results are observed

in terms of mean CRPS and MSE metrics for both historical/training and prediction

data.

The third test case is related to the calibration of the imperfect reservoir model,

which has a blurred channelized geological patterns due to the up-scaling and grid coars-

ening of very fine geological patterns. The imperfect reservoir model has two types of

model-errors, i.e. simplified geological representation and up-scaling errors. The true

model consists of very fine and channelized geological patterns which consist of 75× 75

grid blocks and used to generate the observation data by the addition of random per-

turbation of measurement noise. The imperfect reservoir model requires calibration for

estimation of the uncertain log-permeability field which consists of 15× 15 grid blocks

so that the calibrated model can be utilized for prediction purposes. The standard

ES-MDA results in over-shooting in most of the grid-block values of the estimated ge-

ological pattern of mean log-permeability. In this case, ES-MDA tried to aggressively

adjust the model parameters to match the observation while neglecting the model-

errors. The proposed Flexible ES-MDA results in a smooth geological pattern of the

log-permeability field while accounting for unknown model-error effects using a split

parameter. Moreover, relatively high values of standard deviation from Flexible ES-

MDA are observed as compared to ES-MDA, due to the effect of additional uncertainty

of unknown model-error. The standard ES-MDA performs well in terms of matching

the observed data, however, poor quality predictions are obtained from the calibrated

model. These over-confident and inaccurate predictions are due to the over-shooting

of log-permeability values around production wells. This is a common problem in the

petroleum industry, where the historical data is usually matched and often the cali-

brated models suffer from severe predictability problem (Carter et al., 2006). One of

the primary reasons for this problem is failing to account for model-error effects during
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the history matching/calibration process. In contrast, the proposed Flexible ES-MDA

algorithm performs relatively better in terms of predictions. This could be easily at-

tributed to the smooth mean log-permeability fields of the posterior ensemble. The

Flexible ES-MDA shows very robust uncertainty estimates for the model parameters

(log-permeability field). In addition, the proposed algorithm shows improved uncer-

tainty estimate of historical production data and the prediction PICP is also improved

as compared to standard ES-MDA, which shows the increase in prediction reliability

from calibrated imperfect reservoir models. The mean CRPS and MSE of the historical

data show lower values for standard ES-MDA as compared to Flexible ES-MDA due to

relatively better matching. However, Flexible ES-MDA shows significant improvement

for mean CRPS and MSE of prediction data. The good matching obtained when using

ES-MDA can mislead us to over-confident and inaccurate predictions in case of im-

perfect models and this over-confidence in inaccurate predictions can be avoided using

proposed Flexible ES-MDA.

The improvement in the physical model is recommended in terms of physics, as-

sumptions, details, and description if additional model-error uncertainty is indicated

by the proposed algorithm. Moreover, the flexibility of the proposed algorithm to ac-

count for unknown model-error uncertainty can give an idea about the reliability of the

calibrated model. The reduction in uncertainty is required for effective decision making

to the threshold value (i.e. minimum value which affects the decision-making process).

If the model-error uncertainty is greater than the threshold value, then the model re-

finement step is needed to reduce the model-error uncertainty. However, if there is a

time-constraint for the decision-making process and model-error uncertainty is below

the threshold value then the decision can be made from the calibrated imperfect models

using the proposed algorithm.

The last chapter presents the conclusions of the thesis.



Chapter 2

Quantification of prediction uncertainty

using imperfect subsurface models with

model error estimation

Subsurface reservoirs are far more heterogeneous and complex than simulation models

in terms of scale, assumptions and description. In this work, we address the issue

of prediction reliability while calibrating imperfect/low-fidelity reservoir models. The

main goal is to avoid over-confident and inaccurate predictions by including a model

for the bias terms (i.e. error-model of a predefined form) during the history matching

process. Our aim is to obtain unbiased posterior distributions of the physical model

parameters and thus improving the prediction capacity of the calibrated low-fidelity

reservoir models. We formulate the parameter estimation problem as a joint estimation

of the imperfect model parameters and the error-model parameters. The structure of

the error-model and the prior distributions of the error-model parameters are evaluated

before calibration through analysis of leading sources of the modeling errors. We adopt

a Bayesian framework for solving the inverse problem, where we utilize the ensemble

smoother with multiple data assimilation (ES-MDA) as a practical history matching

algorithm.

We provide two test cases, where the impact of typical model errors originating

from grid coarsening/up-scaling and from utilizing an imperfect geological model de-

scription is investigated. For both cases results from the ES-MDA update with and

The contents of this chapter have been published in Journal of Hydrology (2019), but includes

modifications following the viva. https://doi.org/10.1016/j.jhydrol.2019.02.056
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without accounting for model error are compared in terms of estimated physical model

parameters, quality of match to historical data and forecasting ability compared to

held out data. The test results show that calibration of the imperfect physical model

without accounting for model errors results in extreme values of the calibrated model

parameters and a biased posterior distribution. By accounting for modeling errors

the posterior distribution of the model parameters is less biased (i.e. nearly unbiased)

and improved forecasting skills with higher prediction accuracy/reliability is observed.

Moreover, the consistency between the different runs of the ES-MDA is improved by in-

cluding the modeling error component. Although the examples in the chapter consider

the oil-water system with permeabilities being parameters of the physical model, the

developed methodology is general and can be applied to typical ground water hydrology

models.

2.1 Introduction

In subsurface reservoir modeling, various approximations are introduced at different

stages of the modeling process which in turn render most of the models to be imperfect

and low-fidelity in nature. However, these imperfect models are generally still useful for

understanding the key physical interactions within the subsurface regions of interest.

The sources of approximations (a.k.a. modeling errors) include: properties up-scaling

(grid coarsening), discretization errors, imperfect reservoir fluid properties, relative per-

meability, reservoir geology description/parameterization and approximate representa-

tion of the complete complex subsurface fluid flow physics (e.g. black-oil model in place

of a compositional model or constant rock compressibility assumption).

In the context of error modeling, grid up-scaling has been widely studied within

the reservoir simulation community. In the published literature, there exist a number

of efficient up-scaling techniques (Durlofsky, 2003), aiming to obtain optimal upscaled

properties. However, up-scaling errors are not completely eliminated by most of these

methods. Discretization errors also cannot be eliminated (Ertekin et al., 2001), even

after selecting an optimal grid size and utilizing adaptive time stepping techniques.
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Additionally, numerical simulation using an optimal fine-grid could be computationally

prohibitive especially for tasks that typically requires many simulation runs, for exam-

ple history matching or robust optimization problems. Various techniques have been

proposed to address this computational bottleneck, for example reduced order model-

ing and proxy models among many other techniques [c.f., Silva et al., 2007; Rammay

and Abdulraheem, 2014; Cardoso et al., 2009]. An alternative approach is to utilize

an upscaled model instead of the fine scale model for multi-query computationally de-

manding tasks (e.g. uncertainty quantification problems). In the context of history

matching, if the up-scaling errors are not modeled during the parameter inference step,

the posterior distributions of the model parameters is likely to be biased and this bias

will subsequently affect the future predictions of the engineering quantities of interest

(e.g. oil, gas and water rates/pressure). Omre et al. (2004) approximated the up-scaling

and discretization errors by computing samples or realizations of the error data using

pairs of fine- and coarse-scale models. The model errors due to up-scaling were then

estimated using a multiple regression technique and added to the coarse scale model

predictions during the history matching process. Lødøen et al. (2005) utilized a similar

procedure on a different set of test cases while employing a more accurate up-scaling

procedure.

Accurate reservoir geology description is another challenging task due to various

uncertainties including: channel geometry, faults shape, facies proportion, stratigraphic

and/or structural frameworks. It is widely known that unrealistic geological models

could be calibrated to match the historical data [c.f., Carter et al., 2006; Refsgaard

et al., 2012]. However, these fitted models fail to provide reliable predictions and could

ultimately mislead the reservoir development plans [c.f., Carter et al., 2006; Refsgaard

et al., 2012]. Although considerable effort is often put into constructing geological

models that are as realistic as possible, it is very difficult to maintain this geological

realism while updating them to match the observed data (Sun and Durlofsky, 2017).

Accounting for model errors during the calibration process has attracted a large

body of research [c.f., Oliver and Alfonzo, 2018; Dreano et al., 2017; Josset et al., 2015],

where various approaches have been developed to account for the model-error compo-
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nent during model calibration [c.f., Hansen et al., 2014; Evin et al., 2014b; Reichert

and Schuwirth, 2012b]. These approaches vary according to the different behavior and

complexity of the modeled physical system. For example in hydro-geophysical sys-

tems, Köpke et al. (2018) accounted for the model-error component using orthonormal

basis generated from an error dictionary which is continuously enriched during the

calibration process. The models of the bias or error component could be generally

classified as either input dependent (Giudice et al., 2013) or output dependent (Evin

et al., 2014b). Input dependent model error formulation represents the error compo-

nents as a function of the model parameters. For example, a reservoir model-error

can vary with permeability realizations or other input model parameters. O’ Sullivan

and Christie (2005) utilized an input dependent formulation for the model-error where

the authors computed model-error realizations using the difference between a fine-grid

and coarse-grid model outputs. During the calibration process, an interpolation of the

error component was performed to estimate a correction term to the coarse-grid model

predictions. Lødøen and Tjelmeland (2010) used multiple linear regression algorithm

to model errors, where the residual part for the multiple regression was assumed to

depend on the model input parameters. The residual terms were modeled using a zero

mean Gaussian Process. Giudice et al. (2013) used an input dependent model-error

representation to improve uncertainty estimation in urban hydrological models. In that

application, the model error variance was set to be dependent on the input of the rain-

fall term. Output dependent model error formulation represents the error components

as a function of the output of the physical model. For example, Evin et al. (2014b)

utilized an output dependent formulation for the model-error heteroscedasticity as a

function of the simulated streamflow. In a realistic setting, where large models are

utilized (i.e. millions of input parameters), it is hard to relate the model errors to the

high dimensional input parameter space and output dependent or input/output (I/O)

independent forms of the model-error were proposed as an alternative approach that

might have some advantages over the input-dependent error-models (Giudice et al.,

2013).

Model-error representation can also be classified as either an external bias descrip-
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tion (EBD) or an internal noise description (IND) (Giudice et al., 2015). EBD was

developed using the background of statistical inference in a regression type frame-

work (Giudice et al., 2015). In EBD, the model-error term is added externally into the

forward model (approximate or inadequate model) output. In IND, the model-error is

formulated as an additional term of the state space (Giudice et al., 2015). This approach

is also known as state space modelling or stochastic gray-box modelling [c.f., Morad-

khani et al., 2012; Kristensen et al., 2004]. Giudice et al. (2015) concluded that EBD

has some advantages over IND in terms of long-term predictions.

In this chapter, we utilize an EBD and I/O independent error-model formulation as

it is more suitable for large scale models (e.g. subsurface oil and gas reservoir models)

relying on black-box simulators. Several typical sources of model errors are present

in the test cases investigated in this chapter, including a coarse grid, less detailed

geological representation (i.e. upscaling of different types of geological features including

variogram based and channelized geology), discretization errors and slight change in well

locations due to grid coarsening. The error-model formulation presented here, assumes

that the total modeling errors consists of two components: structural component and

noise-like component. We note that the structural component is often neglected in the

bias correction approaches developed in hydrological literature [c.f., Maier et al., 2014;

Vrugt, 2016; White et al., 2014]. In this study prior to model calibration, the structure

of the model error is estimated and represented using several basis functions, and the

magnitude of the noise-like component is quantified. During history matching, the

weights of the basis functions are jointly calibrated with the physical model parameters

using data observed at well locations. The noise-like part of the model error is also

accounted for during the history matching process to avoid over-fitting of the error

model. We note that the presented formulation is general and can be applied to other

sources of modeling errors when dealing with low-fidelity physical models. The low-

fidelity models are generally used as efficient surrogate models for computationally

demanding tasks [c.f., Asher et al., 2015; Laloy et al., 2013].

For Bayesian inversion, we use a particular type of iterative ensemble smoother ES-

MDA (Emerick and Reynolds, 2013). The formulation of ES-MDA has some similarities
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with Kalman filtering algorithms (Sun et al., 2016). However, ES-MDA assimilates data

from different times simultaneously and the same set of data is assimilated multiple

times with an inflated data noise covariance matrix which is equivalent to annealing

approaches (Stordal and Elsheikh, 2015). The rest of the chapter is organized as follows:

In Section 2.2, we present some background on Bayesian inverse modeling followed by

the proposed error-model formulation. Following that, we present the case studies with

results in Section 2.3 followed by the conclusions of our work in Section 2.4.

2.2 Methodology

Bayesian inverse modeling is a generic inference framework that is widely adopted for

calibration of reservoir models while accounting for different types/sources of uncertain-

ties. In the Bayesian framework, the conditional probabilities p(m|dobs) of the model

parameters m given the observational data dobs (a.k.a. posterior distribution of the

model parameters) is estimated using Bayes rule (Oliver et al., 2008):

p(m|dobs) ∝ p(dobs|m) p(m), (2.1)

where m is the model parameters vector of size Nm, dobs is the observations vector of

size Nd, p(m) is the prior probability of the model parameters and p(dobs|m) is the

likelihood function of the data given a specific realization of the model parameters m.

It is common to assume a Gaussian prior:

p(m) ∝ exp
(
− 1

2
(m−mpr)

ᵀC−1M (m−mpr)
)
, (2.2)

where mpr is an Nm dimensional vector of the mean prior model parameters and CM

is the covariance matrix of the prior model parameters. It is also common to assume

that data noise is Gaussian, so that the likelihood function takes the form:

p(dobs|m) ∝ exp
(
− 1

2
(dobs − d)ᵀC−1D (dobs − d)

)
, (2.3)

where d is the simulated or predicted data vector using the model parameters m and CD

is the error/noise covariance matrix which is defined in Sect. 2.2.1 and 2.2.2 depending
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on the utilized history matching procedure. Using these definitions, Bayes’ rule defined

in Eq. 2.1 could be expanded as following:

p(m|dobs) ∝ exp

(
− 1

2

(
(dobs−d)ᵀC−1D (dobs−d) + (m−mpr)

ᵀC−1M (m−mpr)
))
. (2.4)

Several algorithms could be used to generate samples from the posterior distribution

of the model parameters (Oliver et al., 2008). Among those Markov Chain Monte Carlo

(MCMC) is an exact method for sampling. However, MCMC can be computationally

expensive due to the large number of iterations needed to reach convergence and the

sequential nature of the method. Ensemble-based methods have been widely used for

calibrating subsurface flow models due to the computational feasibility and parallel

nature of ensemble methods. In this study, we utilize the ensemble smoother with

multiple data assimilation (ES-MDA) algorithm for the calibration step (Emerick and

Reynolds, 2013). ES-MDA belongs to a class of iterative ensemble smoothing techniques

that could be used to solve non-linear inverse problem iteratively with an inflated noise

covariance matrix. The ES-MDA algorithm steps are summarized as follows:

• Select the number of iterations (number of data assimilation) Na and the inflation

factor α. A common choice of the inflation factor is to set it as a constant value

for all iterations α = Na. The fixed value of alpha was taken in the original

ES-MDA paper (Emerick and Reynolds, 2013). However, the fixed alpha can be

non-robust in some cases (Iglesias, 2016, 2015). We have taken fixed alpha in

order to further explore the regularization capability of the presented error-model

approach with limited number of ensemble members.

• Initialize an ensemble of model parameters and perturb the observation data for

each ensemble member using:

duc,j = dobs +
√
α C

1/2
D zd, (2.5)

where the subscript j is the ensemble member index j = 1 . . . Ne and Ne is the

ensemble size, duc,j is Nd dimensional vector of perturbed observation, zd is the Nd

dimensional vector with standard Gaussian random variables as its components

(i.e. zd ∼ N (0, INd,Nd
)).
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• Update each ensemble member using,

m
(i+1)
j = m

(i)
j + CMD (CDD + α CD)−1(duc,j − dj), (2.6)

where the superscript i is the iteration index, CDD is the model output covariance

matrix and CMD is the cross covariance matrix of model parameters and model

predictions.

• Repeat the above steps for all iterations, from i = 1 to Na

2.2.1 Procedures for history matching of reservoir models

In this study, two types of history matching procedures are investigated: history match-

ing while neglecting model-discrepancy (i.e. standard history matching procedure) and

joint history matching of the model parameters and the parameters of an error/bias

model. In this chapter, we use the term model-discrepancy and model-error inter-

changeably. The standard history matching procedure relies on an implicit assumption

that the model-errors are generally small and could be neglected (i.e. the simulation

model is perfect). Mathematically, if an accurate/high-fidelity model is utilized, the

observed data is formulated as (Giudice et al., 2013):

dobs = g(mtrue) + εd, (2.7)

where g(.) is a nonlinear function representing the accurate/high-fidelity forward sim-

ulation model, mtrue is the true model parameters, εd is the measurement errors which

is usually assumed to follow a normal distribution N (0,Cd) and Cd is the measure-

ment errors covariance matrix. In this study, uncorrelated measurement errors are

considered, therefore the matrix Cd is a diagonal matrix. In standard history matching

(i.e. neglecting modeling errors), CD in Eqs. 2.3, 2.4, 2.5 and 2.6 is set to the covariance

of measurement errors. Therefore,

CD = Cd. (2.8)

However, as noted in the introduction section, several approximations are commonly

introduced in the computational model to simplify the simulation process (e.g. black-

oil model versus compositional flow), or to speed-up the simulations (coarsening of the
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simulation grid). During history matching if the model-error caused by these approx-

imations is not accounted for, the obtained posterior distribution could be biased. In

the case of utilizing an approximate/low-fidelity model, the observation data is related

to the true model parameters mtrue as (Giudice et al., 2013):

dobs = g̃(mtrue) + εd + εm, (2.9)

where εm is the model-error and g̃(.) is a nonlinear function representing the imper-

fect (approximate/low-fidelity) simulation model. By subtracting Eq. 2.7 from 2.9, we

obtain:

εm = g(mtrue)− g̃(mtrue). (2.10)

In the following sub-section, we present a simple yet general parameterization of the

model-error term εm.

2.2.2 Error-model formulation

In this study, EBD and I/O independent error-model approach is considered. As the

model errors in our test cases were dominated by structured components, these er-

rors are parameterized using smooth basis functions obtained by principle component

analysis (PCA) method, which is an effective data-driven dimension reduction tech-

nique (Shlens, 2014; Kerschen et al., 2005). We rely on simulation output from pairs

of models, accurate/high-fidelity versus approximate/low-fidelity, to obtain the basis

functions and the prior statistics of the coefficients of the PCA basis functions. We

acknowledge that this limits the applicability of the developed approach to the cases

for which an accurate/high-fidelity model is available. However, we note that the ac-

curate/high-fidelity model is only used to estimate the prior model-error statistics,

and is not used during the calibration process. This is a notable difference between

the presented framework and related studies by Josset et al. (2015) and Köpke et al.

