
i 
 

 

 

 

 

 

 

 

 

 

Elucidating the mechanisms of senescent 

sweetening in stored potato tubers 
 

 

 

 

 

 

José M. Barrera-Gavira 

Submitted for the degree of Doctor of Philosophy 

 

 

 

Heriot-Watt University 

School of Engineering and Physical Sciences 

July 2020  

 

 

 

 

 

 

 
 

 

“The copyright in this thesis is owned by the author. Any quotation from the thesis or 

use of any of the information contained in it must acknowledge this thesis as the source 

of the quotation or information." 



ii 
 

Abstract 

 
Senescent sweetening is a storage disorder that typically occurs following medium to 

long-term storage of potato tubers in the presence of sprout suppressors at moderate 

storage temperatures. It represents a significant issue for the processing industry where 

reducing sugar accumulation results in problems of dark fry colour. Furthermore, the 

Maillard reaction between reducing sugars and asparagine results in the accumulation of 

the potential neurotoxin and carcinogen acrylamide in processed products. At present 

almost nothing is known regarding the mechanisms promoting senescent sweetening 

which differs from cold-induced sweetening in that it is not reversible by transfer of 

tubers to higher temperatures. In the present work we set out to test the hypothesis that 

oxidative damage caused during long term storage is linked to senescent sweetening. A 

marked difference in storage induced reducing sugar accumulation was observed 

between a sweetening resistant and a sweetening sensitive cultivar. However, markers 

of oxidative damage and activities of antioxidant enzymes did not exhibit any specific 

correlation with reducing sugar accumulation indicating that oxidative damage and 

senescent sweetening may not be linked. To identify the underlying biochemical causes 

of sugar accumulation GC/MS was used to quantify a range of primary metabolites in 

sweetened and unsweetened tubers. Few differences were observed in metabolite 

profiles however, labelling with [13C] glucose indicated a greater capacity for sucrose 

synthesis in the sweetening resistant compared with the sweetening sensitive cultivar. In 

addition, differences in specific activity of carbohydrate metabolism enzymes as well as 

microarray data suggest starch re-synthesis and alternative metabolic sinks for carbon as 

potential traits linked to sweetening resistance. Moreover, we identified GPT2 as a 

potential candidate gene associated with the accumulation of sugars during long-term 

storage. These findings will lead to a better understanding of the mechanisms, processes 

and genes involved in senescent sweetening and will provide insights into improved 

storage management in the short-term and the development of senescent sweetening 

resistant cultivars in the longer term.  
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Chapter 1: Introduction 

 

1.1 Introduction 

 

Potato (Solanum tuberosum L.) is a member of the Solanaceae family of flowering plants. It is 

the third most important food crop (Birch et al., 2012) with 381 million tons produced annually 

for human consumption (FAO 2014). It originated and was first domesticated in the Andes 

Mountains of South America (Birhman & Kaul, 1989). 

 

In the United Kingdom (UK), the potato processing industry is worth £3.9 billion at retail and 

supports more than 20,000 jobs. Approximately 3.5 million tonnes of tubers are stored for up 

to 8 months each season in the UK (Cunnington, 2008). Cooking quality and appearance are 

important to the consumer and industry in terms of post-cooked appearance and taste. Much 

depends upon variety choice but also the way the potato is grown and stored. Maintenance of 

tuber quality during long-term storage, more specifically, the prevention of sugar 

accumulation, is necessary to maintain acceptable fry colour and prevent acrylamide formation 

in processed products.  

 

1.2 Storage, sugars and quality 

 

The level of sugars in potato tubers is an essential factor affecting quality in potatoes. Storage 

for processing is typically undertaken at relatively high temperatures (8–12°C) in the presence 

of sprout suppressors to prevent cold-induced sweetening (CIS) (Marquez & Anon, 1986; 

Burton, 1989; Sowokinos, 1990). However, tubers can undergo the distinct physiological 

process of senescent sweetening (SS) after prolonged storage, leading to significant losses 

(Burton, 1989). The principal reason is the fact that reducing sugars such as glucose and 

fructose react with free amino acids during frying to produce distasteful dark processed fries 

and crisps via non-enzymatic Maillard-type reactions (Figure 1-1) (Shallenberger et al., 1959). 

These reactions are related to aroma, taste, and colour, playing an important role in the 

appearance and taste of foods. Moreover, acrylamide is present in different foods processed at 

high temperature, and it is formed from asparagine and reducing sugars (carbonyl compounds) 

in the process of Maillard reactions (Mottram et al., 2002; Stadler et al., 2002).  
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Figure 1-1. Fry colour of crisps from tubers after 53 weeks of storage. Frying was performed using the 

standard PepsiCo protocol at 177°C. A. Crisp from susceptible to senescent sweetening cultivar 

(Arsenal) presenting high reducing sugars content. B. Crisp from senescent sweetening resistant cultivar 

(VR 808) with low reducing sugars content. 

 

 

1.2.1 Maillard reactions and quality 

 

The Maillard reaction was described in 1912 by the French chemist Louis Camille Maillard 

(Maillard, 1912). The chemistry underlying the Maillard reaction is very complex 

encompassing a whole network of various reactions, and different factors involved in food 

processing influence it (Figure 1-2) (Hodge, 1953). The Maillard reaction consists of several 

non‐enzymatic reactions between sugars and amino groups, enhanced by high temperature 

(>120°C) and low moisture content. For this reason, it occurs mainly in cooked foods prepared 

by frying, baking, roasting, and toasting (Hodge, 1953). Maillard reaction generates melanoidin 

pigments and complex mixtures of compounds imparting flavour and aroma heterocyclic 

compounds. These compounds include pyrazines, pyrroles, furans, oxazoles, thiazoles, and 

thiophenes (Mottram, 2007; Halford et al., 2011). The compounds formed during the Maillard 

reaction give to cooked foods their signature flavour and aroma, meaning that any attempts to 

reduce acrylamide formation are likely to affect the characteristics that define the different 

product types. 

 

The Maillard reaction is a complex, multi‐step reaction which is initiated by the condensation 

of the carbonyl group of a reducing sugar (such as glucose or fructose) with the amino group 

of an amino acid or another amino compound, generating a Schiff base. A Schiff base is a type 

of imine, a compound containing a carbon‐nitrogen double bond, in the case of a Schiff base 

with the nitrogen atom attached to an organic group. Cyclisation and acid‐catalysed 

rearrangement generate Amadori rearrangement products from glucose and maltose, and 

A B 
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Heyns rearrangement products from fructose, which undergo enolisation, deamination, 

dehydration, and fragmentation to produce sugar dehydration as well as fragmentation 

products, which contain one or more carbonyl groups, including deoxyosones, heterocyclic 

furfurals, furanones, pyranones, dicarbonyls (C2‐C3) and hydroxycarbonyls (Hellwig & Henle, 

2014). The carbonyl compounds may contribute to flavour characteristics. However, they are 

highly reactive and can undergo further reactions with free amino acids and other amines. One 

of these reactions is Strecker degradation, involving the deamination and decarboxylation of 

an amino acid to generate an aldehyde, an α‐aminoketone, and carbon dioxide (CO2), and it is 

a Strecker‐type degradation of asparagine that is responsible for acrylamide production (Zyzak 

et al., 2003). The asparagine reacts with dicarbonyl or hydroxycarbonyl compounds derived 

from the Maillard reaction to produce a Schiff base. This can be converted either to acrylamide 

by decarboxylation followed by the removal of a substituted imine, or it can be converted to 3‐

aminopropionamide by the elimination of a carbonyl group, and the 3‐aminopropionamide 

converted to acrylamide by the removal of ammonia (Granvogl & Schieberle, 2006; Granvogl 

et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 1-2. Maillard reaction scheme. Taken from Martins et al. (2000). 
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Maillard reactions affect various food quality parameters: organoleptic properties, colour, and 

protein functionality. In some cases, these reactions lead to desired changes, such as the 

generation of delicate flavours. However, in other cases, undesired quality changes are 

obtained, especially if the Maillard reactions are too pronounced, producing bitter and burnt 

tastes. The fact of being able to control Maillard reactions during food production and storage 

is essential from a food quality perspective. Nonetheless, elucidating the progress of Maillard 

reactions in foods is complicated since the presence of multiple reactants and the dynamic 

conditions found in food matrices, processing, and storage conditions all contribute to a 

complex chemical landscape.  

 

Since sugar content and Maillard reactions are related to the appearance and taste of foods, 

regarding potatoes, several studies about fry colour have been reported. Fry colour tests of 

Russet Burbank and Shepody potatoes are more closely correlated with glucose than with 

fructose concentrations, total reducing sugars, sucrose, or total sugars (Pritchard & Adam, 

1994). Besides, Coleman et al., (1993) indicated that the crisp colour was associated with tuber 

glucose content regardless of detection method, cultivar, growing site, or storage temperature.  

 

1.2.2 Acrylamide in potato tubers 

  

Acrylamide (C3H5NO) is a white, odourless, crystalline, water‐soluble solid. Acrylamide forms 

from free asparagine and reducing sugars such as glucose or fructose within the Maillard 

reaction at low water activity and high temperatures (Figure 1-3) (Mottram et al., 2002; Stadler 

et al., 2002). Hence, both free asparagine and reducing sugars are widely referred to as the 

precursors for acrylamide. Since potatoes contain relatively high levels of both asparagine and 

reducing sugars, this is the most likely route to acrylamide formation in potato crisps. For that 

reason, factors which affect the concentration of precursors such as variety (Hebeisen et al., 

2005), storage temperature and time (Amrein et al., 2004) and level of nitrogen and phosphorus 

in the soil (Heuser et al., 2005) affect acrylamide formation in the cooked product. 

 

The chemical reaction leading to acrylamide formation is also responsible for the development 

of fry colour in potato crisps, and correlations between instrumental colour parameters and 

levels of acrylamide in cooked potato products have been reported (Pedreschi et al., 2006). 

Both the temperature and duration of heating have a significant influence on acrylamide levels 

in potato crisps (Rydberg et al., 2003; Pedreschi et al., 2004).  
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In potato products, the limiting factor for acrylamide formation is usually the concentration of 

reducing sugars (Amrein et al., 2004; Becalski et al., 2004; de Wilde et al., 2005; Burch et al., 

2008; Shepherd et al., 2010, 2013). However, an effect of free asparagine concentration on 

acrylamide formation has also been observed (Becalski et al., 2004, Shepherd et al., 2010, 

2013).  

 

Furthermore, two aspects of potato composition affecting acrylamide formation are the ratio of 

glucose to fructose and the concentration of free proline. Although both glucose and fructose 

can contribute to the creation of colour as well as acrylamide, fructose has been observed to 

favour the production of acrylamide over colour during the cooking of French fries, in 

comparison to glucose (Mestdagh et al., 2008; Higley et al., 2012). Also, free proline has been 

shown to inhibit acrylamide formation in model systems (Koutsidis et al., 2009). 
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Figure 1-3. A proposed mechanism for acrylamide formation as a side reaction of the Maillard reaction. 

Based on Mottram et al. (2002); Stadler et al. (2004); and Granvogl & Schieberle (2006). Taken from 

Medeiros Vinci et al. (2012). 

 

1.2.2.1 Biological effects of acrylamide 

 

The Scientific Committee on Toxicity, Ecotoxicity and the Environment demonstrated in 2001 

the neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity of acrylamide 

(Carere, 2006; Keramat et al., 2011; Semla et al., 2017). Acrylamide is a potent neurotoxin 

affecting male reproduction as well as causing birth defects. In addition, it has been reported 

to be carcinogenic in laboratory animal trials (reviewed by Friedman, 2003; CONTAM Panel, 

2015) and considered as a Group 2A carcinogen by the International Agency for Research on 
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Cancer (IARC), the specialised cancer agency of the World Health Organization (IARC, 1994). 

Furthermore, the estimated average dietary exposure of acrylamide in humans might be linked 

to morphological changes in nerves (JECFA, 2006; 2011; CONTAM Panel, 2015). The toxic 

effects of acrylamide are mediated by the formation of oxidative stress, genotoxic metabolites, 

affected propagation of neural signals, ultrastructural, and histological defects in the central 

neural system (LoPachin, 2004; El-Sayyad et al., 2011; Pingot et al., 2013). As acrylamide is 

both genotoxic and carcinogenic, the margins of exposure indicate a health concern. Therefore, 

Commission Regulation (European Union (EU)) 2017/2158 establishing mitigation measures 

and benchmark levels for the reduction of the presence of acrylamide in food has been adopted 

in November 2017 and entered into force in April 2018. 

 

1.2.3 Sprout suppressants during storage 

 

Potato tubers for the processing industry are stored at 8–12°C and relative humidity of 85–90% 

the world over, which is the most common way of long-term storage of potatoes. The benefit 

of storing the potatoes within the temperature range of 8–12°C is the minimum accumulation 

of sugars (Smith, 1987; Ezekiel et al., 2007a,b) as well as the minimum rate of respiration in 

stored potato tubers (Burton, 1989). This storage method keeps the stored potatoes suitable for 

table and processing purposes. However, once the natural dormancy period of potato is over, 

the prevailing temperatures in these storage methods favour sprouting and sprout growth. In 

2012, the United Kingdom recorded overall losses of 17% (770,000 tons), being the leading 

cause of wastage the premature sprouting and rotting during storage (Terry et al., 2011; 

Pritchard et al., 2012). For that reason, the use of some sprout suppressants to check the sprout 

growth becomes essential under these methods of potato storage. World over isopropyl N-(3-

chlorophenyl) carbamate (CIPC, also referred to as chlorpropham) is the most commonly used 

sprout suppressant on potatoes when stored at 8–12°C (Smith & Bucher, 2012). However, it 

has now been banned by the EU. The European Commission does no longer allow the use of 

CIPC since January 1, 2020.  

 

1.2.3.1 Factors affecting dormancy 

 

Dormancy break in potato tubers is a physiological mechanism that is regulated by both 

environmental factors and endogenous signals (Sonnewald & Sonnewald, 2014). The onset of 

dormancy break and its further development are believed to be affected by the relative 
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concentration of different biochemical compounds such as plant growth regulators: abscisic 

acid (ABA), auxins, cytokinins (CKs), ethylene, gibberellins (GAs), and strigolactones (SLs); 

and other compounds such as carbohydrates and organic acids (Sonnewald, 2001; Viola et al., 

2007; Pasare et al., 2013). 

 

Ethylene is required during the earliest stage of dormancy initiation (Suttle, 1998) and it has 

been reported to break endo-dormancy following short-term treatments (Foukaraki et al., 2014) 

as well as to inhibit sprout growth and promote eco-dormancy (Foukaraki et al., 2016). 

However, Suttle (2009) suggested ethylene is not involved in hormone-induced dormancy 

break, supporting the fact that the effect of ethylene depends on the physiological state of potato 

tubers. 

 

A sustained synthesis and action of ABA are required for dormancy induction and maintenance 

(Suttle, 2004; Mani et al., 2014). Cross-talk between ABA and other phytohormones is known 

(Chang et al., 2013), as well as with sugar metabolic pathways, which facilitates the onset of 

dormancy break and further sprouting (Brady, 2013). Nevertheless, the increase in ABA as a 

result of exogenous ethylene application has been suggested to delay dormancy break 

(Foukaraki et al., 2016). Associated with the ABA decline, there is an increase in sucrose 

contents, which is considered a pre-requisite for bud outgrowth (Viola et al., 2007; Sonnewald 

& Sonnewald, 2014).  In this regard, auxins are essential for their role in vascular development. 

Auxins support the symplastic reconnection of the apical bud region: a discrete cell domain 

that remains symplastically isolated throughout tuberisation. Therefore, this reconnection is 

essential for sucrose to reach the meristematic apical bud. Furthermore, high sucrose levels 

promote trehalose-6-phosphate accumulation (T6P), which favours sprouting, probably 

decreasing sensitivity to ABA (Debast et al., 2011; Tsai & Gazzarrini, 2014). 

 

Furthermore, CKs and GAs are required for the reactivation of meristematic activity and sprout 

growth (Hartmann et al., 2011). An increment in both cytokinin concentration and sensitivity 

have been observed prior to dormancy break as critical factors for meristematic reactivation 

(Suttle, 2004). Additionally, coordination between CKs and auxins induce sprout elongation 

(Aksenova et al., 2013). Moreover, sensitivity to GAs, which is negatively affected by SLs, 

increases throughout post-harvest storage, and it is possibly responsible for sprout vigour 

(Roumeliotis et al., 2012). Since SLs are essential as regulators of lateral bud development, 
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they may be related to para-dormancy establishment instead of eco- and endo-dormancy 

(Pasare et al., 2013). 

 

1.2.3.2 Adverse consequences of sprouting of potato tubers during storage 

 

As previously described, the control of sprout growth is a crucial factor for long-term storage 

of potato tubers. Sprouting leads to a higher rate of respiration, remobilization of storage 

compounds in the potato tubers (mainly starch and proteins) as well as causing shrinkage due 

to loss of water (Burton, 1955; Sonnewald & Sonnewald, 2014). Also, sprouting is highly 

detrimental to the nutritional status and quality aspects of potatoes (van Es & Hartmans 1987; 

Mani et al., 2014). These changes also cause deterioration in processing quality due to loss in 

mass, decreased turgor, structural change due to growth of sprout tissue, and increase in sugar 

concentrations due to hydrolysis of starch (van Es & Hartmans, 1987; Davies, 1990; Burton et 

al., 1992; Daniels-Lake et al., 2005). Sprouting also affects adversely potato quality parameters 

such as firmness, and content of vitamin C (Rezaee et al., 2011). In this context, to reduce 

weight loss and other undesirable physiological and biochemical changes that can adversely 

affect the quality of potatoes, the use of sprout suppressants has become an integral part of 

potato storage and potato industry. 

 

1.2.3.3 Use of CIPC during storage 

 

Suppression of sprout growth in potato tubers is a crucial step to managing potato quality 

during storage. World over, CIPC is the most utilized sprout suppressant chemical due to its 

high efficacy. CIPC is a selective and systemic herbicide with an ability to translocate 

acropetally in the plant system (Ashton & Crafts, 1981). CIPC acts as a mitotic inhibitor by 

interfering with the process of spindle formation during cell division (Ashton & Crafts, 1981; 

Vaughn & Lehnen, 1991; Kleinkopf et al., 2003). In this way, the absence of cellular division 

prevents sprouting, targeting the essential and indispensable cellular process. Besides this, 

CIPC also causes an alteration in cellular structure and functions. It is known to inhibit RNA 

synthesis, protein synthesis, the activity of β-amylase along with suppression of transpiration 

and respiration, and interfere with oxidative phosphorylation and photosynthesis (Vaughn & 

Lehnen, 1991). CIPC is considered as the most effective sprout suppressant for potatoes. It can 

be converted into an emulsifiable concentrate, fogging concentrate, granules, and dustable 



10 
 

powder (van Vliet & Sparenberg, 1970; Corsini et al., 1979; Conte et al., 1995). It is usually 

applied as a post-harvest fogging treatment on stored potatoes. 

  

CIPC has little or no adverse effect on quality parameters (Rastovski, 1987; Tayler et al., 1996; 

Blenkinsop et al., 2002; Ezekiel et al., 2005; Mehta et al., 2010). However, concerns about 

CIPC usage have increased after studies have reported toxic and carcinogenic properties (Balaji 

et al., 2006; El-Awady Aml et al., 2014). The EU Commission has published its Implementing 

Regulation (EU) 2019/989 concerning the non-renewal of approval of the active substance 

CIPC. Legislation constraints are leading the potato industry to seek alternative technologies 

that can extend post-harvest storage while maintaining tuber quality.  

 

1.2.3.4 Alternatives to CIPC 

 

In general, the sprout suppressant CIPC is commercially applied as a thermal hot fog during 

prolonged potato storage (Blenkinsop et al., 2002). However, legislative bodies are 

constraining its use. Alternatives to traditional sprout control include hydrogen peroxide plus 

(Al-Mughrabi, 2010; Mani et al., 2014), 1,4-dimethyl naphthalene (de Weerd et al., 2010), 

UV-C (Cools et al., 2014), essential oils (Teper-Bamnolker et al., 2010), and ethylene. 

Continuous exogenous ethylene supplementation has been commercially approved as a sprout 

suppressant in the United Kingdom by the Chemicals Regulation Directorate (Briddon, 2006); 

how ethylene inhibits sprout growth has not been completely clarified yet. Supplementation of 

ethylene can increase the content of reducing sugars in tubers (Daniels-Lake et al., 2005), 

which negatively affects processed potato quality. However, late ethylene supplementation was 

efficacious at delaying tuber sprouting and more effective preventing accumulation of reducing 

sugars when compared to early supplementation (Foukaraki et al., 2014). Hence, late ethylene 

supplementation may reduce storage costs while providing high-quality tubers. The increase in 

ABA levels induced by ethylene may explain the delay of dormancy break (Foukaraki et al., 

2016). 

 

1.3 Cultivars, sugar content and the onset of sweetening 

 

The amount of free sugar that tubers accumulate depends on the cultivar (van Vliet & 

Schriemer, 1960; Burton, 1969; Samotus et al., 1974; Coffin et al., 1987; Richardson et al., 

1990; Zrenner et al., 1996). Potato cultivars differ considerably in the timing of onset of 
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senescent sweetening. Table 1-1 shows a range of important UK processing varieties in terms 

of how long they can be stored before the onset of senescent sweetening. Dormancy 

characteristics are also included. Although the cultivars that are most susceptible to senescent 

sweetening tend to have short dormancy, there are important exceptions to this rule, such as 

Maris Piper and Record (Colgan et al., 2012). In addition to the effect of cultivar, growing 

conditions that affect the maturity of tubers at harvest can impact the timing of the onset of 

senescent sweetening, and an effect of storage temperature is also evident (Groves et al., 2005).  

 

 

Table 1-1. Classification of potato processing varieties by onset of senescent sweetening.  

Variety Main market Development of senescent sweetening Length of dormancy 

Lady Rosetta Crisp Early onset 2 

Crisps4all Crisp Medium onset 3* 

Hermes Crisp Medium onset 3 

Pentland Dell Chip Medium onset 3 

Cabaret Chip Late onset 5 

Maris Piper Chip Late onset 2 

Record Crisp Late onset 3 

Saturna Crisp Late onset 4 

Verdi Crisp Late onset 6 

VR 808 Crisp Late onset 4* 

Lady Claire Crisp Very late onset 6 

Markies Chip Very late onset 5 

Russet Burbank Chip Very late onset 8 

Dormancy (1-9 scale, 9 = Long, NIAB Pocket Guide, 2008, NIAB, Cambridge. *For newer varieties, 

dormancy periods have been estimated. Adapted from Colgan et al. (2012) 

 

 

Processing potatoes directly into crisps or fries from cold storage (2-4°C) presents several 

benefits including less shrinkage, retention of dry matter, decreased disease loss, extended 

marketability, and the elimination of chemical applications for dormancy-prolonging. The 

problem arises when at low temperature tubers undergo a phenomenon in which both glucose 

and fructose accumulate by the process of CIS (Marquez & Anon, 1986; Burton, 1989; 

Sowokinos, 1990).  
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1.4 Carbohydrate metabolism in tubers  

 

The major sugars in potato tubers are glucose, fructose, and sucrose (Burton, 1989). Sugar 

levels in tubers are conditioned by several factors, including genotype, environmental and 

growing conditions, and different post-harvest factors such as storage. During storage, 

carbohydrates are converted from starch for respiration purposes, and sugars start accumulating 

when their net production exceeds their use.  

 

The amount of starch accumulated in mature potato tubers is the net result of photosynthetic 

carbon fixation, the synthesis of transient starch and its conversion into sucrose in 

photosynthetically active source leaves, the vascular transport of sucrose from the leaves to the 

developing-sink tuber, and starch synthesis and degradation in the tuber during the growth 

period (reviewed in Frommer & Sonnewald, 1995). When the enzymes and transport proteins 

participating in these processes are altered, effects on the morphology and the carbohydrate 

partitioning affecting tuber starch content are observed (Frommer & Sonnewald, 1995). 

 

Photosynthesis is the major source of fixed carbon. During plant photosynthesis, CO2 is fixed 

in the chloroplasts via the Calvin cycle to produce triose-phosphates (TrP). In the cytosol, TrP 

can be transported to the cytosol by a TrP/phosphate translocator. Two TrP molecules result in 

one fructose-1,6-bisphosphate (F1,6BP) molecule in a reaction catalysed by aldolase. F1,6BP 

is then further metabolized to generate other hexose phosphates, such as fructose-6-phosphate 

(F6P) and glucose-6-phosphate (G6P). G6P can be used to generate nucleotide sugars such as 

UDP-glucose (UDP-Glc), and UDP-Glc is combined with F6P to produce sucrose-6-phosphate 

(S6P) in a reaction catalysed by sucrose phosphate synthase (SPS). S6P is dephosphorylated 

by sucrose phosphate phosphatase (SPP) to form sucrose. Sucrose is the primary product of 

photosynthetic tissues, and the main sugar transported from the source tissues through the 

phloem to non-photosynthetic tissues (sink tissues) (Ruan, 2014). In non-photosynthetic 

tissues, such as potato tubers, the transported sucrose is used for many metabolic pathways, 

providing energy, as well as carbon skeletons, to produce organic matter such as amino acids, 

nucleotides and structural carbohydrates. 

 

After arriving to sink tissues, sucrose can enter the sink cells via different pathways (Ma et al., 

2018). Sucrose can be unloaded from the phloem to the apoplast by sucrose transporters. Then, 

it can enter the sink cells via sucrose transporters or hydrolysed by cell wall invertases (cwInv, 
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EC 3.2.1.26) to generate glucose and fructose, which can enter the sink cells via hexose 

transporters (Ruan, 2014). In addition, sucrose can pass directly from the phloem to sink cells 

through plasmodesmata, which is the main route during tuber bulking (Viola et al., 2001). 

Inside sink cells, sucrose can be metabolized or transported to the vacuole, where it can be 

stored as sucrose, transformed into fructans by fructosyltransferases, or hydrolysed by vacuolar 

invertases (vacInv, EC 3.2.1.26) and stored as hexoses. To be metabolized, sucrose must be 

cleaved by either cytosolic invertases (cytInv, EC 3.2.1.26) or sucrose synthases (SuSy, EC 

2.4.1.13). While cytInv catalyses the irreversible hydrolyzation of sucrose into glucose and 

fructose, SuSy catalyses the reversible cleavage of sucrose using UDP to generate fructose and 

UDP-Glc.  

 

In potato tubers, most of the incoming sucrose is converted to starch as a long-term carbon 

store for reproductive growth. Starch is the major carbon store in plants, formed of an insoluble 

polymer of linked glucose units (Martin & Smith, 1995). ADP-glucose (ADP-Glc) 

pyrophosphorylase (AGPase, EC 2.7.7.27) catalyses the first committed step of starch 

synthesis in the plastid, converting glucose-1-phosphate (G1P) and ATP to ADP-Glc and 

inorganic pyrophosphate (PPi). Then, ADP-Glc is used by starch synthases and branching 

enzymes to elongate the glucan chains of the starch granule. Work with Arabidopsis mutants 

(Neuhaus & Stitt, 1990) and potato tubers (Geigenberger et al., 2004) showed that the enzyme 

catalyses a near rate-limiting step in the pathway of starch synthesis.  

 

AGPase has been reported to be subject to post-translational redox regulation. There is 

evidence for the in vivo role of post-translational redox modulation of AGPase in regulating 

starch synthesis in heterotrophic potato tubers (Tiessen et al., 2002). Post-translational redox 

activation of AGPase increases the rate of starch synthesis in response to external factors 

without the support of any increase in the levels of glycolytic intermediates (Tiessen et al., 

2002). 

 

1.4.1 Trehalose-6-phosphate and its role in carbohydrate metabolism 

 

Sugars can act as messengers in signal transduction. This is the case for trehalose, a non-

reducing disaccharide composed of two glucose moieties. The biosynthesis of trehalose in 

plants involves the generation of T6P from G6P and UDP-Glc by trehalose-6-phosphate 

synthase (TPS; EC 2.4.1.15), and the subsequent dephosphorylation of T6P to trehalose by 
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trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12; Cabib & Leloir, 1958; O’Hara et al., 

2013). Both trehalose and T6P have been reported to play a role in regulating carbohydrate 

metabolism (Ponnu et al., 2011). It has been postulated that T6P is transported into plastids by 

an unknown mechanism, inducing starch synthesis via activation of AGPase mediated by 

thioredoxin (Kolbe et al., 2005). T6P may be converted into trehalose, which has been reported 

to regulate starch breakdown in plastids (Ponnu et al., 2011). 

 

Transgenic potato lines over-expressing E. coli TPS displayed decreased starch content and 

reduced ATP, coupled with an increased respiration rate revealing high metabolic activity 

(Debast et al., 2011). In addition, over-expressed TPS lines showed delayed sprouting. On the 

contrary, lines that over-expressed the E. coli TPP gene exhibited reduced T6P content and 

accumulated soluble carbohydrates, hexose-phosphates, and ATP. However, over-expressed 

TPP lines displayed no changes in starch content and/or early sprouting (Debast et al., 2011). 

In this context, Ponnu et al. (2011) postulated that T6P functions as a critical regulator of plant 

growth in response to environmental factors by regulating the central carbon metabolism. 

 

T6P has been reported to control sucrose utilization (Schluepmann et al., 2004) and starch 

metabolism in plants (Wingler et al., 2000). Transgenic Arabidopsis lines expressing E. coli 

TPS or TPP genes exhibited differences in T6P accumulation and showed different behaviours 

to exogenous sucrose. In these plants, rising concentration of T6P increased the utilization of 

sucrose (Schluepmann et al., 2004). On the contrary, it has been observed that the T6P content 

is strongly related to sucrose availability in Arabidopsis wild-type plants. Sucrose feeding 

rapidly induces T6P in carbon-starved seedlings (Lunn et al., 2006). This increase of T6P in 

response to exogenous sucrose may be due to a rise in the amount of available G6P and UDP-

Glc, which have been observed to be important in determining biomass accumulation and plant 

growth (Meyer et al., 2007). Therefore, T6P indirectly reflects sucrose concentrations and has 

been widely accepted as an indicator of sucrose status in plants (Lunn et al., 2006; reviewed in 

Paul et al., 2008). 

 

Besides, T6P has been reported to inhibit the sucrose non-fermenting 1-related protein kinase1 

(SnRK1) complex of the sucrose non-fermenting-1 (SNF1)-related group of protein kinases in 

Arabidopsis (Zhang et al., 2009), in wheat grain extracts (Martínez-Barajas et al., 2011), and 

potato tubers (Debast et al., 2011). In potato tubers, sucrose and glucose lead to redox 

activation of AGPase via two different signalling pathways involving SnRK1, and hexokinase, 
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respectively (Tiessen et al., 2003). Hexokinase and SnRK1 are both implicated in a regulatory 

network that controls the expression and phosphorylation of cytosolic enzymes in response to 

sugars (Smeekens, 2000).  

 

1.5 Cold-induced and senescent sweetening in stored potato tubers  

 

Tubers are typically stored at cold temperatures to reduce shrinkage due to respiration and to 

minimize losses to tuber-borne pathogens. Cold-stored tubers, however, accumulate the 

reducing sugars glucose and fructose (Fitzpatrick & Porter, 1966; Schippers, 1975; Ewing et 

al., 1981). CIS is a heritable trait (Hayes & Thill, 2002, 2003; Menendez et al., 2002; Jansky 

& Hamernik, 2009; Jansky et al., 2011).  

 

Ohad et al. (1971) suggested that cold storage temperatures may also damage the amyloplast 

membrane. This would make the membrane more permeable to starch hydrolysis enzymes. The 

amount of free fatty acids (FFA) in cell membranes can increase several fold in tubers subject 

to stress such as low temperature for cold sweetening or ageing for senescent sweetening. 

Furthermore, reduced potato tuber membrane integrity has been reported to be correlated with 

an increase of membrane electrolyte leakage, previously implicated in the accumulation of 

sugars. Generally, increases in FFA reduce membrane fluidity leading to a breakdown in 

membrane permeability. And this, in turn, increases fry colour. Spychalla and Desborough 

(1990) found that changes to the FFA content of lipids during storage had little bearing on 

permeability. However, the amount of linolenic acid in membrane lipids appears to confer 

potatoes with better processing quality. In these instances, either the physical status or the 

chemical composition changes of the tuber membranes must account for the increased 

electrolyte leakage. Increased membrane lipid unsaturation is one chemical change that appears 

to confer resistance to increased electrolyte leakage in stored potato tubers (Isherwood, 1976; 

Knowles & Knowles, 1989; Spychalla & Desborough, 1990; O’Donoghue et al., 1994). 

Changes in membrane structure and function could result in cellular adjustments in the 

compartmentalization of key ions, substrates, and enzyme effector molecules (Isherwood & 

Kennedy, 1975).  

 

Since key starch metabolism enzymes are associated with CIS (Sowokinos, 1990; Li et al., 

2005, 2008; Bhaskar et al., 2010; Wu et al., 2011), studies of the effects of cold temperature 

storage on processing quality have focused on the activity of enzymes involved in the 
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conversion of starch to sugars. The hydrolytic pathway of starch degradation involves α-

amylase (AMY) and β-amylase (BAM). Multiple genes encode different amylase isoforms that 

may have different roles depending on plant tissues and species. It has been reported that 

different amylases such as StAmy23, StBAM1, and StBAM9 regulate CIS of tubers (Hou et 

al., 2017). Zhang et al. (2014) have reported the expression of the StAmy23, which is localized 

in the cytoplasm, was strongly induced by low temperature in potato tubers and after RNA 

interference (RNAi) silencing resulted in the lower accumulation of reducing sugars in tubers 

stored at 4°C for 15 days and improved crisp colour, implying that StAmy23 is involved in 

potato CIS. Moreover, StBAM1 may play a role in the potato CIS process by hydrolysing 

soluble starch in the amyloplast stroma whilst StBAM9 plays vital and distinct roles in the 

starch degradation pathway of potato CIS by acting on starch granules (Hou et al., 2017). 

 

The pattern of the reducing sugars content might change depending on the mechanism of starch 

breakdown. Sucrose hydrolysis by invertase and starch degradation have been reported to be 

the main pathways involved in potato CIS (Blenkinsop et al., 2003; Bhaskar et al., 2010; Zhang 

et al., 2014; Lin et al., 2015). The invertase activity is considered critical for sucrose cleavage 

(Bhaskar et al., 2010). Lin et al. (2015) revealed an evidence of a protein complex (StvacInv1–

StInvInh2B–SbSnRK1) is implicated in the regulation of the enzyme activity in cold-stored 

tubers. The study confirmed the protein complex by pairwise interactions using biomolecular 

fluorescence complementation assays. The inhibition of StvacInv1 by StInvInh2B is blocked 

by SbSnRK1 and is restored by the phosphorylated form of SbSnRK1. Inactivated 

SbSnRK1 is thus critical to maintaining invertase activity for promoting potato CIS (Lin et 

al., 2015). A higher level of SbSnRK1 expression has been reported to be accompanied by 

elevated SbSnRK1 phosphorylation, reduced acid invertase activity, a higher sucrose-hexose 

ratio, and improved crisp fry colour (Lin et al., 2015).  

 

During cold-induced sweetening in stored potatoes, starch degradation occurs and eventually 

reducing sugars accumulate through several enzymatic reactions (Figure 1-4) (Mares et al., 

1985; Morrell & ap Rees, 1986). Tuber starch amylose content has been reported to be higher 

in CIS-resistant varieties than in susceptible ones (Barichello et al., 1990; Jansky & Fajardo, 

2014). Starch properties, such as the amylose:amylopectin ratio, may influence starch 

hydrolysis rates in granules, where starch is stored in tubers. Eventually, this would have an 

impact on the conversion of starch to free sugars (Barichello et al., 1990). However, Cottrell 
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et al. (1995) found no association between CIS resistance and amylose content. Amylose 

content is influenced not only by variety but also by storage, production year, and field location.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. Related carbohydrate pathways in potato tubers. Enzymes represented: 1, UDP-glucose 

pyrophosphorylase; 2, sucrose-6-phosphate synthase; 3, sucrose-6-phosphate phosphatase; 4, acid 

invertase; 5, phosphoglucomutase; 6, phosphohexoseisomerase; 7, fructose-6-phosphate 2-kinase; 8, 

fructose-2,6-bisphosphatase; 9, ATP-phosphofructokinase; 10, fructose-l,6-bisphosphatase; 11, PPi-

phosphofructokinase; 12, aldolase; 13, glucose-6-phosphate/phosphate translocator protein; 14, ADP-

glucose pyrophosphorylase; 15, starch synthase; 16, starch phosphorylase; 17, pyruvate kinase and 18, 

mitochondrial electron transport and oxidative phosphorylation reactions. Taken from Sowokinos 

(2001). 