(2018). Josset et al. (2015) used the proxy and error models to accelerate the perfor-

mance of two-stage MCMC and high-fidelity/accurate models were used during the

evaluation of posterior distribution. Köpke et al. (2018) used orthonormal basis, which
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is generated from the differences between pairs of high-fidelity and low-fidelity models,

to filter the model-error components from the data residuals in the hydrogeophysical

inverse problems and the high-fidelity/accurate models were used to update the error-

dictionary for generation of local orthonormal basis during the calibration process.

In the current setting, the prior model-error realizations are estimated using:

εmr = g(mr)− g̃(mr), (2.11)

where r is the index of the prior realizations, i.e. r = 1 to Nr, Nr is the total number of

realizations used to estimate the model-error statistics, εmr is an Nd dimensional vector

of model-error for realization r. All prior model-error realizations are assembled into

the matrix ε ∈ RNd×Nr . The mean of the model-error prior is,

ε̄m =
1

Nr

Nr∑
r=1

(εmr). (2.12)

The covariance of the model-error prior is (Oliver et al., 2008),

Ce =
1

Nr − 1
(ε− ε̄mINr)(ε− ε̄mINr)

ᵀ, (2.13)

where INr is an Nr dimensional row vector with all ones as its components. In this

study, PCA is used to parametrize the prior model-error realizations and the weights

of the obtained PCA basis vectors are jointly inferred with the model parameters dur-

ing the history matching process. The basis functions are obtained by singular value

decomposition (SVD) of the error covariance matrix Ce (Oliver et al., 2008):

Ce = UΣVᵀ, (2.14)

where U and V are the orthonormal singular vectors (basis functions) and Σ is a

diagonal matrix of the singular values. The error-model is formulated using the leading

L singular vectors as following:

ε̂mr = Φβr + ε̄m, (2.15)

where Φ ∈ RNd×L are the first L orthonormal singular vectors (basis functions) from

U and βr ∈ RL×1 are the coefficients of error-model for realization r.
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The objective of the calibration process is then to find the posterior distribution

of reservoir model parameters and the coefficients β of the PCA-based error-model.

Since Bayesian inverse modelling require prior statistics of model parameters, therefore

the prior statistics of the coefficients β should be estimated. The least square form of

Eq. 2.15 is used to compute prior realizations of the coefficient vector β as following:

βr = (ΦᵀΦ)−1Φᵀ(εmr − ε̄m). (2.16)

Since Φ is an orthonormal matrix i.e. Φᵀ ≈ Φ−1, therefore Eq. 2.16 can also be written

as:

βr ≈ Φᵀ(εmr − ε̄m). (2.17)

The prior statistic, such as the mean and covariance of β realizations are computed

using:

µβ =
1

Nr

Nr∑
r=1

(βr), (2.18)

Cβ =
1

Nr − 1

Nr∑
r=1

(βr − µβ)(βr − µβ)ᵀ, (2.19)

where µβ ∈ RL×1 is the mean of β realizations and Cβ ∈ RL×L is the covariance of β

realizations. In this study, we only consider the diagonal terms of the matrix Cβ to

generate prior samples of error-model coefficients for the history matching purpose.

In order to avoid over-fitting the error-model, the number of coefficients of the PCA-

based error-model L should be limited to a small number. Therefore the PCA-based

error model is truncated in order to reduce the number of parameters of the error-model.

Generally, overfitting is the historical data matching when a model is too closely fit a

limited set of data points such that the model fails to provide reliable future predictions.

In the ensemble-based probabilistic framework, overfitting could have occurred due

to the limited ensemble members, non-robust regularization or over-parameterization,

which results in an underestimation of the approximate posterior distribution or fails

to cover multiple local maxima (multi-modality/non-unique solution). The residual of

the error-model (truncation error) needs to be included in the inversion process which

is useful to avoid overfitting in the proposed joint calibration framework. The residual
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of the least square fit is defined as,

ζmr = εmr − ε̂mr. (2.20)

All residual realizations are assembled into matrix ζ ∈ RNd×Nr . The covariance of the

residual from all error-model realizations is then estimated using:

CT =
1

Nr − 1
ζζᵀ, (2.21)

where CT is denoted the error-model noise covariance. For history matching of imperfect-

models, the total error covariance matrix CD in Eqs. 2.3, 2.4, 2.5 and 2.6 contains both

the measurement and error-model noise components as following:

CD = Cd + CT . (2.22)

For simplicity, only the diagonal terms of the matrix CT is considered in this study.

The covariance CT is computed using truncation error of the PCA-based error model.

The PCA-based error-model can capture the strong correlation of the serial correlated

model-errors with respect to time. The truncation part is usually weakly correlated with

respect to time therefore the diagonal CT is used instead of the full covariance. Concep-

tually, CD is the total uncalibrated uncertainty, which includes both the measurement

noise and the model-error noise that is not captured by the truncated PCA-based error-

model. In (Hansen et al., 2014), modeling errors were considered as uncalibrated uncer-

tainties using Gaussian distribution (i.e. accounting for mean and covariance of errors).

In their approach, the model error is accounted for by replacing dobs with dobs+ ε̄m and

replacing Cd with Cd + Ce. However, this approach would be inconsistent/inefficient

for physical systems which exhibit highly complex statistics and correlations of model

errors that change significantly not only over the data space, but also as a function of

the input model parameters. (Köpke et al., 2018).

2.3 Case Studies

In this section, we present the details of the case studies. The dimension of the sub-

surface reservoir is 7500 ft × 7500 ft × 20 ft in the x, y and z directions, respectively.



Quantification of prediction uncertainty using imperfect subsurface models
with model error estimation 50

Incompressible two-phase porous media flow of oil and water is considered. The ini-

tial reservoir pressure is 5000 psi and the reservoir has uniform porosity of 20%. The

reservoir contains one injector well (I1) and three production wells (P1, P2, P3) and

is simulated using a 2D grid. We utilize the Matlab Reservoir Simulation Tool-box

(MRST) (Lie, 2016) for the forward model simulations. Corey’s power law model is

used to represent relative permeabilities. Parameter values for the Corey’s model and

fluid properties are listed in Appendix A. The gravitational and capillary pressure effects

are neglected. The wells locations and open/shut schedule are shown in Fig. 2.1(a) and

(b). The production wells are operated under constant bottom hole pressure constraint

of 4500 psi and the injector well is operated under constant injection rate constraint

with varying control values as shown in Fig. 2.1(c). Figure 2.1 also shows end of his-

torical period (i.e. 2 years). In the historical period, the flow rates at the production

wells and the bottom hole pressure of the injector well are used as the historical data

for the calibration process. We also note that one of the production wells (P3) is only

used in prediction phase in order to assess predictions from calibrated models on wells

drilled in future development plans.
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Figure 2.1: Wells locations, wells open/shut schedule and Injection well control rates. Part

(a) shows the locations of wells locations. Part (b) shows wells open/shut schedule. In part

(b) solid back lines indicate the time periods when a well is open to flow. Part (c) shows the

water injection rate of injector well. Dashed black lines show end of historical period.

The calibrated models are evaluated using three different forecasting metrics to
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assess the quality of the estimated parameters and the capacity of the calibrated models

in making future predictions. The utilized forecasting metrics are: coverage probability

(CP), mean continuous ranked probability score (CRPS) and mean square error (MSE).

CP indicates the fraction of the actual data that lie within the 95% confidence interval

of the estimation. A value of 0.95 for CP indicates a consistent estimation of uncertainty

and values below 0.95 indicate underestimation of uncertainty. Mean CRPS quantifies

both accuracy and precision (Hersbach, 2000) and higher values of CRPS indicate a less

accurate results. MSE is widely used as a metric for parameter estimation problems.

However, MSE measures the quality of data-fitting and is not enough to provide a

probabilistic assessment of the estimation and prediction from an ensemble of models.

In this study, we observed that a combination of MSE, CP and CRPS provides a good

assessment of the quality for the probabilistic forecast (Skauvold and Eidsvik, 2018).

The mathematical formulations of the three forecasting metrics are listed in Appendix

B.

2.3.1 Case 1: Coarse scale model

In the first case study, fine-grid/high-fidelity model uses a 2D grid with 75 × 75 cells.

The distributed log-permeability fields are modeled as multivariate Gaussian with ex-

ponential covariance function:

c = σ2 exp(−3(
s

ra
)γ), (2.23)

where s is the lag distance and ra, σ
2, γ are the correlation range, variance and ex-

ponent respectively (which are 35 cells, 1 and 1 respectively in this test case). The

log-permeability field ln(K) is parameterized using PCA and only two leading basis

functions are retained:

ln(K) = ln(K) +
Nw∑
b=1

wbψb, (2.24)

where ln(K) is the mean log-permeability (equal to 4 in this test case), b is index of

the basis weight w and basis function ψ and Nw = 2. Figure 2.2(b) shows the leading

two principal basis functions obtained by singular value decomposition of covariance of
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log-permeability fields (Eq. 2.23). Figure 2.2(a) shows the prior distribution of weights

obtained by projecting the log-permeability fields into the PCA-basis functions.
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Figure 2.2: Prior distribution of basis weights from five ensembles and two principle basis func-

tions for log-permeability. Red dashed lines show reference solution and five prior ensembles

distribution are shown by five different colors in part (a).

Figure 2.3(a) shows the reference fine scale log-permeability field. The fine scale

reference log-permeability field is generated by the leading two-PCA basis functions

and reference basis weights are shown as the red vertical lines in Fig. 2.2. The coarse-

grid/low-fidelity reservoir models contain only 5× 5 grid blocks. The coarsened version

of the reference fine model is shown in Fig. 2.3(b), in which harmonic averaging is used

to up-scale the permeability field. The harmonic average of permeability is a non-robust

approach for up-scalling and it is deliberately chosen to introduce the model-error into

the simulation model. The observed data are generated by the fine scale model using

reference log-permeability field (Fig. 2.3(a)) with the addition of measurement noise of
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2% of the reference solution. We note that except permeabilities, the rest of the static

and dynamic properties (i.e. porosity, relative permeability, viscosity, and density, well

controls and schedule) of the coarse scale model are the same as the fine scale model.
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Figure 2.3: The fine scale (75 × 75) reference log-permeability (a) and the corresponding

up-scaled log-permeability (5× 5) using harmonic average (b).

Two different procedures of history matching the coarse scale model were consid-

ered. In the case of neglecting model-discrepancy, PCA basis weights w of the log-

permeabilities are calibrated (i.e. mj = w in Eq. 2.6). In the case of joint inversion

with error-model, the estimated parameters consist of the combined vector of the log-

permeability PCA weights and the error-model coefficients (i.e. mj = [w;β] in Eq. 2.6).

Prior statistics of the model-discrepancy were estimated using Eq. 2.11. One hun-

dred fine scale permeability realizations were generated through Eq. 2.24 by sampling

the prior distribution of the PCA-basis weights and a corresponding number of coarse

scale permeability realizations were obtained using harmonic up-scaling. Forward runs

were then performed for both the coarse and fine scale models to obtain the error re-

alizations using Eq. 2.11. A smaller number of realizations could be used to evaluate

the model-discrepancy statistics. In that case, special care should be taken to select

a representative set of prior realizations to cover the respective statistic. Figure 2.4

shows the prior statistics of the model-discrepancy in the simulated well production
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data (bottom hole pressure of the injector well and flow rates of the producers).
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Figure 2.4: Prior model-error statistics of all wells for Case 1. Black lines show mean model

errors, dashed blue lines show the 95% confidence interval (mean plus and minus two standard

deviations) of model errors.

2.3.2 Case 1 Results

In this subsection, we present history matching results for test case 1 with and without

accounting for the model-discrepancy. All the ensemble-based history matching results

are presented for multiple runs (five independent ensembles) in order to investigate the

consistency and reliability of the parameter estimation process. Each ensemble run

consists of 100 ensemble members and the measurement errors are assumed to be 2% of

the observation data. We utilized the ES-MDA algorithm with eight iterations (Na = 8

and α = Na) for calibration. Generally 100 ensemble members are used as a thumb

rule in oil and gas industry for ensemble based calibration. The same ensemble size

was also taken in the original ES-MDA paper (Emerick and Reynolds, 2013). In the

case of joint inversion with error-model, two PCA components were retained per each

output time series to parametrize the model-discrepancy. Since we have seven output
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time series, the total number of error-model parameters is 14.

In this test case, the log-permeability is calibrated in terms of the PCA-basis weights,

i.e. w1,w2 as detailed in the problem description. Figure 2.5 shows the posterior distri-

butions of the basis weights for the five runs, for both cases of neglecting and accounting

for model error. The results presented in Fig. 2.5(a) show that the posterior distribu-

tion from the inversion (neglecting model-error) procedure are biased and the estimated

basis weights do not capture the reference weights. In contrast, the posterior distri-

butions obtained by the joint inversion procedure are less biased (i.e. nearly unbiased)

and successfully cover the true model parameters as shown in Fig. 2.5(b).
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Figure 2.5: Posterior distribution of two PCA basis weights (of ln(K)) obtained after history

matching for coarse scale model case. Dashed red lines show the reference solution and the

posterior distribution of the five ensembles are shown by five different colors.

Figure 2.6 shows the mean and standard deviation of the posterior ln(K) for test

case 1. In Fig. 2.6(a) the mean of posterior log-permeability field obtained from five
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different runs are shown for the inversion procedure. This posterior mean is clearly

different from the coarse scale reference log-permeability field shown in Fig. 2.3(b)

due to the bias in the inferred posterior distributions. Figure 2.6(b) shows the mean

posterior log-permeability fields obtained by the joint inversion procedure. These fields

are quite similar to the coarse scale reference log-permeability field. We also observe

that the posterior standard deviations are quite low for the inversion (neglecting model-

error) procedure, which could be a sign of over-fitting the data. In contrast for the joint

inversion procedure, the standard deviations of the posterior fields are much larger due

to accounting for the model error and including the error-model noise covariance matrix

CT in Eq. 2.22.

In case 1, the log-permeability fields are parameterized using PCA with basis func-

tions on fine-grid. The fine-grid solutions can be generated using the approximate pos-

terior distributions of the PCA-weights of the log-permeability field, which are shown

in Fig. 2.5. Figure 2.7 shows the mean and standard deviation of the posterior ensemble

ln(K) on the fine grid. The posterior means of different ensembles are clearly different

from the reference log-permeability field on fine scale (Fig. 2.3(a)) due to the negligence

of model-error. However, the posterior means obtained after joint calibration are similar

to the fine scale reference log-permeability field (Fig. 2.3(a)). The standard deviations

of the posterior ensemble on the fine scale show the similar behaviour as the standard

deviations of the posterior ensemble on the coarse scale.
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Figure 2.6: Mean and standard deviation of ln(K) posterior ensembles obtained after history

matching of two PCA basis weights for coarse scale model case.



Quantification of prediction uncertainty using imperfect subsurface models
with model error estimation 58

Mean Standard deviation Mean Standard deviation

E1

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

E2

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

E3

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

E4

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

E5

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

(a) inversion (neglecting model-error)

3.6

3.8

4

4.2

4.4

4.6

4.8

0

0.02

0.04

0.06

0.08

(b) joint inversion with error-model

Figure 2.7: Mean and standard deviation of ln(K) posterior ensembles on the fine grid ob-

tained after history matching of coarse scale model.

Figures 2.8 and 2.9 show the oil and water production rates of the different pro-
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duction wells and the bottom hole pressure of the injector well. The 50th percentile

p50 and 95% confidence interval (the shaded region) are obtained by combining results

from all five runs. In part (a) of these figures, the results for the inversion (neglecting

model-discrepancy) are presented and the results of the joint-inversion with error-model

are shown in part (b). For the inversion (neglecting model-error) procedure, the results

are mixed where the data are matched for some cases and not matched for others. For

example in Fig. 2.8(a), the data match is quite good for the wells P1 and P2. However

in Fig. 2.9(a) the data match for well I1 is not as good. Moreover, the predictions for

all wells are inaccurate for the inversion (neglecting model-error) procedure. Further-

more, the prediction envelop is really narrow, resulting in invisible confidence interval

in the plots, which shows over-confidence in the inaccurate predictions. In comparison,

better matches and predictions are obtained by the joint inversion procedure as shown

in Figs. 2.8(b) and 2.9(b).

Figure 2.10 shows the forecasting metrics (CP for the estimated log-permeabilities

and mean CRPS, MSE, CP for the well data in history matching and prediction periods)

for individual ensemble (E1 to E5) and for results from all five ensembles assembled

together (denoted as “All” in the figure). These metrics provide a good assessment

on the consistency, reliability and accuracy of forecasting capacity of the calibrated

models. Figures 2.10(a) and 2.10(b) show the coverage probability of reservoir model

parameters (ln(K)), well data for both the history matching period and the forecasting

period. Both the inversion (neglecting model-error) and the joint inversion results are

shown. In Fig. 2.10(a) CP of ln(K) is zero for each individual ensemble (E1 to E5)

as well as for all five ensembles combined meaning that none of the ensemble captures

the true log-permeability using the inversion (neglecting model-error) procedure. In

Fig. 2.10(b) CP of ln(K) is one for E1 to E4 as well as for the combined ensemble that

means that four out of five runs managed to enclose the reference log-permeabilities

completely when using the joint inversion procedure. For the inversion (neglecting

model-error) procedure, the CP lies between 0.06–0.11 for the historical data and lies

between 0.01–0.013 for the validation data (prediction), as shown in Fig. 2.10(a). For

the joint inversion procedure, these values of CP increased to be between 0.29–0.31 and
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0.77–0.82, respectively as shown in Fig. 2.10(b). Although the value of CP equal to one

(higher than the correct value of 0.95) for the estimated permeability field when the joint

inversion procedure is used clearly indicates that the uncertainty of the permeability

field is overestimated, the overall results still show reasonable improvement from the

joint inversion procedure compared to the standard inversion (neglecting model-error)

procedure.

Figures 2.10(c) and 2.10(d) show the mean CRPS of history matching and predic-

tion periods of the well data for the inversion (neglecting model-error) and the joint

inversion procedures, respectively. Figure 2.10(c) shows that the mean CRPS lies be-

tween 117–118 and 466–469 for history matching and prediction periods, respectively.

The results for the inversion (neglecting model-error) is unreliable and inaccurate due

to the biased posterior distributions for all the different runs. Figure 2.10(d) shows

that using joint inversion with error-model, the mean CRPS lies between 72–73 and

170–187 for history matching and prediction periods of the well data, respectively. A

significant improvement in terms of reliability and accuracy is observed, by incorpo-

rating the error-model in the inversion process. Figures 2.10(e) and 2.10(f) show the

MSE of the individual runs and the combined ensemble of all runs. With the joint

inversion procedure, lower MSE values are obtained for both the history matching and

the prediction periods (indicated by subscript “h” and “p” respectively in the plot).
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 2.8: Prior and posterior of oil production data obtained from all ensembles for coarse

scale model case. Red lines show observation data and bar on red lines shows measurement

error. Dashed black lines show end of historical period. Solid green lines show 50th percentile

p50 of prior distribution, dashed green lines show 95% confidence interval of prior distribution.

Solid black lines show p50 of posterior distribution, gray shaded area shows 95% confidence

interval of posterior distribution.
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 2.9: Prior and posterior of water production and injection pressure data for coarse

model case. The explanation of colors and lines are the same as in Fig. 2.8.
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(d) joint inversion with error-model
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(e) inversion (neglecting model-error)
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(f) joint inversion with error-model

Figure 2.10: Forecasting metrics of coarse scale model case. In part (a) and (b) blue bars

show the CP of true log-permeabilities, green bars show the CP of the historical data and

yellow bars show the CP of prediction. In part (c) and (d) blue bars show the mean CRPS

of the historical data and yellow bars show the mean CRPS of prediction. In part (e) and

(f) box plots of MSE of the simulated well data from each ensemble are shown, subscript

h and p are used for history and prediction respectively. On each box, the central red line

indicates the median, and the bottom and top blue edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers represent extreme data points without outliers,

and ‘+’ symbol represents outliers (more than 1.5 times of interquartile range).
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2.3.3 Case 2: Up-scaled imperfect geology model

Geologists commonly try to build geologically realistic prior models. However, main-

taining the geological realism during the history-matching process is quite challeng-

ing (Sun and Durlofsky, 2017). For example, multipoint statistics (MPS) is widely used

to represent channelized geological patterns. Geologically consistent history matching

using the MPS prior is still a subject of active research (Chen et al., 2016). Some-

times the predictability of the history matched MPS models may not be satisfactory,

often due to limitation of the available history matching methods in handling this type

of non-Gaussian models (Chen et al., 2016). In this study we do not aim to obtain

calibrated models that are consistent with the channelized geological feature, instead

we focus on improving predictability of the calibrated coarse models by including the

error-model.

For this case, the permeability fields are based on a similar test case presented

in (Chen et al., 2016). Figure 2.11(a) shows the reference fine scale log-permeability

with channelized features and Fig. 2.11(b) shows the corresponding up-scaled log-

permeability field in which the channelized features have been lost due to harmonic

averaging. The reference and prior fine scale channelized log-permeability fields are gen-

erated using a two-facies training image with the direct sampling version of MPS (Mari-

ethoz and Caers, 2014). The observed data are generated by the fine scale model using

reference log-permeability field (Fig. 2.11(a)) with the addition of measurement noise

of 2%.

Similar to the first test case, one hundred realizations of the model-discrepancy were

obtained using Eq. 2.11 by running the fine scale simulation using the MPS permeability

images of size 75 × 75 grid blocks and the corresponding up-scaled permeability field

with 5× 5 grid blocks. Figure 2.12 shows the prior statistics of the model-discrepancy

in the simulated well production data.
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Figure 2.11: The fine scale (75× 75) reference log-permeability with channelized features (a)

and the corresponding up-scaled log-permeability (5× 5) using harmonic average (b).
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Figure 2.12: Prior model-error statistics of all wells for Case 2. Black lines show mean model

errors, dashed blue lines show the 95% confidence interval (mean plus and minus two standard

deviations) of model errors.
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2.3.4 Case 2 Results

In this test case, log-permeability of every grid cell is calibrated using both inversion

(neglecting model-error) and joint inversion procedures. The ES-MDA settings for both

calibration procedures are same as case 1. Figure 2.13 shows prior and posterior distri-

butions obtained by combining realizations from all five runs for both history matching

procedures. Figure 2.13(a) shows that the posterior distribution of ln(K) is biased

where the estimated log-permeabilities show extreme values and do not capture the

reference log-permeabilities. Figure 2.13(b) shows that by accounting for model error,

relatively small changes have been made to the physical parameters (log-permeability

in this case), and the mean of the posterior distribution of ln(K) remains smooth after

data assimilation.
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 2.13: Prior and posterior distribution of ln(K) obtained after history matching for

up-scaled imperfect geology model case using five ensembles. In both part (a) and (b), green

and blue lines show the prior and posterior distribution respectively. Solid green and blue

line show the p50 prior and posterior respectively. Dashed green and blue lines show the

95% confidence interval of prior and posterior respectively. Black asterisks show the reference

solution.

Figure 2.14 shows the mean and standard deviation of ln(K) posterior ensembles

as maps. In Fig. 2.14(a) the posterior mean log-permeability field obtained from five

different runs are shown for the inversion (neglecting model-error) procedure. This
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posterior mean is clearly different from the reference coarse log-permeability field as

shown in Fig. 2.11(b). Moreover, in Fig. 2.14(a) the mean log-permeability field of every

ensemble is different from each other, which is an indication of convergence of every

ensemble to different non-unique local peak (mode) of the biased posterior. The mean

of log-permeability ensemble from the joint inversion procedure is shown in Fig. 2.14(b)

where no extreme features are observed. Similar to the observation from Case 1, the

standard deviation is higher for the joint inversion compared to the inversion (neglecting

model-error).

Figures 2.15 and 2.16 show the oil and water production rates of the different pro-

duction wells and the bottom hole pressure of the injector well. The 50th percentile

p50 and 95% confidence interval (the shaded region) are obtained by combining results

from all five ensembles. In part (a) of these figures, the results for the inversion (ne-

glecting model-discrepancy) are presented and the results of the joint-inversion with

error-model are shown in part (b). For the inversion (neglecting model-error) proce-

dure, only historical data at some wells are matched. For example Figs. 2.15(a) and

2.16(a) show that the data match is good for wells I1 and P1, however the data match

of well P2 is not good. Moreover the future prediction from the estimated model pa-

rameters using the inversion (neglecting model-error) procedure is quite poor. A good

example is the prediction of water production rate of well P1: the models predicted

early water breakthrough between year 2 to 3, while the actual water breakthrough is

after year 5 because P1 is separated from the injector by a low permeability region (see

Fig. 2.11(a)). In comparison, better matches and predictions are obtained by the joint

inversion procedure as shown in Figs. 2.15(b) and 2.16(b) for individual ensembles as

well as all ensembles combined together. The prediction from the combined multiple

ensembles may seem good for some well data for the case with the inversion (neglect-

ing model-error) procedure, for example BHP pressure of well I1 in Fig. 2.16(a), even

though the prediction from each individual ensemble is not good. This is often due to

the fact that different ensemble converges to different local peaks (modes) of the bi-

ased posterior and the combined prediction from these multiple biased final ensembles

happen to enclose the validation data.
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Figure 2.17 shows the forecasting metrics (CP for the estimated log-permeabilities

and mean CRPS, MSE, CP for the well data in history matching and prediction pe-

riods) for the individual ensembles and for results from all five ensembles assembled

together. Figures 2.17(a) and 2.17(b) show the coverage probability of reservoir model

parameters (ln(K)), well data for both the history matching period and the forecast

period. In Fig. 2.17(a) CP of ln(K) is between 0–0.12 for ensembles (E1 to E5), however

CP of ln(K) is 0.6 for the combined ensembles. This relatively high coverage from the

combined ensemble is due to the overshooting of ln(K) values and the different final

estimation from each individual ensemble as shown in Fig. 2.13(a) and Fig. 2.14(a)

respectively. With the joint inversion procedure, the coverage probability is improved

for all three quantities investigated (log-permeabilities, historical data, future predic-

tion). Similarly, the mean CRPS and MSE measures also show significant improvement

by accounting for model error using the joint inversion procedure (2nd and 3rd row of

Fig. 2.17). In addition, based on all three forecasting measures, the results from multiple

ensemble runs using the joint inversion procedure are very consistent, which indicates

the statistical consistency of the proposed procedure.
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Figure 2.14: Mean and standard deviation of ln(K) posterior ensembles obtained after history

matching of all grids log-permeabilities for up-scaled imperfect geology model case.
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(a) inversion (neglecting model-error)

P3

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

O
il 

pr
od

 r
at

e 
(S

T
B

/d
ay

)

(b) joint inversion with error-model

Figure 2.15: Prior and posterior of oil production data for up-scaled imperfect geological model

case. Red lines show observation data and bar on red lines shows measurement error. Dashed

black lines show end of historical period. Solid brown lines show 50th percentile p50 of the

prior distribution, dashed brown lines show 95% confidence interval of prior distribution. Solid

black lines show p50 posterior distribution obtained from all ensembles. Shaded gray area show

95% confidence interval of posterior distribution obtained from all ensembles. Dashed blue,

green, yellow, magenta and cyan lines show 95% confidence interval of posterior distribution

of individual ensembles.
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 2.16: Prior and posterior of water production and injection pressure data for up-scaled

imperfect geological model case. The explanation of colors and lines are the same as in

Fig. 2.15.
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(b) joint inversion with error-model
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(d) joint inversion with error-model
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(e) inversion (neglecting model-error)
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(f) joint inversion with error-model

Figure 2.17: Forecasting metrics of up-scaled imperfect geology model case. In part (a) and

(b) blue bars show the CP of true log-permeabilities, green bars show the CP of the historical

data and yellow bars show the CP of prediction. In part (c) and (d) blue bars show the mean

CRPS of the historical data and yellow bars show the mean CRPS of prediction. In part (e)

and (f) box plots of MSE of the simulated well data from each ensemble are shown, subscript

h and p are used for history and prediction respectively. On each box, the central red line

indicates the median, and the bottom and top blue edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers represent extreme data points without outliers,

and ’+’ symbol represents outliers (more than 1.5 times of interquartile range).
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2.4 Conclusions

In this chapter, a generic procedure for history matching of imperfect/low-fidelity reser-

voir models has been developed where, we formulate the history matching problem as

a joint inversion of reservoir model parameters and an error model parameters. We

used principal component analysis to parameterize the error model, where the PCA

basis function and prior statistics of the PCA basis weights were obtained using pairs

of accurate and inaccurate models. We note that the accurate/high-fidelity model is

only used for defining the prior model-error statistics and during history matching only

the imperfect/low-fidelity model is used.

We evaluated the proposed history matching procedure on low-fidelity models with

modeling errors due to aggressive grid coarsening/averaging of the permeability field

obtained from two-point statistics and low-fidelity models where the main source of

error is the grid coarsening/averaging of a channelized geology. Detailed comparison

were performed against standard history matching (inversion while neglecting model

error). The obtained results show that the estimated model parameters are biased

using standard history matching procedure in the presence of large modeling errors.

Consequently the calibrated low-fidelity model predictions are unreliable and generally

inaccurate. Utilizing the developed joint inversion procedure results in significant im-

provements in terms of the quality of the estimated parameters, the matching capacity

to historical data and prediction accuracy/reliability of the calibrated low-fidelity mod-

els. This is attributed to a reduction (and in some cases elimination) of the bias in the

estimated posterior distribution of the model parameters when we included a flexible

error-model terms of the inversion process. The numerical test cases were assessed using

three forecasting metrics and it was observed that the consistency of ensemble-based

history matching technique was also improved by including the error-model terms in

the inversion procedure. We argue that this observed consistency might be due to the

elimination of multiple biased peaks (modes) in the posterior distribution of the model

parameters once the error modeling terms are included in the formulations.

The proposed framework is generally flexible and could be applied to large scale
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models as the error-model formulation is I/O independent and the prior error-model

parameters could be estimated before the history matching step. However, for general

error-modeling an accurate model may be missing or the sources of the modeling errors

could be unknown. It is also possible that the fine/high-fidelity model (which is assumed

to be perfect) is also biased. In these cases, the proposed methodology can only improve

the parameter estimation and the prediction up to the fine/high-fidelity model accuracy.

Addressing the effects of unknown modeling errors without relying on an accurate (high-

fidelity)/approximate (low-fidelity) model pairs is the subject of our future work.



Chapter 3

Robust algorithms for history matching

of imperfect subsurface models while

accounting for model error

In this work, we evaluate different algorithms to account for modeling errors while esti-

mating the model parameters especially when the model discrepancy (a.k.a. modeling

error) is large. Besides this, we introduce two new algorithms which are closely re-

lated to some of the published approaches under consideration. Considering all these

algorithms, the first calibration approach (base case scenario) relies on Bayesian inver-

sion using iterative ensemble smoothing with annealing schedules without any special

treatment for the model-error. In the second approach, the residual obtained after cal-

ibration is used to iteratively update the total error covariance combining the effects of

both modeling errors and measurements error. In the third approach, PCA-based error

model is used to represent the model discrepancy during history matching. This leads

to a joint inversion problem where both the model parameters and the parameters of

a PCA-based error model are estimated. For the joint inversion within the Bayesian

framework, prior distributions have to be defined for all the estimated parameters and

the prior distribution for the PCA-based error model parameters are generally hard

to define. In this study, the prior statistics of the model discrepancy parameters are

estimated using the outputs from pairs of high-fidelity and low-fidelity models gener-

The contents of this chapter have been published in SPE Reservoir Simulation Conference (2019)

and accepted in Journal, but includes modifications following the viva. https://doi.org/10.2118/

193838-MS
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ated from the prior realizations. The fourth approach is similar to the third approach,

however an additional covariance matrix of difference between PCA-based error model

and the corresponding actual realizations of prior error is added to the covariance ma-

trix of the measurement error. This approach is same as Chapter 2 and presented as

Algorithm 4 in this chapter.

The first newly introduced algorithm (fifth approach), relies on building an orthonor-

mal basis for the misfit component of the error-model, which is obtained from difference

between PCA-based error model and the corresponding actual realizations of the prior

error. The misfit component of the error-model is subtracted from the data residual

(difference between observations and model outputs) in order to eliminate the incorrect

relative contribution to the prediction from the physical model and the error model. In

the second newly introduced algorithm (sixth approach), we utilize PCA-based error

model as a physically motivated bias correction term and an iterative update of the

covariance matrix of the total error during history matching. All the algorithms are

evaluated using three forecasting measures and the obtained results show that a good

parameterization of the error-model is needed in order to obtain a good estimate of

physical model parameters and to provide better predictions. In this study, the last

three approaches (i.e. 4, 5, 6) outperform the other methods in terms of the quality of

estimated model parameter and the prediction capability of the calibrated imperfect

models.

3.1 Introduction

Subsurface reservoir modeling contains various approximations including: grid coarsen-

ing, petrophysical properties up-scaling, simplification of the complex physics of subsur-

face fluid flow, simplification of relative permeability and PVT model and incomplete

description of reservoir structure and geology, etc. These approximations introduce

considerable errors into the modeling process of subsurface reservoirs. The issue of

model discrepancy is further exacerbated when the models are calibrated to match his-

torical data as the model parameters could be adjusted to match the historical data
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while compensating for the model errors. Different approaches have been developed to

address this issue by accounting for the model-error component during the model cal-

ibration process (Josset et al., 2015; Dreano et al., 2017; Hansen et al., 2014; Reichert

and Schuwirth, 2012b; Evin et al., 2014b).

Model errors could be formulated using different approaches and the different for-

mulations could be generally categorized as output-dependent (Evin et al., 2014b),

input-dependent (Giudice et al., 2013), Input/Output (Luo, 2019) dependent and In-

put/Output (I/O) independent (Rammay et al., 2019). In input-dependent formula-

tions, the model discrepancy is defined as a function of the uncertain model param-

eters. During history matching of subsurface reservoir models, coarsening/upscaling

errors has formulated an input-dependent function. O’ Sullivan and Christie (2005)

used this type of approach of accounting for model-error where the authors computed

model-error realizations using the difference between a fine-grid and coarse-grid model

outputs. During the calibration process, an interpolation of the error component was

performed to estimate a correction term to the coarse-grid model predictions. Lødøen

and Tjelmeland (2010) used the multiple linear regression algorithm to formulate the

model-error. In their study, the residual of multiple regression is dependent on perme-

ability realizations and they used Gaussian process regression (GPR) to model input

dependent residual. Giudice et al. (2013) used input dependent model-error to improve

uncertainty estimation in urban hydrological modelling. They used the variance of

model-error dependent on the input (rainfall in their case). Input-dependent model

discrepancy formulation has severe limitations in case of calibration of large scale mod-

els, because of the highly non-linear relationship between the model errors and large

number of input parameters (thousands or millions). In Input/Output dependent for-

mulations, model-errors are treated as a functional approximation problem, which can

be solved using a generic machine learning method, such as kernel-based learning (Luo,

2019). However, these type of formulations are prone to be more data-driven due to the

strong tendency of the machine learning algorithms to absorb a large amount of data

residuals as compared to the simulation models. For large scale models, model-error

formulation using output dependent or I/O independent methodologies would be be
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more feasible. In output-dependent formulations, the model discrepancy is formulated

as a function of the model response/output. Evin et al. (2014b) represented model dis-

crepancy using an output-dependent formulation for hydrological systems and utilized

model-error as a function of the streamflow obtained from the outputs of the hydrologi-

cal model. Input/Output (I/O) independent formulations depend on the prior statistics

of the model-error parameters, which is computed using prior realizations of pairs of

high-fidelity and low-fidelity models response (Rammay et al., 2019).

Another aspect for classifying the various methods for the model discrepancy is

related to whether the model discrepancy is formulated by post-processing the physical

model outputs as in external bias description (EBD) or the physical model equations

or states are modified to account for the model discrepancy as in the internal noise

description (IND) (Giudice et al., 2015). IND is also known as stochastic gray-box or

state space modeling [c.f., Moradkhani et al., 2012; Kristensen et al., 2004]. Some could

argue about the superior performance for IND methods, however the main challenge of

any IND method is the need to modify the simulator code or to use restart files, which

is either difficult to perform or introduces an additional computational bottleneck. In

terms of recent advances, Köpke et al. (2018) used orthonormal basis, which is generated

from the differences between pairs of high-fidelity and low-fidelity models, to filter the

model-error components from the calibration residuals during the history matching of

imperfect models and Oliver and Alfonzo (2018) added physically motivated parameters

for bias corrections and estimated the total error covariance matrix using an ensemble

of data residuals from the calibrated models.

In this chapter, we investigate different algorithms for model calibration of imperfect

models. These algorithms are inspired by the work of Rammay et al. (2019), Köpke

et al. (2018) and Oliver and Alfonzo (2018). Besides this, we develop two new al-

gorithms (Algorithms 5 and 6) by introducing novel modification to the published

algorithms (Köpke et al., 2018; Oliver and Alfonzo, 2018) in terms of identifiability

of model-error parameters and the use of joint calibration of both the pre-determined

error-model and the physical model. Our focus is on flexible methods that can han-

dle strong serially correlated outputs, variable boundary conditions (i.e. variable well
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controls) and structured errors (which show specific patterns w.r.t time i.e. strong

correlation in time). The evaluation is performed on a test case representing model

discrepancy due to grid coarsening and upscaling of geological features. This test case

is motivated by the fact that generally geological models are a coarse representation

of reality. We limit the test setting to cases where a high-fidelity model without any

model-error is available. This allows for proper evaluation of the different algorithms.