 

Genetic mapping studies have reported that CIS is associated with a large number of 

quantitative trait loci (QTL) (Menéndez et al., 2002; Li et al., 2008). QTL have been linked to 

genes encoding invertase, SuSy 3, SPS, AGPase, sucrose transporter 1, and a putative sucrose 

sensor (Menéndez et al., 2002). The genetic complexity of the CIS trait is consistent with the 

involvement of numerous enzymes in the metabolic pathways linking starch synthesis and 

breakdown to sugar formation and utilization in plants (Nguyen-Quoc & Foyer, 2001; 

Sowokinos, 2001; Nägele et al., 2010). Genes associated with any of these enzymes and their 
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regulation could influence the amounts of glucose and fructose. Several studies have associated 

molecular markers with genes involved in starch or sugar metabolism have been linked to QTL 

for sugar content or crisp colour (Menéndez et al., 2002). 

 

Several methods have been developed to improve cold storage and avoid CIS. RNA 

interference technology has been used to silence the vacInv gene, minimizing the accumulation 

of reducing sugars and improving cold storage (Clasen et al., 2016). In addition, it has been 

reported that silencing the potato vacInv prevents reducing sugar accumulation in cold-stored 

tubers, and crisps processed showed a significant acrylamide reduction and lighter colour even 

when tubers were stored at 4°C (Bhaskar et al., 2010). In this term, low levels of vacInv gene 

expression have been observed in cold-stored tubers from wild potato germplasm stocks that 

are resistant to cold-induced sweetening as well. Hence, both processing quality and 

acrylamide problems in potato can be controlled effectively by suppression of the vacInv gene 

through biotechnology or targeted breeding. This fact has a greater relevance for the fresh 

market as well as home processing. 

 

Cold-induced sweetening problem has been mostly solved since the storage for processing is 

typically undertaken at relatively high temperatures (> 8°C) while the use of suppressors such 

as CIPC is required to prevent sprouting. Furthermore, breeding and new biotechnological 

methods have been developed to avoid the accumulation of sugars at cold storage. However, 

tubers can undergo a distinct physiological process called senescent sweetening after prolonged 

storage (> 5 months) (Burton, 1989), leading to significant losses for the potato processing 

industry. Though cold-induced sweetening can be reconditioned by increasing the storage 

temperature (Pritchard & Adam, 1994), the reducing sugar accumulation produced by 

senescent sweetening is considered irreversible (Isherwood & Burton, 1975). Hence, senescent 

sweetening in stored potato tubers remains a problem.  

 

Though almost nothing is known regarding the mechanisms of senescent sweetening, the most 

widely accepted hypothesis is that tissue senescence in terms of the breakdown of cellular 

function is responsible for sweetening. The disruption of the amyloplast membrane could 

increase the rate of phosphorolytic and/or hydrolytic breakdown of the starch granule leading 

to degradation of starch as a consequence of starch has been exposed to amylolytic enzymes. 

This process could lead to an accumulation of free sugars driving to senescent sweetening as a 
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result of the amylolytic membrane, and subcellular organization are lost (Ohad et al., 1971; 

Sowokinos et al., 1987; Kumar & Knowles, 1993). 

 

1.6 SnRK and metabolic signalling 

 

In plants, sugar production through photosynthesis is a vital process, and sugar status modulates 

and coordinates internal regulators and environmental signals that control growth and 

development (Koch, 1996; Sheen et al., 1999; Smeekens, 2000). Biochemical, molecular, and 

genetic experiments have supported a central role of sugars in the control of plant metabolism, 

growth, and development and have revealed interactions that integrate light, stress, and 

hormone signalling (Roitsch, 1999; Sheen et al., 1999; Smeekens, 2000; Gazzarrini & 

McCourt, 2001; Finkelstein & Gibson, 2002) and coordinate carbon and nitrogen metabolism 

(Stitt & Krapp, 1999; Coruzzi & Bush, 2001; Coruzzi & Zhou, 2001). 

 

One of the most common mechanisms in signal transduction is protein phosphorylation and 

dephosphorylation, and the use of specific inhibitors has indicated the involvement of a variety 

of protein kinases and protein phosphatases in plant sugar signalling (Rolland et al., 2002). 

Sucrose non-fermenting 1-related protein kinase1 (SnRK1) is a serine/threonine-protein kinase 

that takes its name from sucrose non-fermenting-1 (SNF1) protein kinase, its homologue in 

yeast (Saccharomyces cerevisiae) (Celenza & Carlson, 1986). 

 

SnRK1 is a plant protein kinase with a catalytic domain similar to that of SNF1 of yeast and 

AMP-activated protein kinase of animals. The SNF1 family of protein kinases are a distinct 

group within the protein kinase superfamily but are closely related to the calcium-dependant 

protein kinase group, which includes the animal calmodulin-dependent protein kinases and the 

plant calmodulin-like domain protein kinases (Hardie, 2000). The first plant SnRK1 sequence 

to be reported was a cDNA (complementary DNA) isolated from a rye endosperm cDNA 

library (Alderson et al., 1991). SnRK1 genes have since been identified and characterized in 

many plant species (reviewed by Halford & Hardie, 1998). 

 

Plants contain two other subfamilies of protein kinases, SnRK2 and SnRK3, containing 

catalytic domains with sequences that place them clearly within the SNF1 family. The SnRK2 

and SnRK3 gene subfamilies appear to be unique to plants and are relatively large and diverse 

compared with SnRK1. SnRKs 2 and 3 have been implicated in stress and ABA-mediated 
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signalling pathways. This subfamilies have been associated with responses to abiotic stresses 

such as drought, salinity, cold, and osmotic stress (Hey et al., 2010). The SnRK2 subfamily 

includes PKABA1 from wheat, which is involved in mediating ABA‐induced changes in gene 

expression (Anderberg & Walker‐Simmons, 1992; Gómez‐Cadenas et al., 1999). Moreover, 

there is evidence that ABA promotes degradation of SnRK1 in wheat and activates a putative 

calcium-dependent SnRK2 (Coello et al., 2012).The SnRK3 gene family includes SOS2, an 

Arabidopsis protein kinase involved in conferring salt tolerance (Halfter et al., 2000; Liu et al., 

2000). 

 

1.6.1 SnRK1 and the regulation of carbohydrate metabolism 

 

SnRK1 indirectly controls carbohydrate metabolism because it modulates the transcription of 

several genes such as sucrose synthase (sucrose degradation) and α-amylase (starch 

degradation) (Purcell et al., 1998; Laurie et al., 2003). SnRK1 has also been found to be 

involved in starch biosynthesis (Geigenberger, 2003). It stimulates the redox activation of 

AGPase, the key regulatory enzyme of this biosynthesis pathway, in response to high sucrose 

levels. This result is consistent with data showing that SnRK1 disruption in the moss 

Physcomitrella patens leads to a defect in starch accumulation (Thelander et al., 2004). 

SnRK1-antisense transgenic pea seeds have been shown to have a higher carbon/nitrogen ratio 

than wild type (Radchuk et al., 2006). The various phenotypes observed (e.g., maturation 

defects, lower globulin content, higher sucrose level) suggest that SnRK1 might be implicated 

in the coordination of cell division and expansion, a process involving sugar signals.  

 

In vitro, SnRK1 phosphorylates and inactivates four important plant metabolic enzymes: (i) 3-

hydroxymethyl-3-methylglutaryl-CoA reductase (Dale et al., 1995) (ii) SPS, which catalyses 

sucrose biosynthesis; (iii) nitrate reductase, which catalyses the first step of nitrogen 

assimilation into amino acids (Sugden et al., 1999) and (iv) trehalose phosphate synthase 5 

(TPS5), a key enzyme in the synthesis of trehalose-6-phosphate, a signalling sugar that 

regulates plant metabolism and development (Harthill et al., 2006).  
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1.6.2 Regulation of SnRK1 activity 

 

There is evidence of differential transcriptional regulation of SnRK1 gene expression. In 

potato, the highest levels of expression occur in stolons as they begin to develop into tubers 

(Man et al., 1997). Expression gradually declines in maturing tubers but is lowest in leaves.  

The exact nature of the signal that brings about changes in the SnRK1 gene expression or 

activation state is not known. Dephosphorylation and inactivation of spinach SnRK1 have been 

found to be inhibited by low concentrations of 5’-AMP (Sugden et al., 1999a). There is also 

evidence that SnRK1 may be inhibited by G6P (Toroser et al., 2000), although others have 

attributed the apparent inhibition of SnRK1 by G6P to the presence of a contaminant (Sugden 

et al., 1999). This has led to the hypothesis that SnRK1 is activated in response to high 

intracellular sucrose and/or low intracellular glucose levels (Halford & Dickinson, 2001). 

Zhang et al. (2009) suggested the effects on SnRK1 activity are specific to T6P, as SnRK1 was 

not inhibited by the other tested sugars or sugar phosphates. 

 

SnRK1 is a hetero-trimeric protein complex composed of an AKIN10 or AKIN11 catalytic α-

subunit, β-, and γ-subunits, which together form the active kinase complex (Polge & Thomas, 

2007). Over-expression of SnRK1 promotes plant survival under low light and starvation 

conditions, in addition to altering inflorescence development and delaying senescence. In 

contrast, akin10 akin11 virus-induced gene silencing double mutant plants showed growth 

arrest coupled with premature senescence. The AKIN10/AKIN11 signalling cascade seems to 

be crucial for plant survival under stress, e.g., darkness and sugar deprivation (Baena-González 

et al., 2007).  

 

1.6.3 SnRK1 and plant stress responses 

 

Reported data suggest the involvement of this plant kinase complex in the global regulation of 

metabolism as well as in developmental and stress responses (reviewed by Polge & Thomas, 

2007).  

 

The yeast SNF1 kinase is a heterotrimeric enzyme consisting of α(SNF1), β(SIP1, SIP2, or 

GAL83) and γ(SNF4) subunits. In high glucose, the SNF1 kinase complex is inactive, and the 

SNF1 regulatory domain auto‐inhibits the catalytic domain. In low glucose, this auto‐inhibition 

is relieved and the SNF4‐activating subunit binds to the regulatory domain. As a third 
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component, the kinase complex contains one of the related scaffolding proteins SIP1, SIP2 or 

GAL83 (Carlson, 1999). The β‐subunits are required for kinase function and substrate 

definition in yeast (Schmidt & McCartney, 2000). GAL83 mediates the association of SNF1 

with SIP4, a SNF1‐regulated transcription activator of gluconeogenic genes (Vincent & 

Carlson, 1999). GAL83 directs SNF1 to the nucleus in a glucose‐regulated manner (Vincent et 

al., 2001). The first indication of involvement of SnRK1 in plant stress response was the salt 

hypersensitivity of the antisense StubGAL83 transgenic potato plants, which suggests that 

SnRK1 might activate protection systems against this stress (Lovas et al., 2003). Furthermore, 

several lines of evidence indicate that SnRK1 is involved in plant-pathogen interactions (Hao 

et al., 2003). The expression of an antisense sequence of Arabidopsis SnRK1 in tobacco 

increased its sensitivity to virus attack. In contrast, over-expression of a sense sequence 

increased its resistance, suggesting that SnRK1 might be a component of plant antiviral 

defence. The plant-specific AKINβγ subunit also interacts with two proteins involved in 

nematode resistance through its glycogen-binding domain (Gissot et al., 2006). 

 

The consequences of changes in SnRK1 levels on plant development and stress response 

constitute a further indication that SnRK1 might play an important role in the regulation of 

global metabolism, the disturbance of which might lead to developmental or adaptation defects. 

This speculation is supported by data showing that the allocation of carbon to roots by SnRK1 

kinases allows better tolerance to herbivore attacks (Schwachtje et al., 2006). 

 

1.7 Sugars and phytohormone responses 

 

The field of plant sugar response is complicated by the fact that plants appear to respond to 

soluble sugar levels or flux by several response pathways. Many plant developmental, 

physiological, and metabolic processes are partially regulated by nutrient availability. 

Particularly, alterations in soluble sugars availability, such as glucose and sucrose, help 

regulate a diverse array of processes. Multiple studies indicate that many of these processes are 

also regulated in response to other signalling molecules, such as phytohormones.  

 

Sugar- and phytohormone-response pathways are involved in the regulation of many processes. 

However, little is known about the mechanisms by which different response pathways interact. 

The available evidence suggests that these interactions may be quite direct in some cases and 

indirect in others. For example, a component of one response pathway might interact directly 
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with components of another response pathway to form a complex. Alternatively, response 

pathways might interact indirectly by altering the levels of the same second messenger. 

 

1.7.1 Phytohormones effect on sugar metabolism and transport 

 

Several phytohormones are involved in the regulation of sugar metabolism and/or transport. 

ABA is implicated in the regulation of sugar transport and metabolism. Treatment of 

germinating rice seeds with ABA plus glucose results in a higher accumulation of sugars in the 

scutellum than treatment with glucose alone, suggesting that ABA stimulates glucose uptake 

from the media (Kashem et al., 1998). ABA and GAs also help regulate sugar concentrations 

by altering -amylase levels, thereby affecting the rate at which sugars are produced from 

starch (reviewed by Bethke et al., 1997).  

 

Senescence is an internally programmed degenerative process leading to death in plants. CKs 

are involved in plant growth and developmental processes, including senescence (Mok, 1994). 

These processes are related to the demand for carbohydrates, regulation of assimilate 

partitioning (Brenner & Cheikh, 1995), sink strength (Kuiper, 1993), and source-sink 

relationships (Roitsch & Ehneß, 2000).  

 

CKs affect the distribution of nutrients and further modulate sink strength as indicated by their 

ability to establish local metabolic sinks, which has been demonstrated by mobilisation of 

radiolabelled nutrients, such as sugars, from other parts of the plant to CK-treated areas 

(Kuiper, 1993). 

 

Sucrose metabolism and transport are very important for growth and senescence. These 

processes depend on the activities of SPS, SuSy, and invertase (cytInv, vacInv, cwInv). SPS 

and SuSy are involved in regulating the synthesis of sucrose (Huber & Israel, 1982; Stitt et al., 

1988). Invertase activities has been observed to be dominant during the initiation and expansion 

of sink tissues (Koch, 2004). Plants contain neutral invertases, localized in the cytosol (cytInv), 

and acidic invertases, localized in the vacuoles (vacInv), and cell wall (cwInv) in the apoplast 

(Roitsch & González, 2004). In particular, extracellular invertase (cwInv) has essential 

functions both in source-sink regulation and in supplying carbohydrates to sink tissues. 

Therefore, it is a central modulator of sink activity (Tang et al., 1999; Goetz et al., 2001; 
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Roitsch et al., 2003). In addition, CKs are involved in the regulation of invertase activity; 

extracellular invertase activity is usually high in tissues with an elevated cytokinin 

concentration (Lefebre et al., 1992). 

 

1.8 Plants and stress factors 

 

Stress in plants can be defined as any external factor that negatively influences plant growth, 

productivity, reproductive capacity, or survival. This includes a wide range of factors that can 

be broadly divided into two main categories: abiotic or environmental stress factors and biotic 

or biological stress factors.  

 

In many cases, the abiotic stresses do not occur independently, and thus the stress environment 

may involve a complex of interacting stress factors. The abiotic stress factors that most 

commonly influence plant performance include deficiencies or excesses of water, extremes of 

irradiance, excessively low or high temperature, deficiencies or excesses of several nutrients, 

high salinity, and extremes of soil pH. Abiotic stresses may also include mechanical stresses 

and stresses associated with compounds that may be toxic for the plants in high concentrations, 

which is the case of oxidative stress produced by reactive oxygen species (ROS).  

 

1.8.1 Respiration and oxidative stress 

 

Plant growth and development are driven by electron transfer reactions, involving both a 

reduction and a complementary oxidation process. Redox reactions are the metabolic processes 

through which cells convert and distribute the energy that is necessary for growth and 

maintenance. Even though most forms of life are oxygen-dependent for respiration, oxygen 

(O2) can be a damaging chemical in certain forms. ROS, such as singlet oxygen (1O2), 

superoxide anion radical (O2
●−), hydrogen peroxide (H2O2), and hydroxyl radical (HO●), are 

partially reduced or excited forms of atmospheric oxygen (Halliwell & Gutteridge, 2007). ROS 

are required for many important signalling reactions but are toxic products of aerobic 

metabolism as well (Konig et al., 2012; Foyer & Noctor, 2013; Mignolet-Spruyt et al., 2016). 

In plants, ROS are continuously produced as products of several metabolic processes such as 

respiration and photosynthesis, and they are localized in different cellular compartments (Foyer 

& Harbinson, 1994). Plants also generate ROS by activating various oxidases and peroxidases, 
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producing them in response to different environmental changes (Allan & Fluhr, 1997; Schopfer 

et al., 2001; Bolwell et al., 2002). 

 

When plants are exposed to unfavourable environmental conditions, this increases the 

production of ROS. Moreover, one of the changes associated with ageing in potato tubers 

includes an increase in tuber respiration rate resulting in oxidative stress and lipid peroxidation 

(Kumar & Knowles, 1993; Kumar & Knowles, 1996). 

 

The ROS at high concentrations can behave as extremely reactive molecules. The ability of 

ROS to react indiscriminately with almost all cellular components leads to cause oxidative 

damage to proteins, DNA, and lipids (Beckman & Ames, 1997; Berlett & Stadtman, 1997). 

Consequently, high ROS levels produce cellular damage such as membrane leakage and cell 

lysis by an indiscriminate attack.  

 

Hence, the process of ROS detoxification in plants is essential for the protection of plant cells 

as well as their organelles against the toxic effect of these ROS (Mittler, 2002; Apel & Hirt, 

2004). The ROS detoxification systems include enzymatic and non-enzymatic antioxidant 

components (Table 1-2) (Scandalios, 2005). In plant tissues, the non-enzymatic antioxidant 

components such as ascorbate and glutathione can exist in either their reduced or oxidised 

forms. The redox status of these compounds both act as a marker of plant oxidative stress and 

also influence plant signalling, gene expression, and metabolism (Noctor, 2006).  

 

Oxidative stress is a central factor in abiotic and biotic stress phenomena and is the result of an 

imbalance between the production of ROS and antioxidant defence, causing significant damage 

(Halliwell & Gutteridge, 2007).   
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Table 1-2. Major antioxidant components of plant cells.  

aEvidence for mitochondrial and cytosolic catalase localization remains uncertain. Taken from Hancock 

(2017).  

 

1.8.2 Mitochondria and oxidative stress 

 

Respiration is an energy-conserving process that couples the transfer of potential energy from 

the oxidation of reduced organic matter to high-energy intermediates and heat and is known as 

the primary function of mitochondria.  

 

In aerobic respiration, mitochondria carry out the final steps to generate the bulk of the needed 

ATP for growth and cellular maintenance. Moreover, mitochondrial metabolism is significant 

for many other important cellular processes such as photosynthesis, photorespiration, nitrogen 

metabolism, redox regulation, and signalling (Heazlewood et al., 2004; Bauwe et al., 2012). 

 

The different steps of the respiratory apparatus in plant mitochondria can be framed as a 

sequential set of processes involving the transport of reduced glycolytic products from the 

cytosol into the mitochondrion, including a series of reactions leading to the release of CO2 

and reduction of O2 to water.  
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The major carbon metabolising machinery present in plant mitochondria is represented by the 

eight enzymes of the tricarboxylic acid (TCA) cycle. TCA cycle and associated enzymes link 

the product of the oxidation of pyruvate and malate to CO2 with the generation of NADH for 

the oxidation by the mitochondrial respiratory chain leading the substrate-level 

phosphorylation of ADP to ATP (Figure 1-5) (Fernie et al., 2004). 

 

Figure 1-5. Possible interactions of mitochondrial electron transport with other pathways. (a) ATP 

synthesis (i.e. oxidative phosphorylation). Pyruvate (Pyr) supplied by glycolysis is oxidised by the 

mitochondrial TCA cycle, and electrons from the resulting reductant are transferred through the electron 

transport chain with a chemiosmotically coupled synthesis of ATP. Complexes I–IV of the electron 

transport chain are shown. (b) ATP synthesis (substrate-level phosphorylation). Glycolysis may also 

contribute to ATP production, particularly under conditions in which the oxidative phosphorylation 

pathways are impaired. Glycolytic flux is dependent upon the recycling of cytosolic NAD+, which can 

be achieved via the external NADH dehydrogenase (NDB). The activity of AOX could provide an 

entirely non-proton-pumping electron transport pathway, in which electron flux is not limited by 

mitochondrial ATP synthesis.  
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Fig. 1-5. Continuation. (c) Provision of carbon skeletons for biosynthesis. Withdrawal of TCA-cycle 

intermediates (the export of citrate to support nitrogen assimilation is illustrated) may necessitate a 

higher flux of portions of the TCA cycle and a higher rate of entry of electrons into the electron transport 

chain. These extra electrons may be accommodated by a non-proton-pumping pathway that consists of 

the internal NDA and AOX, such that electron flow is not restricted by the rate of ATP synthesis. (d) 

Photorespiration. The oxidation of photorespiratory glycine in the mitochondrial matrix requires the 

recycling of NAD+. This can be achieved by the entry of electrons from NADH into the electron 

transport chain. The non-phosphorylating pathway explained above may operate to avoid electron flow 

being limited by the rate of ATP synthesis. (e) Regulation of cellular redox. Photosynthesis requires a 

precise balance between the generation of NADH and ATP. One way in which this may be achieved is 

to export excess NADH via metabolite shuttles. The ‘malate valve’ exports excess chloroplastic 

reductant as malate and imports it into the mitochondrion via oxaloacetate (OAA) exchange. 

Mitochondrial malate dehydrogenase releases the NADH. The extent to which this NADH supports 

ATP synthesis depends on the route of electrons through the electron transport chain (red arrows 

represent the phosphorylating pathway; green arrows represent the non-phosphorylating pathway). (f) 

Stress: minimisation of ROS production. A high mitochondrial membrane potential restricts electron 

flow and increases the leakage of electrons to form superoxide. This can be minimised by the activity 

of mitochondrial UCP, which dissipates the proton gradient. UCP is activated by superoxide, providing 

a regulatory loop for this pre-oxidant defence mechanism. AcoA, acetyl-CoA; GDC, glycine 

decarboxylase; Glu, glucose; 2-OG, 2-oxoglutarate; Mal, malate; SHMT, serine 

hydroxymethyltransferase; Succ, succinate. Taken from Fernie et al. (2004). 

 

Mitochondria are surrounded by two membranes which have very different permeability 

properties. The outer membrane allows relatively non-specific transport of small molecules 

from the cytosol into the inter-membrane space (Mannella, 1992; Mannella et al., 2001). The 

inner membrane contains very selective transporters for small molecules to the matrix space. 

This allows a complex set of inner membrane carrier functions to have a large influence on the 

functions of mitochondria (Laloi, 1999). Alterations in cellular metabolism and energy demand 

such oxidative damage can undergo changes in their morphology and respiratory capacity by 

regulation the composition and abundance of the protein machinery (Jacoby et al., 2012). 

Moreover, mitochondria are key agents in how plants respond to oxidative stress.   

 

In general, stress can alter the rate at which some of the mitochondria electron transport chain 

(ETC) complexes donate or accept electrons, ultimately leading to over-reduction of certain 

sites of the ETC which produce electron leakage to O2 following to ROS production (Jacoby 
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et al., 2011). The primary sites of mitochondrial ROS production are the ETC complexes I, II, 

and III (Møller et al., 2007; Gleason et al., 2011). 

 

Mitochondrial antioxidants and detoxification enzymes play crucial roles in stress tolerance 

by alleviating the effects of excess ROS production. The ETC components in mitochondria 

are particularly damaged by ROS, and this can be problematic since protection is crucial to 

maintain ATP production during stress (Jacoby et al., 2011).  

 

The accumulation of ROS can induce lipid peroxidation in the mitochondria, referring to free 

radical autoxidation of polyunsaturated fatty acids of membrane lipids (such as arachidonic, 

and linoleic and linolenic acids) to generate various cytotoxic aldehydes, alkenals, and 

hydroxyalkenals (Jacoby et al., 2012). The interaction of HO● with polyunsaturated fatty acids 

initiates lipid peroxidation that by a sequential series of reactions leads to a number of toxic 

lipid peroxidation end products by a non-enzymatic, metal ion enhanced process (Noordermeer 

et al., 2000). 

 

Several studies have reported overall changes in abundance of mitochondrial proteins 

following conditions which induce oxidative stress in several plant species (Sweetlove et al., 

2002; Taylor et al., 2005; Taylor et al., 2009; Jacoby et al., 2010; Huang et al., 2011; Hossain 

et al., 2012; Tan et al., 2012). Besides, the large respiratory subunits of the ETC also coordinate 

protein changes to alter respiration response to oxidative stress conditions (Tan et al., 2012). 

These changes involve proteins responding to ROS and their damage. In this instance, the 

mitochondria are protected by antioxidant enzymes that detoxify ROS, and many have been 

observed to change their rate during oxidative stress including ascorbate peroxidase (Dooki et 

al., 2006), monodehydroascorbate reductase (Sarry et al., 2006) and peroxiredoxins 

(Sweetlove et al., 2002; Sarry et al., 2006) among others.  

 

Increased oxidative damage in tuber cellular membranes has been associated with long term-

storage while potato mitochondria have been reported to be highly oxidised under stress 

conditions (Kumar & Knowles, 1993; Salvato et al., 2014). This damage in mitochondria could 

lead to malfunction of the respiratory machinery in aged tubers, reducing the capacity for 

respiration. In terms of sweetening, starch hydrolysis may also be triggered by a requirement 

for increased respiration to provide ATP and reducing equivalents for membrane repair (Kumar 

& Knowles; 1996). Senescent sweetening may be induced as a result of a reduced capacity for 
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respiration leading to an accumulation of sugars and reduced availability of ATP required for 

starch resynthesis.   

 

1.8.3 Amyloplasts and oxidative stress 

 

Mitochondria are not the only organelles that can be affected by different stresses. Amyloplasts 

have been reported to be damaged as a result of stress during storage (Ohad et al., 1971; 

Sowokinos et al., 1987). These organelles are responsible for the synthesis and storage of starch 

granules.  

 

As mentioned previously, the storage of potato tubers at 4°C can result in cold-induced 

sweetening by the degradation of starch and accumulation of free sugars. This sweetening is 

minimized when the tubers are stored at 25°C (Smith, 1968). The process of degradation of 

starch may be related to a change in the distribution of different enzymes or substrates within 

the subcellular compartments of the potato tuber (Ohad et al., 1971).  

 

The activities of both lipoxygenase (EC 1.13.11) and lipolytic acyl hydrolase (EC 3.1.2) 

affecting both starch granule breakdown and lipid metabolism are reduced in the prematurely 

sweetened tissue (Sowokinos et al., 1985; Lulai et al., 1986). 

 

Alterations in lipid metabolism may influence the structure and transport properties of cellular 

membranes. Furthermore, the double-walled plastid membrane surrounding the amyloplasts 

has been suggested to play an important function in the regulation of carbon partitioning 

between the granule and free sugars in the cytoplasm (Mares et al., 1985). Loss of cellular 

compartmentalization during senescence has been associated with significant physical changes 

affecting the integrity of the amyloplast membrane (Isherwood, 1976; Wetstein & Sterling, 

1978). Studies suggest the observed sweetening that has been demonstrated to occur by 

handling stress may be mediated by an accelerated disruption of the amyloplast membrane (Orr 

et al., 1985; Sieczka & Maatta, 1986).  

 

In this context, oxidative stress could induce the premature disruption of the amyloplast 

membrane and increase the rate of phosphorolytic and/or hydrolytic breakdown of the starch 

granule in an irreversible way. This process could lead to degradation of starch and 

accumulation of free sugars driving to senescent sweetening as a result of the amylolytic 
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membrane, and subcellular organization are lost (Figure 1-6) (Ohad et al., 1971; Sowokinos et 

al., 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. Electron micrographs of starch granules (SG) in the vacuole (V) of differentiated 

parenchymal cells of potatoes stored at 8.9°C. Frames A through F show the double-walled amyloplast 

membrane (PM = plastid membrane) representing six different physical states. Membrane integrity 

represented by each micrograph is: (A) bi-layers of the amyloplast membrane intact and closely 

associated with the granule, (B) bi-layers of the amyloplast membrane separating and closely associated 

with the granule, (C) bi-layers of the amyloplast membrane intact arid loosely associated with the 

granule, (D) bi-layers of the amyloplast membrane separating and loosely associated with the granule, 

(E) membrane fragmented, vesicles formed and (F) no membrane visible. Modified from Sowokinos et 

al. (1987). 
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1.9 Conclusions 

 

Control of potato quality during storage represents a significant problem for the potato 

processing industry. Although a great deal of research has been conducted into the problem of 

cold sweetening yielding breeding tools, techniques for reconditioning, and improved storage 

methods, senescent sweetening has been much less examined and remains a problem in long-

term tuber storage at moderate temperatures. 

 

Literature associated with senescent sweetening is sparse, and little is known regarding its 

mechanisms. Potential mechanisms of senescent sweetening include enhanced starch 

degradation, reduced starch resynthesis, and reduced catabolism of sugars. The most accepted 

hypothesis seems to be senescent sweetening is produced by oxidative stress since it has been 

reported that long-term tuber storage leads to an increase of oxidative damage of cellular 

membranes and degradation of the amyloplast membrane. This membrane leakage could 

increase the exposure of starch granules to cytosolic amylolytic enzymes, and it has been 

postulated as a mechanism of senescent sweetening.  

 

One of aim of this Ph.D. project entitled “Elucidating the mechanisms of senescent sweetening 

in stored potato tubers” was to test the hypothesis that senescent sweetening is caused by 

oxidative damage in both mitochondria and amyloplasts. Mitochondrial oxidative damage 

could promote sweetening as a result of a reduced capacity for respiration leading to an 

accumulation of sugars and reduced availability of ATP required for starch resynthesis while 

the increased oxidative damage of the amyloplast membrane has the potential to expose starch 

granules to cytosolic amylolytic enzymes as mentioned previously. A further objective to 

elucidate downstream biochemical and molecular responses to oxidative damage that may 

influence carbohydrate metabolism resulting in senescent sweetening. 

 

However, to date, almost nothing is known regarding the mechanisms around senescent 

sweetening, and further research and approaches are necessary. The Ph.D. research project 

adopts physiological, biochemical, and molecular approaches to fully elucidate mechanisms of 

senescent sweetening and identify key factors controlling the trait. 
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Chapter 2: Materials & Methods 

 

2.1 Plant Materials, Growing and Storage Conditions 

 

For the 1st season (2016/2017) of this study, tubers of two different potato cultivars, Arsenal 

and VR 808, were obtained from PepsiCo. Tubers were either untreated or had been treated by 

misting with CIPC to inhibit sprouting. When treated, CIPC was applied post-curing at 13°C. 

Tubers were stored at 9°C in the dark in a cold storage unit (Porkka, UK) at The James Hutton 

Institute and sampled at the intervals described. For untreated tubers, sprouting buds were 

removed by hand every two weeks to avoid the development of carbon sinks. The 1st sampling 

point was in October 2016 and last sampling point in August 2017.  

 

In season 2 (2017/2018) tubers of cultivars Arsenal and VR 808, were obtained from PepsiCo. 

All tubers had been treated with CIPC as described for season 1. Tubers were stored at The 

James Hutton Institute as previously described and sampled for tuber quality at the intervals 

described. The 1st sampling point was in November 2017 and last sampling point in October 

2018.  

 

In the final season (2018/2019) tubers of 9 different cultivars were obtained from PepsiCo, all 

of them CIPC-treated. The varieties used during this season are Pirol, SH C 909, VR 808, Lady 

Rosetta, Brooke, Arsenal and Shelford. An additional ‘Unknown’ variety was included. The 

name of this variety cannot be disclosed at the breeder’s request. Tubers were stored at 9°C at 

The James Hutton Institute and sampled for tuber quality. The 1st sampling point was in 

December 2018 and last sampling point in September 2019.  

 

During the experimental seasons all potato cultivars were grown in Shropshire, with the 

exception of the Shelford variety used during season 3 where tubers grown in two locations, 

Shropshire and Yorkshire were under study for this variety.  

 

For all seasons of this study the growing conditions were different due to the weather. Cultivars 

were grown under drier weather during season 2 (2017/2018) and 3 (2018/2019) compared to 

season 1 (2016/2017). These differences in growing conditions may had an effect on the results 

observed.  
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Tubers were sampled following bisection transversally and twice longitudinally at a 90o angle. 

Tuber samples were then taken from opposite eights (ends), and comprised periderm, cortex, 

vascular ring and outer core to capture the maximum range in sugars across the tuber. In the 1st 

season five tubers per variety and treatment were sampled and two sets of opposite eights were 

taken from each tuber and bulked by replicate for each sampling occasion. In the 2nd season 

five tubers per variety were sampled and bulked as in the previous season. An additional set 

was sampled, and tuber discs were extracted using a cork borer size N° 2 (5 mm) for the 13C 

labelling experiments. In the last season three tubers were sampled per variety for each 

sampling occasion.  

 

All the samples were snap frozen in liquid nitrogen and each set of replicates was either stored 

at -80°C or subject to 72 hours freeze drying at 0.700 mbar (ALPHA 1-4 LSC, CHRIST Freeze 

Dryers, Germany) before grinding to a fine powder using an electric grinder (DCG39, 

DE’LONGHI Electric Grinder, UK). 

 

2.2 Fry Test Process 

 

Tuber slices in a range 1.26 mm – 1.48 mm of thickness were fried at 177°C (L30PFS12, 

LOGIK Professional Deep Fryer, UK) for 3 minutes following the standard fry protocol 

developed by PepsiCo to test the fry colour of the crisps. Tubers were sliced using a mandoline 

(Bron Coucke Mandoline Vegetable Slicer, France) and slice thickness was measured using a 

digital caliper (RS PRO 150mm Digital Caliper, UK) (Figure 2-1). A long-life vegetable 

cooking oil (KTC (Edibles) Ltd, UK) was used for frying. Grade of darkening in fry colour 

was estimated using ImageJ based on the grey scale in each crisp. ImageJ displays images by 

linearly mapping pixel to display values in the range 0-255. Pixels with minimum value are 

displayed as black and those with maximum value are displayed as white (Schneider et al., 

2012). The calculated value was converted to percentage as an estimation of darkening in 

crisps.  
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Figure 2-1. Tools used to slice potato tubers and measure slice thickness during fry colour study.  

 

 

2.3 Biochemical Analysis 

 

2.3.1 Extraction and quantification of sugars 

 

Sugars were extracted and analysed using an adaptation to the method described by Viola et 

al. (2007). Prepared lyophilised tuber powder (50 mg) was extracted in 1 ml of 80% (v/v) 

ethanol at 80°C for 1 hour with periodic vortexing. Samples were then centrifuged at 16,000 g 

for 10 minutes at 1°C, the supernatant was decanted, and the extraction was repeated. The two 

supernatant fractions were combined, reduced to the aqueous phase by evaporation at 40°C 

under reduced pressure in a centrifugal evaporator (miVac Duo Concentrator, Pump and Speed 

Trap, GeneVac, UK), The aqueous phase was then frozen, lyophilized and finally resuspend in 

20 volumes of distilled H2O. This fraction was subsequently used for analysis of glucose, 

fructose and sucrose by High Performance Anion Exchange Chromatography-Pulsed 

Amperometric Detection (HPAEC-PAD; Dionex) under the conditions described by Huang et 

al. (2016) (Table 2-1). 
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Table 2-1. Conditions used for sugars quantification by HPAEC-PAD (Dionex).  

 

 

 

 

 

 

 

 

 

2.3.2 H2O2 extraction and quantification 

 

Five tubers of each variety were used for each sampling time (October and November 2016, 

January, March and May 2017). Tissue from opposite eights of cortex was snap frozen in liquid 

nitrogen individually and stored at -80°C. Tuber samples were ground to a powder in liquid 

nitrogen using a mortar and pestle and extracted in ice-cold 5% HClO4 at a ratio of 1 ml 50 mg 

FW-1 using an adaptation of the method described by Queval et al. (2008). Following 

extraction, the homogenate was centrifuged at 14,000 g for 10 minutes at 4°C and the 

supernatant was neutralized with 5 M K2CO3. Insoluble KClO4 was removed by centrifugation 

and H2O2 was immediately quantified by fluorimetry in a microplate reader (VarioskanTM LUX, 

Thermo ScientificTM) using the commercially available Amplex Red Hydrogen 

Peroxide/Peroxidase assay kit according to the manufacturer’s instructions (Invitrogen Ltd, 

Paisley, UK).  