Ensemble smoother with multiple data assimilation (ES-MDA) (Emerick and Reynolds,

2013) is used as a robust and practical Bayesian inversion algorithm. The outline of the

chapter is given as follows: In Section 3.2, we present different algorithms/approaches

of history matching while accounting for model-error. In Section 3.3, we present the

case study. Following that, the case study results are discussed in Section 3.4 with the

conclusions in Section 3.5.

3.2 Methodology

Bayesian inverse modeling is a flexible framework that has the capacity to account for

the different sources of uncertainties in the model by following Bayes rule:

p(m|dobs) ∝ p(dobs|m) p(m), (3.1)

where m ∈ RNm×1 is the model parameters vector of size Nm, p(m) is the prior prob-

ability of the model parameters, dobs ∈ RNd×1 is the observations vector of size Nd

and p(dobs|m) is the likelihood of the data given the model parameters vector m. Sev-

eral algorithms could be used to generate samples from the posterior distribution of

the model parameters (Oliver et al., 2008). In this work, the ensemble smoother with

multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013), is utilized for

Bayesian inversion due to the parallel nature of the algorithm and the robustness of the

method in history matching of large reservoir models. Algorithm 1 presents the steps of

ES-MDA in a functional form and represents the standard history matching procedure

(base case scenario), in which an imperfect model is used for simulation during history

matching but the model-error is neglected. In Algorithm 1, the covariance matrix of
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measurement noise Cd is used in the update equation, i.e. CD = Cd, as the forward

model is assumed to be perfect.

Algorithm 1 History matching without accounting for model-error

1: CD = Cd B Cd is the covariance (diagonal) matrix of measurement errors

2: Mprior = [m1 m2 m3 ...... mNe ] B Generate prior ensemble of model parameters

Mprior ∈ RNm×Ne consists of Ne realizations

3: g = g̃ B Set imperfect model g̃ as the forward model

4: Dobs = dobs
−→
1Ne B

−→
1Ne ∈ R1×Ne is a row vector of ones

5: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD, g)

6:

7: function ESMDA(M, Dobs, CD, g)

8: Inputs: M ∈ RNm×Ne is the ensemble of model parameters, g is the forward

model, CD is the error/noise covariance matrix.

9: Choose Na B Number of data assimilations/iterations

10: i← 1

11: α = Na

12: while i <= Na do

13: D = g(M) B Generate ensemble of model predictions D ∈ RNd×Ne

14: CMD = 1
Ne−1(M−M̄

−→
1Ne)(D−D̄

−→
1Ne)

ᵀ
B M̄ ∈ RNm×1 is ensemble M mean

15: CDD = 1
Ne−1(D− D̄

−→
1Ne)(D− D̄

−→
1Ne)

ᵀ
B D̄ ∈ RNd×1 is ensemble D mean

16: Duc = Dobs +
√
α C

1/2
D Zd, B Observation perturbations, Zd =

[zd1 zd2 zd3 ...... zdNe ] ∈ RNd×Ne , zd ∼ N (0, INd
) ∈ RNd×1

17: M←M + CMD (CDD + α CD)−1(Duc −D) B Update ensemble

18: i← i+ 1

19: end while

20: Mpost = M B Mpost ∈ RNm×Ne is the posterior ensemble of model parameters

21: Dpost = g(Mpost) B Generate posterior ensemble of model predictions Dpost

22: return Mpost, Dpost

23: end function
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Algorithm 2 presents the history matching procedure while accounting for the model-

error by iteratively updating the total error covariance matrix (Oliver and Alfonzo,

2018). In Algorithm 2, the covariance matrix of the total error CD is initially set to

equal the covariance matrix of the measurement errors Cd. In subsequent iterations,

CD is updated based on the residual from the previous history matching iteration.

The algorithm is terminated after satisfying a model diagnostic criterion or reaching

a prespecified maximum number of iterations. In Algorithm 2, the value of diagnostic

criterion is estimated from the error covariance matrix and residual obtained after

history matching.

Algorithm 3 presents a joint history matching of the physical model parameters and

the parameters of a PCA-based error model (Rammay et al., 2019). Before history

matching, PCA basis functions are extracted from the differences between simulation

outputs of a accurate/high-fidelity model gp(·) and an approximate model g̃(·). The

prior statistics of the PCA basis weights (i.e. parameters of the model-discrepancy)

are then estimated. A small number of the basis functions is retained for the PCA-

based error-model to avoid adding too many parameters to the inversion problem and

eliminate the issue of over-fitting. In this formulation, the predictions are made by

summing the simulation outputs using the estimated physical model parameters and

estimated model-errors represented by the PCA-based formulation. The summation

of the approximate physical model and the PCA-based error model in Algorithm 3 is

referred to as the corrected model (g = g̃ + ε̂m).

Algorithm 4 accounts for the remaining mismatch between the corrected functions

model and the accurate/high-fidelity model due to the truncation of the PCA ba-

sis (Rammay et al., 2019). The prior mismatch between predictions from the corrected

model and predictions from the accurate/high-fidelity model gp due to the truncation

of PCA-basis of error-model (Algorithm 3) can also be called as second-order errors.

This remaining mismatch (i.e. second-order errors), are loosely captured by inflating

the observation noise covariance Cd with a diagonal matrix CT , that is the variance of

the remaining mismatch before history matching.

The newly introduced Algorithm 5 builds on ideas from the recent work of Köpke
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Algorithm 2 History matching with iterative update of total error covariance matrix

1: k ← 1

2: CD
(k) = Cd

3: Mprior = [m1 m2 m3 ...... mNe ] B Generate prior ensemble of model parameters

Mprior ∈ RNm×Ne consists of Ne realizations

4: g = g̃

5: Dobs = dobs
−→
1Ne B

−→
1Ne ∈ R1×Ne is a row vector of ones

6: while (True) do

7: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD
(k), g) B From Algorithm 1

8: R(k) = (Dobs−Dpost) B Compute ensemble of residuals obtained after history

matching

9: S(k) = (R(k))
ᵀ
(CD

(k))−1(R(k))

10: sd
(k) = 1

2Ne

∑
(diag(S(k))) B Compute value of diagnostic criterion

11: if |sd(k) − sd(k−1)| < 0.1 and sd
(k) < 2Nd then

12: Output Mpost, Dpost

13: Exit loop

14: else

15: CD
(k+1) = 1

Ne
(R(k))(R(k))ᵀ

16: k ← k + 1

17: end if

18: end while

et al. (2018) and Algorithm 3. In this algorithm the imperfect simulation model and

PCA-based error-model are used in history matching while accounting for second-order

errors using the algorithm proposed by Köpke et al. (2018). In Algorithm 5, an addi-

tional orthonormal basis is built on second-order errors using the Gram-Schmidt proce-

dure (Cheney and Kincaid, 2009). In the Gram-Schmidt method, orthonormal vectors

are computed based on the projection of the set of vectors under consideration (Ch-

eney and Kincaid, 2009). In this work, the Gram-Schmidt procedure is implemented

by the MATLAB orth function (MATLAB, 2019). In Algorithm 5, the orthonormal
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Algorithm 3 History matching with PCA-based error model

1: for r = 1, Nr do

2: εmr = gp(mr)− g̃(mr) B Compute Nr number of prior error realizations

3: end for

4: ε̄m = 1
Nr

∑Nr

r=1(εmr) B Compute mean of prior error realizations

5: Ce = 1
Nr−1

∑Nr

r=1(εmr − ε̄m)(εmr − ε̄m)ᵀ B Compute covariance matrix of prior

error realizations

6: [U,Σ,Vᵀ] = svd(Ce) B Singular value decomposition of Ce

7: Φ = U(:, 1 : L) B Taking L singular vectors

8: for r = 1, Nr do

9: βr = Φᵀ(εmr − ε̄m)

10: end for

11: µβ = 1
Nr

∑Nr

r=1(βr) B Compute prior mean of PCA-error model parameters

12: Cβ = 1
Nr−1

∑Nr

r=1(βr − µβ)(βr − µβ)ᵀ B Compute prior covariance matrix of β

13: βprior ∼ N (µβ,Cβ) B Sample ensemble of PCA-error model parameters

14: g = g̃ + ε̂m B Forward model is the combination of physical and error model

ε̂m = Φβ + ε̄m

15: Mprior = [Mprior;βprior] B Ensemble of model parameters is the combination of

physical and error model parameters

16: Dobs = dobs
−→
1Ne B

−→
1Ne ∈ R1×Ne is a row vector of ones

17: CD = Cd

18: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD, g) B From Algorithm 1

basis is projected on the data residuals which are used to filter the data residual during

the joint calibration process described in Algorithm 3. This additional step provides a

regularization effect and is used to prevent over-fitting the model parameters to data

features that are not captured by the corrected model.

Algorithm 5 differs from the work presented in Köpke et al. (2018), where the or-

thonormal basis is built directly from the difference between the approximate physical

model and the perfect/high-fidelity model without introducing any functional approxi-
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Algorithm 4 History matching with PCA-based error-model and its noise covariance

matrix

1: Algorithm 3 except last two lines

2: for r = 1, Nr do

3: ε̂mr = Φβr + ε̄m

4: ζmr = εmr − ε̂mr
5: end for

6: CT = 1
Nr−1

∑Nr

r=1(ζmr)(ζmr)
ᵀ

7: CT = diag(CT )

8: CD = Cd + CT

9: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD, g) B From Algorithm 1

Algorithm 5 History matching with PCA-based error-model while accounting for

second-order errors

1: Algorithm 3 except last line

2: for r = 1, Nr do

3: ε̂mr = Φβr + ε̄m

4: ζmr = εmr − ε̂mr
5: end for

6: Ep = [ζm1 ζm2 ζm3 ...... ζmNr
] B Ep ∈ RNd×Nr consists of Nr realizations of ζm

7: B = GS(Ep) B Build orthonormal basis B using Gram-Schmidt (GS) procedure

8: if BB
ᵀ ≈ I then

9: λ = diag(Σ) B Taking Eigen values from Algorithm 3

10: Select minimum value of L1 such that
∑L1

l=1(λl)∑Nd
l=1(λl)

= 1

11: B = U(:, L+ 1 : L+ L1) B U and L from Algorithm 3

12: end if

13: E(M) = BB
ᵀ
R(M) B error misfit depends on B and residual R(M) = dobs

−→
1Ne−

g(M)

14: Dobs = dobs
−→
1Ne−E B E is updated with the change of M during history matching

15: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD, g) B From Algorithm 1
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mation to the model discrepancy. We note that the change in data residuals after each

ES-MDA iteration updates the ensemble of second-order errors and as a consequence

Dobs is also updated for the following iteration as shown in the lines 8 and 9 of Al-

gorithm 5. In some sense, the second-order errors in algorithm 5 are filtered before

each history matching iteration while in 4 the second-order errors are estimated before

history matching and remain the same during iterations. The newly introduced Algo-

rithm 6 builds on Algorithm 2 (Oliver and Alfonzo, 2018) and Algorithm 3, where the

corrected model (approximate physical model corrected by PCA-based error model) is

used in history matching with an estimate of the total error covariance at the end of

each ES-MDA run until a stopping criterion is satisfied.

Algorithm 6 History matching with PCA-based error-model and iterative update of

total covariance matrix

1: k ← 1

2: Algorithm 3 except last two lines

3: CD
(k) = Cd

4: while (True) do

5: Mpost,Dpost ← ESMDA(Mprior, Dobs, CD
(k), g) B From Algorithm 1

6: R(k) = (Dobs−Dpost) B Compute ensemble of residuals obtained after history

matching

7: S(k) = (R(k))
ᵀ
(CD

(k))−1(R(k))

8: sd
(k) = 1

2Ne

∑
(diag(S(k)))

9: if |sd(k) − sd(k−1)| < 0.1 and sd
(k) < 2Nd then

10: Output Mpost, Dpost

11: Exit loop

12: else

13: CD
(k+1) = 1

Ne
(R(k))(R(k))ᵀ

14: k ← k + 1

15: end if

16: end while
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3.3 Case Study

We evaluated the various history matching algorithms on a simplified reservoir model.

The reservoir model/test case is same as Case 2 of the Chapter 2. The dimension of the

subsurface reservoir is 7500 ft × 7500 ft × 20 ft in the x, y and z directions, respectively.

Incompressible two-phase porous media flow of oil and water is considered and simulated

using a 2-D grid with Matlab Reservoir Simulation Tool-box (MRST) (Lie, 2016). The

initial reservoir pressure is 5000 psi and the reservoir has uniform porosity of 20%.

Corey’s power law model is used to represent relative permeabilities and the parameter

values for the Corey’s model and fluid properties are listed in Appendix A. The capillary

pressure and gravitational effects are neglected. The reference permeability model is

a channelized model of dimension 75 × 75 generated using Multiple Point Statistics

(MPS) (Mariethoz and Caers, 2014). This reference model is used to generate the

observation data. The log-transformed permeability of the true model is shown in

Fig. 3.1(a). The simulation model used for history matching is a much coarser model

with only 5× 5 cells. The corresponding up-scaled (5× 5) field of the log-permeability

is shown in Fig. 3.1(b). The upscaled model is obtained from harmonic averaging of the

permeability field of 75× 75 high-fidelity model. For the upscaled model, the physical

model parameters are the permeability values at the 25 cells. In this test case, the model

errors are a consequence of aggressive grid coarsening, slight change in well locations

and poor geological representation.

The reservoir contains four wells, three producers (P1, P2, P3) and one injector

(I1). The well controls are shown in Fig. 3.2 with the end of historical period marked

as a vertical dotted line. Well P3 is used only in the prediction phase and is used

to assess the prediction capacity of the calibrated models. The production wells are

operated under constant bottom hole pressure constraint of 4500 psi and the injector

well is operated under constant injection rate constraint with varying control values as

shown in Fig. 3.2(b).

The objective of this study is to investigate the performance of different algorithms

presented in Section 3.2, in terms of the quality of the estimated physical model param-



Robust algorithms for history matching of imperfect subsurface models
while accounting for model error 87

   I1

   P1

   P2

   P3

2.5

3

3.5

4

4.5

5

   I1

   P1

   P2

   P3

2.5

3

3.5

4

4.5

5

(a) reference log-permeability (b) corresponding coarse model

Figure 3.1: The reference (true) log-permeability (75× 75) with channelized features (a) and

the corresponding (reference) up-scaled log-permeability (5× 5) using harmonic average (b).
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Figure 3.2: Wells schedule and controls. Part (a) shows wells open (shown by solid back lines)

and shut schedule. Water injection rate of the injector well I1 is shown in part (b). End of

historical period is shown by dashed black lines.

eters and the quality of predictions obtained by the calibrated models. The implemen-

tation of Algorithms 3, 4, 5 and 6 requires extraction of the PCA basis functions for

the model discrepancy and the corresponding prior weights for the parameters of the

error-model based on output differences between pairs of high-fidelity and low-fidelity

simulation models generated from the prior realizations of the permeability field. For



Robust algorithms for history matching of imperfect subsurface models
while accounting for model error 88

this step, 100 realizations of the model discrepancy are created by taking the difference

of the fine scale model output/response using 100 log-permeability fields generated by

MPS algorithm of size 75 × 75 and the corresponding upscaled model responses (har-

monic averaging). The upscaling of the permeability fields to a 5 × 5 grid blocks is

quite aggressive and is expected to result in large model discrepancies. The reference

100 fine scale MPS permeability realizations are generated in the same way as the true

permeability model shown in Figure 3.1(a). The statistics of the 100 model discrepancy

realizations are shown in Figure 3.3 for each time series of well production data. In

this chapter the combination of multi dimensional scaling and clustering (Scheidt and

Caers, 2009) are utilized to sample the 100 realizations of the model parameters to

effectively estimate the prior model-error statistics.
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Figure 3.3: The statistic of the model discrepancy between 100 pairs of high-fidelity (75× 75)

and low-fidelity (5 × 5) models. Solid black and dashed blue lines show the mean model

errors and 95% confidence interval of model errors, respectively. The 95% confidence interval

obtained after adding and subtracting two standard deviations from mean.

3.4 Results and Discussion

For all algorithms, an ensemble of 100 members is used and measurements errors are

assumed to be 2% of the observed reference data. For all runs, we set the number

of ES-MDA iterations to 8. For algorithms 3, 4, 5 and 6, we noted that the number
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of coefficients of the PCA-based error-model should be limited to a small number in

order to avoid over-fitting the error-model. We observed good fit of the error-model

to the prior model-error realizations by retaining two PCA components for each time

series. The remaining misfit of the PCA based error-model and prior error realizations

is treated as second-order errors in algorithms 4, 5 and 6. Since the model outputs cor-

respond to seven time series at the different wells (Fig. 3.1), 14 error-model parameters

are jointly estimated along with the log-permeability ln(K) at every coarse grid cell in

algorithms 3, 4, 5 and 6.

Figure 3.4 shows the prior (brown) and posterior (blue) distributions of ln(K) ob-

tained after history matching using Algorithms 1 to 6. The coarsened version of the true

permeability field (Fig. 3.1(b)) is shown in black for comparison (referred to as reference

solution). We observe biased posterior distribution of ln(K) when the model errors are

neglected (Algorithm 1), where the estimated log-permeabilities show extreme values

(e.g. overshooting) and the posterior distribution failed to cover the reference coarse

log-permeabilities. The parameter estimation results of the Algorithm 1 are slightly

different from the case 2 of the Chapter 2, because multiple ensembles of the model

parameters are used for history matching in Chapter 2.

The overshooting of the physical model parameters is reduced to a certain degree

by using Algorithm 2 for calibration where total errors are estimated at the end of

each ES-MDA run. However, we note that the total error is estimated from the data

residual after one round of history matching, and if the physical model parameters are

flexible enough, some of the model-error effect will be compensated for by adjusting the

physical model parameters further from the true values (as is the case in Fig. 3.4(b)).

Algorithm 3 results in additional improvements in the estimated physical model pa-

rameters due to the joint inversion of parameters of the physical model and parameters

of the error model. However, we observe that estimated distribution of parameters of

the physical model does not cover the reference solution very well due to the limited

capacity of the error model as we only retained two PCA basis for each time series.

For Algorithms 4, 5 and 6, a residual term representing second-order errors is included

in the formulation in addition to joint updating of parameters of the physical model
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and parameters of the error model. This results in good coverage of reference solution

except for one permeability value at grid block.

Figure 3.5 shows the mean of the posterior ensemble of ln(K) as a map. Similar to

observations from Fig.3.4, relatively large overshooting in the estimated model param-

eters using Algorithms 1 and 2, and this overshooting is reduced in Algorithm 3, and

further reduced when using Algorithms 4, 5 and 6 for calibration.
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Figure 3.4: Prior and posterior distribution of ln(K) along the grid block number as one

dimensional plot for results obtained using Algorithms 1 to 6. Prior distribution is shown

by brown lines and posterior distribution is shown by blue lines. Solid line is the p50 (50th

percentile) and dashed lines show the 95% confidence interval. Black asterisks show the

coarsened version of the true permeability field (as in Fig. 3.1(b)) as a reference solution.
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Figure 3.5: Mean of the posterior ensemble of ln(K) after history matching using Algorithms 1

to 6.
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Figure 3.6 shows the prior and posterior oil production rates at well P1. For Algo-

rithm 1, We observe that the quality of data match (left to the vertical dashed line)

is relatively good. However, the future predictions (right to the vertical dashed line)

significantly deviates from the reference data due to neglecting the model errors during

the model calibration process. For Algorithm 2, the data match for historical data is not

as tight as those obtained by Algorithm 1 due to the total error covariance effect which

reduces the weight of observed data. The quality of future prediction from Algorithm 2

is also quite biased with slightly boarder uncertainty interval compared to Algorithm 1.

We note that for the predictions phase, perturbed prediction should be used by adding

realizations of the total error, sampled from the estimated total error covariance, to

the simulation outputs from the physical model parameters. This extrapolation of the

model error into the prediction period is needed as explained in Lu and Chen (2019).

The error model in Lu and Chen (2019), however, has zero mean, so that effect of

the error model only increases the uncertainty interval beyond the prediction from the

updated physical models (the extrapolation of the error model is not implemented for

results shown in this chapter).

For Algorithm 3, we obtained good data match and an improved prediction due to

the inclusion of the error model term in the calibration process. The quality of the

predictions, however, deteriorates with time. This is likely a consequence of a poor

split of the total residual between the error model and the physical model. In order to

investigate the relative contribution to the prediction from the physical model and from

the error model, prediction using physical model alone with the posterior permeabil-

ity ensemble (magenta curves) and predictions from the coarse reference permeability

(solid black curves) are shown for Algorithms 3 to 6. Once a correct split (relative con-

tribution) is obtained, the magenta curves should closely follow the black curve, both

representing the behavior of the permeability (physical model parameter). Figure 3.6

shows that a better split is obtained by Algorithms 4, 5 and 6 with an improvement in

the predictions quality.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.6: Prior and posterior prediction of oil production rate for well P1. Red lines show

observed data and bars on red lines show measurement error. Vertical dashed black lines

show the end of the historical period. Solid and dashed brown lines show 50th percentile

p50 and 95% confidence interval of prior distribution respectively. Solid blue lines show p50

and shaded blue areas show 95% confidence interval of posterior distribution, obtained from

Algorithms 1 to 6. In parts (c), (d), (e) and (f), solid black lines show reference simulator

output (simulation output from the coarsened true permeability, as in Fig. 3.1(b)), solid

magenta lines show p50 and shaded magenta areas show 95% confidence interval of posterior

distribution of simulator output only.
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Very similar observations can be made from Figs. 3.7 to 3.10 showing the prior and

posterior predictions of the water production rates at well P1, oil and water production

rates of P2, and injection pressure for injection well I1. We note that the prediction

quality for rates at well P2 is generally better compared to rates at well P1. This

is likely due to the small influence from the new well P3 that is introduced in the

prediction period (see well location in Fig. 3.1 and operational well schedules shown in

Fig. 3.2(a)). This implies that if the reservoir status does not change much from the

history matching period to the prediction period, the predictions from the combination

of the imperfect physical model and error model is more robust (Algorithms 3 to 6).

Figure 3.10(c) shows that predictability between 3 and 4.5 years using Algorithm 3

is much poorer than that from Algorithms 4 to 6. This effect is attributed to the

inappropriate split between the physical model and error model contributions to the

total output (the distance between solid black curve and the solid magenta curve).

Figures 3.11 and 3.12 show the prior and posterior prediction of the oil and water

rates at well P3, which is introduced after the history matching period. When model

error is completely neglected as in Algorithm 1, the prediction quality is very poor.

Algorithms 2 and 3 do not capture the true model response (red) in the prediction en-

velop (blue curves). The prediction envelopes from Algorithms 4 to 6 mostly enclose the

observed data, but the uncertainty in the prediction is very high, only slightly reduced

from the uncertainty of the initial prediction. Algorithms 5 and 6 perform relatively

better to capture the observed data (Fig. 3.11) as compared to Algorithm 4. Although

the predictions from Algorithms 4 to 6 are not precise, they might lack resolution for

useful decision making. In this test case, the model-error is quite significant so it is not

straightforward to assess the correct level of resolution that can be achieved.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.7: Prior and posterior prediction of water production rate for well P1. The explana-

tion of lines and colors are the same as in Fig. 3.6.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.8: Prior and posterior prediction of oil production rate for well P2. The explanation

of lines and colors are the same as in Fig. 3.6.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.9: Prior and posterior prediction of water production rate for well P2. The explana-

tion of lines and colors are the same as in Fig. 3.6.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.10: Prior and posterior prediction of injection pressure for well I1. The explanation

of lines and colors are the same as in Fig. 3.6.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.11: Prior and posterior prediction of oil production rate for well P3. The explanation

of lines and colors are the same as in Fig. 3.6.
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

(e) Algorithm 5 (f) Algorithm 6

Figure 3.12: Prior and posterior prediction of water production rate for well P3. The expla-

nation of lines and colors are the same as in Fig. 3.6.

We further evaluate the calibrated models using forecasting measures. We utilize

three measures: coverage probability (CP), mean square error (MSE) and mean contin-
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uous ranked probability score (CRPS). CP indicates the fraction of the actual data that

lie within the confidence interval of the estimation. In this chapter 95% confidence was

used to estimate the value of CP, therefore a value of 0.95 for CP indicates a consistent

estimation of uncertainty and values below 0.95 indicate underestimation of uncertainty.

Mean CRPS quantifies both accuracy and precision (Hersbach, 2000) and higher values

of CRPS indicate less accurate results. MSE is widely used as a metric for parameter

estimation problems. However, MSE measures the quality of data-fitting and is not

enough to provide a probabilistic assessment of the estimation and prediction from an

ensemble of models. Similar to Skauvold and Eidsvik (2018), we use a combination of

these three forecasting measures to evaluate the quality of parameter estimation and

the quality of probabilistic forecast of the calibrated model. These forecasting measures

are described mathematically in the Appendix B.

Figure 3.13 shows the coverage probability of the estimated log-permeability real-

izations and of the simulated well data over the calibration period and over the future

prediction period for all algorithms. The results obtained by using Algorithm 1 show

a coverage probability of ln(K) less than 0.1, due to the bias (over-shooting) in the

estimated physical parameters as shown in Fig. 3.4(a). Algorithm 1 also provides a

low coverage probability for the historical data and the prediction data. Algorithm 2

results in a slightly better coverage probability as compared to algorithm 1, except for

CP of the historical data. Accounting for modeling errors during history matching as

done in Algorithms 3 to 6 results in much better coverage probabilities for all three

quantities (ln(K), historical data and future predictions), with Algorithms 4, 5 and 6

producing the best overall results. Figures 3.14 and 3.15 show the mean CRPS and

MSE measures of the simulated well data from the history matched ensembles over the

historical and prediction periods. MSE and Mean CRPS measures show improvements

when accounting for model error using Algorithms 2 to 6, similar to the previous results

the best results are obtained by Algorithms 4, 5 and 6.
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Figure 3.13: Coverage probabilities (CP) obtained after history matching using Algorithms 1

to 6. Blue bars show coverage probability of reference coarse ln(K); green and yellow bars

show coverage probability of the historical data and prediction respectively.

A1 A2 A3 A4 A5 A6

Algorithm

0

200

400

600

800

1000

1200

1400

M
ea

n 
C

R
P

S

Historical period
Prediction period
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prediction data respectively.
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Figure 3.15: The mean square error (MSE) of the simulated model output obtained after

history matching using Algorithms 1 to 6 (A1 to A6). The subscript h and p are used for

indicating history matching and prediction period, respectively. In the box plot, median

and 25th-75th percentiles are indicated by central red line and blue edges respectively. The

whiskers extend to the most extreme data points not considered outliers, and the outliers are

plotted individually using the ’+’ symbol.

3.5 Conclusions

In this chapter, we evaluated different algorithms for the calibration of imperfect models.

In addition, we developed two new algorithms (5 and 6) by introducing key modifica-

tions to the published algorithms under consideration. The novelty in algorithms 5

and 6 is introduced in terms of the joint calibration of both the pre-determined error-

model and the physical model. Algorithm 1 neglects the presence of model errors and

is used as a base case. Algorithm 2 estimates a covariance for the total error from

the data residual after history matching, and this estimated total error term is used

in subsequent history matching runs in order to compensate for the model error. In

Algorithms 3 and 4, the history matching problem is formulated as a joint parameter

estimation of the physical model parameters (reservoir model parameters) and the pa-

rameters of an error model. Principal components (PCA) is used to build a functional
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form for the error model, where the PCA basis functions and basis weights were ob-

tained using pair of high-fidelity and low-fidelity models response/output. We note that

this setting (i.e. the use of high-fidelity model) has limited applicability for practical

cases when we only have access to the low-fidelity/imperfect model. In Algorithms 5

and 6, the imperfect simulation model and PCA-based error-model are used in history

matching while accounting for second-order errors by building an orthogonal basis and

an iterative update of the covariance of the total error respectively. We note that Algo-

rithm 2 is quite general and does not rely on the availability of the high-fidelity/accurate

model. However, Algorithm 2 has limitations for physical systems which contain high

magnitudes of model-errors.

We evaluated the performance of all history matching algorithms using a 2D syn-

thetic test case with varying well constraints and introduced a new well in the prediction

phase for assessing the forecast quality. The two main sources of modeling errors in

this test case are aggressive grid coarsening and a rough representation of the geological

features (neglecting MPS features/connectively) compared to the synthetic true model.

Although the test case is simple, the model errors involved in the test case are quite

representative of a typical history matching study, as reservoir simulation models are

always a coarse and incomplete representation of reality. Detailed evaluations were per-

formed using three different forecasting metrics, i.e. coverage probability, mean square

error and mean continuous ranked probability score.

The obtained numerical results show that the parameter estimation of the imperfect

physical model are generally biased, when modeling errors are neglected during history

matching. Consequently unreliable and inaccurate predictions are observed from the

calibrated model. Methods that account for model-error during history matching pro-

vide less biased estimation and prediction. Among all the algorithms investigated,

Algorithms 4, 5 and 6 showed good performance in terms of the quality of the param-

eter estimation, the quality of history matching and the quality of future predictions

after calibration. The common feature among Algorithms 4, 5 and 6 is the joint calibra-

tion of PCA-based error-model and reservoir simulation model along with an additional

term that captures some remaining errors (a.k.a. second-order errors) that are not cap-
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tured by the error-model. The second-order errors are captured through the use of

a diagonal error matrix (Algorithm 4), orthogonal components (Algorithm 5), and an

iterative update of the covariance of the total error (Algorithm 6). When the calibrated

models are used for prediction, accounting for the second-order errors seems to allow for

a better split (relative contribution) between the physical model and the error-model

contribution.

The relative contribution of the error-model in prediction can also be used as an

indicator for the impact of the model-error. A large contribution from the error model

suggests the need for model refinement and/or re-evaluation of model assumptions.

Since the model-error is parameterized in the output space (production profiles), Al-

gorithms 4, 5 and 6 scale very well with the model dimension and can be used for

large scale 3D problems. In real life applications, the perfect model does not exist, but

a high-fidelity model can still be constructed to be closer to reality compared to the

low-fidelity model. Using algorithms (i.e. 4, 5, 6) to calibrate the low-fidelity models

can improve the prediction quality up to the level to be expected from the high-fidelity

model, which might not be suitable for history matching due to computational limita-

tion. In our future work, we will test the methodology on larger scale cases where there

are many sources of model error and further develop the algorithm to tackle the cases

where we only have access to the low-fidelity/imperfect model.



Chapter 4

Flexible iterative ensemble smoother for

calibration of perfect and imperfect

models

Iterative ensemble smoothers have been widely used for calibrating simulators of various

physical systems due to the relatively low computational cost and the parallel nature of

the algorithm. However, iterative ensemble smoothers have been designed for perfect

models under the main assumption that the specified physical models and subsequent

discretized mathematical model have the capability to model the reality accurately.

While significant efforts are usually made to ensure the accuracy of the mathematical

model, it is widely known that the physical models are only an approximation of reality.

These approximations commonly introduce some type of model-error which is generally

unknown and when the models are calibrated, the effects of the model errors could

be smeared by adjusting the model parameters to match historical observations. This

results in a bias estimated parameters and as a consequence might result in predictions

with questionable quality.

In this chapter, we formulate a flexible iterative ensemble smoother, which can be

used to calibrate imperfect models where model errors cannot be neglected. We base

our method on the ensemble smoother with multiple data assimilation (ES-MDA) as

it is one of the most widely used iterative ensemble smoothing techniques. In the

proposed algorithm, the residual (data mismatch) is split into two parts. One part

The contents of this chapter have been submitted in Journal, but includes modifications following

the viva.
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is used to derive the parameter update and the second part is used to represent the

model-error. The proposed method is quite general and relaxes many of the assumptions

commonly introduced in the literature. We observe that the proposed algorithm has

the capability to reduce the effect of model-bias by capturing the unknown model-

errors, thus improving the quality of the estimated parameters and prediction capacity

of imperfect physical models.

4.1 Introduction

Ensemble based methods have been gaining popularity in last two decades for data

assimilation and calibration of simulation models of various physical systems (Emerick

and Reynolds, 2013). The main advantage of the ensemble based methods is the low-

computational cost for higher dimensional data assimilation and inverse problems. A

number of iterative ensemble based methods have been proposed for parameter estima-

tion problems. The ensemble smoother with multiple data assimilation (ES-MDA) (Em-

erick and Reynolds, 2013), Levenberg-Marquardt ensemble randomized maximum like-

lihood method (LM-EnRML) (Chen and Oliver, 2013) and iterative ensemble smoother

(IES) (Luo et al., 2015) are some of these techniques. In ensemble based methods, the

prior ensemble members of the model-parameters are computed from the initial sta-

tistical distribution of the unknown model parameters and the objective is to find an

approximate posterior distribution (i.e. posterior ensemble) of the model parameters

conditioned to observation data. After calibration, the posterior ensemble of the model

parameters is used for making predictions. Ensemble based methods are designed with

the assumption that utilized mathematical model provides a complete representation

of real physical systems and that the model errors are small enough that it could be

neglected during the calibration process. This assumption might introduce bias in the

estimated parameter distribution (Brynjarsdottir and O’ Hagan, 2014; Schoups and

Vrugt, 2010) and as a consequence results in a bad quality predictions using the cali-

brated models.

A large number of studies have been conducted to explore the possible ways to
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account for the model-error during the calibration process. In a Bayesian inversion

context, three broad lines of research have emerged in the published literature. In

the first line of research, the prior model-error statistics were computed using pairs

of high-fidelity and low-fidelity models. These error statistics were utilized during the

calibration by using different types of algorithmic frameworks (O’ Sullivan and Christie,

2005; Omre et al., 2004; Lødøen et al., 2005; Lødøen and Tjelmeland, 2010; Hansen

et al., 2014). These frameworks vary according to the behavior of different physical

systems and could perform poorly in high dimensional problems with variable boundary

conditions and when the distributions of the model-error statistics are complex or multi-

modal. The problem of complex statistics of model-error was addressed by Köpke et al.

(2018), where the authors accounted for the model-error component using orthonormal

basis generated from the difference between pairs of high-fidelity and low-fidelity models.

These basis were evaluated locally at each update iteration as well as the model pairs

(high and low fidelity) were re-run during the calibration process. More recently, an

Input/Output independent formulation of model-error was introduced to handle high

dimensional parameter estimation problems as well as handling problems with time

varying boundary conditions (Rammay et al., 2019). However, this line of research

relies on the availability of a high-fidelity models such that we could learn the statistical

properties of the model errors by evaluating both the high and low fidelity model at the

same set of model parameters. This assumption might not be valid for a wide range of

applied problems where we only have access to one model.

The second line of research for addressing model-error/bias during calibration is

related to joint calibration of physical models with a second model that is assumed

to represent the model error. Different parameterization for the model-bias/error have

been proposed, for example Gaussian process regression (Kennedy and O’Hagan, 2001)

or autoregressive error models (Giudice et al., 2013, 2015). However, without any

prior knowledge of the error-model (unknown model-error), the joint calibration may

be prone to break the physical constraints of the systems and as a consequence might

fail to improve the predictive capacity of the calibrated physical model (Sargsyan et al.,

2015). Evin et al. (2014a) compared the joint calibration approach to a post-processing
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approach of accounting for the model-error and concluded that the joint-calibration

approach was found to be less robust. This leads us to the third line of research, where

model-error is generally estimated from the residual (data-mismatch obtained from

difference between reality and simulation models). For example, Evin et al. (2014a)

estimated the model-error by using normalized residuals and autoregressive model with

linear heteroscedasticity. However, this formulation has limitation in the scenarios

where model-error exhibits strong structural features and non-linear heteroscedasticity.

Along the same line, Sargsyan et al. (2015) utilized approximate Bayesian computa-

tion (ABC) to capture the model-error uncertainty using residuals. However, the use

of ABC in ensemble based methods is not clearly understood. Recently, Oliver and

Alfonzo (2018) estimated the correlated structure of an approximate model-error by

computing a covariance matrix of the total residual obtained after one-round of cal-

ibration. This covariance matrix was utilized to estimate the model-error statistics

and then a re-calibration step is introduced in order to compensate the model-error

effects until a termination criteria is satisfied. This approach while novel requires mul-

tiple re-calibration iterations and has the limitation to handle non-Gaussian behavior

of residuals. Further more, if the imperfect model is flexible enough, the total residual

might vanish after one calibration step and then the model error/bias will be underes-

timated.

In this chapter, a flexible iterative ensemble smoother is introduced to calibrate both

perfect and imperfect models. The algorithm is simple to implement and has negligible

computational overhead over the standard ES-MDA algorithm. ES-MDA is reformu-

lated by splitting of data-residual (mismatch between model output and observation)

into two parts by estimating a split parameter (scalar value) during the calibration

process. The first part of the residual is used to update the model-parameters and the

second part is assumed to represent the model-error. The objective of the proposed al-

gorithm is to reduce the model-bias by capturing the unknown model-error uncertainty

during the calibration of imperfect models in order to improve the prediction capability

of the calibrated physical model. Furthermore the proposed algorithm could be used

as a diagnostic tool to check the reliability of the physical models and the need for a
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model refinement step. In this work, three test cases have been used to observe the

performance of the proposed algorithm. These test cases are related to the calibration

of polynomial functions, simple machine and imperfect reservoir model. In the first test

case, a cubic function is considered as perfect model and imperfect models are repre-

sented by quadratic and linear functions. The second test case is related to estimation

of efficiency of the simple machine model which lacks physics in terms of a friction com-

ponent. The third test case is related to calibration of an imperfect reservoir model,

which has blurred channelized geological patterns. The imperfect reservoir model has

two sources of modeling errors, i.e. simplified geological representation and up-scaling

errors.