 

2.3.3 Malondialdehyde (MDA) determination 

 

MDA content in five tubers per variety for each sampling time (October and November 2016, 

January, February, March, April, May, June, July and August 2017) were determined according 

to Hodges et al. (1999). Powdered freeze-dried samples (0.07 g) were homogenized and 

extracted in 20 volumes of 80% (v/v) ethanol. Samples were centrifuged for 10 minutes at 

3,000 g at 1°C, and two aliquots were taken. A first 0.5 ml aliquot of extract was mixed in 0.5 

ml 20% trichloroacetic acid, 0.65% thiobarbituric acid (TBA) containing 0.01% butylated 

hydroxytoluene (BHT). A second 0.5 ml aliquot of extract was mixed in 0.5 ml 20% 

trichloroacetic acid containing 0.01% BHT. Both aliquots were incubated for 25 minutes at 

Conditions         

Column: Thermo Scientific Dionex CarboPac PA20  

  analytical column (3x150 mm) 

Eluent: Sodium hydroxide     

Isocratic: 100 mM NaOH from -15 min to -10.05 min 

 only for column wash, 10 mM NaOH from  

 -10.00 min to 0 min for reequilibration, 

  10 mM NaOH from 0-15 min   

Flow Rate: 0.5 mL/min     
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95°C and centrifuged as in the previous step. The absorbance of the supernatant was measured 

at 440, 532 and 600 nm for each sample using a spectrophotometer (Hitachi U-3010 UV-

Visible) and MDA equivalents (nmol ml-1) determined using the following calculation: 

A) (Abs 532 +TBA) – (Abs 600 +TBA) – (Abs 532 -TBA – Abs 600 -TBA) 

B) (Abs 440 +TBA – Abs 600 +TBA) x 0.0571 

MDA equivalents (nmol ml-1) = (A – B/ 157000) x 1000000 

 

2.3.4 Total polyphenols extraction and quantification 

 

Five tubers per variety were used for each sampling time (March, May and June 2017). Total 

polyphenols were estimated using a modification of the enzymatic method described by 

Stevanato et al. (2004). Powdered freeze-dried samples (0.1 g) were extracted in 10 volumes 

of 50% (v/v) methanol containing 0.1% formic acid. The homogenate was centrifuged at 4,000 

g for 15 minutes. Total polyphenol content was determined in 10 l of supernatant in a reaction 

mixture containing 145 l potassium phosphate buffer pH 8.0, 20 l 30 mM 4-

aminophenazone, 20 l 20 mM H2O2 and 5 l 100 U ml-1 horse radish peroxidase (EC 

1.11.1.7). Following 5 minutes incubation in the dark at 25°C, absorbance at 500 nm was 

recorded in a plate reader (MultiskanTM GO, Thermo ScientificTM) and total polyphenols 

estimated by reference to a standard curve constructed using catechin.    

 

2.3.5 Extraction and quantification of enzyme activities  

 

2.3.5.1 Kinetic enzyme activity assays of plant ascorbate-glutathione cycle 

 

Five tubers of each variety were used for each sampling time (October and November 2016, 

January, February, March, May and June 2017). Tissue from opposite eights of cortex was snap 

frozen in liquid nitrogen individually and stored at -80°C. Tuber samples were ground to a 

powder in liquid nitrogen using a mortar and pestle and extracted in ice-cold 50 mM MES-

KOH buffer pH 6.0 containing 40 mM KCl, 2 mM CaCl2 and 1 mM L-ascorbate (AsA) at a 

ratio of 4 ml g FW-1 following an adaptation to the method described by Murshed et al. (2008). 

The homogenate was clarified by centrifugation at 14,000 g for 10 minutes at 4°C and the 

supernatant was analysed immediately for enzyme activities. All kinetic enzyme activity assays 

were established in a total reaction volume of 0.2 ml and performed in flat bottom 96-well 

plates and absorbance measured using a spectrophotometer (MultiskanTM GO, Thermo 
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ScientificTM). Samples and blanks were analysed in triplicate. Soluble protein content of the 

supernatants was quantified (Bio-Rad protein assay) using bovine serum albumin (BSA) as a 

standard in order to define activity as nanomole of substrate consumed or product formed per 

minute per milligram of protein. 800 l of each standard and sample solution (dilution 1:100) 

were aliquoted in triplicate. A blank sample using distilled H2O was included. 200 l of Bio-

Rad protein assay dye reagent concentrate were added to each sample, and the mixture was 

vortexed and incubated at room temperature for 15 minutes. Absorbance in samples were 

measured at 595 nm (Bradford, 1976). 

 

Enzyme activity was quantified in microplate wells containing a mixture of buffer components 

and substrates depending on the enzyme assayed (Table 2-2):  

 

i) Ascorbate peroxidase (APX, EC 1.11.1.11): The reaction mixture comprised 50 mM 

potassium phosphate buffer (pH 7.0), 0.25 mM AsA, and 10 l of sample supernatant. The 

reaction was started by the addition of 5 l of 200 mM H2O2 to give a final concentration of 5 

mM. Enzyme activity was determined by measuring the decrease in the absorbance at 290 nm 

for 5 minutes to determine ascorbate oxidation. Specific activity was calculated using an 

extinction coefficient of 2.8 mM-1 cm-1. A correction was carried out for the non-specific 

oxidation of ascorbate in the sample (first reading) and by H2O2 in the absence of the enzyme 

sample (blank). 

ii) Dehydroascorbate reductase (DHAR, EC 1.8.5.1): The reaction mixture comprised 50 

mM HEPES buffer (pH 7.0), 0.1 mM EDTA, 2.5 mM glutathione (GSH), and 10 l of sample 

supernatant. The activity of DHAR was determined by monitoring the glutathione-dependent 

reduction of dehydroascorbate. The reaction was started by the addition of dehydroascorbate 

(DHA) (freshly prepared) to a final concentration of 0.2 mM. The activity was determined by 

measuring the increase in absorbance at 265 nm for 5 minutes. The specific activity was 

calculated using an extinction coefficient of 14 mM-1 cm-1. A correction for the nonenzymatic 

reduction of DHA by GSH was carried out in the absence of the enzyme sample (blank). 

iii) Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4): The reaction mixture 

comprised 50 mM HEPES buffer (pH 7.6), 2.5 mM AsA, 0.25 mM NADH, and 10 l of sample 

supernatant. The reaction was started by adding of 0.4 units of ascorbate oxidase to generate 

the monodehydroascorbate radical. The activity was determined as oxidation of NADH by 

measuring the decrease in absorbance at 340 nm for 5 minutes. The specific activity was 
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calculated using an extinction coefficient of 6.22 mM-1 cm-1. The rate of non-specific NADH 

oxidation was subtracted using an enzyme blank.  

iv) Glutathione Reductase (GR, EC 1.8.1.7): The reaction mixture comprised 50 mM HEPES 

buffer (pH 8.0), 0.5 mM EDTA, 0.25 mM NADPH, and 10 l of sample supernatant. GR 

activity was measured spectrophotometrically as NADPH oxidation at 340 nm. The GR 

reaction was started by the addition of 5 l of 20 mM glutathione disulfide (GSSG). The 

specific activity was calculated using an extinction coefficient of 6.22 mM-1 cm-1. Non-specific 

NADPH oxidation was determined before adding GSSG and subtracted from the GR specific 

activity.  

 

 

 

Table 2-2. Simplified protocols for enzymatic assays. Adapted from Murshed et al. (2008). 

 

 

 

2.3.5.2 Enzyme activity assays of carbohydrate metabolism 

 

Three tubers of each variety were used for each sampling time (March, May and June 2017). 

Tissue from opposite eights of cortex was snap frozen in liquid nitrogen individually and stored 

at -80°C. 1 g of tuber samples were ground to a powder in liquid nitrogen using a mortar and 

pestle and extracted in 4 volumes of ice-cold 200 mM HEPES-NaOH buffer pH 7.5 containing 

3 mM MgCl2, 1 mM EDTA, 2% glycerol, 1 mM benzamidine, 5 mM dithiothreitol (DTT), 0.1 

mM phenylmethylsulphonyl (PMSF) and 5% polyvinylpolypyrrolidone (PVPP) following an 

adaptation to the method described by Jammer et al. (2015). DTT, PMSF and PVPP were added 

at least 1 hour before use. Extracts were clarified by centrifugation and then used either crude 

or following desalting using a PD-10 gel filtration column (Amersham Biosciences, UK) 

APX DHAR MDHAR GR

Reaction buffer 50 mM potassium phosphate 50 mM Hepes buffer (pH 7.0) 50 mM Hepes buffer (pH 7.6) 50 mM Hepes buffer (pH 8.0)

buffer (pH 7.0) 0.25 mM AsA 0.1 mM EDTA 2.5 mM GSH 2.5 mM AsA 0.25 mM NADH 0.5 mM EDTA 0.25 mM NADPH

Volume/well 200 l 200 l 200 l 200 l

Extract volume 10 l 10 l 10 l 10 l

Substrate (stock solution concentration) 200 mM H2O2 8 mM DHA Ascorbate oxidase (40 U ml-1) 20 mM GSSG

Substrate volume (final concentration) 5 l (5 mM) 5 l (0.2 mM) 10 l (0.4 U) 5 l (0.5 mM)

OD 290 nm 265 nm 340 nm 340 nm

Extinction coefficient 2.8 mM-1 cm-1 14 mM-1 cm-1 6.22 mM-1 cm-1 6.22 mM-1 cm-1 



40 
 

depending on the enzymes assayed (Figure 2-2). Extraction buffer without PVPP added was 

used as desalting buffer for PD-10 columns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Flowchart of the universal protein extraction and desalting protocol. All steps were 

performed on ice. 1In liquid nitrogen using a pre-cooled mortar and pestle. 2Centrifugation at 20,000 g 

for 20 minutes at 4°C. AGPase, ADP-glucose pyrophosphorylase; UGPase, UDP-glucose 

pyrophosphorylase (EC 2.7.7.9); PGM, phosphoglucomutase (EC 5.4.2.2); vacInv, vacuolar invertase 

(EC 3.2.1.26); cytInv, cytoplasmic invertase (EC 3.2.1.26); Susy, sucrose synthase (EC 2.4.1.13); HK, 

hexokinase (EC 2.7.1.1); and FK, fructokinase (EC 2.7.1.4). 

 

Kinetic enzyme activity and invertase activity assays were established in a total reaction 

volume of 0.16 ml or 1.2 ml, respectively. All enzyme activity assays were performed in flat 

bottom 96-well plates (NuncTM, MicroWellTM, Thermo ScientificTM), and absorbance measured 

using a spectrophotometer (MultiskanTM GO, Thermo ScientificTM). Samples and controls were 

analysed in triplicate. Soluble protein content of the supernatants was quantified (Bio-Rad 

protein assay) using BSA as a standard in order to define activity as nanomole of substrate 

consumed or product formed per minute per milligram of protein. All specific activities were 

sampling + freezing in liquid nitrogen

1 g FW + 4 ml extraction buffer

grinding1

centrifugation2

crude extract

desalting

vacInv, cytInv, Susy, HK, FKAGPase, UGPase, PGM
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calculated using the extinction coefficient of NADPH at 340 nm (6.22 mM-1 cm-1). Reactions 

were performed with a mixture of buffer components, substrate(s), auxiliary substance(s), and 

auxiliary enzymes (Figure 2-3): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Reaction schemes to determine the selected enzyme activities. A. Inv, invertase; FK, 

fructokinase; HK, hexokinase; PGI, phosphoglucoisomerase (EC 5.3.1.9); PGM, phosphoglucomutase; 

and G6PDH, glucose-6-phosphate dehydrogenase (EC 1.1.1.49). B. Susy, sucrose synthase; UGPase, 

UDP-glucose pyrophosphorylase; AGPase, ADP-glucose pyrophosphorylase; PGM, 

phosphoglucomutase; and G6PDH, glucose-6-phosphate dehydrogenase. 

 

i) ADP-glucose pyrophosphorylase (AGPase): aliquots of untreated crude extract (25 l) 

were incubated with 0.44 mM EDTA, 5 mM MgCl2, 0.1% BSA, 2 mM ADP-Glc, 1.5 mM PPi, 

1 mM NADP, 2 mM 3-PG, 0.432 U of PGM, and 1.28 U of G6PDH in 100 mM Tris-HCl at 

pH 8.0. For control reactions, ADP-Glc was omitted. The increase in absorbance at 340 nm 

due to conversion of NADP to NADPH was monitored. 

ii) UDP-glucose pyrophosphorylase (UGPase): aliquots of untreated crude extract (25 l) 

were incubated with 0.44 mM EDTA, 5 mM MgCl2, 0.1% BSA, 2 mM UDP-Glc, 1.5 mM PPi, 

1 mM NADP, 2 mM 3-PG, 0.432 U of PGM, and 1.28 U of G6PDH in 100 mM Tris-HCl at 

pH 8.0. For control reactions, UDP-Glc was omitted. The increase in absorbance at 340 nm 

due to conversion of NADP to NADPH was monitored. 

iii) Phosphoglucomutase (PGM): aliquots of untreated crude extract (25 l) were incubated 

with 10 mM MgCl2, 4 mM DTT, 0.1 mM G1,6bisP, 1 mM G1P, 0.25 mM NADP, and 0.64 U 

of G6PDH in 20 mM Tris-HCl at pH 8.0. For control reactions, G1P was omitted. The increase 

in absorbance at 340 nm due to conversion of NADP to NADPH was monitored.  
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iv) Fructokinase (FK): aliquots of desalted crude extract (25 l) were incubated with 5 mM 

MgCl2, 5 mM fructose, 2.5 mM ATP, 1 mM NADP, 0.8 U of PGI, and 0.8 U of G6PDH in 50 

mM BisTris at pH 8.0. For control reactions, fructose was omitted. The increase in absorbance 

at 340 nm due to conversion of NADP to NADPH was monitored. 

v) Hexokinase (HK): aliquots of desalted crude extract (25 l) were incubated with 5 mM 

MgCl2, 5 mM glucose, 2.5 mM ATP, 1 mM NADP, and 0.8 U of G6PDH in 50 mM BisTris at 

pH 8.0. For control reactions, glucose was omitted. The increase in absorbance at 340 nm due 

to conversion of NADP to NADPH was monitored. 

vi) Sucrose synthase (SuSy): for determination of SuSy activity, two reactions were 

performed, (A) including 1 mM UDP detecting both SuSy and cytInv background activity, and 

(B) without 1 mM UDP to detect the cytInv background activity only. SuSy activity was 

calculated by subtracting cytInv background activity (B) from total activity (A). For both 

reactions, aliquots of desalted crude extract (25 l) were incubated with 1 mM EDTA, 2 mM 

MgCl2, 5 mM DTT, 250 mM sucrose, 1 mM UDP (omitted for reaction B), 1.3 mM ATP, 0.5 

mM NADP, 0.672 U of HK, 0.56 U of PGI,  and 0.32 U of G6PDH in 50 mM Hepes-NaOH at 

pH 7.0. For control reactions, sucrose was omitted. The increase in absorbance at 340 nm due 

to conversion of NADP to NADPH was monitored. 

vii) Invertase activity (Inv): invertase activity was assayed in an end-point assay modified 

from the method of Viola and Davies (1992). Aliquots (600 l) of desalted crude extract were 

incubated at 30°C for 1 hour with 5 mM MgCl2, 25 mM sucrose, 2.5 mM ATP, 1 mM NADP, 

1.5 U of HK, 0.5 U of PGI, and 1.2 U of G6PDH in 25 mM acetate buffer at pH 5.2 or pH 6.8 

for vacInv or cytInv, respectively, in a total reaction volume of 1.2 ml. For control reactions, 

sucrose was omitted. Aliquots (100 l) were taken every 20 minutes and the increase in 

absorbance at 340 nm due to conversion of NADP to NADPH was monitored.  

 

2.3.6 Metabolite profiling by gas chromatography/mass spectrometry 

 

Gas chromatography/mass spectrometry (GC/MS) analysis was performed on extracts from 

five biological replicates per treatment and cultivar as described by Foito et al. (2013). Dried 

material (100 ± 1 mg) was weighed into glass tubes and extracted in 3 ml methanol for 30 

minutes at 30°C with agitation (1,500 rpm). Polar (ribitol 2 mg ml-1) and non-polar 

(nonadecanoic acid methyl ester 0.2 mg ml-1) standards at 0.1 ml each and 0.75 ml distilled 

H2O were added, and extraction continued for a further 30 minutes as described. 6 ml of 
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chloroform were added, and extraction continued for 30 minutes under increased agitation at 

2,500 rpm. Phase separation was achieved by the addition of a further 1.5 ml of water and 

centrifugation at 1,000 g for 10 minutes. Polar and non-polar phases were separated and 

derivatized independently as follows. An aliquot (250 l) of the polar fraction was dried and 

oximated with a methoxylamine hydrochloride solution (20 mg ml-1 in pyridine) for 4 hours at 

50°C. Subsequently, extracts were derivatised with N-methyl-N-(trimethylsilyl)-

trifluoroacetamide (MSTFA) for 30 min at 30°C and a subsample (40 l) was diluted in 

pyridine (1:1) prior to GC/MS analysis. For the non-polar fraction, a 4 ml aliquot was dried 

and trans-esterified at 50°C overnight by addition of 2 ml of 1% methanolic sulphuric acid 

solution and 1 ml of chloroform. For neutralisation and recovery of free fatty acids, 5 ml of 5% 

(w/v) aqueous sodium chloride and 3 ml of chloroform were added. Top aqueous layer was 

discarded and 3 ml of 2% (w/v) aqueous potassium hydrogen carbonate added to the lower 

chloroform:methanol layer. Water was removed by passage through a short column of 

anhydrous sodium sulphate and then evaporated to dryness. Samples were derivatised as 

described for the polar fractions and a subsample was diluted in pyridine (1:1) before injection 

onto the GC/MS. Metabolite profiles for the polar and non-polar fractions were acquired 

following separation of compounds on a DB5-MSTM column (15m×0.25mm×0.25μm; J&W, 

Folsom, CA, USA) using a Thermo Finnigan (San Jose, CA, USA) DSQII GC/MS system as 

described (Foito et al., 2013). The samples were analysed in a randomized order, while quality 

control samples as well as blanks were incorporated at the beginning and the end of the 

sequence. Data were then processed using the XCALIBUR software (Thermo Fisher Scientific, 

Waltham, MA, USA). Peak areas relative to internal standard (response ratios) were calculated 

following normalization to 100 mg extracted material. 

 

2.3.7 13C labelling and metabolite flux analysis 

 

Tuber discs (diameter 5 mm, thickness 1-2 mm) were cut from fresh potato tuber slices, washed 

three times in 50 mM methanesulphonic acid (MES)-KOH (pH 6.5) containing 300 mM 

mannitol and then incubated (500 mg in a volume of 1 ml in glass vials shaken at 100 rpm) for 

2, 4 and 6 hours in 50 mM MES-KOH (pH 6.5) containing 300 mM mannitol and either (i) 25 

mM [U-13C]glucose or (ii) 25 mM unlabelled glucose. After the indicated time period the discs 

were washed three times in buffer (5 ml per vial) and patted dry with paper towels. Samples 

were rapidly frozen in liquid nitrogen, lyophilized and kept at -80°C until extraction. 
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Metabolite fluxes were analysed by GC/MS performed on extracts as previously described 

following the method by Foito et al. (2013). Total metabolic pool size and the relative 

abundance of each mass isotopomer for the metabolite in question was estimated by mass 

spectrometric analysis (Huege et al., 2007). The percentage of 13C-label in each mass 

isotopomer was given from the fractional abundance of each mass isotopomer relative to total 

pool size. These two parameters (total pool size and percentage of label in each mass 

isotopomer) allowed the description of the mass-balance of mass isotopomers. The 13C-

enrichment data were normalized to the 13C-enrichment of glucose within each sample so as to 

generate internally standardized ‘relative 13C enrichment’ values. The ‘13C pool size’ value of 

metabolites was defined as the product of ‘total pool size’ and ‘relative 13C enrichment’ (Baxter 

et al., 2007; Dethloff et al., 2017). 

 

2.3.8 14C labelling and fractionation of labelled tissue extracts 

 

Tuber discs (diameter 5 mm, thickness 1-2 mm) were cut from fresh potato tuber slices, washed 

three times in 50 mM MES-KOH (pH 6.5) containing 300 mM mannitol and then incubated 

(500 mg in a volume of 1 ml in glass vials shaken at 100 rpm) for 3 hours in 50 mM MES-

KOH (pH 6.5) containing 300 mM mannitol and 0.148 MBq D-[U-14C]glucose. Vials were 

sealed with a rubber stopper which held a paper filter moistened with 200 l of 10% (w/v) 

KOH to trap 14CO2. After incubation material was washed three times for 5 min in 5 ml of 50 

mM MES-KOH (pH 6.5) containing 300 mM mannitol prior to successive extraction in 5 ml 

of 80% (v/v) ethanol. The supernatant was dried down under vacuum (miVac Duo 

Concentrator, Pump and Speed Trap, GeneVac, UK) and passed through both an anion-

exchange cartridge (SAX; HPLC Technology, UK) and cation-exchange cartridge (SCX; 

Phenomenex® Strata, UK) as described by Souleyre et al. (2004). Material not retained by the 

ion exchange cartridges was considered as the neutral material while the separated anionic and 

cationic fractions were recovered from the cartridges by eluting with 5 M HCl and 5 M KOH, 

respectively. The insoluble plant material was separated into starch and non-starch components 

as described in Runquist and Kruger (1999). For starch analysis, the cell pellet from the 

insoluble fraction was washed with distilled water and the resuspended in 9 volumes of distilled 

water. Starch was gelatinized by incubating samples at 100°C for 2 hours with periodic 

vortexing. The suspension was cooled to room temperature; 1 volume of 1 M acetate buffer pH 

4.5 containing 100 U ml-1 -amyloglucosidase (EC 3.2.1.3) (Sigma-Aldrich, USA) was added 
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and incubation was continued at 40°C for 18 hours. After centrifugation for 10 minutes at 5,000 

g supernatant containing glucose released from starch was collected. All fractions were 

analysed using scintillation counting. 

 

Glucose, fructose and sucrose were separated by high-performance liquid chromatography 

(HPLC) using a Metacarb 87C 300x7.8 mm column (MetaChem Technologies Inc., Torrance, 

CA) with 0.6 ml min-1 ultrapure water as the mobile phase at a temperature of 70°C (Davies et 

al., 2005; Viola et al., 2007). Radiolabelled sugars were detected using a Radioflow detector 

LB 509. Radioactivity in the CO2, anionic, starch, other insoluble and neutral fractions was 

determined by liquid scintillation counting (Tri-Carb 3100TR Packard) after dilution into 

ScintLogic HiCount cocktail (Lablogic Systems Ltd, Sheffield, UK). 

 

2.3.9 Statistical analysis 

 

Data analysis and graphical outputs were performed using Microsoft Excel 2013. Statistical 

analysis was undertaken by two-way ANalysis Of VAriance (ANOVA, parametric test) with 

potato cultivar and storage time as parameters in order to identify statistically significant 

differences between profiles using a significance level (P-value) ≤ 0.05 using GENSTAT (v. 

18.1, VSN International Ltd, Hemel Hempstead, UK). When different treatments were present 

in the experiment, ANOVA was used with parameters cultivar, time of storage, and treatment 

(either untreated or CIPC-treated). Correlations were determined using Pearson tests (P < 0.05) 

and performed using GENSTAT (v. 18.1, VSN International Ltd, Hemel Hempstead, UK). 

Differences in the outputs of the 3 seasons of data were analysed, with correlations between 

changes in fry colour, sugar content and time of storage. For GC/MS data in season 3, a 

principal component analysis (PCA) was performed to observe differences in metabolic 

composition among the nine potato cultivars. In addition, Fisher’s protected least significant 

difference (LSD) test was carried out for each cultivar independently in order to determine 

significant differences between time points in quantification of sugars, ascorbate-glutathione 

cycle enzymes activities and H2O2 as well as MDA content determination. 
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2.4 Molecular Protocols  

 

2.4.1 RNA extraction 

 

Four tubers of each variety were used for each sampling time (March and May 2017, May, July 

and October 2018, July and September 2019). Tissue from opposite eights of cortex was snap 

frozen in liquid nitrogen individually and stored at -80°C followed by freeze drying and 

grinding in an electric grinder. Freeze-dried tissue was kept at -80°C until RNA extraction.  

 

RNA extraction was performed following the method of Ducreux et al. (2008). Approximately 

1 g of freeze-dried tuber tissue was extracted with 14 ml of hot (80°C) extraction buffer (50 

mM TRIS-HCl (pH 8.0), 50 mM LiCl, 5 mM EDTA, 0.5% SDS, 50% (v/v) phenol). Sterile 

distilled water (10 ml) was added and the samples were vortexed for 2 minutes. The samples 

were placed on ice and 16 ml of chloroform:isoamyl alcohol (24:1 v:v) was added and vortexed 

as before. Following centrifugation at 4°C at 14,000 g for 20 minutes, the upper aqueous layer 

was removed to a fresh, sterile 50 ml Sorval tube, containing an equal volume (16 ml) of 4 M 

LiCl. The samples were shaken and incubated overnight at -80°C, centrifuged at 4°C at 14,000 

g for 40 minutes, the supernatant discarded, and the pellet resuspended in 5 ml sterile distilled 

water. One-tenth volume of 3 M sodium acetate buffer (pH 5.2) and 3 volumes of 100% ethanol 

were added, and the samples were incubated at -80°C for at least 1 hour. The precipitated RNA 

was pelleted by centrifugation at 4°C at 14,000 g for 40 minutes, washed with 10 ml of ice-

cold 70% (v/v) ethanol, and centrifuged as in the previous step. The ethanol was removed, and 

the RNA pellet allowed to air-dry prior to resuspension in 300 l sterile distilled water. RNA 

samples were purified, and genomic DNA contamination was removed using Qiagen RNeasy 

columns (Qiagen, UK) and DNase I, RNase-free (Thermo Scientific, UK) according to the 

manufacturer’s protocol.  

 

RNA quality was tested using an RNA 6000 nano chip on an Agilent 2100 Bioanalyzer 

(www.chem.agilent.com). RNA samples were aliquoted in 20 g (1 g l-1) batches and stored 

at -80°C.  

 

 

 

http://www.chem.agilent.com/
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2.4.2 Analysis of RNA 

 

2.4.2.1 Quantification of RNA by spectrophotometry  

 

Concentration of RNA was estimated using a NanoDrop® ND-1000 full-spectrum UV/Vis 

spectrophotometer (NanoDrop®, USA) measuring 1 l aqueous RNA. The NanoDrop uses a 

modified Beer-Lambert equation to correlate the calculated absorbance with concentration. 

RNA samples were measured at 260 and 280 nm absorbance, with a ratio of 2.0 being accepted 

as ‘pure’. 

 

2.4.2.2 Gel electrophoresis  

 

Agarose gels were prepared by mixing 0.4 to 1 g of agarose with 50 ml of 1X Tris-borate/EDTA 

(TBE) buffer (89 mM Tris-HCl pH 7.8, 89 mM borate, 2 mM EDTA). This mixture was heated 

in a microwave on low power for 1 minute at a time, before being mixed and re-heated until 

all agarose had dissolved. The resulting mixture was cooled to ca. 60°C before adding 1 l of 

10 mg ml-1 ethidium bromide. The gel was then cast in a gel tank with the required sized comb 

and allowed to set under a fume hood for 1 hour. Once set the comb was removed and sufficient 

TBE buffer added to ensure the gel was fully submerged. Samples were then loaded onto the 

gel, in the lanes formed by the comb, and separated for 40 to 50 minutes by electrophoresis at 

40 V. Imaging of the gel was made under ultraviolet (UV) light, using the UVITech 

transilluminator (UVITech, Cambridge, UK).  

 

2.4.2.3 RNA quality determination by gel electrophoresis  

 

RNA was separated and analysed by electrophoresis on ethidium bromide stained agarose gels 

to check quality using the method described in section 2.4.2.2. To 2% (w/v) agarose gel stained 

with ethidium bromide, 5 l of RNA samples were added to lanes and separated. Total RNA 

samples had 1 l of RNA loading buffer (0.55 % (w/v) bromophenol blue, 0.8 mM EDTA, 

0.23 M formaldehyde, 4% (v/v) glycerol, 6% (v/v) formamide) added. Gel was visualised under 

UV light as in section 2.4.2.2.  
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2.4.3 Enzymatic manipulation of nucleic acids 

 

2.4.3.1 cDNA synthesis 

 

cDNA was synthesised from purified RNA samples for quantitative real-time polymerase chain 

reaction (qRT-PCR) analysis. TaKaRa CloneTech RNA to cDNA EcoDryTM Premix (Double 

Primed) lyophilized master mix was used for this purpose. Once synthesis was complete all 

cDNA was diluted to 10 ng/l through the addition of ddH2O. 

 

The method used for synthesising cDNA was using a TaKaRa CloneTech RNA to cDNA 

EcoDryTM Premix (Double Primed) beads kit. 5 g of DNase I treated total RNA in a final 

volume of 20 l RNase-free H2O was added to the lyophilized EcoDryTM Premix. The mixture 

was then mixed by pipetting and centrifuged to remove any potential air bubbles before heating 

at 42°C for 60 minutes prior to deactivating the enzyme at 70°C for 10 minutes.  

 

2.4.3.2 qRT-PCR (Universal Probe Library) 

 

qRT-PCR was performed using cDNA prepared as described in section 2.4.3.1. Primers and 

probe sequences were designed using The Roche Universal Probe Library Assay Design Centre 

(https://lifescience.roche.com/en_gb/brands/universal-probe-library.html) (Table 2-3). All 

qRT-PCR reactions were performed using an Applied Biosystems StepOne Plus Real Time 

PCR system. 50 ng total cDNA was used as template in all reactions, which were composed of 

12.5 l 2x FastStart Universal Probe Master Mix (Rox) (Roche, UK), 10 M Universal Probe, 

and 20 M of both forward and reverse primer before being made up to a final volume of 25 

l with ddH2O. Thermocycling conditions were as follows, denaturation stage of 95°C for 10 

minutes, 40 cycles of 95°C for 15 sec and 60°C extension for 1 min. Samples were ran in 

triplicate, using elongation factor-1- (EF1) as an endogenous control. This gene can be used 

as a control as it encodes a ubiquitous protein which is utilised in protein synthesis by binding 

aminoacyl-transfer RNA to ribosomes (Stürzenbaum & Kille, 2001) and has been shown to be 

highly consistent between different tissue samples and growth stages (Nicot et al., 2005). 

Calculations of relative expression levels for glucose-6-phosphate/phosphate translocator 2 

(GPT2) were performed using the Pfaffl method (Pfaffl, 2001).  

 

https://lifescience.roche.com/en_gb/brands/universal-probe-library.html
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Table 2-3. Primer/probe sequences used in this study. 

 

 

 

2.4.4 Microarray processing 

 

A custom Agilent microarray was designed to the predicted transcripts from assembly v.3.4 of 

the DM potato genome as described (Hancock et al., 2014). A single-channel replicate block 

microarray design was utilised. RNA labelling and downstream microarray processing were as 

recommended in the One-Color Microarray-Based Gene Expression Analysis protocol (v.6.5; 

Agilent) using the Low Input Quick Amp Labelling Kit (Agilent).  

 

Total RNA was spiked using One-Color RNA Spike-In Mix (Agilent) with in vitro synthesised 

polyadenylated transcripts to serve as positive controls for monitoring gene expression 

microarray flow from sample amplification and labelling to microarray processing. Total RNA 

(100 ng) was reverse transcribed into cDNA and then converted into Cyanine-3 labelled cRNA 

according to the manufacturer’s instructions. Low Input Quick Amp Labelling Kit (Agilent) 

was used for reverse transcription and in vitro transcription (RT-IVT). The method uses T7 

RNA polymerase blend for simultaneous amplification of target material and also incorporates 

Cyanine 3-CTP. Cyanine 3-labelled cRNA sample (600 ng) was fragmented and prepared for 

one-colour-based hybridization. Following manufacturer’s protocol, samples were hybridized 

at 65°C for 17 hours. Microarrays were washed using Gene Expression wash buffers (Agilent) 

as recommended.  

 

2.4.4.1 Microarray data analysis 

 

Following microarray scanning using an Agilent G2505B scanner, data were extracted from 

images using Feature Extraction (FE) (v.10.7.3.1) software and aligned with the appropriate 

array grid template file (033033_D_F_20110315). Intensity data and QC metrics were 

extracted using the FE protocol (GE1_107_Sep09). Entire FE datasets for each array were 

loaded into GeneSpring (v.7.3) software and data were normalised using default one-colour 

Agilent settings: (i) intensity values less than 0.01 were set to 0.01; (ii) data from each array 

Gene PGSC ID Forward Reverse Probe 

StEF1 PGSC0003DMT400059830 CTTGACGCTCTTGACCAGATT GAAGACGGAGGGGTTTGTCT AGCCCAAG 

GPT2 PGSC0003DMT400013500 CACAATCGATACCAATCGACA GAGTCCAATCTTGAGCTTCTGAG CAGCAGCC 
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was normalized to the 50th percentile of all measurements on the array and; (iii) the signal 

from each probe was subsequently normalized to the median of its value across the entire 

dataset). Quality control of the datasets were performed using Principal Components Analysis 

(PCA) to confirm that there were no outlying replicate samples and that dye labelling had no 

associated bias. Spot flags from FE (present or marginal) were used to remove probes with no 

consistent expression. Data were combined from replicate samples and for both cultivars 

Arsenal and VR 808 accessions in a new interpretation. Statistical filtering was performed 

using volcano analysis (P-value < 0.01, fold-change > 2x) for season 1 data. Data were 

visualised using PageMan (Usadel et al., 2006) and a gene tree heatmap in GeneSpring using 

default Pearson correlation. In addition, one-way ANalysis Of VAriance (ANOVA, parametric 

test) using storage time as parameter was used in both seasons to identify statistically 

significant expression profiles at a false discovery rate (P-value) ≤ 0.05. Strict multiple testing 

correction (Bonferroni) was applied to ensure low false discovery rates. Filtered gene lists were 

clustered into two groups using the K-means algorithm with default settings (100 iterations, 

Pearson correlation) in GeneSpring. 
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Chapter 3: Assessment of sugar accumulation and processing quality 

during storage 

 

3.1 Introduction 

 

Control of potato quality during storage represents a significant problem for the industry and 

a key issue remains the capacity to inhibit sprouting while preventing loss of processing 

quality as a result of sugar accumulation leading to problems of dark fry colour and 

acrylamide accumulation in processed products. Sugars accumulate in tubers when there is an 

imbalance between starch degradation, starch synthesis, and respiration of carbohydrate. 

Glucose, fructose and sucrose are the major sugars which accumulate in potato tubers 

(Burton, 1989).    

 

Monitoring changes in sugar accumulation were used to chart changes in the aging of 

potatoes during storage that may help understand processes leading to senescent sweetening. 

This experiment also focused on the processing quality of tubers related to the sugar content. 

 

The study was centred during the first and second seasons around the cultivars Arsenal, a 

variety ‘susceptible’ to senescent sweetening, and VR 808, considered to maintain stable 

sugar profiles (senescent sweetening resistant), with both of them used in the crisp industry 

(NIAB Pocket Guide, 2008, NIAB, Cambridge in Colgan et al., 2012). During the third 

season and as additional material, seven new varieties were included in the experiment, 

providing contrasting profiles of sugar accumulation during storage.  

 

3.2 Assessment of sugar accumulation during storage 

 

3.2.1 Overall effect of varieties and seasons 

 

A three-way ANOVA for season 1 (2016/2017) was carried out to determine whether there 

were significant differences in sugar content between samples using cultivar, time of storage 

and treatment (CIPC-treated or untreated) as factors. A two-way ANOVA was carried out for 

the rest of the seasons using factors cultivar and time of storage. For the three seasons, Fisher’s 
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LSD test was carried out for each cultivar independently in order to determine significant 

differences between time points.  

 

During the first season of this study, differences between cultivars were observed in glucose 

(P < 0.001), fructose (P < 0.001), and sucrose (P = 0.01). Moreover, cultivars exhibited 

significant changes dependent on time for glucose (P < 0.05), fructose (P < 0.005), and 

sucrose (P < 0.001) content. Arsenal exhibited an initial accumulation of glucose followed by 

a trough and then a second accumulation after 26 weeks of storage with similar behaviour 

observed for fructose. On the other hand, VR 808 had much lower levels of reducing sugars 

which fluctuated a little but with no clear pattern. On the contrary, patterns of sucrose 

accumulation were similar with both cultivars showing peak-trough-peak behaviour (Figure 

3-1). 

  

In the second season, cultivars Arsenal and VR 808 exhibited differences in both glucose and 

fructose content (P < 0.001), and sucrose (P < 0.01) related to cultivar and time of storage. 

Arsenal and VR 808 presented similar behaviour compared to the previous season with 

Arsenal exhibiting storage associated reducing sugar accumulation while both varieties 

exhibited accumulation of the non-reducing disaccharide sucrose. However, an overall lower 

content of sugars and a later onset of sweetening (43 weeks after storage) were exhibited 

during this season. Arsenal showed a small increase of glucose content at 5 weeks after 

storage followed by a decrease and no changes until the onset of sugar accumulation at 43 

weeks after storage, with the exception of one significant increase at 27 weeks after storage, 

caused by a single replicate containing high levels of reducing sugars. Similar behaviour was 

observed for fructose. In contrast, VR 808 exhibited undetectable levels of glucose until 53 

weeks after storage, when a little increase was observed. Regarding fructose content, VR 808 

showed fluctuations with no clear pattern. Arsenal started accumulating reducing sugars after 

43 weeks of storage whereas VR 808 had undetectable levels for glucose and much lower 

levels of fructose compared to Arsenal, showing no accumulation of reducing sugars. 

Nonetheless, both cultivars exhibited similar sucrose content and behaviour over time, with 

an accumulation occurring at 43 weeks of storage (Figure 3-2).   

 

The later accumulation and lower content of reducing sugar during storage observed in 

season 2 (2017/2018) were also observed in all cultivars of season 3 (2018/2019). Glucose, 

fructose, and sucrose levels presented changes dependent on time (P < 0.001). In addition, 
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sugar profiles showed a significant effect of the variety in glucose (P < 0.05), fructose (P < 

0.001) and sucrose (P < 0.001) content. All cultivars exhibited a decrease of glucose content 

at the beginning of the storage, then showed no clear pattern until 43 weeks after storage, 

when a significant increase was observed with the exception of Brooke. Lady Rosetta, 

Shelford (Shropshire), and Arsenal were the varieties with the highest levels of glucose. On 

the contrary, fructose accumulated in all cultivars at 43 weeks after storage, with Lady 

Rosetta and SH C 909 presenting the highest and lowest content, respectively. Although 

accumulation of sucrose was no observed in any case, SH C 909 and VR 808 had lower 

sucrose levels compared to the rest of the cultivars (Figure 3-3).  

 

3.2.2 Effect of CIPC treatment 

 

During season 1, CIPC-treated and untreated cultivars were under study. CIPC treatment had 

an effect on decreasing glucose (P < 0.005), fructose (P < 0.001), and sucrose (P < 0.001) 

content in tubers (Figure 3-1). In addition, fructose (P < 0.05) and starch (P < 0.005) content 

were dependent on CIPC treatment by time interaction. The initial fructose peak in Arsenal 

was higher in untreated tubers. CIPC-treated tubers had a marginally lower overall sugar 

content than untreated tubers in which buds were removed, might due to wound-induced 

catabolic response and/or sink demand in the untreated tubers. Although CIPC had 

statistically significant effects on sugar content, the overall patterns between CIPC-treated 

and untreated tubers were very similar. Therefore, it was decided to continue the study using 

only CIPC-treated cultivars in seasons 2 and 3.  

 

3.2.3 Effect of growing location 

 

In season 3, Shelford cultivars from two different locations were investigated. No differences 

(P > 0.05) in glucose content were observed between growing locations. However, changes 

dependent on growing location and time were reported for fructose (P < 0.001) and sucrose 

(P < 0.05) levels, highlighting the previously reported environmental influence (Kumar et al., 

2004; Groves et al., 2005) on sugar accumulation in stored potato tubers. 
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Figure 3-1. Sugar content in potato tubers during the season 1 (2016/2017) of storage at 9°C. Results 

showed an increase of sugar levels during long-term storage with remarkable differences for glucose 

and fructose concentration between two cultivars. Values are means ± SE (five biological replicates 

from one experiment). Mean values with different letters are significantly different according to the 

Fisher’s LSD test. Abbreviations: SS, Onset of senescent sweetening as determined by sustained rise 

in reducing sugars and darkening of fry colour. 
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Figure 3-2. Sugar levels in potato tubers stored at 9°C over the season 2 (2017/2018) of study. 

Cultivars exhibited similar behaviour to the previous season. However, tubers presented a later onset 

of senescent sweetening. Values are means ± SE (five biological replicates from one experiment). 

Mean values with different letters are significantly different according to the Fisher’s LSD test. 

Abbreviations: SS, Onset of senescent sweetening as determined by sustained rise in reducing sugars 

and darkening of fry colour. 
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Figure 3-3. Sugar profiles of 9 different varieties during long-term storage for season 3 (2018/2019). 

Potato tubers showed variability of sugar content depending on the cultivar. Values are means ± SE 

(three biological replicates from one experiment). Mean values with different letters are significantly 

different according to the Fisher’s LSD test. Abbreviations: SS, Onset of senescent sweetening as 

determined by sustained rise in reducing sugars and darkening of fry colour. 
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3.3 Assessment of crisping quality during storage 

 

As sugar content is the key determinant of fry colour and ultimately affects quality of potato 

crisps, all varieties were subjected to fry quality tests over the 3 seasons of this study. Results 

are presented in Figure 3-4 (Season 1 2016/2017), Figure 3-5 (Season 2 2017/2018), and Figure 

3-6 (Season 3 2018/2019). Crisps from senescent sweetening susceptible tubers presented 

darker fry colour than those which exhibited more stable sugar profiles during storage. 

Darkening increased over time following reducing sugars trend. This trend was consistent 

during the 3 seasons. In addition, untreated cultivars showed a darker fry colour, which was 

consistent with the sugar data. Quantification of darkening was estimated using ImageJ (Table 

3-1). Grade of darkening in fry colour was estimated based on the grey scale in the isolated 

area of each individual crisp. ImageJ displays images by linearly mapping pixel to display 

values in the range 0-255. Pixels with minimum value are displayed as black and those with 

maximum value are displayed as white (Schneider et al., 2012). The calculated average grey 

value of each crisp was converted to percentage as an estimation of darkening. A three-way 

ANOVA for season 1 (2016/2017) was carried out to determine whether there were significant 

differences between crisp colour using cultivar, time of storage and treatment (CIPC-treated or 

untreated) as factors. Fisher’s LSD test was carried out for each time point independently in 

order to determine significant differences between fry colour of crisps from cultivars Arsenal 

and VR 808. A two-way ANOVA was carried out for the rest of the seasons to determine 

whether there were significant differences between samples using cultivar and time of storage 

as factors. Fisher’s LSD test was carried out independently for each cultivar (season 2 

2017/2018) and time point (season 3 2018/2019) to determine significant differences between 

means over time and cultivars, respectively. 

 

During season 1 (2016/2017) at 26 weeks after storage (post-sweetening early stage) no 

differences (P > 0.05) in fry colour related to cultivar or treatment (untreated or CIPC-treated) 

were observed. However, at 38 weeks after storage (post-sweetening late stage) crisps from 

Arsenal (susceptible to sweetening cultivar) untreated tubers exhibited a significantly darker 

fry colour related to cultivar (P = 0.005) and the interaction between cultivar and treatment (P 

< 0.05). In addition, an increase (P < 0.05) in darkening was observed over time depending on 

the cultivar.  
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For season 2 (2017/2018) significant changes (P < 0.001) in fry colour were reported over 

time. Differences (P < 0.005) in darkening between cultivars were observed. Although crisps 

from both cultivars exhibited an increase in dark fry colour post-sweetening at 43 weeks after 

storage, darkening in Arsenal crisps (susceptible to senescent sweetening) was higher than in 

crisps from VR 808 cultivar (senescent sweetening resistant).  

 

During season 3 (2018/2019), differences (P < 0.05) in fry colour between cultivars were 

found as well as significant changes (P < 0.001) over time. Furthermore, each time point was 

analysed independently in order to find differences between cultivars. At 37 weeks after 

storage (prior to sweetening), crisps from Shelford (Shropshire) exhibited the highest level of 

dark fry colour whereas crisps from Shelford (Yorkshire) showed the lowest. This fact 

suggested growing location might affect fry colour. At 45 weeks after storage (post-

sweetening early stage) no differences (P > 0.05) between cultivars were found, probably due 

to the early stage of sugar accumulation in tubers.     

 

3.4 Correlations between fry colour, sugar content and storage 

 

For season 1 (2016/2017) in Arsenal tubers fry colour was positively correlated with glucose, 

fructose and sucrose content, as well as storage (Figure 3-7). In VR 808 tubers, both reducing 

sugars and sucrose content were positively correlated with storage whilst negatively 

correlated with fry colour. This fact may be due to the low content of reducing sugars as well 

as low levels of darkening. During season 2 (2017/2018), Arsenal tubers exhibited positive 

correlations between fry colour and reducing sugars content (Figure 3-8). Fry colour was 

more strongly related to glucose rather than fructose and sucrose content. In addition, storage 

was positively correlated with the sugar content. VR 808 tubers showed a stronger positive 

correlation between fry colour, glucose and sucrose rather than total reducing sugars or 

fructose content. Storage was positively correlated with fry colour, glucose and sucrose 

content. For season 3 (2018/2019) in all cases fry colour was positively correlated with 

reducing sugars accumulation (Figure 3-9). In the varieties Pirol, VR 808, SH C 909, 

Shelford (Yorkshire) and Unknown, fry colour exhibited a higher positive correlation with 

fructose rather than glucose content. Moreover, glucose was negatively correlated with the 

sucrose content in Arsenal, Lady Rosetta, VR 808, SH C 909 and Shelford (Yorkshire). 
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Figure 3-4. Appearance of crisps from long-term stored potato tubers during season 1 (2016/2017). Dark fry colour increased over time. Susceptible variety 

and untreated tubers showed higher darkening. Results of fry test colour at 26 and 38 weeks after storage, both time points considered after the onset of 

senescent sweetening. 

26 weeks after storage 38 weeks after storage 

Arsenal - Untreated Arsenal 

VR 808 - Untreated VR 808 

Arsenal - Untreated Arsenal 

VR 808 - Untreated VR 808 

Season 2016/2017 
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Figure 3-5. Appearance of crisps from long-term stored potato tubers during season 2 (2017/2018). Dark fry colour increased over time. Susceptible variety 

showed higher darkening. A later darkening of crisps was reported to be related to the later onset of accumulation of sugars for this season.  

1 week after storage 10 weeks after storage 20 weeks after storage 

 25 weeks after storage 30 weeks after storage 40 weeks after storage 

43 weeks after storage 49 weeks after storage 53 weeks after storage 
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Figure 3-6. Appearance of crisps from long-term stored potato tubers during season 3 (2018/2019). 

Susceptible varieties showed higher darkening. Abbreviations: CV, cultivar; A, Pirol; B, SH C 909; C, 

VR 808; D, Lady Rosetta; E, Shelford (Shropshire); F, Unknown; G, Brooke; H, Arsenal; and I, 

Shelford (Yorkshire). 
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Table 3-1. Quantification of dark fry colour in crisps. Results are presented as percentage of 

darkening.  

 

Grade of darkening (%) ± SE 

Season 1 (2016/2017) 

Weeks after storage Arsenal - Untreated Arsenal VR 808 - Untreated VR 808 

26 41 ± 2a 36 ± 2a 38 ± 2a 37 ± 2a 

38 51 ± 4
a

 39 ± 3
b

 35 ± 2
b

 36 ± 1
b

 

Season 2 (2017/2018) 

Weeks after storage Arsenal - Untreated Arsenal VR 808 - Untreated VR 808 

1 - 31 ± 1
de

 - 31 ± 1
cd

 

10 - 31 ± 1
de

 - 30 ± 1
d

 

20 - 33 ± 1
cd

 - 34 ± 1
bc

 

25 - 27 ± 1
e

 - 28 ± 1
d

 

30 - 28 ± 1e - 31 ± 1cd 

40 - 31 ± 2de - 31 ± 2cd 

43 - 37 ± 2
bc

 - 37 ± 1
b

 

49 - 40 ± 2
b

 - 32 ± 3
cd

 

53 - 57 ± 4
a

 - 43 ± 2
a

 

Season 3 (2018/2019) 

 Weeks after storage 

  30 37 40 45 

Pirol 39 ± 1ab 40 ± 2abc 41 ± 5a 44 ± 8a 

SH C 909 39 ± 1ab 42 ± 3abc 40 ± 4a 44 ± 3a 

VR 808 38 ± 1ab 37 ± 1abc 42 ± 3a 47 ± 1a 

Lady Rosetta 34 ± 3b 39 ± 2abc 39 ± 4a 48 ± 4a 

Shelford (Shropshire) 37 ± 3ab 45 ± 3a 44 ± 2a 50 ± 5a 

Unknown 45 ± 4a 44 ± 3ab 49 ± 3a 53 ± 2a 

Brooke 40 ± 4ab 36 ± 4abc 38 ± 6a 45 ± 4a 

Arsenal 39 ± 4
ab

 35 ± 4
bc

 41 ± 4
a

 50 ± 4
a

 

Shelford (Yorkshire) 39 ± 2ab 33 ± 3c 38 ± 4a 46 ± 3a 

Mean values with different letters are significantly different according to the Fisher’s LSD test. 

Comparisons: Season 1, cultivars at individual time points; Season 2, time points in individual 

cultivars; Season 3, cultivars at individual time points. 
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Figure 3-7. Correlations between fry colour, reducing sugars, glucose, fructose, sucrose and storage 

for season 1 (2016/2017). The colour represents the direction and strength of the correlation (Red, 

positive correlation and Blue, negative correlation). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Correlations between fry colour, reducing sugars, glucose, fructose, sucrose and storage 

for season 2 (2017/2018). The colour represents the direction and strength of the correlation (Red, 

positive correlation and Blue, negative correlation). 

Season 2016/2017 

Season 2017/2018  
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Figure 3-9. Correlations between fry colour, reducing sugars, glucose, fructose, sucrose and storage 

for season 3 (2018/2019). The colour represents the direction and strength of the correlation (Red, 

positive correlation and Blue, negative correlation). 
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3.5 Discussion  

 

In general, Lady Rosetta, Shelford (Shropshire), and Arsenal, had the highest reducing sugars 

accumulation over the storage period and, SH C 909 and VR 808, showed no accumulation of 

glucose in any case as well as presented the lowest fructose accumulation. Although sucrose 

content was similar across all varieties during the three seasons of this study, SH C 909 and 

VR 808 exhibited an overall lower content in season 3. Moreover, sugar content showed 

differences within the same variety across seasons. Sugar content of potatoes and tuber 

maturity can be affected by factors such as genotype, environmental conditions and cultural 

practices during growth, and several post-harvest factors including storage (Kumar et al., 

2004). Kumar et al. (2004) concluded that sugar was most affected by fertilization, 

temperature and soil moisture.  

 

For all seasons of this study the growing conditions were different due to the weather. Crops 

are exposed to a wide range of environmental conditions, and heat and drought stress are two 

of the most serious and recurrent environmental stresses that affect crop quality (Iritani & 

Weller, 1978; Iritani, 1981; Ojala et al., 1990; Kincaid et al., 1993; Shock et al., 1992, 1993, 

1998; Kumar et al., 2004). Even moderate environmental stress can impact the rate of tuber 

maturation and result in tubers that are either under- or over-mature at harvest. Immature or 

over-mature tubers can cause problems in storage including longer preconditioning periods, 

shorter times to senescent sweetening, increased skinning, increased water loss, and shrink 

(Nelson & Sowokinos, 1983; Lulai & Freeman, 2001; Sabba & Lulai, 2002; Sabba et al., 2007).  

 

Physiological defects caused by environmental stress may not occur until weeks or months 

after the stress is experienced (Thompson et al., 2008). Defects resulting from transient stress 

during the growing season may be apparent at harvest, but often become more severe during 

storage (Iritani et al., 1973; Eldredge et al., 1996; Thompson et al., 2008). Periods of heat 

and drought stress, either alone or in combination, have been implicated in causing 

biochemical changes that result in sugar accumulation (Shock et al., 1993; Sowokinos et al., 

2000). Accumulation of reducing sugars in maturing tubers may result from osmotic 

acclimation of the tuber during periods of water stress and subsequent conversion of 

accumulated sucrose into glucose and fructose. 
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Differences in reducing sugars accumulation during storage were observed between cultivars. 

However, most of cultivars accumulated sucrose to the same extent. The major sugars in 

potato tubers are glucose, fructose and sucrose (Burton, 1989). Sugar levels in tubers are 

conditioned by several factors, including genotype, environmental and growing conditions 

and different post-harvest factors such as storage. During storage, carbohydrates are 

converted from starch for respiration purposes and sugars start accumulating when their net 

production exceeds their use. The pattern of sucrose and reducing sugars might change 

depending on the mechanism of starch breakdown. Reducing sugars glucose and fructose 

have been observed to be present in equal equimolar amounts after cold induced and 

senescent sweetening (Hertog et al., 1997). However, differences between glucose and 

fructose contents were observed at the present work. This fact might be due to a differential 

turnover of glucose and fructose in the potato tubers under study. Regarding to biochemical 

pathways of sugar metabolism, degradation of transitory starch leads predominantly to the 

synthesis of neutral sugars such as glucose and maltose, and of triose phosphates, 3-

phosphoglyceric acid (PGA) and CO2 (Stitt & ap Rees, 1980; Stitt & Heldt, 1981; reviewed 

by Beck & Ziegler, 1989). Maltose and glucose are the two major forms of carbon exported 

from plastids during starch degradation (Servaites & Geiger, 2002; Ritte & Raschke, 2003; 

Weise et al., 2004). Glucose is then used to form fructose from which sucrose will be 

synthesised, and subsequently broken down. The differences observed between glucose and 

fructose content might be resulted from a differential turnover of glucose and fructose during 

these reactions. However, if there are several mechanisms of senescent sweetening, this 

observation might not always be true (Colgan et al., 2012).  

 

Sweetening in tubers may be influenced by the pool of available sugars which are in constant 

flux, through changes in the rate of starch breakdown and sugar mobilisation. Fructose is the 

most responsive sugar to changes in storage temperatures (Smith, 1987). Some varieties, like 

White Rose, tend to accumulate fructose (Smith, 1987), as it was observed in the cultivars at 

the present study. Possibly by greater utilisation of glucose at high temperature storage. 

Considerable variations in sugar concentration may occur at the expense of the starch amount 

during storage. Sucrose content was reported to accumulate similarly in varieties Brintje and 

Désirée at 20°C in senescent tubers, both sprouting tubers and those treated with sprout 

suppressants (Fauconnier et al., 2002). Sucrose concentrations within tubers is dependent on 

tissue location (Carvalho, 2017). During sprouting, sucrose initially formed in parenchyma 

cells is translocated via phloem to the tuber apical region and the emerging sprouts, where 
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upon it is hydrolysed, into glucose and fructose (Burton et al., 1992; Hajirezaei et al., 2003; 

Viola et al., 2007; Sonnewald & Sonnewald, 2014). The relationship between sucrose and 

glucose and fructose content remains complex with the dynamics of starch breakdown and 

glucose and fructose utilisation under multiple feedback mechanisms. In the present study, 

differences in reducing sugars as well as similar levels of sucrose were observed between 

cultivars. Carvalho (2017) reported in Lady Rosetta a sucrose accumulation corresponded to 

a reduction in fructose content, suggesting the pool of glucose and fructose may be fully 

utilised during respiration. In addition, the author observed that in the varieties Lady Rosetta, 

VR 808, and Pentland Dell, glucose and fructose accumulation were positively correlated 

with the length of storage and respiration rates (CO2 production and O2 consumption), and 

sucrose accumulation. As sucrose is mobilised during sprouting, the differences observed 

between reducing sugars and sucrose accumulation might be due to sucrose being sequestered 

in certain organelles, such as the vacuole, preventing its breakdown.  

 

The vacuole is an important plant specific organelle with functions in storage of solutes as 

nutrient reservoirs, but also with important roles in adaptation to stresses, such as cold stress 

(Wormit et al., 2006; Schulze et al., 2012), salt stress or drought (Rizhsky et al., 2004; 

Hedrich et al., 2015). Responses to a specific stress can vary with the genotype, but some 

general reactions occur in all genotypes. Abiotic stresses affect different cellular processes 

such as growth, photosynthesis, carbon partitioning, carbohydrate and lipid metabolism, 

osmotic homeostasis, protein synthesis and gene expression (Hasegawa et al., 2000; Munns, 

2002; Rosa et al., 2004). Vacuolar sugar transporters are mainly membrane proteins 

belonging to the major facilitator superfamily whose subfamilies of sucrose transporters and 

monosaccharide transporters are well-studied under drought stress (Medici et al., 2014). 

There is evidence that in Arabidopsis various abiotic stresses, especially cold stress, lead to 

accumulation of sugars, particularly glucose and fructose in the vacuole (Wormit et al., 2006; 

Schulze et al., 2012). An increased accumulation of sugars upon drought and heat stress has 

also been observed (Rizhsky et al., 2004) suggesting a role of vacuolar sugar transporters also 

under these conditions. Expression of the putative sugar transporter ERD6 (early responsive 

to dehydration) is induced not only by dehydration but also by cold treatment (Kiyosue et al., 

1998), and expression of an ERD6-like transporter (ESL1) is enhanced by drought, salt, and 

ABA treatment (Yamada et al., 2010). Osmotic stress and salt stress also affects vacuolar 

transporters, particularly the sucrose transporter SUC4 (Gong et al., 2015a) and the v-
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ATPases (Kirsch et al., 1996). In this context, all cultivars at the present work might exhibit 

vacuolar accumulation of sucrose due to water stress following long-term storage. 

 

The level of sugars in potato tubers is an important factor affecting quality in potatoes. The 

principal reason is the fact that the reducing sugars such as glucose and fructose react with 

free amino acids during frying to produce distasteful dark processed fries and chips via a non-

enzymatic Maillard-type reaction (Shallenberger et al., 1959). This reaction has played an 

important role in the appearance and taste of foods since it is related to aroma, taste and 

colour. Moreover, acrylamide is present in different foods processed at high temperature and 

it is formed from asparagine in the presence of a carbonyl compound such a reducing sugar in 

the process of Maillard reactions (Mottram et al., 2002; Stadler et al., 2002). During the 3 

seasons of this study, we reported a darkening increased over the storage period following 

reducing sugars trend. Susceptible cultivars exhibited darker fry colour than varieties with a 

stable sugar profile. Darker fry colours were reported to be more related to high glucose 

rather than fructose or sucrose content. Fry colour depends on the quantity of superficial 

reducing sugars and the temperature of frying oil as well as frying time (Pedreschi, 2009). A 

darker fry colour has been reported to be correlated to a higher glucose (Coleman et al., 1993; 

Pritchard & Adam, 1994) as well as higher acrylamide (Shepherd et al., 2010) contents. 

 

The benefit of storing potatoes at 8-12°C is the minimum accumulation of sugars in tubers. 

This storage method keeps the stored potatoes suitable for table and processing purposes. 

However, the relatively high temperature favours sprouting and sprout growth once the 

natural dormancy period of potato is over. Hence, use of sprout suppressant becomes 

essential under these methods of potato storage. CIPC is considered as the most effective 

sprout suppressant for potatoes and it is usually applied as a post-harvest fogging treatment 

on stored potatoes (Paul et al., 2016). CIPC is a selective and systemic herbicide with an 

ability to translocate acropetally in plant system (Ashton & Crafts, 1981). CIPC acts as a 

mitotic inhibitor by interfering the process of spindle formation during the cell division 

(Vaughn & Lehnen, 1991). It is known to inhibit protein synthesis, RNA synthesis, activity of 

-amylase along with suppression of transpiration and respiration and interfere with oxidative 

phosphorylation and photosynthesis (Vaughn & Lehnen, 1991). The CIPC treatment starts 

after the wound-healing period, since wound-healing requires the production of new cell 

layers resulting from cell division, and before dormancy break or sprout growth initiation 
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(Kleinkopf et al., 2003). In the present study, CIPC treatment had an effect on the fry colour 

of crisps. Within the same cultivar, crisps from untreated potato tubers showed a darker fry 

colour than CIPC-treated tubers. Higher sugar content and darker fry colour observed in 

untreated tubers might be due to wound-induced catabolic response and/or sink demand. 

With the onset of sprouting, tubers become a source organ for the growing sprout 

(Sonnewald, 2001). This is accompanied by structural and metabolic changes as well as by an 

altered level of gene expression (Ronning et al., 2003; Viola et al., 2007; Hartmann et al., 

2011). Initial bud outgrowth does not require massive reserve mobilisation but is fed by 

sucrose-synthesising capacity that ensures rapid conversion of hexoses into sucrose that can 

be transported into growing buds to meet its energy demand. This was concluded from 

labelling experiments which revealed similar metabolic competence, but different metabolite 

pools in dormant and open tuber buds with respect to sugar metabolism (Viola et al., 2007). 

While resting buds contained only limited amounts of soluble sugars, there was a massive 

increase especially in the amount of sucrose at bud break indicating that sucrose unloading 

into the buds is a prerequisite for bud outgrowth. 

 

Accumulation of reducing sugars must be avoided as it leads to both deterioration in 

processing quality and the risk of acrylamide production (Fuller & Hughes, 1984). The 

amount of free sugar tubers accumulate depends on the cultivar (van Vliet & Schriemer 1960; 

Burton 1969; Samotus et al., 1974; Coffin et al., 1987; Richardson et al., 1990; Zrenner et 

al., 1996). Although the cultivars that are most susceptible to senescent sweetening tend to 

have short dormancy there are important exceptions to this rule such as Maris Piper and 

Record (Colgan et al., 2012). In addition to the effect of cultivar, growing conditions that 

affect the maturity of tubers at harvest can impact on the timing of the onset of senescent 

sweetening and an effect of storage temperature is also evident (Groves et al., 2005).  

 

Considerable variation between different potato genotypes have been observed (Amrein et 

al., 2003; Kumar et al., 2004; Elmore et al., 2007) and this affects processing properties. 

Moreover, sugar content is affected by environmental factors during potato cultivation. Pre‐ 

and post-harvest environmental and management factors are important, including 

temperature, mineral nutrition and water availability during cultivation, crop maturity at 

harvest, mechanical stress and storage conditions (Kumar et al., 2004). Temperature during 

cultivation is a major factor because the processes of photosynthesis, transpiration, 

translocation of carbohydrates and respiration are all temperature dependent. The optimum 
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temperature range for most varieties is quite narrow, between 15°C and 20°C (Kumar et al., 

2004). Soil nitrogen levels also appear to be important: De Wilde et al. (2006) showed that 

the levels of tuber sugars rose in nitrogen-deprived potatoes by up to 100% compared with 

adequately fertilized potatoes, and Kumar et al. (2004) similarly reported that plants 

adequately fertilized with nitrogen had lower reducing-sugar concentrations at harvest. 

Sulphur deprivation also causes large increases in sugar concentrations (Elmore et al., 2007). 

In addition, Muttucumaru et al. (2015) observed that a lack of irrigation in the field‐grown 

potatoes resulted in a lower reducing sugar concentration in four out of five varieties in the 

study (Lady Claire, Saturna, Ramos, and Hermes). 

 

Senescent sweetening resistant and susceptible varieties showed similar behaviours in all 

seasons. This work allowed to identify the sweetening transition, and sampling of tubers for 

subsequent physiological, biochemical and molecular analysis. 
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Chapter 4: Investigation of oxidative stress during long-term storage 

 

4.1 Introduction 

 

A widely accepted hypothesis is that senescent sweetening is induced by oxidative stress 

during storage which leads to a breakdown of cellular function (Sowokinos et al., 1987; 

Kumar & Knowles, 1993; Colgan et al., 2012; Zommick et al., 2013; Carvalho, 2017). 

 

Sugars accumulate in tubers when there is an imbalance between starch degradation, starch 

synthesis, and respiration of carbohydrates. Enzymes of potato tuber carbohydrate 

metabolism can be influenced by the concentration and compartmentation of substrates, 

products, ions, cofactors, hormones, allosteric modifiers, and pH (Mares et al., 1985). Several 

studies have reported reduced potato tuber membrane integrity during storage. Amyloplast 

membranes have been observed to physically deteriorate during extended long-term storage 

of potato tubers (Figure 4-1) (Ohad et al, 1971; Isherwood, 1976; Sowokinos et al., 1987). 

Reduced potato tuber membrane integrity measured as increased membrane electrolyte 

leakage has previously been implicated in the accumulation of sugars during low temperature 

storage (Shekhar et al., 1979; Workman et al., 1979) and long-term storage (Isherwood, 

1976). In these instances, changes in either the physical status or chemical composition of the 

tuber membranes must account for the increased electrolyte leakage. Increased membrane 

lipid unsaturation is one chemical change that appears to confer resistance to increased 

electrolyte leakage in stored potato tubers (Knowles & Knowles, 1989). 

 

Lipids represent approximately 0.1% of the fresh weight of a potato tuber (Galliard, 1968; 

Lepage, 1968) and the total fatty acid composition of potato tubers primarily reflect the 

composition of cellular membranes (Galliard, 1973). Fatty acids in the cell membranes can be 

affected by several chemical or physical changes. Spychalla and Desborough (1990) 

proposed that high or increased rates of tuber membrane permeability negatively influence 

the sugar status and processing quality of stored tubers. Furthermore, multilevel cellular 

responses may also affect ultimately the integrity of plastid membranes. For example, cold 

temperatures may initially act through hormone changes resulting in altered structure and 

function of cellular membranes (Isherwood, 1976; Ewing et al., 1981). 
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The levels of lipoxygenase and lipolytic acyl hydrolase, affecting both starch granule 

breakdown and lipid metabolism are altered in the prematurely sweetened tissue (Sowokinos 

et al., 1985; Lulai et al., 1986). Alterations in lipid metabolism may influence the structure 

and transport properties of cellular membranes. The double walled plastid membrane 

surrounding the amyloplast has been suggested to play an important function in the regulation 

of carbon partitioning between the granule and free sugars in the cytoplasm (Mares et al., 

1985). Loss of cellular compartmentalization during senescence has been associated, in part, 

with gross physical changes affecting the physical integrity of the amyloplast membrane 

(Isherwood, 1976; Wetstein & Sterling, 1978).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. Electron micrographs of starch granules (SG) of stored potato tubers.  

A. Sections through cells of mature potato tubers. Changes in the morphology of the starch granule 

membranes as a function of storage conditions. (a) Potato tuber 1 day after harvesting. The 

membranes (M) around the starch granule (SG) apparently intact. X 35,000. (b) Same material as part 

(a), but after 32 days of storage at 25ºC. The membranes (M) around the starch granule (SG) are 

apparently intact, although they are slightly removed from the granule. X 11,300. (c) Same material as 

part (a), but after 12 days of storage at 4ºC. Notice the disintegration of the membranes around the 

starch granule (SG). X 43,500. Modified from Ohad et al. (1971).  
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Fig. 4-1. Continuation. Electron micrographs of starch granules (SG) of stored potato tubers.  

B. Frames A through F show the double walled amyloplast membrane (PM=plastid membrane) 

representing 6 different physical states over time of tubers stored at 8.9ºC. Membrane integrity 

represented by each micrograph is: (A) bi-layers of the amyloplast membrane intact and closely 

associated with the granule, (B) bi-layers of the amyloplast membrane separating and closely 

associated with the granule, (C) bi-layers of the amyloplast membrane intact and loosely associated 

with the granule, (D) bi-layers of the amyloplast membrane separating and loosely associated with the 

granule, (E) membrane fragmented, vesicles formed and (F) no membrane visible. Marker inserts 

equal to 2 microns. Modified from Sowokinos et al. (1987). 

 

Activation of starch degradative enzymes might play the main role in the degradation 

process, and much work concerning the activities of enzymes involved in the pathways of 

starch synthesis and degradation has accumulated (Badenhuizen, 1965; Pazur, 1965; Smith, 

1967; Manners, 1968). Nevertheless, it is possible that the process of degradation of starch is 

not related to a significant increase in some enzymatic activity but rather to a change in 

distribution of different enzymes or substrates within the subcellular compartments of the 

potato tuber. Amyloplast membrane leakage could lead to a loss of cellular 

compartmentalisation and affects the transport of different effectors and intermediaries of 

starch metabolism (O’Donoghue et al., 1995). Premature disruption of the amyloplast 

membrane could increase the exposure of starch to amylolytic enzymes and the rate of 

phosphorylytic and/or hydrolytic breakdown of the starch granule in an irreversible manner.  

 

Aging and senescence are the result of complex changes in basic plant metabolism and they 

share similarities at the biochemical level. A gradual disruption of membrane integrity, 

resulting in loss of compartmentation of cytoplasmic organelles and increased permeability of 

the plasma membrane, is a widely reported phenomenon common to both progressive aging 

and senescence of plant tissues (Thompson, 1988). The age-induced loss in membrane 

integrity is often caused by an increase in saturation of membrane phospholipids, which 

results in increased gel phase, decreased fluidity, and increased permeability (Pauls & 

Thompson, 1981). In potato tubers, a progressive loss of membrane integrity during aging 

was highly correlated with a decrease in double-bond-index, and, thus, an increase in the 

saturation of membrane lipids (Knowles & Knowles, 1989). However, we reported in 

Chapter 5 a general decrease (P < 0.001) in saturated fatty acids in aged tubers suggesting 

lipid membranes might be intact. 
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Progressive loss of membrane integrity and increased lipid peroxidation are characteristics of 

aging tubers (Kumar & Knowles, 1993). Increased saturation of membrane lipids is known to 

cause organizational changes that disrupt membrane integrity and increase permeability 

(Barber & Thompson, 1980; Pauls & Thompson, 1981). Such changes in the membrane lipid 

microenvironment can also affect membrane protein mobility (Shinitzky & Inbar, 1976), 

potentially altering the activities and kinetic properties of membrane-bound enzymes, most 

notably transport proteins (Carruthers & Melchior, 1986). The progressive loss of membrane 

integrity associated with aging of potato seed-tubers is a function of increasing peroxidative 

damage caused by an accumulation of free-radicals over time (Kumar & Knowles, 1993). 

 

An unavoidable consequence of aerobic metabolism is production of ROS. ROS include free 

radicals such as O2
●− and HO●, as well as non-radical molecules like H2O2, and 1O2. Stepwise 

reduction of O2 by high-energy exposure or electron-transfer reactions leads to production of 

the highly reactive ROS. In plants, ROS are always formed by the inevitable leakage of 

electrons onto O2 from the electron transport activities of chloroplasts, mitochondria, and 

plasma membranes or as a by-product of various metabolic pathways localized in different 

cellular compartments (Foyer & Harbinson, 1994; Foyer et al., 1997; Del Río et al., 2006; 

Blokhina & Fagerstedt, 2010; Heyno et al., 2011). 

 

Mitochondria are considered the powerhouses of the cell and contain two membranes. The 

outer membrane fully surrounds the inner membrane, with a small intermembrane space in 

between. The outer membrane has many protein-based pores that are big enough to allow the 

passage of ions and molecules as large as a small protein. In contrast, the inner membrane has 

much more restricted permeability, much like the plasma membrane of a cell. The inner 

membrane is also loaded with proteins involved in electron transport and ATP synthesis. This 

membrane surrounds the mitochondrial matrix, where the TCA cycle produces the electrons 

that travel from one protein complex to the next at the inner membrane. At the end of this 

ETC, the final electron acceptor is O2, and this ultimately forms H2O. At the same time, the 

ETC produces ATP in a process called oxidative phosphorylation. During electron transport, 

the participating protein complexes push protons from the matrix out to the intermembrane 

space. This creates a concentration gradient of protons that another protein complex, called 

ATP synthase, uses to power synthesis of the energy carrier molecule ATP (Figure 4-2). 
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Figure 4-2. The electrochemical proton gradient and ATP synthase. At the inner mitochondrial 

membrane, a high energy electron is passed along an electron transport chain. The energy released 

pumps hydrogen out of the matrix space. The gradient created by this drives hydrogen back through 

the membrane, through ATP synthase. As this happens, the enzymatic activity of ATP synthase 

synthesises ATP from ADP. Taken from O’Connor and Adams (2010). 

 

The mitochondrial ETC is the major site of ROS production in mammalian and non-

photosynthesizing plant cells (Puntarulo et al., 1991; Halliwell & Gutteridge, 2007). 

Depending on the mitochondrial respiratory states, a small portion of the consumable oxygen 

is partially reduced to generate ROS (Skulachev, 1996; Liu, 1997; Turrens, 1997; Møller, 

2001; Considine et al., 2003; Smith et al., 2004). In plants, the monoelectronic reduction of 

oxygen by ETC leads to the production of O2
●− that can be dismutated by superoxide 

dismutase (SOD), producing H2O2, and further decomposed by catalase and/or ascorbate-

glutathione peroxidase cycles (Møller, 2001). An imbalance between the ROS production and 

antioxidant defences can lead to an oxidative stress condition.  

 

Mitochondria can produce reactive oxygen species ROS at several sites of the ETC. In 

mitochondria direct reduction of O2 to O2
●− occurs in the flavoprotein region of NADH 

dehydrogenase segment (complex I) of the respiratory chain (Arora et al., 2002). When 

NAD+-linked substrates for complex I are limited, electron transport can occur from complex 

II to complex I (reverse electron flow). This process has been shown to increase ROS 

production at complex I and is regulated by ATP hydrolysis (Turrens, 2003). Ubiquinone-

cytochrome region (complex III) of the ETC also produces O2
●− from O2. It is believed that 
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fully reduced ubiquinone donates an electron to cytochrome C1 and leaves an unstable highly 

reducing ubisemiquinone radical which is favourable for the electron leakage to O2 and, 

hence, to O2
●− formation (Murphy, 2009). In plants, under normal aerobic conditions, ETC 

and ATP synthases are tightly coupled; however, various stress factors lead to inhibition and 

modification of its component, leading to over reduction of electron carriers and, hence, 

formation of ROS (Noctor et al., 2007; Blokhina & Fagerstedt, 2010). 