The outline of this chapter is as follows. In Section 4.2 the formulation of flexible

iterative ensemble smoother is described. Following that, three test cases related to cal-

ibration of polynomial functions, simple machine model and imperfect reservoir model

are described with results in Section 4.3. Section 4.4 is related to the conclusions of the

chapter.

4.2 Formulation of Flexible iterative ensemble

smoother

In this section, we first present the standard ES-MDA, followed by the proposed flexible

formulation that could handle the cases where the model-errors cannot be neglected. In

standard settings, ES-MDA update equation can be written as (Emerick and Reynolds,

2013),

∆M = CMD (CDD + α CD)−1(Duc −D), (4.1)

where M = [m1,m2,m3, . . . ,mNe ] ∈ RNm×Ne is an ensemble of model parameters of size

Ne, mr is a realization r of the model parameters of size Nm, D ∈ RNd×Ne is an ensemble

of model outputs of size Nd generated by a perfect model denoted by an operator g (i.e.

D = g(M)), Duc ∈ RNd×Ne is the ensemble of perturbed observations (dobs ∈ RNd×1),

α is the noise inflation parameter and CD is the measurement error/noise covariance
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matrix. The covariances CMD and CDD, representing approximate sensitivity of the

model response to changes in the model parameters, are defined using the following

equations:

CMD =
1

Ne − 1
(M−Mmean

−→
1Ne)(D−Dmean

−→
1Ne)

ᵀ
, (4.2)

CDD =
1

Ne − 1
(D−Dmean

−→
1Ne)(D−Dmean

−→
1Ne)

ᵀ
. (4.3)

where Mmean ∈ RNm×1 is the ensemble mean of model parameters, Dmean is the ensem-

ble mean of model outputs and
−→
1Ne ∈ R1×Ne is a row vector of ones. In ES-MDA, non-

linear inverse problem is solved iteratively with an inflated noise covariance matrix and

the inflation factor α is normally set to the total number of data assimilations/iterations

Na.

For the proposed Flexible ES-MDA, the output of the imperfect model is related to

the perfect model output using the following equation:

D = D̃ + E, (4.4)

where D̃ is an ensemble of model output generated from the imperfect model denoted

by the operator g̃ using D̃ = g̃(M) and E is an ensemble of the model-error. Similarly,

the mean of the previous equation over the ensemble outputs resulted in the following

equation:

Dmean = D̃mean + Emean. (4.5)

For the approximate sensitives, substituting Eqs. 4.4 and 4.5 into Eq. 4.2 and Eq. 4.3

resulted in the following modified covariances:

CMD = CMD̃ + CME, (4.6)

CDD = CD̃D̃ + CD̃E + CED̃ + CEE. (4.7)
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where,

CMD̃ =
1

Ne − 1
(M−Mmean

−→
1Ne)(D̃− D̃mean

−→
1Ne)

ᵀ
(4.8)

CME =
1

Ne − 1
(M−Mmean

−→
1Ne)(E− Emean

−→
1Ne)

ᵀ
(4.9)

CD̃D̃ =
1

Ne − 1
(D̃− D̃mean

−→
1Ne)(D̃− D̃mean

−→
1Ne)

ᵀ
(4.10)

CD̃E =
1

Ne − 1
(D̃− D̃mean

−→
1Ne)(E− Emean

−→
1Ne)

ᵀ
(4.11)

CED̃ =
1

Ne − 1
(E− Emean

−→
1Ne)(D̃− D̃mean

−→
1Ne)

ᵀ
(4.12)

CEE =
1

Ne − 1
(E− Emean

−→
1Ne)(E− Emean

−→
1Ne)

ᵀ
(4.13)

Using these sensitivities and substitution of Eqs. 4.4, 4.6 and 4.7 into Eq. 4.1, the

Flexible ES-MDA update equation while accounting for the model-error can be written

as:

∆M = (CMD̃ + CME) (CD̃D̃ + CD̃E + CED̃ + CEE + α CD)−1(Duc − D̃−E). (4.14)

In general, the ensemble of modeling errors E is unknown. However, the residual of

data mismatch includes the model-error effects and we postulate that this data-residual

could be split between a parameter update component and a modeling error component.

In this study, we approximate the ensemble of model-errors Ẽ using a fraction of the

data-residual ensemble as shown in the following equation:

Ẽ = spR, (4.15)

where R = dobs
−→
1Ne − D̃ ∈ RNd×Ne is the ensemble of residuals obtained from the

differences between the observation and the ensemble of imperfect model outputs and

sp is a scaler split parameter. The prior (initial) split parameter is computed based on

the ratio of norm of mean residual (mean deviation from observed data) and norm of

maximum residual (maximum absolute deviation from observed data).

sp
(1) =

‖σm‖
‖σmax‖

, (4.16)

where σm = mean(R) ∈ RNd×1 is the mean residual (mean deviation from observed

data) and σmax = max(abs(R)) ∈ RNd×1 is the maximum residual (maximum abso-

lute deviation from observed data). During calibration (data assimilation) this split
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parameter is updated based on the ratio of norm of mean residuals obtained in current

iteration i and previous iteration i− 1.

sp
(i) =

‖σm(i)‖
‖σm(i−1)‖

. (4.17)

The statistical interpretation of the split parameter (Eqs. 4.16, 4.17) can be at-

tributed to the correspondence of the mean residual to the model-error/bias. Equation

4.16 is used to normalize the initial mean residual in the range of [0, 1] and Eq. 4.17 is

used to represent the change in the mean residual during calibration/data-assimilation

process. We note that if model response/output consists of multiple time series, the

split parameter should be calculated individually for each time series. We replace the

ensemble of true model-error E with the approximate ensemble of model-error Ẽ in

Eq. 4.14, such that:

∆M = (CMD̃ + CMẼ) (CD̃D̃ + CD̃Ẽ + CẼD̃ + CẼẼ + α CD)−1(Duc − D̃− Ẽ). (4.18)

We argue that we want to develop a Flexible ES-MDA that could work for both

good models with negligible model errors (a.k.a. perfect models) as well as for the cases

where model errors cannot be neglected (a.k.a. imperfect model). Following this line

of thought, we simplified the update equation (Eq. 4.18) with the objective of avoiding

perturbation of the approximate sensitivities in the update equations and while keeping

the symmetric regularization-like components of the error covariance.

Therefore, Equation 4.18 can be simplified to the following form:

∆M = CMD̃ (CD̃D̃ + CẼẼ + α CD)−1(Duc − D̃− Ẽ). (4.19)

Equation 4.19 represents the final update form for flexible iterative ensemble smoother.

We also note that after data assimilation, the magnitude of Ẽ and CẼẼ could be used

an indicator for the model accuracy. Higher magnitude refers to high model-inadequacy

in terms of limited physics, reservoir geology, grid coarsening/upscaling, parameteriza-

tion or prior realizations descriptions. Ideally, after data assimilation for the perfect

model cases, Ẽ and CẼẼ would approach zero (i.e. D = D̃). The details of the Flex-

ible ES-MDA are shown in Algorithm 7. We note that, if the model response/output
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consists of multiple time series with different range of values, the rescaling and SVD

thresholding of the inverse matrix (CD̃D̃ + CẼẼ +α CD)−1 should be done in the same

way as shown in the paper (Emerick and Reynolds, 2012).

Algorithm 7 Flexible ensemble based algorithm for perfect and imperfect models

1: Choose Na B number of data assimilation/iterations

2: i← 1

3: α = Na

4: while i <= Na do

5: Duc = dobs
−→
1Ne +

√
α C

1/2
D Zd, B Observation perturbations, Zd =

[zd1 zd2 zd3 ...... zdNe ] ∈ RNd×Ne , zd ∼ N (0, INd
) ∈ RNd×1,

6: D̃ = g̃(M) B Generate ensemble of model outputs D̃ ∈ RNd×Ne

7: R = dobs
−→
1Ne − D̃

8: Ẽ = sp
(i)R B Compute ensemble of approximate model-error, Ẽ ∈ RNd×Ne

9: M←M + CMD̃ (CD̃D̃ + CẼẼ + α CD)−1(Duc − D̃− Ẽ) B Update ensemble

10: i← i+ 1

11: end while

12: Mpost = M B Mpost ∈ RNm×Ne is the posterior ensemble of model parameters

13: D̃post = g̃(Mpost) B Generate posterior ensemble of model predictions, D̃post

4.3 Test cases

In this work, three test cases have been used to observe the performance of the pro-

posed algorithm. These test cases are related to the calibration of polynomial functions,

simple machine and imperfect reservoir model. For comparison purpose, calibration is

performed using both the standard ES-MDA (Emerick and Reynolds, 2013) and the

proposed Flexible ES-MDA algorithm. An ensemble of 100 members is used with 8

iterations for the calibration of all test cases. In the first test case, a cubic polyno-

mial function is considered as a perfect model and imperfect models are represented by

quadratic and linear functions. The objective is to test the performance of the proposed
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algorithm for calibration of perfect and imperfect models. The second test case is related

to the estimation of efficiency of the simple machine model which lacks physics in terms

of friction component and used (Brynjarsdottir and O’ Hagan, 2014) as a test case for

a joint calibration framework with the model error parameterized by Gaussian process

regression. In this work, the objective is to test the calibration and prediction improve-

ment of simple machine model using the proposed algorithm without joint calibration.

The third test case is related to calibration of imperfect reservoir model, which has

blurred channelized geological patterns. The imperfect reservoir model has two sources

of modeling errors, simplified geological representation and up-scaling errors.

4.3.1 Test case 1: The polynomial functions

In this test case, the data is generated from a cubic polynomial functions and perturbed

with an additive measurement noise εd ∼ N (0,CD) using Eq. 4.20. The complexity of

the calibrated models vary from a first order polynomial to a third order polynomials

as shown in Eqs. 4.21, 4.22 and 4.23. The objective is to test the performance of the

proposed algorithm on both scenarios where the calibrated model complexity matches

the data generating process (i.e. perfect model) and when the calibrated model is less

parameterized than the data generating process (i.e. imperfect models). The domain

of x lies within the interval [−1, 1]. We calibrate three models (cubic, quadratic and

linear models) to obtain the posterior distributions of each model parameters vector λ

and the corresponding models outputs. The objective is to evaluate the flexibility of

the proposed algorithm in quantifying the model-error uncertainty for imperfect models

as well as the ability to match the data for the perfect model case. Prior parameters

are sampled from a standard normal distribution with zero mean (µ = 0) and standard

deviation σ = 10.
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dobs = 2 + 2x+ 3x2 − 5x3 + εd, (4.20)

f1(x) = λ0 + λ1x, (4.21)

f2(x) = λ0 + λ1x+ λ2x
2, (4.22)

f3(x) = λ0 + λ1x+ λ2x
2 + λ3x

3. (4.23)

The calibration of polynomial functions are performed using two levels of measure-

ment noise. In the first level, negligible measurement error (i.e. order of magnitude

10−12) is considered. Figure 4.1 shows the posterior distribution of cubic, quadratic

and linear models outputs obtained by ES-MDA and Flexible ES-MDA algorithms.

We observe that both algorithms manage to match the observations for cubic model

(perfect model case), without any bias as shown in Figs. 4.1(a) and (b). This shows

that the proposed algorithm did not introduce any bias and has the flexibility to match

the data for the perfect model case with negligible measurement errors. The posterior

distributions of cubic model output (Figs. 4.1(a) and (b)) are appeared as the point esti-

mate (i.e. exact data match) due to the effect of negligible measurement error (i.e. order

of magnitude 10−12).

Figures 4.1(c) and (d) show the posterior distribution of the quadratic model output.

It is clear that the standard ES-MDA fails to match the data, while the calibrated

model using the Flexible ES-MDA results in model outputs that account for model-error

uncertainty and provides a good coverage for the observations as shown in Fig. 4.1(d).

Similar results are observed for the linear model case in Figs. 4.1(e) and (f), where a

better coverage is obtained by the proposed Flexible ES-MDA. However, we note that

the coverage is not as good for the quadratic model case. This shows that the capacity

as well as the limitation of the proposed algorithm in accounting for the modeling errors

during the calibration.
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(a) Cubic model
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(b) Cubic model
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(c) Quadratic model
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(d) Quadratic model
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(e) Linear model
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(f) Linear model

Figure 4.1: Posterior distribution of models (cubic, quadratic and linear) outputs for test case

1 (negligible measurement error). Red lines show p50 percentiles, grey shaded areas show

99% confidence intervals and solid black dots show observation data.

For further validation of the proposed algorithm, we compare the best split factor
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(computed using the true model-error ensemble Eactual) with the approximated split

factor sp estimated using the formulation proposed in this manuscript. The best split is

computed by minimizing the Frobenius norm of the difference between true model-error

ensemble and the residual ensemble i.e. min ‖Eactual − spR‖. This simple minimization

problem is solved using differential evolution algorithm (Storn and Price, 1997). The

Frobenius norm of m× n matrix X is defined by,

‖X‖F =
√

trace(XᵀX). (4.24)

Figure 4.2 shows both the best split factor sp when the true model error is known

and the approximated split versus the number of ES-MDA iterations. At iteration 0

(i.e. prior), both the best and proposed split factors show very low values, because the

prior residual is relatively larger than the model-error. For subsequent iterations, the

split parameter is increasing with respect to the iteration number, which is attributed

to the convergence of the proposed flexible algorithm to the level of model-error uncer-

tainty. At iteration 2, the proposed split is very close to best split value for both linear

and quadratic imperfect models, which show the robustness of the proposed equation

in approximating the split factor. After iteration 2, the proposed split parameter ap-

proached 1, which show that all the data mismatch (residual ensemble) is treated as

a model-error ensemble and further reduction of uncertainty is not possible due to the

limited capacity of both the linear and quadratic models in matching the data. These

results demonstrate the ability of the proposed algorithm in capturing the unknown

model-error uncertainties during the calibration of imperfect models.
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(a) Calibration of linear model
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(b) Calibration of quadratic model

Figure 4.2: Comparison between splits obtained from actual model-error and proposed algo-

rithm during calibration.

Using the same problem setup, we add a measurement error of 5% of true function

value (Eq. 4.20). The objective of this experiment is to evaluate the proposed algorithm

when measurement errors are present while calibrating perfect and imperfect models.

Figure 4.3 shows the posterior outputs of the calibrated cubic, quadratic and linear

models. For the cubic models case, both the standard ES-MDA and the Flexible ES-

MDA algorithms managed to match the structural feature of the data as shown in

Figs. 4.3(a) and (b). However, the proposed Flexible ES-MDA algorithm performs

significantly better in terms of capturing the noisy features of the data (Fig. 4.3(b)).

This effect shows that the split formulation of proposed algorithm act as a adaptive

regularizer for the perfect model scenario. Similar results (w.r.t negligible measurement

noise case) are observed for both the quadratic and the linear models in the presence of

both measurement and model errors (Figs. 4.3(c), (d), (e) and (f)), where the results

from the Flexible ES-MDA are clearly better than the standard ES-MDA in quantifying

the unknown model-error uncertainty along in the presence of measurement errors.
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(a) Cubic model
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(b) Cubic model
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(c) Quadratic model
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(d) Quadratic model
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(e) Linear model
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(f) Linear model

Figure 4.3: Posterior distribution of models (cubic, quadratic and linear) outputs for test case

1 (with measurement error of 5%). The descriptions of lines and colors are same as in Fig. 4.1.

Figure 4.4 shows the posterior distribution of parameters for the case of 5% mea-

surements errors. In this figure, blue and magenta colors show the posterior distribution
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obtained from ES-MDA and Flexible ES-MDA, respectively. ES-MDA results in a bi-

ased posterior distribution of the model parameters as shown in Figs. 4.4(a), (b) and

(c) except for the perfect model case and constant coefficient of the quadratic model.

Flexible ES-MDA reduces model-bias in parameter estimation of linear and quadratic

models by capturing the model-error effects and covers the reference solution as shown

in Figs. 4.4(a), (b) and (c) except for coefficient of x (i.e. λ1) of the quadratic model.

We use the Prediction Interval Coverage Probability (PICP) of posterior distribu-

tions as one of the calibration metric. PICP is estimated by counting the number

of observations in the confidence intervals (10% to 99%) of the posterior distribution

normalized by the total number of observations (Xu and Valocchi, 2015). PICP is

a very useful metric for quantifying both under-estimation and/or over-estimation of

uncertainties in the obtained posterior distributions (Xu and Valocchi, 2015). The

mathematical description of Coverage Probability (CP) is shown in the Appendix B.

PICP values close to 45◦ line (dashed red line in Figure 4.5) indicates a perfect posterior

distribution. Figure 4.5 shows the PICP of the prior and posterior distribution of the

linear, quadratic and cubic models outputs. We observe that the posterior distribution

of cubic (perfect) model output obtained by the standard ES-MDA underestimates the

uncertainty. However, the proposed Flexible ES-MDA shows more robust uncertainty

quantification as shown in Fig. 4.5(a). This effect is due to the efficient coverage of the

noisy features of the observation data by the proposed algorithm (Fig. 4.3(b)). PICP

of posterior distribution obtained from ES-MDA for the imperfect linear and quadratic

models show severe underestimation of uncertainties (Figs. 4.5(b) and (c)) as the model-

error uncertainties are missing in the formulation. Further, we observe a more robust

PICP values obtained from the proposed algorithm for calibrating the imperfect linear

and quadratic models as shown in Figs. 4.5(b) and (c).

Mean continuous ranked probability score (CRPS) is one of the most useful cali-

bration and prediction metric to evaluate the precision and accuracy of the posterior

ensemble. Less accurate or poor quality results are indicated by the higher values

of CRPS. The complete detail of CRPS for ensemble prediction system can be found

in Hersbach (2000). The mathematical descriptions of mean CRPS along with Mean
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square error (MSE) are presented in the Appendix B. Figure 4.6 shows the comparison

of mean CRPS and MSE of the posterior ensemble of models outputs obtained by the

ES-MDA and the proposed algorithm. Calibration results from the proposed algorithm

show lower CRPS values for linear, quadratic and cubic models (Fig. 4.6(a)), which

indicates more reliable results in terms of precision and accuracy. In Fig. 4.6(b), MSE

shows more wide distribution of posterior ensemble due to the coverage of unknown

model-error uncertainty using Flexible ES-MDA, however lower values of MSE is also

observed using the proposed algorithm due to significant reduction in model-bias.
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Figure 4.4: Posterior distribution of models (cubic, quadratic and linear) parameters for test

case 1 (with measurement error of 5%). Red dashed lines with small circles on ends show

the reference model parameters, which are used to generate observations. In figure legends,

subscripts ’e’ and ’f’ show the calibration using ES-MDA and Flexible ES-MDA respectively.