 

Several enzymes present in the mitochondrial matrix can produce ROS. Some of them 

produce ROS directly, for example aconitase, whereas some others like L-galactono-γ-lactone 

dehydrogenase, are able to feed electrons to the ETC (Andreyev et al., 2005; Rasmusson et 

al., 2008). O2
●− is the primary ROS formed by monovalent reduction in the ETC. It is 

converted quickly either by the MnSOD (mitochondrial form of SOD) or APX into the 

relatively stable and membrane-permeable H2O2. H2O2 can be further converted to the 

extremely active HO● in the Fenton reaction. 

 

Environmental stresses such as drought, salinity, chilling, metal toxicity, and UV-B radiation 

as well as pathogens attack lead to enhanced generation of ROS in plants due to disruption of 

cellular homeostasis (Shah et al., 2001; Mittler, 2002; Sharma & Dubey, 2005; 2007; Hu et 

al., 2008; Han et al., 2009; Maheshwari & Dubey, 2009; Tanou et al., 2009; Mishra et al., 

2011; Srivastava & Dubey, 2011). All ROS are extremely harmful to organisms at high 

concentrations. When the level of ROS exceeds the defence mechanisms, a cell is considered 

to be under oxidative stress. The enhanced production of ROS during environmental stresses 

can pose a threat to cells by causing peroxidation of lipids, oxidation of proteins, damage to 

nucleic acids, enzyme inhibition, activation of programmed cell death pathways and 

ultimately leading to death of the cells (Shah et al., 2001; Mittler, 2002; Verma & Dubey, 

2003; Meriga et al., 2004; Sharma & Dubey, 2005; Maheshwari & Dubey, 2009; Mishra et 

al., 2011; Srivastava & Dubey, 2011). 

 

AGPase catalyses the conversion of G1P and ATP to ADP-Glc and PPi, which is the first 

committed step in the pathway of starch synthesis (Preiss, 1988; Martin & Smith, 1995; 

Smith et al., 1997). 

 

Whereas in chloroplasts the ATP necessary for starch synthesis can be readily provided 

through photosynthesis, potato tuber amyloplasts have to import ATP from the cytosol via an 
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ATP/ADP transport protein located on the inner-envelope membrane (Neuhaus & Emes, 

2000). Tjaden et al. (1998) showed that a relatively small decrease in ATP/ADP transporter 

activity leads to a reduced level of total starch content and a lower amylose-to-amylopectin 

ratio. By contrast, increased transporter activity correlated with higher starch contents and a 

higher amylose-to-amylopectin ratio. These observations indicated that the rate of ATP 

import exerts considerable control on the rate of starch synthesis and affects the molecular 

composition of starch in potato tubers. (Hofius & Börnke, 2007). 

 

Long-term tuber storage is associated with increased oxidative damage of the amyloplast 

membrane which has the potential to expose starch granules to cytosolic amylolytic enzymes 

(Kumar & Knowles, 1993). Starch hydrolysis may also be triggered by a requirement for 

increased respiration to provide ATP and reducing equivalents for membrane repair (Kumar 

& Knowles, 1996). The most prominent observed class of post-translational modifications in 

the potato tuber mitochondrial proteome is oxidative modifications (Salvato et al., 2014). 

This fact suggests that mitochondria presents a highly oxidative environment. Mitochondrial 

oxidative damage could drive the accumulation of reducing sugars as a result of a progressive 

loss of membrane integrity and malfunction of the ETC. Hence, senescent sweetening may be 

induced as a result of a reduced capacity for respiration leading to an accumulation of sugars 

and reduced availability of ATP required for starch re-synthesis. Furthermore, the final 

enzyme in the pathway of ascorbate biosynthesis, a key plant antioxidant, is intimately 

associated with the mitochondrial electron transport chain (Millar et al., 2003) suggesting that 

damage to plant mitochondria could further limit antioxidant capacity.  To understand the 

relationship between senescent sweetening and oxidative damage in stored tubers several 

approaches were adopted. Oxidative load during storage was examined by measurement of 

H2O2 content. H2O2 is considered a marker of oxidative stress and the predominant ROS 

involved in cellular signalling (Bienert et al., 2006). Oxidative membrane damage was 

quantified as thiobarbituric acid reactive substances (TBARS) (Hodges et al., 1999). Tuber 

antioxidant capacity was estimated by quantification of key antioxidant enzyme activities 

(Murshed et al., 2008) using spectrophotometry. Taken together the work in this chapter 

directly tests the hypothesis that senescent sugar accumulation is associated with oxidative 

damage in aged potato tubers.   
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4.2 Results 

 

4.2.1 Determination of H2O2 during long-term storage 

 

In order to determine if an increase of oxidative stress was related to the accumulation of 

sugars in stored potato tubers over time, H2O2 was detected using the Amplex® Red 

Hydrogen Peroxide/Peroxidase Assay Kit, a one-step assay that uses 10-acetyl-3,7-

dihydroxyphenoxazine in combination with horseradish peroxidase to detect H2O2 released 

from tuber samples following extraction in a buffer designed to quench enzyme activity and 

maintain H2O2 stability. Content of H2O2 was measured in tuber samples during storage over 

the first season. A two-way ANOVA was carried out to determine whether there were 

significant differences between samples using cultivar and time of storage as factors. To 

determine significant differences between means over time Fisher’s LSD test was carried out 

for each cultivar independently. The content of H2O2 was different (P < 0.001) between 

cultivars during the storage period. Although H2O2 levels showed fluctuations over time, no 

significant differences were found. Hence, we reported no increase of H2O2 content related to 

the accumulation of reducing sugars (Figure 4-3). 

 

 

 

 

 

 

 

 

 

Figure 4-3. H2O2 content in sweetened and non-sweetened potato tubers during long-term storage as a 

marker of oxidative stress. Although differences in H2O2 content between cultivars were observed, no 

significant changes related to reducing sugars increase on onset of senescent sweetening were 

reported. Arrows indicate the onset of senescent sweetening (SS). Each value is the mean ± SE of 

measurements from five separate tubers. Mean values with different letters are significantly different 

according to the Fisher's LSD test, carried out independently for each cultivar and treatment. 

Differences within Arsenal and VR 808 cultivars are represented by lower- and upper-case letters, 

respectively.  
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4.2.2 Quantification of specific activity of ascorbate-glutathione cycle enzymes 

 

Increase in levels of H2O2 were not observed in tubers during the storage. However, 

variations over time were reported. This suggests there may be temporary changes that could 

be mitigated by antioxidant systems. Therefore, the four enzymes of the ascorbate-

glutathione cycle, considered to be the main antioxidant system in plants (Hancock, 2017), 

were quantified. Results showed fluctuations in the specific activity during storage. ANOVA 

was carried out to determine whether there were significant differences between samples with 

three factors (cultivar, time of storage and treatment). To determine significant differences 

between means over time Fisher’s LSD test was carried out for each cultivar and treatment 

(CIPC-treated or untreated) independently.    

 

Changes during the time of storage (P < 0.001) were observed in the specific activity from 

the set of four enzymes involved in the main antioxidant defence in plants. Cultivars 

exhibited no differences (P > 0.05) in the enzymatic antioxidant system. CIPC-treatment had 

no effect (P > 0.05) on the enzymatic activity of APX, MDHAR or GR.  However, significant 

changes (P < 0.05) associated with CICP-treatment were observed in DHAR activity over 

time. Furthermore, all cultivars exhibited an overall decrease in APX, MDHAR and GR after 

the onset of senescent sweetening. Although we reported differences in H2O2 content 

between cultivars during long-term storage, Arsenal (susceptible to SS) and VR 808 (SS 

resistant) showed similar behaviours of antioxidant systems over time. Measurements of 

specific activities are presented in Figure 4-4. 
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Figure 4-4. Impact of long-term storage on antioxidant systems in potato tubers. A. Specific activities 

of antioxidant enzymes in tubers. Arrows indicate the onset of senescent sweetening (SS). Each value 

is the mean ± SE of measurements from five separate tubers. Mean values with different letters are 

significantly different according to the Fisher’s LSD test, carried out independently for each cultivar 

and treatment. Differences within Arsenal and VR 808 cultivars are represented by lower- and upper-

case letters, respectively. B. Ascorbate-glutathione cycle pathway. Taken from Locato et al. (2013). 

An important role in the plant antioxidant defence mechanism has been attributed to this pathway. 

First, the hydrogen peroxide (H2O2) generated by oxidative stress is scavenged via the oxidation of 

ascorbate (ASC) by ascorbate peroxidase (APX). This enzyme is involved in the oxidation of ASC to 

monodehydroascorbate (MDHA), which can be converted back to ASC via monodehydroascorbate 

reductase (MDHAR). MDHA that escapes this recycling is converted rapidly to dehydroascorbate 

(DHA) which is converted back to ASC by the action of dehydroascorbate reductase (DHAR). DHAR 

utilizes glutathione (GSH), which is regenerated by glutathione reductase (GR) from its oxidized 

form, glutathione disulphide (GSSG).  
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4.2.3 Determination of lipid peroxidation by measurement of MDA levels  

 

We observed no changes in average cellular levels of H2O2 over time relating to the onset of 

senescent sweetening. However, it is possible that oxidative damage may have occurred due 

to localised concentrations of this ROS in specific organelles or due to sudden spikes that 

were subsequently controlled. Hence, MDA was quantified to determine whether oxidative 

damage was occurring at cellular level.  

 

MDA content in stored tubers were quantified as TBARS as an indicator of lipid peroxidation 

and overall biomarker of oxidative stress (Fletcher et al., 1973; Konze & Elstner, 1978; 

Dhindsa et al., 1981). A three-way ANOVA was carried out to determine whether there were 

significant differences between samples using cultivar, time of storage and treatment (CIPC-

treated or untreated) as factors. Fisher’s LSD test was carried out for each cultivar and 

treatment independently in order to determine significant differences between means over 

time. Levels of MDA in tubers were influenced by cultivar and time of storage (P < 0.001). 

We observed an increase during the beginning of the storage, which is potentially related to 

oxidative stress occurring due to harvest and manipulation of tubers. For this early 

accumulation of MDA, Arsenal showed higher levels (P < 0.001) in CIPC-treated tubers 

compared with the untreated tubers (Figure 4-5). Untreated and CIPC-treated tubers from 

Arsenal (susceptible to SS), and CIPC-treated VR 808 (SS resistant) tubers exhibited no 

increase of MDA levels related to the accumulation of sugars. MDA content in untreated VR 

808 tubers showed a small increase around the time that senescent sweetening was first 

observed in Arsenal tubers.  
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Figure 4-5. Quantification of malondialdehyde (MDA) content during long-term storage as an 

indirect measurement of lipid peroxidation and marker of oxidative damage. Similar behaviour 

between all cultivars and conditions were observed. Tubers presented no increase of MDA related to 

sugar accumulation suggesting senescent sweetening may not be linked to oxidative stress. Onset of 

senescent sweetening (SS) is indicated by arrows. Each value is the mean ± SE of measurements from 

five separate tubers. Mean values with different letters are significantly different according to the 

Fisher’s LSD test, carried out independently for each cultivar and treatment. Differences within 

Arsenal and VR 808 cultivars are represented by lower- and upper-case letters, respectively.   

 

4.3 Discussion 

 

ROS are well recognized for playing a dual role as both deleterious and beneficial species 

depending on their concentration in plants. At high concentration ROS cause damage to 

biomolecules, whereas at low/moderate concentrations they act as second messengers in 

intracellular signalling cascades that mediate several responses in plant cells (Gechey & 

Hille, 2005). Among the ROS, H2O2 is the one which received most of the attention in the 

last seasons. H2O2 is the result of a two-step reduction molecular oxygen and has a relatively 

long lifespan in comparison to other ROS. The long half-life (1 ms) of H2O2 and its small size 

allow it to traverse cellular membranes and migrate in different compartments, which 

facilitates its signalling functions (Bienert et al., 2006). It is well known that H2O2 is a 

regulator of a multitude of physiological processes like acquiring resistance, cell wall 

strengthening, senescence, phytoalexin production, photosynthesis, stomatal opening and the 
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cell cycle (Petrov & Van Breusegem, 2012) and is essential for suberization in potatoes 

(Razem & Bernards, 2002).The dual role played by ROS require the very strict control of 

H2O2 concentration in plant cells. The biological effect of H2O2 is mostly dependent on its 

concentration, but also on the site of production, the developmental stage of the plant and 

previous exposures to different kinds of stress.  

 

H2O2 possesses some features typical for second messenger molecules and its production is 

up-regulated by many stimuli, mainly through NADPH-oxidases and peroxidases (Petrov & 

Van Breusegem, 2012). In addition, H2O2 is a small and relatively mobile molecule that has 

the potential to carry information between different cellular compartments. Moreover, H2O2 

is able to modulate the activities of many other signalling components and intercalate in a 

number of signalling cascades with different biological outcomes, including the one that 

leads to its own synthesis. In the latter case, either a positive or a negative feedback is 

provided by inducing or inhibiting H2O2 modulating systems (Mittler, 2002; de Pinto et al., 

2006; Van Breusegem & Dat, 2006). This is mainly dependent on the H2O2 concentration and 

the timing of its synthesis. The possibility of a positive feedback provides a way to amplify 

the initial signal, while the negative feedback option ensures that the system can be 

effectively switched off in order to prevent excessive damage. The most typical targets of 

H2O2 include effectors of calcium homeostasis, ion channels, protein kinases or phosphatases 

and transcription factors (TFs) (Petrov & Van Breusegem, 2012). 

 

It is presumed that increased H2O2 levels could be perceived directly by redox-sensitive TFs 

that orchestrate downstream cascades (Miller et al., 2008). Good candidates for such TFs are 

class A heat shock factors, which are shown to be responsive to oxidative stress both in 

animals and plants (Miller & Mittler, 2006; Kotak et al., 2007).  

 

Moreover, H2O2 has the ability to diffuse across membranes. H2O2 produced by the 

chloroplast electron transport chain can leak out of chloroplasts in a light-intensity-dependent 

manner (Mubarakshina et al., 2010). Nevertheless, H2O2 is a relatively neutral solute and 

native membranes present a significant barrier to its free diffusion (Bienert et al., 2006). 

H2O2 can be transported through specific membrane aquaporin homologues of the tonoplast 

intrinsic protein (TIP) plasma membrane intrinsic protein (PIP) families. Bienert et al. (2007) 

showed that expression of Arabidopsis thaliana AtTIP1;1 and AtTIP1;2 genes in yeast cells 

decreased their survival rate in the presence of H2O2, while blocking this aquaporin-mediated 
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diffusion alleviated the effect of H2O2. Furthermore, Dynowski et al. (2008) suggested that 

the aromatic/arginine regions in PIP2 proteins are critical for their selectivity towards H2O2 

and as all eight PIP2 proteins in Arabidopsis are conserved in these positions, presumably all 

of them are involved in the specific transport of H2O2. 

 

As previously described, H2O2 has a potential role in cellular and membrane damage as a 

consequence of an imbalance between its production and antioxidant defences. This 

imbalance could lead to an oxidative stress condition, and subsequent damage of the 

mitochondria and amyloplast membrane. Malfunction in the mitochondrial machinery would 

result in a reduced capacity of respiration of reducing sugars, producing their accumulation. 

In the same way, damage of amyloplast membrane could expose the starch to amylolytic 

enzymes increasing its degradation and, therefore, accumulation of reducing sugars. 

 

H2O2 is the longest living ROS and is considered as the predominant ROS involved in 

cellular signalling (Bienert et al., 2006). H2O2 content was quantified as a marker of 

oxidative stress in tubers during storage. An increase of H2O2 content during senescent 

sweetening transition would suggest oxidative stress may be linked to the sugar accumulation 

in tubers. Both cultivars exhibited significant differences during the storage period. However, 

tubers from each did not exhibit a specific increase of H2O2 associated with the onset on 

sweetening.  

 

Changes in absolute level of H2O2 were not observed during long-term storage. Nevertheless, 

oxidative damage may have occurred due to localised concentration in specific organelles or 

due to controlled sudden spikes. For that reason, an additional experiment was performed in 

order to determine if H2O2 produced lipid membrane damage at cellular level over time. 

MDA levels were quantified as an indirect measurement of lipid peroxidation in lipid 

membranes (Fletcher et al., 1973; Konze & Elstner, 1978; Dhindsa et al., 1981). Results in 

lipid peroxidation showed similar behaviours for both cultivars. An increase at the beginning 

of the storage period was observed which may be related to storage-induced stress suffered 

by the tuber. During the long-term storage MDA levels remained stable, suggesting no 

increase of oxidative damage in lipid membranes. In the present work, we report no increase 

of markers of oxidative stress during storage, suggesting senescent sweetening may not be 

linked to oxidative stress. 
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Aging and senescence are distinctly different but overlapping developmental processes. 

Aging encompasses the entire lifespan of an organism, whereas senescence can be thought of 

as the final developmental phase that culminates in death. Aging and senescence are the 

result of complex changes in basic plant metabolism and, although the two are 

distinguishable, they do share similarities at the biochemical level. For example, a gradual 

disruption of membrane integrity, resulting in loss of compartmentation of cytoplasmic 

organelles and increased permeability of the plasma membrane, is a widely reported 

phenomenon common to both progressive aging and senescence of plant tissues (Thompson, 

1988). Membrane integrity declines with advancing age of potato seed-tubers (Knowles & 

Knowles, 1989). In senescing plant tissues, lipid peroxidation plays a role in the loss of 

membrane integrity (Leshem, 1987; Gidrol et al., 1989) and evidence of extensive lipid 

peroxidation during prolonged storage of potato seed-tubers has been reported (Kumar & 

Knowles, 1993). Moreover, recent studies using diaminobenzidine tetrahydrochloride (DAB) 

and nitroblue tetrazolium (NBT) staining indicated a relationship between the onset of 

senescent sweetening and an increase in ROS, suggesting senescent sweetening resistant 

varieties exhibit a delayed rise in ROS accumulation (Carvalho, 2017). These findings 

support the hypothesis that senescent sweetening may be produced by an increase of 

oxidative damage. However, since DAB stain is dependent not only on ROS but also on the 

presence of peroxidase, this might explain the observed difference. Moreover, membrane 

permeability may change over time leading to a better access of the stain into the tissue.  

 

Loss of membrane integrity in the amyloplast due to an increase of lipid peroxidation could 

expose the starch to amylolytic enzymes leading to an accumulation of sugars. Nonetheless, 

MDA measurements reported in this chapter suggest that if there is a loss of membrane 

integrity is not caused by oxidative damage. We showed previously there was no evidence of 

oxidative damage related to accumulation of sugars during long-term storage. In addition, a 

general decrease in fatty acids (P < 0.001) associated with the senescent sweetening transition 

was observed (Chapter 5). However, Spychalla and Desborough (1990) proposed induced or 

initial high levels of membrane lipid unsaturation mitigated increases in tuber membrane 

permeability during storage, and alterations in the levels of fatty acids had little bearing upon 

tuber membrane permeability. Literature has also reported mixed evidence of how long-term 

stored affects amyloplast membrane integrity in potato tubers. Electron micrographs of potato 

tubers stored at 10°C for 8 months indicated that the amyloplast membrane was still intact 

and continuous around starch granules in both normal and prematurely sweetened tissue 
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(Sowokinos et al., 1985). Moreover, different authors reported fragmented or disintegrated 

starch granules membranes in potato tubers during storage (Ohad et al., 1971; Sowokinos et 

al., 1987). 

 

Despite their destructive activity, ROS are well-described second messengers in a variety of 

cellular processes including tolerance to environmental stresses (Desikan et al., 2001; Neill et 

al., 2002; Yan et al., 2007). Whether ROS will act as damaging or signalling molecule 

depends on the delicate equilibrium between ROS production and scavenging. Increased 

levels of ROS may be a consequence of the action of plant hormones, environmental stress, 

pathogens, or high levels of sugars and fatty acids (Bolwell et al., 2002; Couée et al., 2006; 

Gechev et al., 2006; Liu et al., 2007; Rhoads & Subbaiah, 2007). These conditions may lead 

to storage deterioration or impairment of seedling growth decreasing on crop yield. Because 

of the multifunctional roles of ROS, it is necessary for the cells to control the level of ROS 

tightly to avoid any oxidative injury and not to eliminate them completely. Scavenging or 

detoxification of excess ROS is achieved by an efficient antioxidant defence system 

comprising of the non-enzymatic as well as enzymatic antioxidants (Schreck & Baeuerle, 

1991; Noctor & Foyer, 1998; Møller, 2001). The enzymatic antioxidants include SOD, 

catalase (CAT), glutathione peroxidase (GPX), enzymes of ascorbate-glutathione (AsA-GSH) 

cycle such as APX, MDHAR, DHAR, and GR (Noctor & Foyer, 1998, Möller et al., 2001). 

AsA, GSH, carotenoids, tocopherols, and phenolics serve as potent non-enzymatic 

antioxidants within the cell. Maintenance of a high antioxidant capacity to scavenge the toxic 

ROS has been linked to increased tolerance of plants to these environmental stresses 

(Zaefyzadeh et al., 2009; Chen et al., 2010). Considerable progress has been made in 

improving stress-induced oxidative stress tolerance in crop plants by developing transgenic 

lines with altered levels of antioxidants (Allen et al., 1997; Faize et al., 2011). Simultaneous 

expression of multiple antioxidant enzymes has been shown to be more effective than single 

or double expression for developing transgenic plants with enhanced tolerance to multiple 

environmental stresses (Lee et al., 2007). Plants have developed antioxidant defence systems 

to minimize the concentrations of ROS and to protect plant cells from oxidative damage 

(Noctor & Foyer, 1998). Given the lack of any evidence for oxidative stress in stored tubers, 

the hypothesis that antioxidant systems were up-regulated to deal with an increased 

production of oxidants after prolonged storage was tested. An important role in the 

antioxidant defence system has been attributed to the ascorbate-glutathione pathway, which is 

catalysed by a set of four enzymes (Noctor & Foyer, 1998; Asada, 2006). The specific 
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activity of this set of enzymes from the ascorbate-glutathione cycle was quantified to monitor 

any change during storage that could be related to senescent sweetening. Results showed 

fluctuations in the specific activity of antioxidant enzymes during storage. However, there 

was no consistent change in antioxidant enzyme activity associated with the onset of 

senescent sweetening. These data indicate a lack of support for the hypothesis that senescent 

sweetening is associated with oxidative stress in stored potato tubers.  
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Chapter 5: Metabolome profiles of potato tubers during long-term storage 

 

5.1 Introduction 

 

Metabolites are the end products of cellular regulatory processes, and their levels can be 

regarded as the ultimate response of biological systems to genetic or environmental changes.  

This work investigates the possible causes of senescent sweetening in potato by examining 

the impact of long-term storage on metabolism in potato tubers.  

 

An analysis of the potato (Solanum tuberosum L.) tuber metabolome during long-term 

storage has been completed using a GC/MS based approach. Potato tubers stored at 9°C were 

examined during long-term storage in season 1 (2016/2017), including early storage and 

senescent sweetening transition. In season 2 (2017/2018), 13C-labelled extracts from potato 

tuber discs were analysed in order to obtain a better understanding of glucose metabolism in 

stored potato tubers. For season 3 (2018/2019), an analysis of the potato tuber metabolome 

profiling was performed, including additional cultivars that provided contrasting profiles of 

metabolites during storage.  

 

5.2 Metabolome profiling during long-term storage in season 1 (2016/2017) 

 

The metabolite profiles of tubers from Arsenal (sweetening susceptible) and VR 808 

(sweetening resistant) were compared in untreated and CIPC-treated tubers during long-term 

storage, at 2, 4, 6, 12, 20, and 26 weeks of storage. Five different biological replicates were 

used for each cultivar and time point. Polar extracts (mainly sugars, organic acids, and amino 

acids) and non-polar extracts (mainly fatty acids and fatty alcohols) were examined. In the 

tubers analysed in this study, a total of 123 metabolites were detectable (72 polar and 51 non-

polar), of which 76% could be identified. 

 

Metabolites, whose abundance was changed in a statistically significant manner over time, 

were identified using three-way ANOVA based on cultivar, treatment (CIPC-treated or 

untreated), and time of storage. Arsenal and VR 808 exhibited differences (P < 0.05) in 83 

metabolites during the storage period. The levels of 11 metabolites were significantly 

different (P < 0.05) between CIPC-treated and untreated tubers. A total of 123 metabolites 
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were significantly (P < 0.05) influenced by the time of storage (Supporting Information Table 

S5-1). All metabolites analysed are presented in Supporting Information Figure S5-1. An 

overall ‘U’ pattern response during storage was observed in reducing sugars, amino acids, 

and organic acids, showing higher peaks at the beginning and the end of the storage period.  

Arsenal tubers exhibited a higher concentration of glucose and fructose than VR 808 tubers. 

In addition, CIPC-treated tubers from both cultivars had a lower concentration of reducing 

sugars during the onset of the senescent sweetening (at 20, and 26 weeks of storage). Sugar 

phosphates showed no clear pattern. Amino acids generally showed an initial high peak 

followed by a rapid decrease and then gradual increase until the end of the storage. Arsenal 

and VR 808 showed initial higher levels of valine, and urea, respectively. Moreover, a higher 

concentration of aspartic acid in VR 808 was observed over time. Glycerol and caffeic acid 

showed a declining concentration in both cultivars. On the contrary, both Arsenal and VR 

808 exhibited an increase in galactinol and chlorogenic acid during storage. Arsenal had 

higher levels of quinic acid than VR 808 during the storage. VR 808 showed higher 

concentrations of galactaric acid and galactosyl glycerol than Arsenal.  

 

Both cultivars showed a general decrease in saturated and unsaturated fatty acids as well as 

fatty alcohols during the onset of senescent sweetening (at 20, and 26 weeks of storage). 

Additionally, Arsenal exhibited higher levels of heneicosanol whereas VR 808 presented 

higher solanid-5-enol at the onset of sweetening. 

 

5.3 Estimation of 13C fluxes in glucose metabolism in season 2 (2017/2018) 

 

Metabolite fluxes were analysed to obtain more profound knowledge about glucose 

metabolism in potato tubers during long-term storage. Potato tuber discs were prepared from 

three different biological replicates. Metabolism in tuber discs was monitored by determining 

the redistribution of label following incubation in [U-13C] glucose for 2, 4, and 6 h. 13C-

labelled extracts were analysed by GC/MS. Time points under study were at 5, 10, 15, 43, 

and 53 weeks of storage. In the tubers analysed in this study, a total of 30 polar metabolites 

were observed to accumulate 13C. Over the storage period, 13C mainly accumulated in 

glycine, aspartic acid, glutamic acid, and glutamine (Figure 5-1A), citric acid, and malic acid 

(Figure 5-1B), and sucrose (Figure 5-1C). The rest of the metabolites analysed only 

accumulated 13C at certain time points (Supporting Information Figure S5-2). 
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Figure 5-1. Metabolite fluxes on the metabolism of [U-13C] glucose by potato tubers. Metabolites 

which mainly accumulated 13C are shown. A. Amino acids. B. Organic acids. C. Sugars. Both 

cultivars generally showed similar behaviours. However, the non-sweetened cultivar exhibited a more 

rapid synthesis of sucrose from glucose, leading to a higher sucrose relative accumulation rate, 

suggesting sucrose metabolism might be involved in the mechanisms of senescent sweetening. 
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Results showed that 13C accumulated in the amino acids glycine, aspartic acid, and glutamic 

acid at 5 and 10 weeks of storage in both cultivars. However, the increase in glycine and 

aspartic acid was higher in VR 808, the senescent sweetening resistant cultivar. Moreover, 

VR 808 presented a higher overall accumulation of label in glutamine during storage, while 

Arsenal exhibited increased accumulation of 13C at 53 weeks of storage. Hence, the results 

suggested that although both cultivars exhibited similar behaviours during storage, glucose 

had greater net flux into the synthesis of amino acids in VR 808 tubers. 

 

Malic acid synthesis from glucose was stable in Arsenal during storage, exhibiting a decrease 

after 43 of storage. On the contrary, VR 808 showed no clear pattern in 13C accumulation in 

malic acid. In addition, both cultivars presented opposite behaviours regarding the synthesis 

of citric acid. At 10 weeks of storage, accumulation of 13C in citric acid decreased in Arsenal 

while it increased in VR 808, showing the highest peak of accumulation. At 43, and 53 weeks 

after storage accumulation of label in citric acid increased in Arsenal and decreased in VR 

808 tubers.  

 

Interestingly, at the beginning of the storage period, VR 808, the senescent sweetening 

resistant cultivar, exhibited a quicker conversion of glucose into sucrose than Arsenal that 

was susceptible to senescent sweetening. After 10 weeks of storage, both cultivars decreased 

the sucrose accumulation followed by a second decrease at 53 weeks of storage. However, 

VR 808 showed higher accumulation of sucrose at all time points during the storage 

compared to Arsenal.   

 

5.4 Metabolome profiling during long-term storage in season 3 (2018/2019) 

 

Phytochemical diversity was examined by GC/MS in tubers of cultivars Arsenal, VR 808, 

Pirol, SH C 909, Lady Rosetta, Brooke, Shelford (both Shropshire and Yorkshire locations) 

as well as the unknown cultivar at 5, 30, 37, and 43 weeks of storage. Three different 

biological replicates were used for each cultivar and time point. Polar extracts (mainly sugars, 

organic acids, and amino acids) and non-polar extracts (mainly fatty acids and fatty alcohols) 

were examined. In the tubers analysed in this study, a total of 124 metabolites were 

detectable (74 polar and 50 non-polar), of which 77% could be identified. Metabolites, whose 

abundance was changed in a statistically significant manner over time, were identified using 

two-way ANOVA based on cultivar and time of storage. Cultivars showed differences (P < 
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0.05) in 94 metabolites during the storage period. In addition, a total of 106 metabolites were 

significantly (P < 0.05) influenced by the time of storage (Supporting Information Table S5-

2). 

 

PCA was used to summarise broad-scale variation among the cultivars and time points using 

all the metabolites simultaneously, and both polar and non-polar compounds independently. 

PCA was also used to identify which of the components accounted for specific differences 

among the cultivars and time points. All loadings scores are provided in Supporting 

Information Tables S5-3.1 to S5-3.6. 

 

For all data, the first and third Principal Components (PC1 and PC3) together were able to 

distinguish between all time points analysed (Figure 5-2). The loadings for PC1 are 

dominated by amino acids, more specifically valine, leucine, and isoleucine. Analysis of the 

loadings for PC3 showed the separation of time points is driven by the levels of -

glycerophosphate, fucosterol, and galactose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2. Selected score plot from PCA of all metabolites identified by GC/MS (polar/non-polar 

fraction) during long-term storage, with samples labelled according to time of storage. Plot of PC1 

against PC3.Abbreviations: A, Pirol B, SH C 909; C, VR 808; D, Lady Rosetta; E, Shelford 

(Shropshire location); F, unknown cultivar; G, Brook; H, Arsenal; and I, Shelford (Yorkshire 

location). TP1, 5; TP2, 30; TP3, 37; and TP4, 43 weeks of storage. 
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For the polar compounds the first and fourth components separated all four time points into 

distinct groups (Figure 5-3A); 5, 30, 37, and 43 weeks of storage were separated. The 

separation of time points for PC1 was driven by glutamine, galactosyl glycerol, glycine, and 

-alanine responses. The loading for PC4 are dominated by glutamine, -glycerophosphate, 

galactosyl glycerol, galactose, and glycerol. In addition, the sixth and eighth separated the 

cultivars into two different groups (Figure 5-3B): cultivars from Shropshire location and 

cultivar from Yorkshire location. Analysis of the loadings showed the separation of cultivars 

is driven by galactose, -glycerophosphate, and galactaric acid (for PC6), and galactose, and 

tyrosine (for PC8).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. Selected score plots from PCA of polar metabolites identified by GC/MS, with samples 

labelled according to time of storage and cultivar. A. Plot of PC1 against PC4. B. Plot of PC6 against 

PC8. Abbreviations: TP1, 5; TP2, 30; TP3, 37; and TP4, 43 weeks of storage. A, Pirol B, SH C 909; 

C, VR 808; D, Lady Rosetta; E, Shelford (Shropshire location); F, unknown cultivar; G, Brook; H, 

Arsenal; and I, Shelford (Yorkshire location). 
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and -5-avenasterol as well as unknown compounds. The compounds driving the separation 

by cultivar location for PC4 are fatty alcohols (heneicosanol, tetracosanol, and docosanol). 
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dominated by saturated fatty acids, mainly eicosanoic, hexadecanoic, and heptadecanoic 

acids. The separation for PC2 is driven by unknown compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4. Selected score plots from PCA of non-polar metabolites identified by GC/MS, with 

samples labelled according to time of storage and cultivar. A. Plot of PC3 against PC4. B. Plot of PC1 

against PC2. Abbreviations: A, Pirol B, SH C 909; C, VR 808; D, Lady Rosetta; E, Shelford 

(Shropshire location); F, unknown cultivar; G, Brook; H, Arsenal; and I, Shelford (Yorkshire 

location). TP1, 5; TP2, 30; TP3, 37; and TP4, 43 weeks of storage. 
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by unknown compounds as well as pentadecanoic acid. Moreover, PCA of 43 weeks after 

storage separate cultivars by sugar profile (sweetening resistance or susceptibility (Chapter 
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(Figure 5-6B). The separation for PC1 is driven by amino acids: methionine, lysine, serine, 

histidine, isoleucine, tyrosine, tryptophan, glycine, valine, threonine, asparagine, and leucine 
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of the loadings for PC3 showed the separation is driven by inositol, sucrose, proline, fructose, 

glucose, phenylalanine, putrescine, and quinic acid as well as noctadecanoic and 

tetracosanoic acids, octacosanol, and -sitosterol. The separation for PC4 is driven by 

unknown compounds, piperidinecarboxylic acid, cinnamic acid, hexadecanoic acid, and 

asparagine. The loadings for PC5 are dominated by unknown compounds, octacosanol, 

phenylalanine, galactosyl glycerol, -sitosterol, octacosanoic acid, and -aminobutyric acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Selected score plot from PCA of all metabolites identified by GC/MS (polar/non-polar 

fraction) at 5 weeks of storage with samples labelled according to cultivar. Plot of PC1 against PC5. 

Abbreviations: A, Pirol B, SH C 909; C, VR 808; D, Lady Rosetta; E, Shelford (Shropshire location); 

F, unknown cultivar; G, Brook; H, Arsenal; and I, Shelford (Yorkshire location).  
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Figure 5-6. Selected score plots from PCA of all metabolites identified by GC/MS (polar/non-polar 

fraction) at 43 weeks of storage with samples labelled according to senescent sweetening 

susceptibility. A. Plot of PC1 against PC3; Plot of PC2 against PC3. B. Plots of PC3 against PC5; Plot 

of PC3 against PC4. Abbreviations: A, Pirol B, SH C 909; C, VR 808; D, Lady Rosetta; E, Shelford 

(Shropshire location); F, unknown cultivar; G, Brook; H, Arsenal; and I, Shelford (Yorkshire 

location). R, resistant to senescent sweetening; S, susceptible to senescent sweetening; and NA (not 

applicable), cultivars which showed an intermediate sugar content between R and S cultivars.  

 

 

5.4.2 The influence of growing location on metabolome profile 

 

Tubers of the Shelford variety grown either in Shropshire or Yorkshire are present in this 

study. In order to identify differences in propensity for sweetening, tuber metabolome 

profiles from both locations were compared by PCA. The first and fourth components 

separate the four time points into four different groups (Figure 5-7). The separation for PC1 is 

driven mainly by amino acids: -alanine, valine, glycine, leucine, serine, isoleucine, 

ethanolamine, and aspartic acid. The compounds driving the separation for PC4 are 

nonacosanol, -5-avenasterol, solanid-5-enol, stigmastadienol, fucosterol, mannitol, -

linolenic acid, tetracosanoic, and octadecenoic acids. This result suggests that genotype and 
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storage are more significant than the growing environment in determining the potato tuber 

metabolome. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7. Selected score plot from PCA of all metabolites identified by GC/MS (polar/non-polar 

fraction), with samples labelled according to time of storage and cultivar. Plot of PC1 against PC4. 

Abbreviations: E, Shelford (Shropshire location); and I, Shelford (Yorkshire location). TP1, 5; TP2, 

30; TP3, 37; and TP4, 43 weeks of storage. 

 

Although within each time point group a minor separation of both cultivars is observed, PCA 

of each individual time point shows no separation based on location. 

 

5.5 Discussion 

 

In season 1 (2016/2017) and during the senescent sweetening transition, a general increase in 

amino acids was observed for both cultivars. During season 3 (2018/2019), differences in 

amino acids were observed between metabolite profiles of the cultivars. Results suggested 

that sugars profile may be related to the amino acids content since PCA separate resistant 

cultivars from the rest of the cultivars mainly by the amino acids content at 43 weeks after 

storage, during the senescent sweetening period. Variable trends in free amino acids contents 

in potato tubers during the storage have been previously reported (Talley et al., 1984). Černá 

and Kracmar (2010) reported that the storage duration and cultivar have a significant effect 

on the total amino acids content. An increase in free amino acids content that occurred during 
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the latter part of long-term storage (for up to 40 weeks) has been related to an upturn of 

proteinase activity on the break of dormancy (Brierley et al., 1996).  

 

As previously described, reducing sugars, such as glucose and fructose, react with free amino 

acids during high-temperature cooking and processing in the Maillard reaction (Nursten, 

2005; Mottram, 2007; Halford et al., 2011). The relationship between reducing sugars, 

asparagine, and acrylamide formation in potato products during cooking and processing is 

complex. Asparagine is present approximately at one-third of the total free amino acid pool 

(Eppendorfer & Bille 1996; Oruna-Concha et al., 2001; Amrein et al., 2003; Elmore et al., 

2007; Carillo et al., 2012; Halford et al., 2012; Muttucumaru et al., 2013). Due to this fact, 

sugar concentrations might be expected to be the limiting factor for acrylamide formation as 

asparagine is found in such a high concentration. However, the evidence is mixed. Some 

studies have reported sugar concentrations as the limiting factor (Amrein et al., 2003; 

Becalski et al., 2004; de Wilde et al., 2006), while others authors have observed asparagine 

concentration or asparagine concentration as a proportion of the total free amino acid pool to 

be also important (Elmore et al., 2007; Shepherd et al., 2010; Halford et al., 2012; 

Muttucumaru et al., 2014).  

 

In addition, both cultivars exhibited an increase in organic acids after the onset of senescent 

sweetening. Wichrowska et al. (2009) described that the content of organic acids in potato 

tubers depends on cultivar and storage conditions. An increase in organic acids might be the 

result of reduced respiration as a consequence of mitochondrial damage produced by 

oxidative stress (Salvato et al., 2014). 

 

On the contrary, total fatty acids decreased after 20 weeks of storage for both cultivars. 

Spychalla and Desborough (1990) revealed that potato cultivars with higher levels of fatty 

acid unsaturation had lower rates of membrane electrolyte leakage and lower sugar contents. 

However, at the present work both Arsenal and VR 808 exhibited similar unsaturated fatty 

acids while differences in reducing sugars content.  

 

The fluxes of carbohydrate metabolism were measured by investigating the metabolism of 

[U-13C] glucose in tuber discs in season 2 (2017/2018). During long-term storage, 13C mainly 

accumulated in the amino acids glycine, aspartic acid, glutamic acid, and glutamine; the 

organic acids citric acid, and malic acid; and the sugar sucrose. Both cultivars exhibited 
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similar behaviours in the metabolism of [U-13C] glucose. However, the senescent sweetening 

resistant cultivar VR 808 showed a higher synthesis of amino acids in some cases, suggesting 

this process as a mechanism to sink the glucose and avoid its accumulation. Besides, VR 808 

exhibited an overall quicker accumulation of sucrose over time compared to Arsenal, a 

senescent sweetening susceptible cultivar. A progressive decrease in PGM activity was 

observed in VR 808 during storage in season 1 (2016/2017) (Chapter 6). In potato tubers, the 

reduction in the activity of plastidial PGM leads to both a reduction in starch accumulation 

and an increased sucrose accumulation (Fernie et al., 2001). The accumulation of sucrose 

observed in VR 808 could be related to a reduction in the PGM activity, suggesting the 

accumulation of reducing sugars and sucrose observed in Arsenal might be due to different 

mechanisms. 
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Chapter 6: Changes in transcript levels associated with long-term storage in potato 

tubers 

 

6.1 Introduction 

 

The accumulation of reducing sugars in potato tubers during storage is a persistent and costly 

problem for the potato processing industry (Dale & Bradshaw, 2003). An unacceptable dark 

and bitter-tasting product is formed at high frying temperatures because of the Maillard 

reaction that takes place between the reducing sugars and amino acids (Shallenberger et al., 

1959). Moreover, the Maillard reaction generates acrylamide, a neurotoxin and a potential 

carcinogen (Mottram et al., 2002; Stadler et al., 2002). In particular, potato crisps have high 

acrylamide contents (Rosen & Hellenäs, 2002; Tareke et al., 2002). Reducing sugars and 

asparagine are the two major substrates for acrylamide formation in processed potato 

products (Goekmen & Palazoglu, 2008). Developing methods to reduce acrylamide in fried 

potato products has become an important requirement for the potato processing industry. One 

effective way to decrease acrylamide content is to decrease the amount of reducing sugars in 

raw tubers (Matsuura-Endo et al., 2006; Muttucumaru et al., 2008). Hence, reducing sugar 

accumulation in stored potato tubers during CIS and SS is a critical factor influencing the 

quality of fried potato products. 

 

Chen et al. (2001) published a potato molecular-function map for carbohydrate metabolism 

and transport, opening the way to find a candidate-gene approach to cold-sweetening 

(Menendez et al., 2002). This strategy aims to correlate allele variants at candidate loci with 

observed variations in fry colour and glucose and fructose content in potato germplasm. 

The use of molecular markers (e.g., restriction fragment length polymorphism, random 

amplified polymorphic DNA, simple sequence repeats, and amplified fragment length 

polymorphism) in linkage and QTL analyses has enabled increasingly detailed analyses of the 

potato genome. This has allowed the localization of many single gene and quantitative traits. 

In many cases, the use of molecular markers linked to genes controlling traits should enable a 

move away from conventional phenotypic selection to genotypic selection, not only for major 

genes but also for complex quantitative traits. However, QTL analysis is not precise, and the 

confidence interval can contain thousands of putative genes, which, by definition, could all be 

candidates for the target trait. Fine mapping within a QTL region can reduce the numbers to a 

few hundred candidate genes. A candidate-gene approach uses information relating to the 
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phenotype and its underlying biochemical or physiological basis, the genetic factors involved 

and the main genes likely to be involved in the trait.  

 

Molecular physiological approaches have facilitated significant advances in the 

understanding of the processes that regulate sucrose to starch interconversion in the potato 

tuber (Fernie et al., 2002). The prospects are good for manipulating carbohydrate metabolism 

in potato tubers by conventional breeding and by transgenic approaches to achieve higher 

starch yields and to produce designer starches (Hamernik, 1998; Love et al., 1998; Hamernik 

et al., 2009; McCann et al., 2010). Therefore, thanks to the biotechnology techniques and 

breeding, besides the storage of potato tubers at higher temperatures with the use of sprout 

suppressants, the problem of CIS has been mostly solved. However, literature regarding SS is 

sparse and almost nothing is known about its mechanisms. In this study, a global analysis 

microarray technique was used to monitor the effect of long-term storage in potato tubers and 

indicate candidate genes associated with the trait. 

 

6.2 Microarray analysis of gene expression 

 

SS is genotype dependent, but the genetic basis remains uncertain. In order to gain further 

insights into the transcriptional networks associated with the accumulation of sugars in potato 

tubers during long-term storage observed in this study, microarray experiments were 

designed to identify genes that were differentially expressed during the SS transition for 

seasons 1 and 2. Four tubers of varieties Arsenal and VR 808 were used for each sampling 

time during season 1 (March and May 2017) and season 2 (May, July and October 2018) 

including SS transition. Spot flags from FE software (present or marginal) were used to 

remove probes with no consistent expression, leaving 20,634 and 20,321 probes for season 1 

and 2, respectively. Statistical filtering was performed using volcano analysis (P-value < 

0.01, fold-change > 2×) for season 1 data.  In addition, one-way ANOVA using storage time 

as parameter was used in both seasons to identify statistically significant expression profiles 

at a false discovery rate (P-value) ≤ 0.05. Data were visualised using PageMan (Usadel et al., 

2006) and a gene tree heat map in GeneSpring using default Pearson correlation. MapMan is 

a software tool that supports the visualization of profiling data sets in the context of gene 

ontologies and gene-by-gene basis on schematic diagrams of biological processes (Usadel et 

al., 2009). The PageMan module uses the same ontologies to statistically evaluate responses 

at the pathway or processes level. 
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6.2.1 Gene expression and biological processes influenced by long-term storage during 

season 1 (2016/2017) 

 

In order to identify genes that may be related to the accumulation of sugars during long-term 

storage, two time points corresponding to the senescent sweetening transition were selected. 

The ratio of gene expression at 26 weeks relative to 20 weeks of storage were under study to 

identify genes that were significantly up- or down-regulated following senescent sweetening. 

During SS transition, between 20 and 26 weeks after storage, several processes were altered 

in Arsenal and VR 808 tubers (Figure 6-1). Significant changes in expression were observed 

for a total number of 329 genes in Arsenal and 224 genes in VR 808. Arsenal showed up-

regulation in genes associated with photosynthesis. On the contrary, major carbohydrate 

metabolism, DOF transcription factors, and pseudouridine synthesis were down-regulated in 

Arsenal. On the other hand, over-expression of transcripts associated with secondary 

metabolism was observed in VR 808. Moreover, both cultivars exhibited an up-regulation in 

genes related to hormone metabolism and ethylene synthesis-degradation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1. PageMan diagram representing changes in potato tubers during senescent sweetening 

transition for season 1 (2016/2017). Wilcoxon rank sum test (Benjamini-Hochberg corrected) was 

employed to identify BINs whose contents were differentially regulated.  

Season 2016/2017 
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Fig. 6-1. Continuation. Each coloured block represents an individual BIN/sub-BIN or gene in the 

PageMan analysis. The colour represents the direction and strength of the regulation (Logarithm to the 

base 2 colour scale; Red, highly up-regulated and Blue, highly down-regulated). Abbreviations: CvA, 

Arsenal; and CvB, VR 808.  

 

Genes associated with photosynthesis, PSBO2, and PETE2, were up-regulated in Arsenal. 

PSBO2 encodes a protein which is an extrinsic subunit of photosystem II (PSII) in 

Arabidopsis, and which has been proposed to play a central role in stabilization of the 

catalytic manganese cluster, which is the primary site of water splitting. In Arabidopsis 

thaliana, mutants defective in this gene have been shown to be affected in the 

dephosphorylation of the D1 protein of the photosystem II (Lundin et al., 2007). PETE2 is a 

recombination and DNA-damage resistance protein. One of two plastocyanin genes reported 

in Arabidopsis (Pesaresi et al., 2009). It is thought to be post-transcriptionally regulated via 

copper accumulation and is associated with copper homeostasis (Abdel-Ghany, 2009). 

Although these transcripts associated with photosynthesis have been observed to significantly 

change during the senescent sweetening transition, PSBO2 and PETE2 showed very low 

fluorescence levels, suggesting little relevance for potato tubers.  

 

VR 808 exhibited up-regulation in transcripts associated with flavonoids synthesis. Chalcone 

synthase (CHS, EC 2.3.1.74) and flavanone 3-hydroxylase (F3H, EC 1.14.11.9) genes were 

over-expressed. CHS is a key enzyme of the flavonoid/isoflavonoid biosynthesis pathway 

(Dao et al., 2011). F3H plays important roles in flavonoid biosynthesis (Owens et al., 2008; 

Flachowsky et al., 2012). 

 

Both cultivars exhibited up-regulation in jasmonic acid oxidase 2 (JAO2) and Acyl-CoA N-

acyltransferases (NAT, EC2.3) genes. JAO2 plays a major role in repressing jasmonic acid 

(JA)-dependent defences in non-stimulated leaves (Smirnova et al., 2017). In cotton, NAT 

influences fertility by regulating lipid metabolism and JA biogenesis.  

 

Major carbohydrate metabolism genes down-regulated in Arsenal during the onset of SS were 

associated with starch synthesis, including granule-bound starch synthase 1 (EC 2.4.1.242), 

1,4--glucan branching enzyme (EC 2.4.1.18), APL3 and ADG1. APL3 and ADG1 encode 

the large and the small subunits of AGPase 1, respectively. The large subunit catalyses the 

first, rate limiting step in starch biosynthesis whereas the small subunit is the catalytic 
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isoform responsible for AGPase activity. The presence of the small subunit is required for 

large subunit stability. Therefore, these changes observed in major carbohydrate metabolism 

are a potential reason for the sugars accumulation reported in Arsenal. 

 

6.2.1.1 Effect of long-term storage on carbohydrate metabolism during season 1 (2016/2017) 

 

As significant changes were found in carbohydrate metabolism during senescent sweetening 

transition for season 1 (2016/2017), different carbohydrate metabolism pathways were 

investigated. Changes associated with carbohydrate metabolism might underpin the transition 

to sweetening. Therefore, genes associated with sucrose-starch metabolism (involved in 

sugars recycling) and glycolysis pathways (related to turnover of sugars) were under study. A 

comparison of significant changes observed for Arsenal and VR 808 in sucrose-starch 

metabolism and glycolysis pathways is presented in Figure 6-2, and 6-3, respectively. In 

terms of sucrose-starch metabolism, Arsenal showed a strong down-regulation in AGPase 

(large subunit), and 1,4--glucan branching enzyme. Moreover, both cultivars exhibited 

down-regulation in -amylase 2 (EC 3.2.1.1) as well as up-regulation in vacInv. Regarding 

the glycolysis pathways, similar behaviour for Arsenal and VR 808 were observed. However, 

Arsenal, which has a senescent sweetening susceptible profile, showed a strong down-

regulation in GPT2. GPT2 is involved in the transport of glucose-6-phosphate into the 

plastids. The down-regulation observed in Arsenal could implicate that sugar phosphates are 

unable to be transported into the plastids, where they are used for starch synthesis. In 

addition, trehalose and T6P synthesis processes were down-regulated in Arsenal while up-

regulated in VR 808. As previously described in Chapter 1, T6P is a signalling metabolite 

that regulates carbon metabolism, developmental processes, and growth in plants. More 

detailed information about differential gene expression for season 1, including carbohydrate 

metabolism and sugar transport genes, is shown in Figure 6-4. 

 

6.2.1.2 Effect of long-term storage on cellular response during season 1 (2016/2017) 

 

The main hypothesis of the present work is that senescent sweetening results from oxidative 

stress which leads to breakdown of amyloplast membranes leading to increased starch 

turnover and reduced capacity for respiration resulting in reduced sugar turnover. Although 

no differences in terms of markers of oxidative stress and/or oxidative damage were found 
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between Arsenal and VR 808 during long-term storage in season 1 (2016/2017), similar 

changes in antioxidant systems were observed in both cultivars (Chapter 4). Hence, genes 

associated with cellular response, including response to different stresses, were under study 

for this season (Figure 6-5). Arsenal and VR 808 exhibited comparable behaviours in genes 

associated with both biotic and abiotic stresses as well as redox during senescent sweetening 

transition, suggesting no differential expression in genes associated with stress and ROS 

detoxification. These data imply that differential stress responses are not associated with the 

onset of senescent sweetening. 

 

6.2.1.3 Effect of long-term storage on SnRK genes during season 1 (2016/2017) 

 

In addition to the differences previously observed between Arsenal (susceptible to 

sweetening) and VR 808 (sweetening resistant) cultivars, changes in sucrose non-fermenting-

related protein kinase (SnRK) genes were observed (Figure 6-6). During the SS transition, 

SnRK3.15 was down-regulated while SnRK 2.6 was up-regulated. Both cultivars presented 

similar behaviours in SnRK genes expression. However, VR 808 had a stronger response 

within changes. Many studies have demonstrated that SnRK genes play various roles in the 

metabolism and development of plants (Halford & Hardie, 1998; Johnson et al., 2002; 

Mustilli et al., 2002; Boudsocq et al., 2004; Umezawa et al, 2004; Fujii & Zhu, 2009; 

Nakashima et al., 2009; Sun et al., 2010; Zheng et al., 2010; Fujii et al., 2011; Ghillebert et 

al., 2011). 
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Figure 6-2. MapMan scheme representing sucrose-starch metabolism pathways gene expression for Arsenal and VR 808 tubers during senescent sweetening 

transition for season 1 (2016/2017). One-way ANOVA using time as factor was employed to identify significant changes during senescent sweetening 

transition. The colour represents the direction and strength of the regulation (Logarithm to the base 2 colour scale; Red, highly up-regulated and Blue, highly 

down-regulated). Abbreviations: 1, neutral invertase; 2, vacuolar invertase; 3, fructokinase; 4, hexokinase; 5, hexokinase; 6, ADP-glucose pyrophosphorylase 

(AGPase) (large subunit); 7, AGPase (large subunit); 8, AGPase (small subunit); 9, granule-bound starch synthase; 10, granule-bound starch synthase; 11, 

1,4--glucan branching enzyme; 12, 1,4--glucan branching enzyme; 13, -glucan phosphorylase; 14, -amylase; 15, unknown protein; 16, -amylase; 17, 

4--glucanotransferase; 18, 4--glucanotransferase; 19, 4--glucanotransferase.  
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Figure 6-3. MapMan scheme representing glycolysis pathways gene expression for Arsenal and VR 808 tubers during senescent sweetening transition for 

season 1 (2016/2017). One-way ANOVA using time as factor was employed to identify significant changes during senescent sweetening transition. The 

colour represents the direction and strength of the regulation (Logarithm to the base 2 colour scale; Red, highly up-regulated and Blue, highly down-

regulated). Abbreviations: 1, neutral invertase; 2, hexokinase; 3, hexokinase; 4, hexokinase; 5, hexokinase; 6, phosphatase; 7, phosphatase; 8, oxido-

reductase; 9, -amylase; 10, unknown protein; 11, -amylase; 12, -glucan phosphorylase; 13, phosphofructokinase; 14, phosphofructokinase; 15, glucose-6-

phosphate translocator 2. 
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Figure 6-4. Carbohydrate metabolism and transport gene tree heat map. Comparison between 

susceptible to SS (Arsenal) and sugar stable (VR 808) profile cultivars during long-term for season 1 

(2016/2017). Heat map was generated using GeneSpring GX software as described in Section 2.4.4.1 

(Materials & Methods). The rows are labelled with individual gene function. The scale bar represents 

relative expression values. Red colour indicates genes that were up-regulated, and Blue colour 

indicates genes that were down-regulated according to the scale bar shown. Abbreviations: A, 

Arsenal; B, VR 808; S10, 20 weeks of storage; S13, 26 weeks of storage. 

Season 2016/2017 

Major carbohydrate metabolism Minor carbohydrate metabolism 

5.0

4.0

3.0

2.5

2.0

1.5

1.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Trust

E
x
p

re
s
s
io

n

Transport 



109 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-5. MapMan scheme representing cellular response gene expression for Arsenal and VR 808 tubers during senescent sweetening transition for season 

1 (2016/2017). One-way ANOVA using time as factor was employed to identify significant changes during senescent sweetening transition. The colour 

represents the direction and strength of the regulation (Red, highly up-regulated and Blue, highly down-regulated as indicated on the logarithmic (base 2) 

scale bar shown).  

Arsenal VR 808 

Season 2016/2017 
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Figure 6-6. SnRK gene expression for Arsenal and VR 808 tubers during senescent sweetening transition for 

season 1 (2016/2017). One-way ANOVA using time as factor was employed to identify significant changes 

during senescent sweetening transition. The colour represents the direction of the regulation (Logarithm to the 

base 2 colour scale; Red, up-regulated and Blue, down-regulated).  

 

 

6.2.2 Gene expression and biological processes influenced by long-term storage during 

season 2 (2017/2018) 

 

During the second season, 4 different time points were under study. These time points were at 

30, 37, 40 and 53 weeks after storage, corresponding to prior to sugar accumulation stage, 

senescent sweetening transition and late storage. 

 

A total of 558 genes in Arsenal and 58 genes in VR 808 were differentially expressed over 

time. Significant changes were observed in genes associated with photosynthesis, major 

carbohydrate metabolism, lipid metabolism, metal handing, hormone metabolism, stress, 

nucleotide metabolism, regulation of transcription, DNA synthesis, signalling, development 

and transport (Figure 6-7).  
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Figure 6-7. PageMan diagrams representing changes in potato tubers during long-term storage at 9°C. 

Differential gene expression of potato tubers during long-term storage in season 2 (2017/2018).  A 

Wilcoxon rank sum test (Benjamini-Hochberg corrected) was employed to identify BINs whose 

contents were differentially regulated. Each coloured block represents an individual BIN/sub-BIN or 

gene in the PageMan analysis. The colour represents the direction and strength of the regulation (Red, 

up-regulated and Blue, down-regulated). Abbreviations: A, Arsenal; B, VR 808. 30, 37, 40, 53 

represent weeks of storage. 

Season 2017/2018 
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6.2.2.1 Gene expression and biological processes influenced by long-term storage during 

season 2 (2017/2018) in Arsenal 

 

In Arsenal, at 30, 37, and 40 weeks of storage, genes encoding the ABA biosynthetic 

enzymes 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51) (Nambara & Marion-

Poll, 2005) were up-regulated as well as gibberellin (GA) 20-oxidase (EC 1.14.11) genes. GA 

20-oxidase activity is suggested to be one of the principal points of regulation in the GA-

biosynthetic pathway (reviewed by Hedden & Kamiya, 1997). Moreover, teosinte 

branched1/cycloidea/proliferating cell factor (TCP) family of transcription factors genes were 

up-regulated. Endogenous ABA is involved in the regulation of wound-induced suberization 

and the processes that protect surface cells from water vapour loss and death by dehydration 

(Lulai et al., 2008). Both ABA and ethylene are required for dormancy induction, but only 

ABA is needed to maintain bud dormancy (reviewed by Suttle, 2004). TCP are involved in 

the regulation of cell growth and proliferation, performing diverse functions in plant growth 

and development and have been shown to be targets of pathogenic effectors and are likely to 

play a vital role in plant immunity (Bao et al., 2019). At 53 weeks after storage, protein 

degradation genes were up-regulated. Signalling genes encoding leucine-rich kinase family 

proteins were up-regulated at 30 weeks of storage. Wu et al. (2009) suggested these genes 

may participate in the responses against environmental stresses and disease resistance in 

potato. In addition, kip-related protein 3 (KRP3) genes, negative regulator of cell division 

(De Velder et al., 2001; Verkest et al., 2005; Weinl et al., 2005; Liu et al., 2008), were up-

regulated at 30, 37, and 40 weeks after storage. Patatin group precursor genes involved in 

storage were down-regulated after the onset of senescent sweetening. Down-regulation was 

observed in genes encoding -galactosidases (EC 3.2.1.23) at 30, and 37 weeks, followed by 

up-regulation at 53 weeks of storage. β-galactosidases are associated with fruit softening 

(Gross, 1984; Gross & Sams, 1984; Redgwell et al., 1992). 
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6.2.2.2 Gene expression and biological processes influenced by long-term storage during 

season 2 (2017/2018) in VR 808 

 

VR 808 exhibited down-regulation in starch synthase (EC 2.4.1.21) and 1,4--glucan 

branching enzyme at 40 weeks of storage. Genes encoding pectin methyl esterase (PME, EC 

3.1.1.11) were under-expressed at 37, 40, and 53 weeks of storage. Orthologous PME genes 

have been shown to impact on the texture of fruit from many species (reviewed in Fischer & 

Bennett, 1991). As pectin is a major component of the cell wall and the middle lamella, its 

structure is likely to be an important factor in texture in potato tubers as well as other plant 

tissues (Fischer & Bennett, 1991). Up-regulation in metal handing genes was observed at 37 

weeks of storage. At 40 weeks of storage, GRAS family transcription factors were down-

regulated. GRAS genes play diverse roles in root and shoot development, GAs signalling, and 

phytochrome A signal transduction (Bolle, 2004). At 30, and 40 weeks of storage, down-

regulation in genes encoding WD-40 repeat family proteins, known to serve as platforms for 

the assembly of protein complexes or mediators of transient interplay among other proteins. 

In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being 

recognized as key regulators of plant-specific developmental events (van Nocker & Ludwig, 

2003). 

 

At 30, 37 and 40 weeks after storage, genes encoding ADP-ribosylation factor (ARF) were 

up-regulated. ARF regulates metabolism and antioxidant capacity in transgenic potato tubers 

(Zuk et al., 2003). Transgenic plants resulted in the increase of soluble sugar-to-starch ratio 

parameter when compared to un-transformed plants (Zuk et al., 2003). Genes encoding 

protein phosphatase 2A (PP2A, EC 3.1.3.16) were down-regulated in VR 808 at 53 weeks of 

storage. PP2A may be involved in sucrose-phosphate synthesis (Reimholz et al., 1994). 

Genes encoding actin binding protein family associated with cellular organization were up-

regulated at 37 weeks after storage. The actin cytoskeleton functions in the generation and 

maintenance of cell morphology and polarity, in endocytosis and intracellular trafficking, in 

contractility, motility and cell division (Winder & Ayscough, 2005). Cell division genes 

encoding regulator of chromosome condensation (RCC1) family protein were down-

regulated at 30, 37, and 53 weeks after storage. In plants, RCC1 molecules act mainly as 

regulating factors for a series of downstream genes during biological processes such as the 

UV-B response and cold tolerance (Heijde & Ulm, 2012; Ji et al., 2015). Transport sugars 
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genes encoding major facilitator superfamily proteins were under-expressed at 37 weeks of 

storage. These proteins are involved in glucose transmembrane transport (Saier et al., 1999).  

 

6.2.2.3 Differences between Arsenal and VR 808 in gene expression and biological processes 

influenced by long-term storage during season 2 (2017/2018) 

 

Arsenal and VR 808 showed opposite behaviour in gene expression related to lipid 

degradation, abiotic stress, nucleotide metabolism, short chain dehydrogenase/reductase and 

transport. Gene expression was down-regulated for lipid metabolism, glutaredoxin, and 

transport in Arsenal and up-regulated in VR 808. On the contrary, stress abiotic and 

nucleotide metabolism were up-regulated in Arsenal and down-regulated in VR 808. The rest 

of significant changes in gene expression presented no clear pattern. For this season, no 

significant changes in SnRK genes were reported during the storage period.  

 

6.2.2.4 Effect of long-term storage on carbohydrate metabolism during season 2 (2017/2018) 

 

In terms of carbohydrate metabolism, differences in gene expression from the previous 

season were observed in the cultivars. Although no significant changes in gene expression 

were reported according to Wilcoxon rank sum test (Benjamini-Hochberg corrected), further 

details regarding sucrose-starch metabolism (Figure 6-8) and glycolysis pathways (Figure 6-

9) were analysed. Arsenal showed a general down-regulation at 53 weeks of storage in 

AGPase (large and small subunits), starch synthase I, 1,4--glucan branching enzyme, and 4-

alpha-glucanotransferase (EC 2.4.1.25). Furthermore, results in GPT2 expression were 

reproduced from season 1 (2016/2017). Arsenal exhibited a gradually and strong decrease in 

GPT2 transcripts whereas it had a little increase in VR 808 over the storage period (Figure 6-

9). The GPT2 expression was progressively down-regulated over the storage period for the 

susceptible cultivar following the trend of reducing sugar accumulation. Additionally, down-

regulation in triose-phosphate isomerase (TPI, EC 5.3.1.1) was observed in both cultivars 

after senescent sweetening transition, presenting VR 808 a higher response. Also for this 

season, trehalose and T6P synthesis processes were down-regulated in Arsenal while up-

regulated in VR 808 (Figure 6-10).  
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Figure 6-8. MapMan scheme representing starch metabolism pathway gene expression for Arsenal and VR 808 for season 2 (2017/2018). One-way ANOVA 

using time as factor (Benjamini-Hochberg corrected) was employed to identify significant changes over storage at 30, 37, 40, and 53 weeks of storage. The 

lines on the graphics represent the direction of the regulation. Abbreviations: 1, ADP-glucose pyrophosphorylase (AGPase, large and small subunits); 2, 

starch synthase; 3, 1,4--glucan branching enzyme; 4, 4--glucanotransferase.
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Figure 6-9. MapMan scheme representing glycolysis pathways gene expression for Arsenal and VR 808 for season 2 (2017/2018). One-way ANOVA using 

time as factor (Benjamini-Hochberg corrected) was employed to identify significant changes over storage at 30, 37, 40, and 53 weeks of storage. The lines on 

the graphics represent the direction of the regulation. Abbreviations: 1, glucose-6-phosphate translocator 2 (GPT2); 2, triose-phosphate isomerase (TPI).  
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Figure 6-10. Carbohydrate metabolism and transport gene tree heat map. Comparison between 

susceptible to SS and sugar stable profile cultivars during long-term storage for season 2 (2017/2018). 

Heat map was generated using GeneSpring GX software as described in Section 2.4.4.1 (Materials & 

Methods). The rows are labelled with individual gene function. The scale bar represents relative 

expression values (fold change). Red colour indicates genes that were up-regulated, and Blue colour 

indicates genes that were down-regulated. Abbreviations: A, Arsenal; B, VR 808. 30, 37, 40, 53 

represent weeks of storage. 
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GPT2 gene showed a gradual down-regulation over time in Arsenal, which accumulates 

reducing sugars. The decrease in gene expression was subsequently correlated to the reducing 

sugar accumulation during senescent sweetening transition. Hence, we suggested GPT2 to be 

a candidate gene involved in sugar accumulation during long-term storage. The initial 

identification of this GPT2 differential gene expression on the microarray was therefore 

checked and confirmed by qRT-PCR. 

 

6.3 qRT-PCR analysis of GPT2 

 

Analysis was performed using the same samples and time points from season 2 (2017/2018) 

microarray experiment. qRT-PCR data confirmed the results obtained by microarray analysis. 

GPT2 expression was decreasing over time in Arsenal (Figure 6-11A). Moreover, a further 

qRT-PCR analysis was performed using season 3 (2018/2019) material in order to identify 

GPT2 expression as a common mechanism associated to sugar accumulation during long-

term storage. In this experiment, 2 susceptible to SS, and 2 with stable sugar profile cultivars, 

were selected and compared during the SS transition (Figure 6-11B). Results suggested 

down-regulation in GPT2 gene is a common mechanism in cultivar susceptible to senescent 

sweetening.  

 

 

 

  

 

 

Figure 6-11. GPT2 expression in potato tubers during long-term storage at 9°C. All cultivars were from 

Shropshire location. A. Comparison between susceptible to SS and stable profile cultivars over time for 

season 2 (2017/2018). B. Comparison between 2 susceptible to SS and 2 stable profiles cultivars during 

SS for season 3 (2018/2019). Samples included the same cultivars studied previously. Results suggested 

GPT2 down-regulation is a common mechanism in susceptible to SS cultivars. 
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6.4 Analysis of the GPT2 promoter sequence  

 

GPT2 promoter sequence was analysed using NSITE-PL (available through SoftBerry at 

http://www.softberry.com) to identify putative regulatory motifs. Inspection of the GPT2 

promoter sequence revealed the presence of a number of putative regulatory motifs which 

were used to identify similar promoters of other genes in order to obtain a better 

understanding of the regulatory mechanisms affecting GPT2 expression (Table 6-1).  

 

 

Table 6-1. List of genes which exhibit similar regulatory motifs identified for GPT2 promoter. 

Abbreviations: TFBS, transcription factor binding site; BF, transcription factor binding to TFBS; 

TFBS AC, TFBS accession number. 

 

Organism Gene TFBS BF TFBS AC 

Pisum sativum rbcS-3A G-box GBF (CG-1) RSP00313 
Pisum sativum PSPAL2 Box 1 homolog Epicotyl-specific nuclear factor RSP00739 
Nicotiana tabacum RNP2 CDE Unknown nuclear factor RSP00397 
Zea mays Zc2 Zc2 A/T-2 Unknown nuclear factor RSP00492 
Zea mays H3C4 OCT Unknown nuclear factor RSP00845 
Lycopersicon esculentum rbcS3C 2' W1 Unknown nuclear factor RSP00568 
Solanum lycopersicum GAME4 P box 2 JRE-4 RSP02845 
Arabidopsis thaliana H4A748 OCT Unknown nuclear factor RSP00839 
Arabidopsis thaliana STK GA-6 BPC1 RSP00865 
Arabidopsis thaliana C4H P-box 4 Unknown nuclear factor RSP01229 
Arabidopsis thaliana VDD CArG1 STK-SEP3 RSP02393 
Petroselinum crispum CCoAOMT Box L Unknown nuclear factor RSP01044 
Brassica oleracea BoCRC EM1 (CArG box 1) MADS box proteins RSP01214 
Oryza sativa RSs1 BoxII RNFG2 RSP01435 
Catharanthus roseus CrWRKY1 CT-rich Unknown nuclear factor RSP02375 

 

 

The five members of the rbcS gene family are rbcS1, rbcS2, rbcS3A, rbcS3B, and rbcS3C. 

This gene family encodes for the small subunit of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (3-phospho-D-glycerate carboxylyase (dimerizing) (Rubisco, EC 

4.1.1.39), the key enzyme in photosynthetic carbon assimilation. The expression of this gene 

and other rbcS genes is regulated by at least three parameters: tissue type, light conditions, 

and stage of development (Tobin & Silverthorne, 1985; Kuhlemeier et al., 1987). The highest 

level of expression of this gene family, which is associated with photosynthesis, is found in 
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the leaf. Gene expression is of the rbcS gene family is turned off in non-photosynthetic 

tissues (Sugita & Gruissem, 1987). 

 

Zhang et al. (2015) suggested that opaque2 (O2), O2 heterodimerizing proteins (OHPs), and 

prolamine-box binding factor (PBF) are master regulators of zein storage protein synthesis in 

maize (Zea mays), acting in an additive and synergistic mode. 

 

PSPAL family (the genes encoding phenylalanine ammonia-lyase in Pisum sativum) have 

been shown to be activated by UV light while partially suppressed in response to a fungus 

pathogenic on pea suppressor (Yamada et al., 1992). Cinnamate-4-hydroxylase (C4H) is the 

first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. C4H expression 

is light-dependent, but it has been detectable in dark-grown seedlings. C4H is widely 

expressed in various Arabidopsis tissues, particularly in roots and cells undergoing 

lignification (Bell-Lelong et al., 1997). Ogawa et al. (2011) reported that the rice protein 

RSS1, whose stability is regulated depending on the cell cycle phases, is a key factor for the 

maintenance of meristematic activity under stressful conditions in rice. The transcription 

factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in 

Catharanthus roseus (Suttipanta et al., 2011). 

 

Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced by 

Solanaceous plant species. Wang et al. (2018) reported that that light-signalling transcription 

factors elongated hypocotyl 5 (HY5) and phytochrome interacting factor 3 (PIF3) regulate the 

abundance of steroidal SGAs by modulating the transcript levels of GAME genes, associated 

with glycoalkaloid metabolism. 

 

6.5 Assessment of transcriptome profiling results 

 

Results from transcriptome profiling during season 1 (2016/2017) indicated differences in 

carbohydrate metabolism and flavonoids biosynthesis between Arsenal (susceptible to 

sweetening profile) and VR 808 (resistant to sweetening profile). In order to obtain further 

insights of whether this differential gene expression had a latter effect in the accumulation of 

reducing sugars, metabolites fluxes, carbohydrate metabolism enzymes activities, and total 

polyphenols content were analysed. 
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6.5.1 Metabolites flux estimation of [U-14C] glucose metabolism 

 

During season 3 (2018/2019) flux estimates from metabolism of [U-14C] glucose were 

determined at 33, and 43 weeks of storage, both time points were prior to senescent 

sweetening. Potato tuber discs were incubated with [U-14C] glucose for three hours. [U-14C]-

labelled extracts were fractionated into CO2, starch, cell wall and protein, neutral, anionic and 

cationic fractions as well as glucose, fructose, and sucrose. A two-way ANOVA was carried 

out using factors cultivar and time of storage. Percentages of metabolised [U-14C] glucose in 

potato tuber discs are presented in Table 6-2. [U-14C]-labelled CO2 was significant different 

dependent on cultivar and time (P < 0.05). Percentage of metabolised [U-14C] glucose into 

starch increased over time (P = 0.001) in both cultivars. However, no differences (P > 0.05) 

between cultivars were reported. No differences (P > 0.05) were observed for glucose, 

fructose, sucrose, cell wall and protein. Neutral fraction was significant different (P < 0.01) 

between cultivars at 33 weeks of storage. In addition, anionic and cationic fractions changed 

over time (P < 0.05). 

 

Table 6-2. [U-14C] in metabolic fraction in potato tuber discs at 33 and 43 weeks of storage for season 

3 (2018/2019). Data presented is the percentage of [U-14C] glucose metabolised per gram of fresh 

weight.  

              

Metabolic fraction 14C in metabolic fraction in tuber discs (% of metabolised) 

  33 weeks of storage  43 weeks of storage 

    Arsenal VR 808   Arsenal VR 808 

Glucose 0,96 ± 0,52 0,61 ± 0,09  2,62 ± 1,15 1,17 ± 0,10 

Fructose 1,21 ± 0,60 0,66 ± 0,07  1,97 ± 0,65 1,14 ± 0,14 

Sucrose 0,76 ± 0,18 0,76 ± 0,16  2,01 ± 0,76 2,63 ± 1,44 

Starch 0,61 ± 0,08 1,04 ± 0,11  4,91 ± 1,40 4,72 ± 0,77 

CO2 64,77 ± 7,66 37,82 ± 3,18  28,55 ± 3,72 28,9 ± 4,55 

Cell wall, Protein 1,59 ± 0,51 1,84 ± 0,04  1,49 ± 0,12 1,61 ± 0,03 

Neutral fraction 7,02 ± 1,57 14,83 ± 0,65  26,39 ± 3,41 27,28 ± 3,41 

Anionic fraction 11,60 ± 3,01 12,09 ± 1,27  16,12 ± 1,77 15,36 ± 0,29 

Cationic fraction 2,28 ± 0,52 3,57 ± 0,18   6,05 ± 0,60 4,69 ± 0,91 

 

6.5.2 Carbohydrate metabolism enzymes activity measurement 

 

Enzymatic activities from carbohydrate metabolism were measured for season 1 (2016/2017). 