Blue and magenta show the y-axes correspond to PDF values of posterior distribution obtained

using ES-MDA and Flexible ES-MDA respectively.
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(a) PICP of Cubic model
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(b) PICP of Quadratic model
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(c) PICP of Linear model

Figure 4.5: Prior and posterior PICP of linear, quadratic and cubic models (with measurement

error of 5%).
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Figure 4.6: Mean CRPS and MSE of posterior ensemble for test case 1 (with measurement

error of 5%). In part (b), ’L’, ’Q’ and ’C’ show MSE from linear, quadratic and cubic models

respectively. Subscripts ’e’ and ’f’ show the calibration using ES-MDA and Flexible ES-MDA

respectively.

Comparison with Algorithms 4, 5, 6 and MCMC reference solution

In this test case, Algorithms 4, 5, 6 are also compared with respect to the MCMC

reference solution. This comparison allows us to understand the difference between the
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performance and requirements of the proposed algorithms in this thesis. Algorithms

4, 5 and 6 are proposed for the joint calibration of imperfect models and error-model,

therefore the linear model (Eq. 4.21) is used as the imperfect model and error-model

is formulated using the prior statistics of the model-error, which is evaluated based

on the difference between the cubic (Eq. 4.23) and linear models (Eq. 4.21) using 100

samples. The PCA based error-model is formulated for Algorithms 4, 5 and 6 similar

to Chapter 3 by retaining two basis function and basis weights from prior model-error

statistics. The prior parameters are sampled from a normal distribution with zero mean

(µ = 0) and standard deviation σ = 10. The same prior mean and standard deviation

are taken for ES-MDA and Flexible ES-MDA in the previous section of the test case 1,

which allows the consistent comparison between the algorithms. The prior samples of

the common parameters between linear and cubic models are same so that the actual

prior model-error statistics can be computed. The initial settings for the Algorithms 4,

5 and 6 are same as Chapter 3, where 100 ensemble members are used with 8 ES-MDA

iterations.

MCMC modified random walk method (discussed in Chapter 1) is used to evaluate

the reference posterior distribution of the parameters by inverting the linear model

(Eq. 4.21) and the error-model. The joint inversion of the linear model and error-model

using MCMC allows us to evaluate the reference posterior distribution and to verify the

solutions from Algorithms 4, 5 and 6. The reference posterior distribution is obtained

using one million samples of the linear model and error-model parameters with the step

size of 0.005 and 10% burn-in period.

Figure 4.7 shows the posterior distribution of the linear model parameters. Algo-

rithms 4, 5 and 6 perform relatively well to reduce the bias in parameter estimation and

nearly obtain an unbiased solution as compared to the reference solution from MCMC.

The solutions are not exactly same as reference solution from MCMC because of the

limitations of the ensemble based techniques. However Fig. 4.8 shows the posterior

solution are a robust approximation in case of a calibration of imperfect model. Figure

4.8 shows the combined result of linear model and error-model using Algorithms 4,

5, 6 and MCMC, which show similar posterior behaviour as cubic model because the
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outputs (errors) from the error-model are added into the linear model solution.

The approximate posterior distributions from Algorithms 4, 5 and 6 are clearly far

better than the solution of ES-MDA and Flexible ES-MDA as shown in Fig. 4.4 in terms

of accuracy and precision in uncertainty quantification. This is due to the fact that

Algorithms 4, 5 and 6 require prior model-error statistics for performing joint calibration

of the linear and error-model. However Flexible ES-MDA relaxes the assumption of

requirement of prior model-error statistics and joint calibration. The Flexible ES-MDA

can only reduce the bias in the parameter estimation in order to cover reference solution

(Figs. 4.3(f), 4.4(a, b)) by capturing unknown model-error uncertainty, which is a kind

of trade-off between reliability and precision.
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Figure 4.7: Comparison of the posterior distribution of parameters of the linear model. Red

vertical dashed lines with small circles on ends show the reference solution (true model pa-

rameters).
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Figure 4.8: Posterior distribution of linear model and error-model outputs for test case 1

(with measurement error of 5%). The descriptions of lines and colors are same as in Fig. 4.1.

4.3.2 Test case 2: The simple machine

In this test case, the simple machine model is calibrated with the observation data ob-

tained from the unknown complex machine. The main objective is to test the flexibility

of proposed algorithm for the cases, where the model lacks some physics. The imperfect

model for simple machine is shown in eq. 4.25.

y = θx, (4.25)

where y is the work obtained from machine, x is the effort on machine and θ is the

efficiency of machine. True complex machine T (x) includes the friction effect, which
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is unknown. The observed data dobs is generated using the function of true complex

machine using:

T (x) =
θx

1 + x/a
, (4.26)

dobs = T (x) + εd, (4.27)

where a = 20 and εd is the measurement error, which is taken as 5% of true func-

tion. In this test case, the task is to estimate the efficiency of the machine θ and the

corresponding output of the calibrated model. The prior distribution for the model

parameters is assumed to follow a standard normal distribution i.e. mean µ = 0 and

standard deviation σ = 1. The domain of effort variable x lies within the interval [0, 6].

Total number of points are 61 i.e. x contains values from 0 to 6 with the difference

of 0.1 between two consecutive points, where 40% are used for calibration/parameter

estimation purpose and 60% are used for predictions.

In this test case, an ensemble of 100 members is used with 8 iterations for the

calibration of the simple machine model. Figure 4.9 shows the posterior distribution

of efficiency (parameter) of the machine and model output obtained by ES-MDA and

Flexible ES-MDA algorithms. Both algorithms match the historical/training data, how-

ever predictions obtained from the calibrated model using ES-MDA are overconfident,

inaccurate and generally unreliable (Fig. 4.9(a)). This is due to the biased posterior

distribution of efficiency (parameter) of machine as shown in Fig. 4.9(d). This bias

in the estimated efficiency parameter of the machine is reduced significantly and pos-

terior distribution covers the true efficiency of the machine using proposed Flexible

ES-MDA (Fig. 4.9(d)). Due to this effect more reliable predictions are obtained from

the calibrated simple machine model using the proposed Flexible ES-MDA algorithm

(Fig. 4.9(b)).
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Figure 4.9: Parameter estimation, calibration and prediction results for test case 2. Parts (a)

and (b) show the posterior distribution of model output. In parts (a) and (b) blue lines show

p50 percentiles, grey shaded areas show 99% confidence intervals, dashed black line show the

end of historical/training (i.e. use for parameter estimation) data and solid black dots show

observation data. Parts (c) and (d) show prior and posterior distribution of model parameter.

In parts (c) and (d) red dashed line show the true efficiency of the machine.

Figure 4.10 shows the PICP of training data and predictions. The proposed al-

gorithm shows more robust uncertainty quantification of training data as shown in

Fig. 4.10(a). The prediction PICP is also improved by the Flexible ES-MDA (Fig. 4.10(b)),

which shows the increase in predictions reliability from calibrated imperfect models

(which lacks some physics). Similar results are observed in terms of mean CRPS and
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MSE metrics for both historical/training and prediction data as shown in Fig. 4.11.
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(a) PICP of training/historical data
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(b) PICP of prediction data

Figure 4.10: Posterior PICP of training/historical data and prediction from simple machine.

History Prediction
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n 
C

R
P

S

ES-MDA
Flexible ES-MDA

(a) Mean CRPS comparison

History
e

History
f

Prediction
e

Prediction
f

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
S

E

(b) MSE comparison

Figure 4.11: Mean CRPS and MSE of posterior ensemble for historical and prediction data of

test case 2. In part (b) subscripts ’e’ and ’f’ show the calibration from ES-MDA and Flexible

ES-MDA respectively.
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4.3.3 Test case 3: The imperfect reservoir model

This test case is related to the calibration of imperfect model of subsurface oil reservoir

with channelized geological patterns of log-permeability field. The subsurface reservoir

has dimensions of 7500 ft × 7500 ft × 20 ft in the x, y and z directions, respectively.

The reservoir contains oil and water phases with in-compressible flow in porous media.

The reservoir has uniform porosity of 20% and the initial reservoir pressure is 5000 psi.

Figure 4.12 shows the true model, which consists of 75 × 75 grid blocks, along with

different wells open/shut schedule (Fig. 4.12(b)) and controls (Fig. 4.12(c)). The true

model is used to generate the observed data and the observations are perturbed by an

additive measurement noise, which is taken as 5% of true model response. The reservoir

contains one injector well (I1) and three production wells (P1, P2, P3). The production

wells are operated under constant bottom hole pressure constraint of 4500 psi and the

injector well is operated with time varying constraint of constant injection rate as shown

in Fig. 4.12(c). The relative permeability is represented by Corey’s power law model,

which is described along with parameter values and fluid properties in Appendix A.

The capillary pressure and gravitational effects are neglected.

The reservoir is simulated using a 2-D grid with the Matlab Reservoir Simulation

Toolbox (MRST) (Lie, 2016). Well P3 is used in the prediction period in order to assess

the prediction capabilities of the calibrated reservoir model for future/new wells. The

reference and prior fine scale channelized log-permeability fields are generated using

a two facies training image as an input to a direct sampling version of MPS algo-

rithm (Mariethoz and Caers, 2014). The imperfect reservoir model is an up-scaled

version of true model with a size of 15× 15 grid block with no parameterization of the

geological features (parameters corresponds to grid-block values). The prior realiza-

tions of the imperfect reservoir model are obtained by the harmonic averaging of the

permeability field of 75×75 high-fidelity. We note that harmonic average is non-robust

upscalling procedure and it is deliberately chosen to introduce the model-error into the

simulation model. The upscaled model (a.k.a. imperfect reservoir model) contains two

major sources of modeling errors, simplified geological representation and up-scaling
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errors. Figure 4.12(a) shows the log-permeability field of true model with the chan-

nelized features and Fig. 4.13(a) shows the corresponding up-scaled log-permeability

field where the channelized features are blurred due to harmonic up-scaling of the grid

properties. For the upscaled model, the physical model parameters are the permeability

values at the 225 cells. Except for permeability, all other inputs to the reservoir sim-

ulator take the same value for both the reference fine model and the up-scaled models

used in history matching, for example relative permeability and porosity.
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Figure 4.12: The true reservoir model (use to generate observations). Part (a) shows the

fine scale (75× 75) reference log-permeability with channelized features. Part (b) shows wells

open/shut schedule. In part (b) solid back lines indicate the time periods when a well is open

to flow. Part (c) shows water injection rate of injector well I1. Vertical dashed black lines

show the end of the historical period in part (b) and (c).

In this test case, an ensemble of 100 members (i.e. one hundred realizations of log-

permeability field) is used with 8 iterations for the calibration of imperfect reservoir

model. Figure 4.13 shows the mean of the posterior distribution of the log-permeability

field obtained by standard ES-MDA and the proposed Flexible ES-MDA algorithms.

For the standard ES-MDA, we observe over-shooting (red and blue values) in the mean

log-permeability field at a large number of grid blocks. In this case, ES-MDA ag-

gressively tried to adjust the model parameters to match the observation while ne-

glecting the model errors. For the Flexible ES-MDA, we obtained relatively smooth

log-permeability fields as shown in Fig. 4.13(c), as the algorithm only updates the model
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parameters using a percentage of the data mismatch defined by the split parameter sp

to account for unknown model-error effects. Figure 4.14 shows the standard deviation

of log-permeability field obtained using both the standard ES-MDA and the proposed

Flexible ES-MDA algorithms. We observe relatively high values of standard deviation

from Flexible ES-MDA (Fig. 4.14(b)) as compared to ES-MDA (Fig. 4.14(a)), due to

the effect of additional uncertainty of unknown model-error.
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Figure 4.13: Reference log-permeability field of the imperfect reservoir model with parameter

estimation results. Part(a) shows the reference log-permeability field. Part(b) shows the pos-

terior mean obtained from ES-MDA calibration. Part(c) shows the posterior mean obtained

from the proposed Flexible ES-MDA.
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Figure 4.14: Standard deviation of log-permeability field obtained from posterior ensemble.

Figure 4.15 shows the prior and posterior distribution of oil rates from the produc-
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tion wells. ES-MDA performs well in terms of matching the observations as shown in

Fig. 4.15(a), however poor quality predictions are observed for wells P2 and P3. For well

P1, the predictions start to deviate after 4.2 years. These over-confident and inaccurate

predictions are due to the over-shooting of log-permeability values around production

wells (Fig. 4.13(b)). This is a common problem in the petroleum industry, where the

historical data is usually matched and often the calibrated models suffers from severe

predictability problem (Carter et al., 2006). One of the primary reason of this problem

is failing to account for model-error effects during the history matching/calibration pro-

cess as evident in these results. In contrast, the proposed Flexible ES-MDA algorithm

performs relatively better in terms of predictions quality for production wells P1, P2

and P3 as shown in Fig. 4.15(b). This could be easily attributed to the smooth mean

log-permeability fields of posterior ensemble as shown in Fig. 4.13(c).

Similar results are observed in Fig. 4.16 for the water rates of production wells and

injector well I1. However, we observe that the historical data for well I1 is not fully

covered by the posterior distribution obtained by the Flexible ES-MDA as shown in the

bottom row of Fig. 4.16(b). This is due to the bad prior distribution (shown by brown

lines) of the injection pressure for well I1. We note that this low quality prior is a conse-

quence of modeling errors effect (upscaling) and this can be avoided by using model/grid

refinement around wells that are difficult to match. Figure 4.17 shows the PICP of pa-

rameter estimation, historical data and predictions. The Flexible ES-MDA shows very

robust uncertainty estimates for the model parameters (log-permeability field) as the

PICP values lie close to the reference line as shown in Fig. 4.17(a). Additionally, the

proposed algorithm shows improved uncertainty estimate of historical production data

as shown in Fig. 4.17(b), despite failing to match the historical data for well I1. The

prediction PICP is also improved by the Flexible ES-MDA (Fig. 4.17(b)), which shows

an increase in predictions reliability from calibrated imperfect reservoir models.

Figure 4.18 shows the mean CRPS and MSE metrics for both historical and pre-

diction data. We observe that mean CRPS and MSE of the historical data show lower

values for ES-MDA due to relatively better matching and higher values for Flexible ES-

MDA due to the uncovered historical data of well I1. However, the Flexible ES-MDA
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shows significant improvement for mean CRPS and MSE of prediction data. The good

matching using ES-MDA can mislead us to over-confident and inaccurate predictions

in case of imperfect models and this over-confidence in inaccurate predictions could be

avoided using the proposed Flexible ES-MDA.
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Figure 4.15: Prior and posterior of oil production data for production wells P1, P2 and P3.

Red lines show observed data and bars on red lines show measurement error. Vertical dashed

black lines show the end of the historical period. Solid and dashed brown lines show 50th

percentile p50 and 99% confidence interval of prior distribution respectively. Solid blue lines

and gray shaded area show p50 and 99% confidence interval of posterior distribution.



Flexible iterative ensemble smoother for calibration of perfect and
imperfect models 137

P1

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

6000

7000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

) P1

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

6000

7000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

)

P2

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

) P2

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

)

P3

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

6000

7000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

) P3

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

6000

7000

W
at

er
 p

ro
d 

ra
te

 (
S

T
B

/d
ay

)

I1

0 1 2 3 4 5 6

Time (years)

0

1

2

3

4

5

6

7

In
je

ct
or

 B
H

P
 (

ps
i)

104

(a) ES-MDA

I1

0 1 2 3 4 5 6

Time (years)

0

1

2

3

4

5

6

7

In
je

ct
or

 B
H

P
 (

ps
i)

104

(b) Flexible ES-MDA

Figure 4.16: Prior and posterior of water production and injection pressure data. The de-

scriptions of lines and colors are same as in Fig. 4.15.



Flexible iterative ensemble smoother for calibration of perfect and
imperfect models 138

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Theoretical coverage probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
st

im
at

ed
 c

ov
er

ag
e 

pr
ob

ab
ili

ty ES-MDA
Flexible ES-MDA

(a) PICP of model parameters
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(b) PICP of historical data
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(c) PICP of prediction data

Figure 4.17: Posterior PICP of model parameters, historical and prediction data of test case
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Figure 4.18: Mean CRPS and MSE of posterior ensemble for historical and prediction data

of test case 3. In part (b) subscripts ’e’ and ’f’ shows the MSE obtained from ES-MDA and

Flexible ES-MDA respectively.

In cases where model-refinement/correction is not feasible, we propose a variant of

the Flexible algorithm where the maximum split factor sp is bounded by the coverage

probability of the 99.99% confidence interval. This results in an adaptive algorithm

where the split parameter is adaptively adjusted for each time series using the following

simple equation,

If: sp > CP : then sp = CP, (4.28)
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where CP is the coverage probability of the 99.99% confidence interval. The only

additional modification is the computation of the CP parameter for each time series at

every iteration of Flexible ES-MDA algorithm. The mathematical description of CP is

presented in the Appendix B. The idea behind the comparison of split parameter with

coverage probability that both have same range from [0, 1], and in the case of a time

series showing bad prior (failed to cover the data, i.e. CP = 0) then the Flexible ES-

MDA performs like standard ES-MDA for this output time series during the initial few

iterations of the ES-MDA. During later iterations it is expected that the CP becomes

non-zero and the split parameter would be adjusted according to the value of CP .

Figure 4.19 shows the posterior results of log-permeability field using the proposed

Flexible ES-MDA with adaptive adjustment of the split parameter with respect to cov-

erage probability. We note that the quality of the mean log-permeability field is slightly

decreased (Fig. 4.19(a)) as compared to earlier results shown in Fig. 4.13(c) without

any adaptive adjustment of the split parameter. Figure 4.20 shows the calibration and

prediction results of well outputs obtained from Flexible ES-MDA with adaptive ad-

justment of the split parameter. In this figure, we only present the results that are

affected by the adaptive adjustment of the split parameter. We observe a better data

match of the historical data for well I1 (Fig. 4.20) due to the adaptive adjustment of

the split parameter in Flexible ES-MDA as compared to without any adjustment of

split parameter (Fig. 4.16(b)). In addition, we note that the confidence intervals of

production wells P2 and P3 are reduced (Fig. 4.20) due to the relatively lower values of

the standard deviation of the posterior ensemble (Fig. 4.19(b)) obtained from Flexible

ES-MDA with adaptive split parameter as compared to Fig. 4.14(b).
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Figure 4.19: Mean and standard deviation of log-permeability field of posterior ensemble

obtained from Flexible ESMDA with adaptive adjustment of split parameter.

P1

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

10000

O
il 

pr
od

 r
at

e 
(S

T
B

/d
ay

)

P2

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000
W

at
er

 p
ro

d 
ra

te
 (

S
T

B
/d

ay
)

P3

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

O
il 

pr
od

 r
at

e 
(S

T
B

/d
ay

)

I1

0 1 2 3 4 5 6

Time (years)

0

1

2

3

4

5

6

7

In
je

ct
or

 B
H

P
 (

ps
i)

104

Figure 4.20: Calibration and prediction results of production and injection data using Flexible

ESMDA with adaptive adjustment of split parameter. The descriptions of lines and colors

are same as in Fig. 4.15.