AGPase, UGPase, and PGM were analysed at 20, 26, and 30 weeks of storage (Figure 6-
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12A). In addition, HK, FK, SuSy, vacInv, and cytInv were under study at 30 weeks after 

storage, a post-sweetening stage (Figure 6-12B). A two-ways ANOVA was performed using 

cultivar and time of storage as factors. HK, SuSy, vacInv and cytInv, AGPase, and UGPase 

activities exhibited no differences (P > 0.05) between cultivars or changes over time (P > 

0.05). However, significant differences affected by cultivar for FK (P < 0.05) and by cultivar 

and time for PGM (P < 0.005) were observed. VR 808 exhibited a significant lower FK 

specific activity compared to Arsenal at 30 weeks of storage. Besides, VR 808 showed a 

progressive decrease in the specific activity of PGM after 20 weeks of storage.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12. Measurement of specific activity of carbohydrate metabolism enzymes during senescent 

sweetening in season 1 (2016/2017). A. Enzyme activity of AGPase, UGPase, and PGM during 

senescent sweetening transition (20 and 26 weeks of storage) and post-sweetening at 30 weeks of 

storage. B. Enzyme activity of vacInv, cytInv, SuSy, HK, and FK. Values are means ± SE (three 

biological replicates from one experiment). Abbreviations: AGPase, ADP-glucose 

pyrophosphorylase; UGPase, UDP-glucose pyrophosphorylase; PGM, phosphoglucomutase; 

vacInv, vacuolar invertase; cytInv, cytosolic invertase; Susy, sucrose synthase; HK, hexokinase; FK, 

fructokinase. 
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6.5.3 Quantification of total polyphenols 

 

Phenolic compounds are secondary metabolites produced in plants that have a common 

structure based on an aromatic ring with one or more hydroxyl substituents (Beckman, 2000; 

Parr & Bolwell, 2000; Valcarcel et al., 2015). These compounds can be divided according to 

their chemical structure into flavonoids, phenolic acids, tannins, stilbenes, coumarins, and 

lignans (Ignat et al., 2011; Lemos et al., 2015). Their presence affects the sensory qualities of 

plant-derived processed foods, including taste, colour, and texture (Kroon & Williamson, 

1999; Alasalvar et al., 2001; Rytel et al., 2014). Differences in gene expression related to 

flavonoid biosynthesis between cultivars were reported during senescent sweetening for 

season 1 (2016/2017). It was hypothesized that flavonoid synthesis may be acting as a sink 

for reducing sugars in VR 808, resistant to sweetening cultivar, avoiding their accumulation. 

Therefore, total polyphenols were quantified at 20, 26 and 30 weeks after storage in season 1 

(Figure 6-13). These time points were related to senescent sweetening transition and a post-

sweetening stage. A two-ways ANOVA was performed using cultivar and time of storage as 

factors. Results showed no significant differences (P > 0.05) between cultivars as well as no 

significant changes (P > 0.05) influenced by time of storage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-13. Quantification of total polyphenols content in Arsenal and VR 808 tubers during season 

1 (2016/2017). Values are means ± SE (four biological replicates from one experiment).  
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6.6 Discussion 

 

The aim of this work was to utilize transcriptome profiling to understand how long-term 

storage affects potato gene expression to promote senescent sweetening. A microarray 

experiment was carried out using two different time points representing senescent sweetening 

transition during the first season. For the second season, the experiment was conducted using 

4 time points, including prior to sweetening stage, senescent sweetening transition and late 

storage stage. qRT-PCR was performed to verify the transcriptome results. 

 

Carbohydrates provide energy and building blocks for plant growth and development. 

Furthermore, soluble sugars including glucose, fructose and sucrose are known to act as 

signal molecules to regulate the expression of many key genes involved in plant metabolic 

processes and defence responses, consequently regulating plant growth and development 

(Rolland et al., 2006; Mishra et al., 2009; Ruan et al., 2010; Cho & Yoo, 2011; Li et al., 

2011). Carbohydrates are also central to quality and yield of crops. In fleshy fruits, the 

accumulation of soluble sugars during fruit development largely determines their sweetness 

at harvest. Plants have evolved an elaborate system for sugar metabolism and accumulation in 

sink cells (Li et al., 2012). 

 

The results of both transcriptome analyses suggested that carbohydrate metabolism was 

altered during the storage period. In the major carbohydrate metabolism, genes associated 

with starch synthesis were down-regulated in both analyses for the susceptible cultivar, 

presenting these genes up-regulation for the stable profile cultivar. In addition, Arsenal 

exhibited up-regulation of FK genes as well as higher specific activity of this enzyme 

compared to VR 808. FK efficiently catalyses the phosphorylation of fructose to fructose 6-

phosphate. However, it has been suggested that FK has little impact on glycolysis and starch 

synthesis (Davies et al., 2005). 

 

For season 1 (2016/2017), genes encoding AGPase were down-regulated in Arsenal during 

the senescent sweetening transition. In season 2 (2017/2018), Arsenal also exhibited a general 

down-regulation in starch synthesis, including AGPase genes, at 53 weeks of storage. In 

heterotrophic storage organs such as potato tubers, most of the incoming sucrose is converted 

to starch as a long-term carbon store for reproductive growth. AGPase catalyses the first 

committed step of starch synthesis in the plastid, converting glucose 1-phosphate and ATP to 
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ADP-Glc and PPi. ADP-Glc is subsequently used by starch synthases and branching enzymes 

to elongate the glucan chains of the starch granule. AGPase is a heterotetramer that contains 

two large (AGPS, 51 kDa) and two slightly smaller subunits (AGPB, 50 kDa) (Morell et al., 

1987, Okita et al., 1990). Work with Arabidopsis mutants (Neuhaus & Stitt, 1990) and potato 

tubers (Geigenberger et al., 2004) showed that the enzyme catalyses a near rate-limiting step 

in the pathway of starch synthesis. There is evidence for the in vivo role of posttranslational 

redox modulation of AGPase in regulating starch synthesis in heterotrophic potato tubers 

(Tiessen et al., 2002) and photosynthetic leaves of potato, pea, and Arabidopsis plants 

(Hendriks et al., 2003). Posttranslational redox activation of AGPase allows the rate of starch 

synthesis to be increased in response to external inputs and independently of any increase in 

the levels of glycolytic intermediates (Tiessen et al., 2002). More recent studies in potato 

tubers revealed that sucrose and glucose lead to redox activation of AGPase via two different 

signalling pathways involving SnRK1 and hexokinase, respectively (Tiessen et al., 2003). 

Hexokinase and SnRK1 are both implicated in a regulatory network that controls the 

expression and phosphorylation of cytosolic enzymes in response to sugars (Smeekens, 

2000). How they are linked to reductive activation of AGPase and starch synthesis in the 

plastid remains unresolved. Trehalose metabolism has been implicated in the regulation of 

sugar utilization in yeast and plants (Thevelein & Hohmann, 1995; Eastmond & Graham, 

2003; Gancedo & Flores, 2004).  

 

Genes included in the minor carbohydrate biosynthesis suggested down-regulated production 

of T6P in Arsenal potato tubers. Trehalose and the metabolism associated with its synthesis 

have been proposed to be a component of the plant’s sugar signalling system (Paul, 2007; 

Paul et al., 2008). T6P is an intermediate product of trehalose biosynthesis. T6P is a product 

of the reaction between UDP-Glc and G6P (Cabib & Leloir, 1958), which is catalysed by 

TPS. T6P is further metabolised to trehalose by TPP (Cabib & Leloir, 1958; O’Hara et al., 

2013), which is eventually hydrolysed by trehalase into glucose (Elbein et al., 2003). In 

potato, T6P overproduction has been shown to cause the down-regulation of cell proliferation 

and delayed growth and sprouting (Debast et al., 2011). It has been reported that the addition 

of T6P to isolated chloroplasts leads to redox activation of AGPase (Kolbe et al., 2005). Lunn 

et al. (2006) reported that rising sugar levels in plants are accompanied by increases in the 

level of T6P, redox activation of AGPase and the stimulation of starch synthesis in vivo. 

These results indicate that T6P acts as a signalling metabolite of sugar status in plants and 
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support the proposal that T6P mediates sucrose-induced changes in the rate of starch 

synthesis (Lunn et al., 2006).  

 

Debast et al. (2011) reported that transgenic potato plants with elevated T6P levels displayed 

reduced starch content, decreased ATP contents, and increased respiration rate diagnostic for 

high metabolic activity. On the contrary, lines with significantly reduced T6P showed 

accumulation of soluble carbohydrates, hexose phosphates, and ATP, no change in starch 

when calculated on a fresh weight basis, and a strongly reduced tuber yield. T6P-

accumulating tubers were strongly delayed in sprouting, while those with reduced T6P 

sprouted earlier than the wild type (Debast et al., 2011). This observation may be related to 

the fact that potato cultivars that are most susceptible to SS tend to have short dormancy 

(Colgan et al., 2012). 

 

T6P is considered a signal regulating plant sugar metabolism, growth and development, 

possibly due to its interaction with sucrose non-fermenting (SNF) kinases (Lunn et al., 2014). 

T6P acts as an intermediary, increasing the rate of starch synthesis via the redox activation of 

AGPase (Kolbe et al., 2005). T6P has no significant inhibitory effects on the hexokinase 

activities of spinach (Wiese et al., 1999), Arabidopsis (Eastmond et al., 2002), or tomato 

(Kandel-Kfir et al., 2006). However, T6P indirectly responds to glucose or fructose but is 

directly influenced by sucrose (Yadav et al., 2014). 

   

In Arabidopsis, T6P signalling is partially mediated through inhibition of the SnRK1 (Debast 

et al., 2011). Protein phosphorylation is involved in regulation of various cellular activities in 

plants and one of the main signals mediating the responses to environmental stresses (Laurie 

& Halford, 2001; Yoshida et al., 2006; Fujii et al., 2007; Movahed et al., 2012; Hong et 

al.,2013). The SnRKs are a gene family coding for Ser/Thr protein kinases and play 

important roles in linking abiotic stress tolerance and the metabolic responses of plants (Qin 

et al., 2011; Bing et al., 2013; Tao & Lu, 2013). Based on sequence similarity, domain 

structure and metabolic roles, the plant SnRK family is divided into three subfamilies: 

SnRK1, SnRK2 and SnRK3. Several studies have demonstrated that these three subfamilies 

play various roles in the metabolism and development of plants. SnRK1 plays an important 

role in regulating carbon metabolism and energy conversion in plants (Halford & Hardie, 

1998; Ghillebert et al., 2011), SnRK2 members are the major players in plant responses to 

osmotic stresses (Boudsocq et al., 2004; Umezawa et al, 2004; Fujii & Zhu, 2009; Fujii et al., 
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2011), ABA dependent and independent stomatal closure-opening (Mustilli et al., 2002), fruit 

development (Sun et al., 2010), seed dormancy (Zheng et al., 2010) and germination 

(Johnson et al., 2002, Nakashima et al., 2009), while SnRK3 is involved in plant 

development, calcium-responsive regulatory loop and ABA sensitivity. 

 

Differential expression of genes involved in ethylene and ABA pathways were observed 

during both seasons. After harvest, synthesis of endogenous hormones in tubers continue to 

perform their roles, participating in or even causing physiological events in the tuber during 

storage, ceasing their functions only with the death of the tuber, that they may be as well the 

precursors, since they may affect the rate of aging (Isenberg & Ludford, 1988; Coleman, 

2000). Studies show that ethylene and ABA are associated with the onset and maintenance of 

tuber dormancy, and that genes associated with the anabolic and catabolic metabolism of 

ABA are correlated with dormancy in potato meristems and tubers (Teper-Bamnolker et al., 

2012; Muthoni et al., 2014). During season 1, both cultivars exhibited up-regulation of genes 

involved in ethylene synthesis. Exposure to ethylene increases tuber respiration rate and 

accelerates the conversion of starch to sugars causing a dose-dependent effect in the 

darkening of potato fry colour (Daniels-Lake et al., 2005). The effects of elevated CO2 

concentrations, reduced O2 concentrations and ethylene gas on the fry colour and sugar 

content in the variety Russet Burbank have been observed (Daniels-Lake et al., 2005). Tubers 

exposed to both elevated CO2 concentrations and ethylene exhibited darker fry colour and 

higher reducing sugar concentrations, not only than the controls, but those treated just with 

ethylene, suggesting a synergistic negative effect of trace ethylene and elevated CO2 on fry 

colour (Daniels-Lake et al., 2005). However, in the present work both cultivars showed an 

up-regulation of ethylene synthesis during storage but only the cultivar susceptible to 

senescent sweetening accumulated reducing sugars, suggesting ethylene may not be involved 

in the mechanisms of senescent sweetening. 

 

Sugar signalling pathways and their interactions with each other and with hormonal 

signalling pathways have been reported (Rolland et al., 2006). Genetic approaches have 

demonstrated the importance of ABA in sugar response pathways, with both pathways using 

common signalling components (Cheng et al., 2002). Several studies have indicated that 

SnRK1 could be implicated in these interactions (Nemeth et al., 1998; Bradford et al., 2003; 

Thelander et al., 2004). Moreover, it has been suggested that SnRK1 plays a key role during 

germination, and could mediate ABA functions during seed maturation (Radchuk et al., 



128 
 

2006; Lu et al., 2007). ABA plays important roles in plant response to drought stress by 

inducing the expression of TF-, heat shock protein-, transporter-, and osmotic regulator-

encoding genes downstream of stress signalling pathways in both ABA-dependent and ABA-

independent manners (Shinozaki & Yamaguchi-Shinozaki, 2007). ABA and anabolism 

related genes are also important regulators for drought-stress response in potato (Padmalatha 

et al., 2012; Gong et al., 2015b; Hayano-Kanashiro et al., 2019). Moreover, changes involved 

in ABA as well as starch synthesis genes have been reported in potato tubers under drought 

stress (Gong et al., 2015b). During season 2, genes related to ABA were up-regulated over 

time for the susceptible cultivar. In terms of senescent sweetening, Arsenal tubers could 

undergo a more severe drought stress response inducing ABA signalling followed by changes 

in carbohydrate metabolism.  

 

In addition, we reported a GPT2 gene was progressively down-regulated over time in the 

susceptible cultivar. This decrease in expression during the senescent sweetening transition 

was related to the increase of reducing sugars previously observed. A number of genes have 

been identified as being up-regulated by exogenous increases in sugar, including At1g61800, 

encoding a GPT2 (Knappe et al., 2003). GPT2 is involved in the transport of G6P across 

plastid membranes in return for inorganic phosphate (Niewiadomski et al., 2005). Microarray 

analyses have shown that GPT2 expression has been associated with impaired carbon 

metabolism (Kunz et al., 2010), senescence (Pourtau et al., 2006), and increases in carbon 

fixation due to increased light (Athanasiou et al., 2010). Moreover, GPT2 has been suggested 

to be associated with sugar sensing by affecting the balance of metabolites between cellular 

compartments (Dyson et al., 2015). 

 

Kunz et al. (2010) showed that GPT2 expression is up-regulated in mutants impaired in 

starch synthesis (Kunz et al., 2010). In Arabidopsis, whereas the glucose-6-phosphate 

translocator 1 (GPT1) is constitutively present in particular cells such as stomatal guard cells 

of leaves or cells of the root tip, GPT2 is induced when carbohydrate metabolism is impaired, 

e.g. at higher concentrations of soluble sugars (Kunz et al., 2010). In potato tubers, the under-

expression of GPT2 gene could lead to a decrease in transport of G6P into the amyloplasts for 

the synthesis of ADP-Glc, which is the substrate for starch synthases and represents the first 

committed precursor for starch synthesis.  

 



129 
 

The key enzyme in starch biosynthesis, the stroma‐localised AGPase, catalyses the ATP‐

dependent conversion of G1P to ADP-Glc, the substrate for starch synthases. A knockout 

mutation in the catalytic subunit of AGPase in Arabidopsis results in a lack of starch in all 

parts of the plants (Lin et al., 1988), as is the case for a mutant plant with a defect in the 

plastid‐localised PGM, catalysing the reversible conversion of G6P to G1P as substrate for 

AGPase (Caspar et al., 1985; Kofler et al., 2000; Periappuram et al., 2000). During the 

season 1 (2016/2017) of this project, VR 808 exhibited a progressive decrease in PGM 

activity at 26 weeks of storage. In plastids of heterotrophic tissues, G6P can be imported from 

the cytosol via a glucose‐6‐phosphate/phosphate translocator (GPT) and converted to starch 

via PGM, AGPase and starch synthases. The proposed role of the GPT is delivery of G6P to 

non‐green plastids as carbon skeletons for starch biosynthesis and/or to the oxidative pentose 

phosphate pathway (Kammerer et al., 1998; Rolletschek et al., 2007; Zhang et al., 2008).  

 

Microarray analyses revealed that GPT2 was substantially up‐regulated in a pgm mutant or in 

a wild type fed with glucose (Thimm et al., 2004; Bläsing et al., 2005; Pourtau et al., 2006). 

In Arabidopsis leaves, GPT2 is strongly induced by light and contributes significantly to the 

measurable G6P transport activity of mutants impaired in starch biosynthesis (Kunz et al., 

2010, Weise et al., 2019). GPT2 has been suggested to be a safety valve under situations 

when carbohydrate metabolism is impaired or in the presence of increased soluble sugar 

concentrations (Kunz et al., 2010). Moreover, inverse correlation of GPT2 and cwInv gene 

expression has been reported (Ferreira et al., 2010). 

 

Weise et al. (2019) reported that both redox responsive transcription factor 1 (RRTF1) and 

high amounts of cytosolic triose phosphate are required for induction of the expression of 

GPT2 in Arabidopsis leaves. In the present study, VR 808 exhibited increasing transcript 

levels of GPT2 as well as a gradual decrease of PGM activity at 26 weeks of storage during 

season 1. However, potato tubers from both cultivars showed similar expression in RRTF1 

genes. In mutants of Arabidopsis that are unable to synthesize starch due to a mutation in the 

gene encoding the plastid PGM, GPT2 transcripts amounts were more than two-fold higher 

than in the wild type (Weise et al., 2019). Potato lines with decreased activities of plastidial 

PGM exhibited a remarkable (up to 40%) decrease in the accumulation of starch, and 

significant increases in the levels of sucrose and hexose phosphates (Tauberger et al., 2000). 
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Cytosolic expression of yeast invertase in potato tubers leads to reduced starch content and 

increased respiration. Moreover, UDP-Glc production is associated with a reduced expression 

of cell wall biosynthetic genes (Ferreira & Sonnewald, 2012). In addition, Ferreira and 

Sonnewald (2012) observed the transgenic tubers are characterized by elevated expression of 

senescence-associated genes, coupled to reduced expression of genes related to 

photosynthesis and the cytoskeleton. Increased respiration, observed in Arsenal tubers, might 

be due to sugar signalling via released T6P inhibition of the SnRK1 complex. In Arsenal, 

expression of the GPT2 was significantly down-regulated during the storage for season 1 and 

2. This could lead to a shift in the cytosolic to plastidic G6P ratio and hence might limit 

starch synthesis, but also the oxidative pentose phosphate pathway. 

 

In Arabidopsis, GPT2 is rapidly induced by both glucose and sucrose, and thus is essential 

for leaf growth and acclimation of metabolism to daily environmental changes (Gonzali et 

al., 2006; Athanasiou et al., 2010; Dyson et al., 2014; Dyson et al., 2015; Van Dingenen et 

al., 2016). The induction of GPT2 by glucose is dependent on its concentration, and does not 

occur in response to light, ABA, or other indirect signalling pathways (Chen et al., 2019). 

Chen et al. (2019) suggested that when sugars are increased in the cytosol, the expression 

levels of sugar-responsive genes such as GPT2 increase by the coordinate actions of 

WRKY18, WRKY53, and HAC1. The increased cytosolic sugar content could then be 

lowered by more active sugar import into cellular compartments (e.g. amyloplast in potato 

tubers). 

 

In the mature leaves of most plants, photosynthates formed during C3 photosynthesis are 

used in the formation of sucrose, which is allocated via the phloem to the heterotrophic plant 

organs, such as young leaves, roots, seeds, fruits, or tubers. In these sink tissues, sucrose 

serves as a source of carbon and energy and is cleaved by the action of invertases or sucrose 

synthase. Finally, the products of these reactions are converted into hexose phosphates.  

 

Plastids of non-photosynthetic plant tissues depend metabolically on the supply of ATP and 

carbon compounds. In general, plastids are not able to generate hexose phosphates from C3 

compounds due to the absence of fructose-1,6-bisphosphatase activity (Entwistle & ap Rees, 

1988). Non-green plastids of heterotrophic tissues import carbon as a source of biosynthetic 

pathways and energy and, in the case of amyloplasts of storage tissues, the site of starch 

synthesis. Within plastids, carbon can be used in the biosynthesis of starch or as a substrate 
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for the oxidative pentose phosphate pathway. Several studies have reported that this transport 

in different plant tissues is mediated by a phosphate translocator that imports hexose 

phosphates in exchange with inorganic phosphate or C3 sugar phosphates (Borchert et al., 

1989, 1993; Hill & Smith, 1991, 1995; Neuhaus et al., 1993; Flügge & Weber, 1994; 

Schünemann & Borchert, 1994; Flügge, 1995; Schott et al., 1995; Quick & Neuhaus, 1996). 

Although G6P has been reported to be the preferred hexose phosphate taken up by non-green 

plastids (Kammerer et al., 1998), in amyloplasts from wheat endosperm, G1P rather than 

G6P is the precursor of starch biosynthesis (Tyson & ap Rees, 1988; Tetlow et al., 1994). 

Amyloplasts from potato tubers showed to use G1P rather than G6P to support starch 

synthesis (Naeem et al., 1997), although previous studies reported that these plastids were 

able to transport G6P but not G1P (Schott et al., 1995).  

 

In conclusion, long-term storage caused changes in carbohydrate metabolism and a 

progressive decrease in sugar transporters gene expression in susceptible cultivars. GPT2 was 

consistently down-regulated in sweetening tubers. This fact might limit sugar supply to the 

plastids, which could lead to a down-regulation of starch biosynthesis genes. These results 

suggest that down-regulation of sugar phosphate transport is a crucial factor that promotes 

senescent sweetening during long-term storage. Hence, we have identified GPT2 as a 

possible candidate gene involved in the mechanisms of senescent sweetening. Insight into the 

underlying mechanism that causes accumulation of sugars in stored potato tubers is needed to 

fully understand the senescent sweetening process.  
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Chapter 7: Concluding discussion 

 

Control of potato quality during storage represents a significant problem for the potato 

processing industry and little is known regarding the mechanisms of senescent sweetening. The 

Ph.D. research project adopts physiological, biochemical, and molecular approaches to 

elucidate downstream biochemical and molecular responses to long-term storage that may 

influence carbohydrate metabolism resulting in senescent sweetening. Potential mechanisms 

include enhanced starch degradation, reduced starch resynthesis, and reduced catabolism of 

sugars.  

 

7.1 Assessment of physiological changes of potato tubers during long-term storage 

 

Long-term storage had a significant impact on sugar accumulation in potato tubers. Varieties 

showed differences on senescent sweetening susceptibility. Accumulation of sugars was 

higher in Arsenal, Lady Rosetta and Shelford (Shropshire location) than in VR 808 and SH C 

909. Sugar content was higher in untreated tubers compared to CIPC-treated tubers in season 

1. During this season, Arsenal showed senescent sweetening after 26 weeks of storage. 

However, for the second season Arsenal exhibited a later onset of senescent sweetening, after 

37 weeks of storage. In season 3, susceptible cultivars were observed to accumulate sugars 

after 43 of storage. Furthermore, Shelford varieties showed a difference in sugar 

accumulation depending on growing location.  

 

Despite changes in the timing of accumulation, the relative timing was consistent. In 

conclusion, senescent sweetening has a strong genetic component that is overlaid by 

environmental factors, as demonstrated by impact of season and growing location. This fact 

suggests that breeding for senescent sweetening resistance is a feasible objective. If breeding 

is a sensible objective then the work done in this thesis is validated and will make a valuable 

contribution towards the identification of markers. 
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7.2 Senescent sweetening and its relationship with oxidative stress 

 

A relationship between the onset of senescent sweetening and oxidative stress was not 

observed during the storage period. Arsenal and VR 808 exhibited differences in H2O2 

content, however, no increase was observed related to the onset of senescent sweetening. On 

the contrary, although no differences between cultivars were shown in the activity of 

antioxidant enzymes, fluctuations were observed during the storage. Moreover, MDA content 

did no increase during the accumulation of sugars.  

 

In addition, metabolome profiles showed that both Arsenal and VR 808 had a general 

decrease of fatty acids while an increase in organic acids concentration. The decrease in fatty 

acids suggests that there is no reduction in membrane permeability. An increase in organic 

acids might be the result of reduced respiration as a consequence of mitochondrial damage. In 

conclusion, senescent sweetening was not related to oxidative stress. However, results 

suggest tubers undergo to different oxidative signalling affecting antioxidant systems during 

long-term storage. If oxidative stress is not the cause of sweetening then the implication is 

that is a normal physiological process associated with aging. The key question then becomes 

what are the triggers and signals for that aging process. 

 

The data presented in this work is contrary to previous hypotheses and results suggesting that 

senescent sweetening is produced by oxidative stress during long-term storage. Nevertheless, 

the evidence it is based on ultrastructure and often the oxidative stress is assumed rather than 

directly quantified. Those facts could explain the discordances observed in this project in 

comparison with previous studies. 

 

To test those hypothesis and to obtain a better understanding of the relationship between 

senescent sweetening and oxidative damage in stored tubers several approaches could be 

adopted in future works. Oxidative membrane damage can be quantified as TBARS (Hodges 

et al., 1999) in the isolated mitochondria (Considine et al., 2003). Oxidative damage to 

proteins can be measured in whole tissues and isolated mitochondria as protein carbonyl 

groups (Wehr & Levine, 2013). Direct damage to amyloplast membranes in unsweetened and 

sweetened tubers can be visualised by electron microscopy (Ohad et al., 1971). Tuber 

antioxidant capacity can be estimated by quantification of the major redox buffers (AsA-

DHA, GSH-GSSG, NAD-NADH, and NADP-NADPH) (Queval & Noctor, 2007) using 
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spectrophotometry. Tuber energy status can be estimated by quantification of ATP/ADP 

ratios by HPLC (Collen et al., 2004) providing a proxy for respiratory efficiency. Respiratory 

activity can be measured directly in mitochondria isolated from unsweetened and sweetened 

tubers using an oxygen electrode in both the presence and absence of KCN to estimate the 

contribution of the cytochrome c and alternative oxidase pathways (Bartoli et al., 2000). 

Taken together, these experiments may directly test the hypothesis that senescent sugar 

accumulation is associated with oxidative damage in aged potato tubers. It could also directly 

address the hypotheses that sugar accumulation results from reduced mitochondrial 

respiratory capacity and/or damage to amyloplast membranes. 

 

7.3 Potato tuber metabolome during long-term storage 

 

Cultivars showed similar behaviours in terms of metabolome during the storage. The main 

difference observed was in the amino acids content, which it has been postulated to be 

cultivar-dependent. The amino acids content separate the cultivars into different groups based 

on their senescent sweetening susceptibility, suggesting a relationship between amino acids 

and sugar content. In addition, 13C labelling experiment suggests an overall higher synthesis 

of amino acids in VR 808, a resistant cultivar. This experiment also showed a more rapid 

synthesis of sucrose in VR 808 compared to Arsenal, a susceptible cultivar, indicating an 

alteration in carbohydrate metabolism.  

 

In conclusion, the metabolic processes are remarkably similar between cultivars. Moreover, 

and as evidenced from the data in this work, the metabolic adjustments leading to sweetening 

are minor. In this case, it might be expected that only a few key genes are significant in 

producing the sweetening effect. Therefore, a small number of QTL might be expected to 

have a large effect which means that marker assisted breeding may be a powerful tool in the 

creation of sweetening resistant cultivars. 

 

7.4 Changes in transcript levels associated with long-term storage in potato tubers 

 

Genes associated with carbohydrate metabolism exhibited differences between Arsenal and 

VR 808. Arsenal showed a general down-regulation in genes associated to both starch and 

trehalose-6-phosphate synthesis in season 1 and 2. Additionally, the plastid sugar transporter 

GPT2 gene was observed to be progressively down-regulated in Arsenal during the storage. 
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These genes associated with carbohydrate metabolism were down-regulated in Arsenal while 

up-regulated or with no changes in VR 808. 

 

For future prospects, the study of the variations in 5’ untranslated region (5’ UTR) could lead 

to a better understanding of the gene regulation and what triggers the changes observed in 

gene expression. 

 

7.5 Mechanisms of senescent sweetening 

 

In the present work, results suggest that senescent sweetening may be the consequence of an 

altered carbohydrate metabolism. During the three seasons of study, all cultivars accumulated 

sucrose at similar levels. The accumulation of sucrose might result from a general water-

deficit stress induced by long-term storage. As previously described, drought stress may 

affect vacuolar transporters. In this context, all cultivars under study might exhibit vacuolar 

accumulation of sucrose due to drought stress following long-term storage. 

 

GPT2 expression was significantly lower in cultivars susceptible to senescent sweetening 

compared to resistant cultivars. GPT2 is involved in the transport of glucose-6-phosphate into 

the plastids. In potato tubers, the down-regulation observed in susceptible cultivars could 

implicate that sugar phosphates are unable to be transported into the amyloplasts, where they 

are used for starch synthesis. As a consequence, the decreased content in starch substrates in 

the amyloplasts might lead to the down-regulation in starch synthesis genes observed in 

Arsenal. Since reducing sugars could not been used for starch resynthesis, they would start to 

accumulate during long-term storage resulting in senescent sweetening. 

 

On the contrary, VR 808 exhibited a higher synthesis of sucrose and some amino acids. The 

accumulation of sucrose in VR 808 could be related to the reduction in the PGM activity 

observed. These products might be acting as a sink for the reducing sugars, avoiding their 

accumulation during the storage in the resistant cultivars.    

 

Although differences related to senescent sweetening were observed between cultivars, the 

reason for these differences and what are the molecular triggers of onset remain to be 

elucidated. 
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7.6 Implications of this work 

 

The main contributions of the present research project are a better understanding of the 

physiological, biochemical, and molecular changes in potato tubers during long-term storage. 

A further understanding of the processes underlying senescent sweetening will enable 

strategies for control by optimising storage regimes and will underpin breeding programmes 

for the development of senescent sweetening-resistant varieties. 
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Figure S5-1. Influence of time of storage and CIPC-treatment on metabolites in potato tubers during 

season 1 (2016/2017). TP5 and TP6 represent senescent sweetening transition. Values are means ± SE 

(five biological replicates from one experiment). Abbreviations: TP1, 2 weeks of storage; TP2, 4 

weeks of storage; TP3, 6 weeks of storage; TP4, 12 weeks of storage; TP5, 20 weeks of storage; and 

TP6, 26 weeks of storage. 
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Figure S5-1. Continuation (1). 

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Fumarate

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Serine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

2-Piperidinecarboxylic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Threonine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

0,100

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

-Alanine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Malate

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Methionine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

2,000

4,000

6,000

8,000

10,000

12,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Oxoproline

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Aspartic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

1,000

2,000

3,000

4,000

5,000

6,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

-Aminobutyric acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Threonic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,500

1,000

1,500

2,000

2,500

3,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Glutamic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Phenylalanine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Asparagine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Trihydroxypentanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Glutamine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808
R

e
sp

o
n

se
 r

at
io

Putrescine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Citrate

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Quinic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Fructose

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Allantoin

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Mannose

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

1,800

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Glucose

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

0,200

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Histidine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Lysine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Mannitol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Sorbitol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Tyrosine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Galactaric acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Inositol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Caffeic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Tryptophan

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Spermidine

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,001

0,001

0,002

0,002

0,003

0,003

0,004

0,004

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Fructose-6-Phosphate

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Galactosyl Glycerol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,001

0,002

0,003

0,004

0,005

0,006

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
e

sp
o

n
se

 r
at

io

Glucose-6-Phosphate

TP1

TP2

TP3

TP4

TP5

TP6

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Sucrose

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Galactinol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Chlorogenic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808
R

es
p

o
n

se
 r

at
io

Tetradecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

brpentadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

0,200

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Pentadecenoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Cinnamic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Pentadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Hexadecenoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Hexadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Cinnamic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

MeHexadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Heptadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

-1,000

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Linoleic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

1,800

2,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Alinolenic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Octadecenoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

2OHHexadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,500

1,000

1,500

2,000

2,500

3,000

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Noctadecanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Nonadecenoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

0,030

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Tricosane

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Neicosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Heneicosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Heneicosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Docosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Docosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Tricosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Tricosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Tetracosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Tetracosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Pentacosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

2OHTetracosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Hexacosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,050

0,100

0,150

0,200

0,250

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Hexacosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,010

0,020

0,030

0,040

0,050

0,060

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Heptacosanol

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Noctacosanoic acid

TP1

TP2

TP3

TP4

TP5

TP6

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

Arsenal -
Untreated

Arsenal VR 808 -
Untreated

VR 808

R
es

p
o

n
se

 r
at

io

Noctacosanol

TP1

TP2

TP3

TP4

TP5

TP6



192 
 

 

 

 

 

 

 

 

Figure S5-1. Continuation (2). 
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Figure S5-2. Metabolite fluxes on the metabolism of [U-13C] glucose by potato tubers. Metabolites 

which accumulated 13C at only certain time points during the storage are shown.  
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Table S5-1. Metabolites which exhibited significant changes in tuber metabolome during long-term 

storage in season 1 (2016/2017). Significant differences were estimated by three-ways analysis of 

variance (ANOVA) using cultivar, treatment (CIPC-treated or untreated), and time of storage as 

factors. Significant values (P < 0.05) are in bold. Abbreviations: Cv, cultivar; and Tr, treatment. 

 

Metabolite (polar) Cv Time Tr Cv.Time Cv.Tr Time.Tr Cv.Time.Tr 

Oxalate 0,078 <.001 0,913 0,114 0,511 0,004 0,063 

Valine <.001 <.001 0,463 <.001 0,263 0,771 0,512 

Urea <.001 <.001 0,550 <.001 0,347 0,523 0,694 

Ethanolamine 0,150 <.001 0,325 0,684 0,799 0,074 0,411 

Phosphate 0,216 <.001 0,783 0,663 0,958 0,912 0,712 

Leucine 0,005 <.001 0,936 0,196 0,988 0,886 0,975 

Glycerol 0,280 <.001 0,068 0,298 0,121 0,171 0,253 

Isoleucine 0,540 <.001 0,622 0,009 0,913 0,837 0,928 

Proline 0,696 <.001 0,463 0,229 0,033 0,429 0,164 

Glycine 0,067 <.001 0,129 0,557 0,990 0,539 0,138 

Succinate 0,718 <.001 0,689 0,376 0,498 0,012 0,628 

2,3-Dihydroxypropanoic acid <.001 <.001 0,613 <.001 0,026 0,862 0,320 

Fumarate 0,003 <.001 0,840 0,049 0,654 0,960 0,704 

Serine <.001 <.001 0,772 0,373 0,684 0,819 0,979 

2-Piperidinecarboxylic acid <.001 <.001 0,117 0,566 0,208 0,313 0,286 

U1376_Unknown 0,042 <.001 0,329 0,080 0,529 0,773 0,204 

Threonine <.001 <.001 0,696 0,070 0,858 0,647 0,900 

-Alanine 0,964 <.001 0,064 0,815 0,735 0,075 0,101 

Malate 0,014 <.001 0,766 0,107 0,028 <.001 0,854 

U1509_Unknown 0,065 <.001 0,633 0,005 0,240 0,945 0,401 

Methionine <.001 <.001 0,552 0,249 0,888 0,458 0,997 

Oxoproline <.001 <.001 0,487 <.001 0,761 0,021 0,002 

Aspartic acid <.001 <.001 0,291 0,003 0,800 0,122 0,196 

-Aminobutyric acid <.001 <.001 0,552 0,025 0,742 0,760 0,120 

Threonic acid <.001 <.001 0,830 0,004 0,358 0,118 0,299 

U1567_Unknown 0,009 <.001 0,504 <.001 0,734 0,886 0,159 

U1586_Unknown <.001 <.001 0,689 <.001 0,625 0,927 0,808 

U1585_Unknown 0,006 <.001 0,338 <.001 0,511 0,848 0,051 

U1598_Unknown 0,555 <.001 0,448 0,355 0,626 0,993 0,906 

Glutamic acid 0,050 <.001 0,883 0,002 0,806 0,226 0,434 

Phenylalanine 0,671 <.001 0,665 0,020 0,496 0,646 0,981 

Asparagine 0,885 <.001 0,701 0,157 0,672 0,811 0,995 

Trihydroxypentanoic acid 0,029 <.001 0,639 0,594 0,598 0,105 0,952 

U1703_Unknown <.001 <.001 0,474 <.001 0,172 0,969 0,906 

Glutamine <.001 <.001 0,504 0,063 0,554 0,598 0,812 

Putrescine <.001 <.001 0,029 0,005 0,911 0,004 0,797 
 

 



195 
 

Table S5-1. Continuation (1). 