Figures 4.21 shows the PICP of model parameters, historical data and predictions.
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We observe that PICP of model parameters is slightly decreased as compared to the re-

sults in Fig. 4.17(a). This is due to the adjustment of split parameter in order to match

bad prior time series of well I1. However, the PICP of historical data and predictions

are improved as compared to Figs. 4.17(b) and (c) using Flexible ES-MDA. This ef-

fect shows some trade-off between quality of estimated parameters and corresponding

outputs (specially bad prior) of imperfect reservoir model using adaptive adjustment of

the split parameter in the proposed algorithm.
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(b) PICP of historical data
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(c) PICP of prediction data

Figure 4.21: Posterior PICP of model parameters, historical and prediction data of test case

3 with adaptive adjustment of split parameter in Flexible ES-MDA.

Figure 4.22 shows the mean CRPS and MSE metrics for both historical and predic-

tion data with adaptive adjustment of split parameter. We observe that mean CRPS

and MSE of the historical and prediction data are improved using Flexible ES-MDA

as compared to Fig. 4.18 due to matching of historical data of well I1 and reduction

in confidence intervals of water production of well P2 and oil production of well P3 by

adaptive adjustment of split parameter. These results show that the adaptive adjust-

ment of split parameter in Flexible ES-MDA can be used as an alternative option if

model-refinement is not feasible and output time series cannot be matched due to bad

prior.
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Figure 4.22: Mean CRPS and MSE of posterior ensemble for historical and prediction data

of test case 3 with adaptive adjustment of split parameter in Flexible ES-MDA. In part

(b) subscripts ’e’ and ’f’ shows the MSE obtained from ES-MDA and Flexible ES-MDA

respectively.

4.4 Conclusions

In this chapter, a flexible algorithm is proposed for calibration of perfect and imperfect

models. This flexible algorithm builds on the ensemble smoother with multiple data

assimilation, which has the assumption that models are perfect i.e. accurate represen-

tation of the real systems. However, it is widely known that mathematical models

are approximations of the real systems and some inherent errors always exist in the

computational models. Neglecting the model-error during calibration causes bias in

the estimated physical parameter and often results in unreliable predictions. In the

proposed algorithm, the residual (data mismatch) is split into two parts. One part

is used for parameter estimation/update and the second part is used to represent the

model-error. The initial split parameter is computed based on the ratio of norm of

mean residual (mean deviation from observed data) and norm of maximum residual

(maximum absolute deviation from observed data). During calibration (data assimi-

lation) this split parameter is updated based on the ratio of norm of mean residuals

obtained in current and previous iterations. The proposed split formulation shows very
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close correspondence to the best split value computed from true model-error (see Test

case 1).

In this work, three test cases have been used to observe the performance of the pro-

posed algorithm. These test cases are related to the calibration of polynomial functions,

a simple machine and an imperfect reservoir model. In the first test case, cubic func-

tion is considered as perfect model and imperfect models are represented by quadratic

and linear functions. We observe that if the model is perfect, the proposed algorithm

exactly match the data and for imperfect models the algorithm has the flexibility to

capture the unknown model-error, which is very useful to avoid over-confidence and

generally inaccurate predictions. The second test case is related to estimation the ef-

ficiency parameter of a simple machine model which lacks physics in terms of friction

component. The calibration result from proposed algorithm shows more reliable es-

timation of the efficiency of the machine which provides significant improvement in

prediction. The third test case is related to calibration of an imperfect reservoir model,

which has blurred channelized geological patterns. The imperfect reservoir model has

two sources of modelling errors, a simplified geological representation and up-scaling

errors. We note that the proposed algorithm reduces the model-bias in parameter esti-

mation and as a consequence predictions are improved significantly from the calibrated

imperfect models. We observe improvements in PICP, mean CRPS and MSE metrics

after evaluating the parameter estimation, calibration and prediction performance of

the proposed algorithm for three test cases of different physical systems. However, the

well output which shows a bad prior due to the model-error effect can be difficult to

match using the proposed algorithm. This can be avoided by adaptive adjustment of

the split parameter in the proposed algorithm with some trade-off between quality of

estimated parameters and corresponding model outputs.

The proposed algorithm has the assumption that the data misfit/residual can be

split into a parameter error and a model error according to the ratio of mean deviations

between iterations, and strongly recommend model improvement in terms of physics,

assumptions, details and description, if a large magnitude of model-error is indicated

by the proposed algorithm. However, we argue that the proposed algorithm provides
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good indicators about the reliability of the calibrated models especially for the cases

with unknown model-error. Sometimes for effective decision making we need to reduce

the uncertainty to a threshold value (i.e. a minimum value which effects the decision

making process). If the model-error uncertainty is greater than the threshold value, we

strongly recommend to improve the model in order to reduce model-error uncertainty.

In cases where model-error uncertainty is less than acceptable threshold value and there

is a time-constraint, the proposed algorithm provides a robust method for calibrating

imperfect models that can be used for decision support. In future, we would try to

address different types of uncertain parameters and simulation models with different

forms of model-errors in terms of complex physics, structural geology, fluid dynamics

and phase behaviour.



Chapter 5

Thesis conclusions

In this thesis, different approaches and algorithms are developed to account for model-

error during calibration of imperfect reservoir models in order to reduce bias in pa-

rameter estimation and to obtain reliable predictions. In Chapter 2, a Bayesian frame-

work for history matching of imperfect reservoir models has been developed where,

the calibration is performed as joint estimation of reservoir model parameters and an

error-model parameters. Principal component analysis is used to formulate the model-

errors, where the PCA basis function and prior statistics of the PCA basis weights were

obtained using pairs of accurate/high-fidelity and inaccurate/low-fidelity models. The

accurate/high fidelity model is only used for defining the prior model-error statistics

and during calibration only the imperfect model is used. The obtained results show

that the estimated model parameters are biased when modelling errors are neglected.

Consequently the calibrated imperfect model predictions are unreliable and inaccurate.

Utilizing the developed joint inversion procedure results in significant improvements in

terms of the quality of the estimated parameters, the matching capacity to historical

data and prediction accuracy/reliability of the calibrated imperfect models.

In Chapter 3, six different algorithms for calibration of imperfect models are inves-

tigated and evaluated. In this chapter, two new algorithms (5 and 6) are introduced

which are the variants of the proposed methodology of the first part of the thesis ob-

jective and published algorithms. In Algorithms 5 and 6, the novelty is introduced in

terms of the identifiability of model-error parameters and the use of joint calibration

of both the predetermined error-model and the physical model. Algorithm 3 and 4 are

related to the methodology proposed in Chapter 2. Algorithm 1 neglects the presence

of model errors and is used as a base case for comparison. Algorithm 2 estimates a

145



Thesis conclusions 146

covariance for the total error from the data residual after history matching, and this

estimated total error term is used in subsequent history matching runs in order to com-

pensate for the model error. In Algorithms 3, 4, 5 and 6, the history matching problem

is formulated as a joint parameter estimation of the physical model parameters (reser-

voir model parameters) and the parameters of an error-model. In addition, Algorithms

4, 5 and 6 account for the remaining second-order errors through the use of a diagonal

error matrix, orthogonal components, and an iterative update of the covariance of the

total error respectively. The obtained numerical results show that the Algorithms 4, 5

and 6 perform better in terms of the quality of the parameter estimation, the quality

of history matching and the quality of future predictions after calibration. Algorithms

4, 5 and 6 could easily be scaled to large scale models as the error-model formulation is

I/O independent and the prior distribution of the error-model parameters could be es-

timated before the calibration step. Usually the prior realizations (ensemble members)

of model parameters are estimated from geo-statistical techniques. These techniques

can be broadly classified into two-point (Kriging, SGSIM) and multi-point geostatistics

(SNESIM or object based modelling) etc. In two-point statistics the correlation length

is estimated based on the variogram modelling which describe the spatial relationship

of the model parameters. If the uncertainty of the flow region is reduced then the un-

certainty of non-flow region uncertainty could be reduced for a certain range based on

the prior correlation length.

The proposed Algorithms in Chapters 2 and 3 require prior model-error statistics

before the joint calibration of the physical and error-model parameters. Joint calibra-

tion can be non-robust if the prior statistics of model-error is not realistic. In real life

applications, an accurate model may not exist, but a high-fidelity model can still be

constructed to be closer to reality compared to the low-fidelity/imperfect model and

approximate prior model-error statistics could be estimated. However, in some situa-

tions one may have access to only imperfect/low-fidelity model and there is a possibility

that high-fidelity model contains a large magnitude of the unknown model errors. This

complex situation has been addressed in the Chapter 4 where the model-error during

calibration is accounted for without knowing any source and prior statistics of model
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discrepancy. In Chapter 4, a flexible ensemble-based algorithm is proposed for calibra-

tion of perfect and imperfect models. In the proposed algorithm, the residual (data

mismatch) is split in two parts. One part is used for parameter estimation/update and

second part is used to represent the model-error. The initial split parameter is computed

based on the ratio of norm of mean residual (mean deviation from observed data) and

norm of maximum residual (maximum absolute deviation from observed data). During

calibration (data assimilation) this split parameter is updated based on the ratio of

norm of mean residuals obtained in current and previous iterations of the proposed

algorithm in Chapter 4. The numerical results show that if the model is perfect, the

proposed algorithm exactly match the data and for imperfect models the algorithm has

the flexibility to capture the unknown model-error uncertainty, which is very useful to

avoid over-confidence in inaccurate predictions. The proposed algorithm reduces the

model-bias in parameter estimation and as a consequence predictions are improved sig-

nificantly from the calibrated imperfect models. The obtained results show significant

improvements in PICP, mean CRPS and MSE metrics after evaluating the parameter

estimation, calibration and prediction performance of the proposed algorithm for dif-

ferent physical systems. Algorithms 4, 5 and 6 perform relatively well with respect to

reference MCMC solution for test case 1 in the Chapter 4. The approximate posterior

distributions are nearly unbiased as compared to reference MCMC solution. These re-

sults show that the Algorithms 4, 5 and 6 outperform as compared to the methods in the

literature (Köpke et al., 2018; Calvetti et al., 2018) by obtaining nearly unbiased results

from the imperfect model without evaluating the accurate/high-fidelity model during

the calibration process. The methods in the literature (Köpke et al., 2018; Calvetti

et al., 2018) can produce nearly unbiased results for a particular type of real systems,

however these methods require the evaluation of accurate/high-fidelity model during

the calibration process. The Flexible ES-MDA can only reduce the bias in parameter

estimation. This leads us to the conclusion that Algorithms 4, 5 and 6 are better than

the flexible iterative ensemble smoother. However, it is important to note that the

proposed Flexible ES-MDA does not require prior model-error statistic. If the prior

model-error statistic is not realistic then Flexible ES-MDA could perform better than
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Algorithms 4, 5 and 6.

There are few limitations of this work which could be avoided and addressed in

the future work. In this thesis the reference posterior distribution of perfect reservoir

model has not been obtained. In future, the calibration of perfect reservoir model

could be performed using MCMC in order to obtain reference posterior distribution

of the reservoir model and could allow more robust comparison between the proposed

methodologies. In Algorithms 4, 5 and 6 only two PCA basis functions per time series

were taken for joint calibration of imperfect model and error-model. The number of

PCA basis functions could vary for different types of reservoir models. The general

criteria for the number of PCA basis functions could be explored further. One could

argue that 99% of the singular values criteria can be chosen, which might be prone

to over-fitting especially in case of Algorithm 4 due to the reduction of second-order

error. However, Algorithms 5 and 6 could overcome this over-fitting problem. These

issues would deserve another compressive study on different types of reservoir models.

In Algorithm 4 the full covariance of the second-order error could also be taken instead

of diagonal matrix, especially in situations when the second-order errors would have

systematic bias or strong correlation w.r.t time. Algorithm 6 could be computationally

expensive as compared to other proposed algorithms due to the re-calibration step in

addition to ES-MDA iterations. This could be avoided by defining different types of

stopping criteria. The joint calibration could be evaluated using the prior model-error

statistics obtained from imperfect high-fidelity model. In this scenario, the proposed

Flexible ES-MDA could be used instead of ES-MDA in joint-calibration framework

(Algorithm 3) in order to avoid over-fitting and to determine the reliability of the

joint-calibration of the physical and error-model.

5.1 Remarks and future directions

In practical situations we don’t know about the realistic reliability of the physical

model i.e. how much data mismatch from a physical model would be contributed by

the parameter error and model-error. In other words, we don’t know to what degree a
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model is perfect or imperfect. In these situations it is recommended to use the proposed

flexible iterative ensemble smoother which can serve as a tool to identify the reliability

of the physical model. If we have an idea about the reliability of the final model, then

we could do forecast far into the future such that the level of uncertainty (imprecision) is

acceptable for the decision making process. Fortunately the proposed flexible iterative

ensemble smoother can be used to identify the reliability of the model in terms of

quantification of model-error uncertainty which results in the imprecise (uncertain)

behaviour of forecast. Therefore model improvement is strongly recommended in terms

of physics, assumptions, details and description, if a large magnitude of model-error

is indicated by the proposed algorithms in order to reduce model error uncertainty.

The proposed flexible iterative ensemble smoother for calibration of imperfect models

can be used in situations, when an accurate or high fidelity model may be missing

or the sources of the modelling errors are unknown. Sometimes for effective decision

making the uncertainty has to be less than threshold value (i.e. minimum value which

effects decision making process). If the model-error uncertainty is greater than the

threshold value, the model-improvement is recommended in order to reduce model-error

uncertainty. The time limitation in decision making process may restrict the model-

improvement step in practical situations. In these scenarios, the imperfect models

calibrated using flexible iterative ensemble smoother could be used for decision making

process.

In future, the proposed flexible iterative ensemble smoother can be evaluated and ex-

tended to the calibration of imperfect models of different physical systems with various

types of uncertain parameters and model inadequacy. In addition, the split based formu-

lation of the model-error could be applied to other iterative ensemble smoothers (Chen

and Oliver, 2013; Luo et al., 2015) in the literature and could be compared with the

proposed flexible iterative ensemble smoother.

If this work was started again then Flexible ES-MDA would be used first to identify

the level of reliability of the physical model. If the high model-error is obtained using

Flexible ES-MDA then the model refinement step in terms of the scale, description,

physics and assumptions should be taken. The refined and unrefined models can be
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used as joint calibration of parameter estimation in the scenario when the refined model

is computationally very expensive for calibration (history matching) and uncertainty

quantification task. The proposed framework of joint parameter estimation of the

imperfect reservoir model and error-model could be used because the approximate prior

model-error statistics can be estimated before calibration and uncertainty quantification

task. The proposed joint calibration framework could easily be applied to large scale

models as the error-model formulation is I/O independent and the prior distribution

of the error-model parameters could be estimated before the calibration step. In this

work, a high-fidelity model without model-error is considered in order to estimate the

prior model-error statistics for joint calibration framework. It is also possible that the

high-fidelity model contains some model-error. In these cases, the joint calibration can

only improve the parameter estimation and the prediction up to the level expected

from high-fidelity model. In future, the application of the proposed framework of the

joint calibration can be extended to the cases with different types of known sources of

errors. Moreover, the low fidelity models can be used for computationally expensive

uncertainty quantification task using proposed algorithmic framework instead of high

fidelity models, which could be only used to quantify the prior model-error statistics.

In future, different forms of model-errors, uncertain parameters, high-fidelity and

low-fidelity models in terms of complex physics, structural geology, fluid dynamics and

phase behaviour could be addressed using the proposed framework. The prior model-

error statistics for the large scale models could be challenging to obtain especially

when a few runs are feasible due to the computation limitation of high fidelity models.

This challenging situation could be addressed using combination of multi-dimensional

scaling and clustering (Scheidt and Caers, 2009) or machine learning algorithms (Mur-

phy, 2012) to select the best possible realizations for the estimation of prior model-

error statistics for large scale models. Moreover, an Input/Output dependent approach

could also be used to formulate model discrepancy where the model-errors is treated

as a functional approximation problem, which can be solved using a generic machine

learning method, such as kernel-based learning (Schölkopf and Smola, 2002) or deep

neural networks (Murphy, 2012). These approaches could be used to the development
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of hybrid algorithms which would be combination of physics based models and data

driven (machine learning) algorithms. However, these type of formulations are prone

to be more data-driven due to the strong tendency of the machine learning algorithms

for absorbing large amount of data residuals as compared to the simulation models.

This problem could be avoided by setting the realistic prior of the model-error using

pairs of high-fidelity and low-fidelity models and the use of multi-modal calibration

approach (Elsheikh et al., 2013).



Appendix A

Reservoir properties

A.1 Reservoir fluid and relative permeability prop-

erties

Corey model in form of power law is used to generate relative permeability data for

the reservoir model. Mathematically Corey model in form of power law is written as

follows.

krw = (Ŝw)nwk0w. (A.1)

kro = (1− Ŝw)nok0o . (A.2)

Ŝw =
Sw − Swc

1− Sor − Swc
. (A.3)

The notations of above equations are described in MRST manual Lie (2016). The

fluid data and corey relative permeability model parameters used in the reservoir model

are shown in the Table A.1.1.

Table A.1.1: Reservoir fluid data and Corey relative permeability model parameters

Fluid properties Corey relative permeability model parameters

water viscosity 0.5 cp Sor 0.2 k0o 1

oil viscosity 1 cp Swc 0.2 k0w 1

water density 1000 kg/m3 nw 2

oil density 700 kg/m3 no 2
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Forecasting metrics

B.1 Mean Square Error (MSE)

The Mean Square Error (MSE) is obtained using,

MSE =
1

Nd

Nd∑
n=1

(dn − dobs,n)2, (B.1)

where n is index of observation or model prediction at corresponding time.

B.2 Coverage Probability (CP)

CP =
NCI

Nt

. (B.2)

NCI = Number of samples, parameters or observations in Confidence Interval

Nt = Total number of samples, parameters or observations

B.3 Continuous Ranked Probability Score (CRPS)

The details of CRPS for ensemble prediction system were described by Hersbach (2000).

In this section summary of CRPS is explained.

Mathematically CRPS can be defined as,

CRPS =

∫ ∞
−∞

[p(x)−H(x− xobs)]2dx, (B.3)
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where p(x) =
∫ x
−∞ ρ(y)dy Cumulative distribution of quantity of interest, H(x − xobs)

= Heaviside function (Step function) i.e.

H(x) =

0 if x < 0

1 if x ≥ 0

For an ensemble system with Ne realizations, the CRPS can be written as follows,

CRPS =
Ne∑
i=0

ci. (B.4)

ci = αip
2
i + βi(1− pi)2. (B.5)

where pi = P (x) = i/Ne, for xi < x < xi+1 (Cumulative distribution is a piece wise

constant function).

αi =



0 if xobs < xi

xobs − xi if xi < xobs < xi+1

xi+1 − xi if xobs > xi+1

xobs − xNe if xobs > xNe

0 if xobs < x1

βi =



xi+1 − xi if xobs < xi

xi+1 − xobs if xi < xobs < xi+1

0 if xobs > xi+1

0 if xobs > xNe

x1 − xobs if xobs < x1
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