 

Metabolite (polar) Cv Time Tr Cv.Time Cv.Tr Time.Tr Cv.Time.Tr 

U1751_Unknown <.001 <.001 0,112 <.001 0,393 0,216 0,766 

U1755_Unknown <.001 <.001 0,316 <.001 0,623 0,029 0,160 

USA1768_Unknown <.001 <.001 0,196 <.001 0,477 0,035 0,204 

U1801_Unknown 0,131 <.001 0,422 0,092 0,473 0,779 0,916 

Citric acid 0,016 <.001 0,270 0,182 0,884 0,772 0,808 

Quinic acid <.001 <.001 0,958 <.001 0,595 0,412 0,238 

U1871_Unknown 0,045 <.001 0,290 0,009 0,924 0,715 0,992 

Fructose <.001 0,007 0,918 0,016 0,305 0,021 0,546 

Allantoin <.001 <.001 0,094 0,283 0,585 0,424 0,946 

Mannose <.001 <.001 0,855 0,183 0,378 0,004 0,927 

Glucose <.001 0,013 0,600 0,013 0,111 0,026 0,582 

Histidine 0,006 <.001 0,568 0,213 0,474 0,458 0,991 

Lysine 0,044 <.001 0,428 0,052 0,376 0,294 0,963 

Mannitol <.001 <.001 0,647 0,765 0,339 0,149 0,164 

Sorbitol 0,851 <.001 0,339 0,991 0,127 0,103 0,612 

Tyrosine 0,587 <.001 0,932 0,249 0,227 0,570 0,920 

U1948_Unknown 0,345 <.001 0,908 0,632 0,760 0,570 1,000 

UC2020_Unknown <.001 <.001 0,053 <.001 0,034 0,012 0,314 

Galactaric acid <.001 <.001 0,026 0,384 0,253 0,195 0,832 

Inositol <.001 <.001 0,044 0,013 0,310 <.001 0,008 

UC2105_Unknown <.001 <.001 0,300 0,015 0,654 0,213 0,170 

U2125_Unknown <.001 <.001 0,082 0,078 0,283 0,006 0,003 

Caffeic acid <.001 <.001 0,372 <.001 0,236 0,130 0,347 

U2190_Unknown <.001 0,020 0,589 0,098 0,393 0,106 0,473 

Tryptophan 0,006 <.001 0,322 0,004 0,371 0,343 0,983 

Spermidine 0,495 <.001 0,428 0,697 0,503 0,306 0,413 

Fructose-6-Phosphate 0,086 0,008 0,229 0,987 0,622 0,845 0,697 

Galactosyl Glycerol <.001 <.001 0,017 <.001 0,667 0,054 0,907 

Glucose-6-Phosphate 0,259 0,004 0,118 0,998 0,822 0,862 0,871 

U2367_Unknown 0,896 <.001 0,929 0,053 0,483 0,309 0,794 

U2477b_Unknown <.001 <.001 0,001 0,003 0,048 0,050 0,071 

U2495_Unknown 0,008 0,334 0,420 0,458 0,394 0,615 0,539 

U2502_Unknown 0,611 <.001 0,766 0,785 0,827 0,512 0,298 

Sucrose <.001 <.001 0,295 0,155 0,104 <.001 0,432 

Galactinol <.001 <.001 0,055 0,873 0,677 0,516 0,364 

Chlorogenic acid 0,009 <.001 0,504 0,981 0,726 0,652 0,430 
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Table S5-1. Continuation (2). 

 

Metabolite (non-polar) Cv Time Tr Cv.Time Cv.Tr Time.Tr Cv.Time.Tr 

U1595_Unknown 0,327 <.001 0,474 0,007 0,277 0,216 0,097 

U1680_Unknown 0,634 <.001 0,448 0,665 0,360 0,410 0,855 

Tetradecanoic acid <.001 <.001 0,549 <.001 0,753 0,815 0,619 

U1762_Unknown 0,525 <.001 0,913 <.001 0,945 0,582 0,910 

Br-Pentadecanoic acid 0,989 <.001 0,237 0,844 0,517 0,916 0,933 

Pentadecenoic acid 0,008 <.001 0,844 0,416 0,380 0,745 0,886 

Cinnamic acid 0,010 <.001 <.001 0,399 0,930 <.001 0,713 

Pentadecanoic acid <.001 <.001 0,253 <.001 0,953 0,622 0,762 

U1845_Unknown <.001 <.001 <.001 0,018 0,480 <.001 0,717 

Hexadecenoic acid <.001 <.001 0,309 0,002 0,691 0,904 0,002 

Hexadecanoic acid 0,435 <.001 0,413 0,007 0,476 0,092 0,475 

Cinnamic acid 0,027 <.001 0,047 0,807 0,136 0,251 0,346 

Me-Hexadecanoic acid <.001 0,004 0,524 0,215 0,547 0,628 0,527 

Heptadecanoic acid 0,029 <.001 0,093 0,128 0,412 0,610 0,255 

Linoleic acid 0,405 <.001 0,358 0,157 0,807 0,253 0,747 

-linolenic acid 0,166 <.001 0,048 0,074 0,094 0,579 0,415 

Octadecenoic acid <.001 <.001 0,198 0,007 0,965 0,102 0,058 

2OHHexadecanoic acid <.001 <.001 0,776 <.001 0,303 0,393 0,873 

Noctadecanoic acid 0,022 <.001 0,468 0,006 0,153 0,762 0,097 

Nonadecenoic acid 0,017 <.001 0,091 0,060 0,795 0,533 0,260 

U2263_Unknown 0,271 <.001 0,496 0,612 0,606 0,245 0,250 

Tricosane <.001 <.001 0,546 0,124 0,763 0,459 0,044 

Eicosanoic acid <.001 <.001 0,256 0,941 0,093 0,447 0,102 

Heneicosanoic acid 0,258 <.001 0,535 0,180 0,004 0,831 0,447 

Heneicosanol <.001 <.001 0,905 <.001 0,343 0,148 0,336 

U2457_Unknown <.001 <.001 0,765 <.001 0,877 0,886 0,417 

U2466_Unknown 0,264 <.001 0,133 0,179 0,861 0,723 0,887 

U2510_Unknown <.001 <.001 0,865 <.001 0,533 0,365 0,384 

Docosanoic acid 0,410 <.001 0,036 0,148 0,002 <.001 <.001 

Docosanol 0,509 <.001 0,023 0,941 0,354 0,296 0,253 

Tricosanoic acid <.001 <.001 0,074 0,225 0,576 0,441 0,569 

Tricosanol 0,787 <.001 0,335 0,922 0,755 0,787 0,987 

Tetracosanoic acid <.001 <.001 0,323 0,012 0,275 0,343 0,310 

Tetracosanol <.001 <.001 0,589 <.001 0,508 0,755 0,050 

Pentacosanoic acid <.001 <.001 0,255 <.001 0,948 0,077 0,040 

2OHTetracosanoic acid 0,346 <.001 0,273 0,965 0,473 0,265 0,231 

Hexacosanoic acid <.001 <.001 0,497 0,027 0,630 0,205 0,281 

Hexacosanol <.001 <.001 0,649 0,021 0,795 0,370 0,027 

Heptacosanol <.001 <.001 0,079 0,007 0,813 0,252 0,997 

Octacosanoic acid <.001 <.001 0,502 0,026 0,981 0,109 0,769 

Octacosanol <.001 <.001 0,586 0,224 0,414 0,109 0,887 

Solanid-5-enol <.001 <.001 0,915 0,013 0,913 0,284 0,226 
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Table S5-1. Continuation (3). 

 

Metabolite (non-polar) Cv Time Tr Cv.Time Cv.Tr Time.Tr Cv.Time.Tr 

Nonacosanoic acid 0,639 <.001 0,721 0,942 0,075 0,280 0,756 

Nonacosanol <.001 <.001 0,137 <.001 0,838 0,103 0,936 

Stigmasterol <.001 <.001 0,748 0,005 0,671 0,609 0,596 

Fucosterol <.001 <.001 0,062 0,103 0,702 0,283 0,541 

-Sitosterol <.001 <.001 0,320 0,096 0,536 0,632 0,836 

-5-Avenasterol 0,664 <.001 0,531 0,006 0,892 0,392 0,233 

Triacontanoic acid 0,087 <.001 0,474 0,058 0,860 0,248 0,505 

Triacontanol 0,256 <.001 0,790 0,977 0,519 0,406 0,629 

Stigmastadienol 0,015 <.001 0,844 0,060 0,844 0,284 0,463 
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Table S5-2. Metabolites which exhibited significant changes in tuber metabolome during long-term 

storage in season 3 (2018/2019). Significant differences were estimated by two-ways analysis of 

variance (ANOVA) using cultivar and time of storage as factors. Significant values (P < 0.05) are in 

bold. 

 

Metabolite (polar) Cultivar Time Cultivar.Time 

Oxalate 0.011 <.001 0.002 

Valine 0.019 <.001 0.092 

Urea <.001 <.001 0.006 

Ethanolamine 0.002 <.001 0.003 

Phosphate 0.305 <.001 0.792 

Leucine <.001 <.001 0.018 

Glycerol <.001 <.001 0.006 

Isoleucine <.001 <.001 0.011 

Proline <.001 <.001 <.001 

Glycine <.001 <.001 0.134 

Succinic acid 0.021 <.001 0.005 

2,3-Dihydroxypropanoic acid 0.606 <.001 0.723 

Fumarate 0.209 <.001 0.766 

Serine <.001 <.001 0.132 

2-Piperidinecarboxylic acid 0.013 <.001 0.630 

U1376_Unknown 0.012 <.001 0.021 

Threonine <.001 <.001 0.414 

-Alanine 0.016 <.001 0.556 

Malate <.001 <.001 0.003 

U1509_Unknown 0.018 <.001 0.877 

Methionine <.001 <.001 <.001 

Oxoproline <.001 <.001 0.004 

Aspartic acid <.001 <.001 0.002 

-Aminobutyric acid <.001 <.001 <.001 

Threonic acid <.001 <.001 0.029 

U1567_Unknown <.001 <.001 <.001 

U1586_Unknown <.001 <.001 0.087 

U1585_Unknown <.001 <.001 <.001 

U1598_Unknown <.001 <.001 0.442 

Glutamic acid 0.023 <.001 0.184 

Asparagine <.001 <.001 0.001 

Phenylalanine <.001 <.001 0.440 

Trihydroxypentanoic acid <.001 <.001 0.012 

U1703_Unknown 0.049 <.001 0.311 

Glutamine <.001 <.001 <.001 

Putrescine 0.001 <.001 0.002 

U1751_Unknown <.001 <.001 <.001 

U1755_Unknown <.001 <.001 0.168 

USA1768_Unknown 0.012 <.001 0.187 
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Table S5-2. Continuation (1). 

 

Metabolite (polar) Cultivar Time Cultivar.Time 

-glycerophosphate 0.084 - - 

U1801_Unknown 0.194 <.001 0.006 

Citric acid 0.076 <.001 0.684 

Quinic acid <.001 <.001 <.001 

U1871_Unknown <.001 <.001 0.561 

Fructose <.001 <.001 0.174 

Allantoin <.001 <.001 <.001 

Mannose 0.006 <.001 0.535 

Galactose 0.208 - - 

Glucose <.001 <.001 0.067 

Histidine <.001 <.001 0.034 

Lysine <.001 <.001 0.001 

Mannitol 0.778 <.001 0.729 

Sorbitol 0.491 <.001 0.521 

Tyrosine <.001 <.001 <.001 

U1948_Unknown <.001 <.001 0.364 

UC2020_Unknown <.001 0.001 0.530 

Galactaric acid <.001 <.001 <.001 

Inositol <.001 <.001 <.001 

UC2105_Unknown 0.146 <.001 0.766 

U2125_Unknown <.001 <.001 <.001 

Caffeic acid <.001 <.001 <.001 

U2190_Unknown <.001 <.001 0.073 

Tryptophan <.001 <.001 0.012 

Spermidine 0.074 <.001 0.022 

Fructose-6-phosphate 0.188 <.001 0.172 

Galactosyl Glycerol <.001 <.001 0.006 

Glucose-6-phosphate 0.617 <.001 0.790 

U2367_Unknown <.001 <.001 0.004 

U2477b_Unknown 0.139 <.001 0.265 

U2495_Unknown 0.520 0.007 0.921 

U2502_Unknown 0.050 <.001 0.113 

Sucrose <.001 <.001 <.001 

Galactinol 0.019 <.001 0.215 

Chlorogenic acid <.001 <.001 <.001 
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Table S5-2. Continuation (2). 

 

Metabolite (non-polar) Cultivar Time Cultivar.Time 

U1595_Unknown 0.008 <.001 0.078 

U1680_Unknown 0.02 <.001 0.165 

Tetradecanoic acid 0.053 <.001 0.874 

U1762_Unknown <.001 <.001 <.001 

Pentadecenoic acid <.001 <.001 0.582 

Cinnamic acid 0.002 <.001 0.072 

Pentadecanoic acid <.001 <.001 0.032 

U1845_Unknown 0.001 <.001 0.070 

Hexadecenoic acid 0.592 <.001 0.830 

Hexadecanoic acid <.001 <.001 0.001 

Cinnamic acid <.001 <.001 <.001 

Me-Hexadecanoic acid <.001 <.001 0.162 

Heptadecanoic acid 0.015 <.001 0.021 

Linoleic acid <.001 <.001 0.496 

-linolenic acid <.001 <.001 <.001 

Octadecenoic acid <.001 <.001 <.001 

2OH-Hexadecanoic acid <.001 <.001 <.001 

Noctadecanoic acid <.001 <.001 <.001 

Nonadecenoic acid 0.004 <.001 0.163 

U2263_Unknown <.001 <.001 <.001 

Tricosane <.001 <.001 0.550 

Eicosanoic acid <.001 <.001 <.001 

Heneicosanoic acid <.001 <.001 <.001 

Heneicosanol <.001 <.001 <.001 

U2457_Unknown 0.025 <.001 0.061 

U2466_Unknown <.001 <.001 <.001 

U2510_Unknown <.001 <.001 <.001 

Docosanoic acid <.001 <.001 <.001 

Docosanol <.001 <.001 0.001 

Tricosanoic acid <.001 <.001 <.001 

Tricosanol 0.011 <.001 0.743 

Tetracosanoic acid <.001 <.001 <.001 

Tetracosanol <.001 <.001 0.002 

Pentacosanoic acid 0.001 <.001 0.345 

2OH-Tetracosanoic acid 0.037 <.001 0.184 

Hexacosanoic acid <.001 <.001 <.001 

Hexacosanol <.001 <.001 <.001 

Heptacosanol <.001 <.001 0.011 

Octacosanoic acid <.001 <.001 <.001 
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Table S5-2. Continuation (3). 

 

Metabolite (non-polar) Cultivar Time Cultivar.Time 

Octacosanol <.001 <.001 0.002 

Solanid-5-enol 0.016 <.001 0.157 

Nonacosanoic acid <.001 <.001 <.001 

Nonacosanol <.001 <.001 <.001 

Stigmasterol <.001 <.001 0.010 

Fucosterol 0.066 <.001 0.150 

-Sitosterol <.001 <.001 <.001 

-5-Avenasterol <.001 <.001 <.001 

Triacontanoic acid 0.004 <.001 0.251 

Triacontanol 0.230 <.001 0.919 

Stigmastadienol <.001 <.001 <.001 
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Table S5-3.1. Loadings scores from PCA of all metabolites identified by GC/MS (polar/non-polar fraction) in season 3 (2018/2019).  

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Oxalate 0.11051 0.08949 0.08248 0.03906 -0.07379 -0.02875 0.00933 0.00563 0.02915 0.09621 

Valine 0.12707 0.04240 0.00149 0.01121 -0.00504 0.05085 0.01064 0.10821 0.06249 -0.08066 

Urea 0.09939 0.06156 0.03632 0.05157 -0.11066 0.13775 0.06501 -0.03703 -0.19111 -0.07952 

Ethanolamine 0.11807 0.06891 0.07846 0.00660 -0.08234 -0.00137 -0.04186 0.00554 0.08768 -0.01538 

Phosphate 0.11378 0.07992 -0.00205 -0.06417 0.00679 -0.02708 -0.11812 -0.02539 0.09964 -0.03025 

Leucine 0.12539 0.01663 -0.05786 -0.03252 0.00344 0.04235 -0.02199 0.02786 -0.00216 -0.03840 

Glycerol 0.10254 0.06975 0.01096 -0.16640 0.00643 0.03325 0.08954 -0.00797 -0.09179 0.07832 

Isoleucine 0.12304 0.03903 -0.03808 0.00045 -0.00948 0.13002 0.01499 0.08246 0.00298 -0.07878 

Proline 0.11516 0.00986 0.00240 0.13062 0.03718 -0.00797 -0.07493 -0.08876 0.10083 0.01607 

Glycine 0.12226 0.05597 -0.04775 0.00368 0.09025 0.02790 0.02611 0.07051 0.00408 -0.03000 

Succinic acid 0.09649 0.03696 0.09360 0.03656 -0.07038 -0.14144 -0.13183 0.10180 -0.14656 0.11598 

2,3-Dihydroxypropanoic acid 0.08993 0.08608 0.12246 0.07906 -0.10699 0.09306 0.01023 0.03833 0.20731 0.05409 

Fumarate 0.09979 0.06779 0.07564 -0.03491 0.01069 -0.11353 0.03370 0.05532 -0.15966 0.09735 

Serine 0.12180 0.03832 -0.07882 -0.06295 0.05043 0.01255 0.06566 -0.02011 0.10244 0.01572 

2-Piperidinecarboxylic acid 0.09372 0.04851 -0.04602 0.04718 0.16506 0.08416 -0.02073 0.04162 -0.11122 -0.04158 

U1376_Unknown 0.06241 0.06411 0.06606 0.16003 -0.13202 0.26100 0.21132 0.01362 -0.04511 -0.12551 

Threonine 0.11106 0.05881 -0.03782 -0.03713 0.11892 -0.09835 -0.00423 0.04284 0.10867 -0.03689 

-Alanine 0.11402 0.02149 0.03500 -0.01843 0.03508 -0.04090 0.11076 0.16267 0.07753 -0.03591 

Malate 0.09434 0.03086 0.16660 0.01015 -0.07832 -0.11575 -0.09455 0.08300 0.11784 -0.08930 

U1509_Unknown 0.06518 0.11397 0.01332 0.04215 -0.14693 0.21541 0.09318 0.05896 0.04521 0.05407 

Methionine 0.10636 0.06068 -0.10493 -0.12439 0.04055 0.11920 -0.04249 0.06720 -0.01750 0.02500 

Oxoproline 0.11335 -0.00329 -0.06000 -0.01293 -0.01284 0.05107 -0.17066 0.10195 -0.03137 -0.05898 

Aspartic acid 0.12187 0.04409 -0.00904 -0.12202 -0.01918 -0.05312 -0.04591 -0.01202 0.00324 -0.01771 

-Aminobutyric acid 0.08723 0.04966 -0.07295 -0.05672 0.15565 -0.05116 0.08539 0.08005 -0.05297 -0.00940 

Threonic acid 0.09643 0.09682 0.04495 0.04709 0.09550 -0.07389 -0.02603 0.10698 0.14492 -0.13231 

U1567_Unknown 0.09937 0.06813 -0.13154 0.01952 -0.03465 0.13680 -0.13592 0.04846 -0.11289 0.05836 

U1586_Unknown 0.06874 0.05174 -0.07219 -0.28216 0.01837 -0.03322 0.01143 -0.01682 0.19048 0.00353 
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Table S5-3.1. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1585_Unknown 0.10633 0.04865 -0.08310 0.03121 0.02745 0.13376 -0.12221 0.03891 -0.20526 -0.00132 

U1598_Unknown 0.01369 0.07697 -0.26303 -0.09174 -0.17677 0.01304 -0.11137 0.12270 0.04998 0.16832 

Glutamic acid 0.11594 0.08151 -0.01644 -0.08314 0.06781 0.00243 -0.05026 -0.05141 -0.04182 -0.04346 

Asparagine 0.10290 0.00721 -0.10629 -0.18766 0.08042 0.09643 -0.08736 0.04320 -0.05021 -0.02778 

Phenylalanine 0.12064 0.01552 -0.07696 0.03200 0.11991 0.03346 -0.05423 0.01665 0.01815 -0.03455 

Trihydroxypentanoic acid 0.11786 0.07617 0.04030 -0.06318 -0.01324 -0.07106 0.00793 -0.01316 0.01361 -0.00713 

U1703_Unknown 0.09526 0.08279 -0.06327 -0.09080 0.05784 -0.09676 0.02122 0.01263 0.00402 0.04852 

Glutamine 0.07510 0.02788 -0.02959 -0.27388 0.07290 -0.08511 0.10958 0.01139 0.07732 -0.10997 

Putrescine 0.11239 0.05757 -0.03887 -0.03414 0.08856 -0.01152 -0.08134 -0.11696 -0.01725 0.01605 

U1751_Unknown 0.09838 0.08052 -0.03244 0.09700 0.01162 0.14663 -0.04873 -0.15953 -0.10338 0.05015 

U1755_Unknown 0.09841 0.05508 0.01896 -0.09570 -0.05345 0.10534 0.11156 -0.12933 0.01821 0.06729 

USA1768_Unknown 0.09774 0.09226 0.06091 0.01245 0.04375 -0.02074 0.03626 -0.04229 -0.15163 0.19535 

-glycerophosphate -0.06039 0.04722 0.19802 -0.09162 0.17350 0.10811 -0.00915 0.07440 0.01635 0.04944 

U1801_Unknown -0.01055 0.10137 -0.11374 0.03318 -0.23984 -0.14359 -0.00545 0.10820 0.07310 0.17445 

Citric acid 0.11416 0.06737 -0.03090 -0.11934 0.03510 -0.05537 -0.06017 -0.00049 -0.02191 -0.06898 

Quinic acid 0.07086 0.08325 0.01974 0.04337 0.13182 -0.19120 0.19826 -0.00156 0.08812 -0.13794 

U1871_Unknown -0.00153 0.07023 -0.26271 -0.05368 -0.21633 -0.07562 -0.11033 0.10666 0.05482 0.15655 

Fructose 0.04444 0.02797 -0.06922 0.27963 0.19778 0.04271 0.03096 0.08226 0.01762 0.04541 

Allantoin 0.11760 0.06701 -0.00723 -0.08968 0.00286 -0.01648 -0.12584 -0.04918 -0.02601 -0.01369 

Mannose 0.09787 0.04985 -0.03434 0.13528 0.08664 -0.10023 0.04728 -0.03777 0.04417 0.12280 

Galactose -0.05732 0.04676 0.17077 -0.06488 0.18189 0.12034 -0.01005 0.08713 0.03563 0.12647 

Glucose 0.07347 0.05263 -0.02960 0.25731 0.18674 -0.05832 -0.01530 0.03698 -0.01963 0.15022 

Histidine 0.09128 -0.08252 -0.16342 -0.08804 0.03590 0.04622 -0.06355 0.07752 0.04860 -0.05376 

Lysine 0.11548 0.02933 -0.12901 0.00054 0.06024 0.04438 -0.02515 0.06061 0.06896 0.04023 

Mannitol 0.02730 0.10268 0.16567 -0.04540 0.20295 0.01919 -0.07436 0.10731 -0.02240 0.05547 

Sorbitol 0.08401 0.10675 0.16018 0.01135 -0.04846 0.00265 -0.07843 0.06954 0.11600 0.07236 

Tyrosine 0.10745 0.02211 -0.12516 0.07222 0.08171 0.05176 -0.05418 0.12437 0.11281 -0.01444 
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Table S5-3.1. Continuation (2). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1948_Unknown 0.03434 0.08874 -0.23303 -0.07611 -0.18846 -0.07453 -0.09721 0.05045 -0.03336 0.14385 

UC2020_Unknown -0.02501 -0.10400 -0.09450 0.16683 0.00758 0.02874 0.02405 0.14200 0.17328 0.12597 

Galactaric acid 0.09344 0.08686 -0.06856 -0.02647 -0.02219 0.19851 0.14785 -0.09315 -0.14358 -0.02104 

Inositol 0.09232 0.07513 -0.03359 0.14651 0.14735 -0.02610 -0.01765 -0.17023 -0.04251 0.06101 

UC2105_Unknown 0.11167 0.09503 0.05949 -0.01234 -0.02129 -0.01462 0.06382 -0.05880 0.02856 -0.04009 

U2125_Unknown 0.07087 0.06376 0.12628 -0.05666 -0.15894 -0.05492 0.14554 0.02592 -0.13539 0.15416 

Caffeic acid 0.09159 0.07496 0.14718 0.03001 -0.07031 -0.14954 0.08078 -0.02630 0.06558 0.12974 

U2190_Unknown 0.11082 0.02071 -0.07919 -0.01648 0.11907 0.00641 0.12672 0.02332 -0.04031 -0.06831 

Tryptophan 0.09058 0.06097 -0.14070 0.01232 0.01267 0.12009 0.01709 0.08735 0.04079 -0.03909 

Spermidine 0.09774 0.06761 0.11695 0.04831 -0.05850 -0.06754 -0.16885 0.09395 0.06786 0.15674 

Fructose-6-phosphate 0.09257 0.07015 0.09380 0.10150 -0.06988 -0.16365 0.07884 -0.03624 -0.07634 0.21296 

Galactosyl Glycerol 0.08944 0.09855 0.02998 -0.17603 0.02890 0.04070 0.12001 -0.04229 0.03737 0.10952 

Glucose-6-phosphate 0.10174 0.08783 -0.02039 0.00660 -0.07951 0.11993 0.06020 -0.04836 0.02182 -0.21842 

U2367_Unknown 0.11360 0.08616 0.02029 0.01853 0.00850 -0.07895 0.13599 0.03354 0.04145 -0.04746 

U2477b_Unknown 0.07081 0.06184 0.13599 0.08069 -0.21618 0.18481 0.04281 0.05630 0.07460 -0.14346 

U2495_Unknown 0.07964 0.08584 0.09636 0.15294 -0.11557 0.13020 0.13961 0.02001 0.10426 0.05144 

U2502_Unknown 0.08623 0.08410 0.07696 0.09634 -0.11703 0.12033 0.21341 -0.00634 -0.06605 0.01394 

Sucrose 0.08532 0.05485 -0.07751 0.17614 0.17927 -0.14118 0.06566 -0.01475 0.00968 -0.04026 

Galactinol 0.09914 0.09489 0.02936 -0.04565 -0.03718 -0.06353 0.13721 -0.07723 0.08248 -0.04167 

Chlorogenic acid 0.08100 0.06857 0.11437 0.10669 -0.11153 -0.11191 -0.00464 -0.00424 -0.06601 -0.10575 

U1595_Unknown -0.02597 -0.01032 0.15565 -0.14907 0.16946 0.16086 0.04953 0.16691 0.02490 0.23165 

U1680_Unknown 0.02011 -0.10680 0.13864 -0.06910 0.09232 0.10818 0.01195 0.16600 0.01488 -0.02030 

Tetradecanoic acid 0.08078 -0.13094 -0.03926 -0.03617 -0.01925 0.06658 0.04416 -0.01468 -0.08172 0.04433 

U1762_Unknown 0.06762 -0.13362 0.04721 -0.16713 -0.03168 0.01321 0.15220 0.07816 0.02548 0.05753 

Br-pentadecanoic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentadecenoic acid 0.06731 -0.16587 0.06073 0.03570 -0.03039 -0.00336 -0.00639 0.01776 0.02015 0.03613 

Cinnamic acid 0.12304 -0.01693 0.05006 -0.01981 0.04865 -0.02673 -0.00698 0.04582 -0.07175 -0.05926 
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Table S5-3.1. Continuation (3). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentadecanoic acid 0.07993 -0.14441 -0.02334 -0.08064 -0.09566 0.01771 0.01100 0.02444 0.06336 0.01410 

U1845_Unknown 0.10948 -0.10059 0.01988 -0.00591 0.04477 -0.02559 0.01654 0.08455 0.03984 -0.05467 

Hexadecenoic acid 0.09463 -0.11513 -0.01438 -0.03033 0.03271 0.01722 -0.02870 -0.00849 -0.05953 0.00691 

Hexadecanoic acid 0.09063 -0.13702 -0.04642 0.00467 0.02293 0.07090 0.00826 -0.07845 0.07119 0.05309 

Cinnamic acid 0.10528 -0.10361 0.05799 0.01926 0.01480 -0.00494 -0.04601 0.09951 -0.02178 -0.05629 

Me-Hexadecanoic acid 0.06369 -0.11410 -0.05415 0.06158 0.12174 0.00865 0.05981 -0.14943 0.21119 0.03223 

Heptadecanoic acid 0.08277 -0.15460 0.01666 0.01316 -0.00504 -0.01935 -0.00055 0.01600 0.03338 -0.02290 

Linoleic acid 0.11462 -0.04176 -0.11543 0.03478 -0.06793 -0.04735 0.00758 -0.07590 0.00454 -0.01067 

-linolenic acid 0.11007 -0.02586 0.04060 -0.00854 -0.06003 -0.02103 -0.10914 -0.18991 -0.07861 -0.08378 

Octadecenoic acid 0.09362 -0.07128 -0.00023 0.01741 0.04247 0.01215 -0.05752 -0.14087 -0.03784 -0.06752 

2OH-Hexadecanoic acid 0.10197 -0.12113 0.04480 -0.02177 -0.01867 0.07300 -0.05476 -0.00027 -0.04376 -0.02000 

Noctadecanoic acid 0.08444 -0.14685 0.00593 0.08705 0.01826 0.06984 -0.05976 -0.06222 -0.00160 0.00077 

Nonadecenoic acid 0.02885 -0.09606 -0.00434 0.01749 0.04545 0.01686 0.06682 -0.12806 0.15565 0.07408 

U2263_Unknown -0.01482 -0.00393 0.19664 -0.09688 0.12753 0.09627 -0.08561 0.10425 -0.07989 0.22999 

Tricosane 0.06116 -0.15280 -0.06986 0.08831 0.02787 0.01388 0.03462 0.09964 0.03517 0.03206 

Eicosanoic acid 0.09018 -0.14347 0.06113 0.01574 -0.04707 0.04283 -0.07669 -0.03896 -0.01918 0.00558 

Heneicosanoic acid 0.07130 -0.16031 -0.02405 0.02205 -0.04532 0.07254 -0.03597 0.03439 -0.03656 -0.03295 

Heneicosanol 0.06157 -0.08466 0.04506 0.08448 0.04525 -0.03681 -0.13088 0.26078 -0.16502 -0.12415 

U2457_Unknown 0.02859 -0.19266 -0.00371 0.03407 0.00788 0.07073 0.06273 0.08855 0.07202 0.08536 

U2466_Unknown 0.02751 -0.19216 -0.01212 0.03142 0.01878 0.08809 0.06259 0.10617 0.08068 0.08303 

U2510_Unknown 0.02638 -0.12943 0.09142 -0.16001 0.01564 0.05689 0.13223 -0.00622 0.06625 0.20446 

Docosanoic acid 0.08034 -0.15344 0.06418 -0.02188 -0.07791 0.00204 -0.02174 0.02706 -0.09663 0.01339 

Docosanol 0.08977 -0.11634 0.05294 0.02147 -0.00897 -0.06178 -0.05516 0.10545 -0.17019 -0.05202 

Tricosanoic acid 0.07640 -0.16004 0.00926 -0.03275 -0.08690 0.01704 -0.00660 0.00137 -0.05484 -0.01685 

Tricosanol 0.10679 -0.10595 0.02118 0.02597 -0.00143 -0.07629 -0.00157 0.02038 -0.02281 -0.03098 

Tetracosanoic acid 0.08194 -0.12810 0.08426 -0.12689 -0.06919 -0.02014 0.06668 0.02202 -0.09464 -0.05202 

Tetracosanol 0.09178 -0.11554 0.04947 -0.06751 -0.07291 -0.12687 0.02061 0.08543 -0.05695 -0.12241 
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Table S5-3.1. Continuation (4). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentacosanoic acid 0.07292 -0.13313 0.01060 -0.02480 -0.12217 -0.01945 0.02386 -0.00430 -0.04464 0.00650 

2OH-Tetracosanoic acid 0.08349 -0.10605 0.03490 0.07977 -0.06176 0.11530 -0.14657 0.08443 0.22468 0.03613 

Hexacosanoic acid 0.08558 -0.11457 -0.01182 -0.10250 -0.05999 -0.08987 0.13673 0.00045 -0.00617 -0.04601 

Hexacosanol 0.09796 -0.09337 0.02792 0.02593 -0.00672 -0.18549 0.04815 -0.00020 0.07241 -0.14711 

Heptacosanol 0.08580 -0.10623 -0.06386 0.04340 0.02548 0.07625 0.03980 -0.19432 0.05501 0.11764 

Octacosanoic acid 0.07527 -0.14889 0.02742 -0.02557 -0.04665 -0.07782 0.07139 -0.05655 -0.02295 -0.02424 

Octacosanol 0.10490 -0.09574 0.03001 0.07445 0.01692 -0.11871 0.01025 -0.09935 0.00138 0.03923 

Solanid-5-enol 0.06599 0.04597 0.17155 0.04859 -0.13250 0.02424 -0.27272 0.01446 0.27301 -0.08150 

Nonacosanoic acid 0.06795 -0.13962 -0.05748 0.02851 0.02166 0.03842 -0.01927 -0.11494 0.05876 0.15914 

Nonacosanol 0.09049 -0.08532 -0.07360 -0.04377 0.01577 0.01763 0.05582 -0.26234 0.13071 0.14727 

Stigmasterol 0.11262 -0.02154 0.06963 0.05003 -0.03481 -0.11224 -0.12051 -0.08099 -0.15288 0.12016 

Fucosterol 0.02051 0.00833 0.17811 -0.05554 0.04309 0.06604 -0.24365 -0.19588 0.06783 -0.01797 

-Sitosterol 0.10911 -0.00025 -0.00697 0.04393 0.00582 0.15756 -0.13867 -0.17252 -0.09526 0.06391 

-5-Avenasterol -0.01705 0.04907 0.16894 -0.14941 0.03508 0.04128 -0.21794 -0.26121 0.09527 -0.07929 

Triacontanoic acid 0.08197 -0.13195 0.04843 0.02099 -0.02146 -0.12375 0.00145 0.00862 -0.02927 0.09805 

Triacontanol 0.11277 -0.06124 0.01702 0.04097 0.05650 -0.11682 -0.01009 -0.01050 -0.10230 0.08818 

Stigmastadienol -0.02748 -0.05800 0.18794 -0.02817 0.13065 0.09688 0.17855 -0.19015 0.06882 -0.11101 
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Table S5-3.2. Loadings scores from PCA of polar metabolites identified by GC/MS in season 3 (2018/2019). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Oxalate 0.13984 0.12335 0.04607 -0.01556 0.04160 -0.06764 -0.05047 -0.02302 0.06948 -0.03559 

Valine 0.14760 -0.01137 -0.03352 -0.02193 -0.07693 -0.06727 0.02297 0.15074 0.01324 -0.06271 

Urea 0.12174 0.07525 0.03888 -0.11022 -0.20465 -0.00410 -0.00718 -0.13362 -0.19232 0.11008 

Ethanolamine 0.14287 0.08719 0.03617 0.01152 -0.02759 -0.13887 -0.05889 0.01470 0.15681 0.00112 

Phosphate 0.14154 -0.02138 0.02971 0.07969 0.04019 -0.05185 -0.11041 0.00336 0.16222 0.06552 

Leucine 0.13943 -0.09290 -0.03309 0.00318 -0.09126 -0.09586 0.00334 0.03647 0.00300 0.02998 

Glycerol 0.12841 -0.01481 0.08528 0.14676 -0.07748 0.06103 0.04163 -0.07646 -0.06931 0.03658 

Isoleucine 0.14285 -0.04982 -0.01464 -0.05381 -0.14991 -0.01283 0.00941 0.11504 -0.02918 -0.03083 

Proline 0.12527 0.00257 -0.14883 -0.07593 0.00818 -0.15130 -0.06741 -0.08807 0.21259 0.00732 

Glycine 0.14624 -0.05737 -0.07254 0.00067 -0.00071 0.05968 0.01714 0.07233 -0.02715 -0.11768 

Succinic acid 0.11082 0.07926 -0.00727 0.01816 0.09707 -0.24736 -0.13854 0.01777 -0.32367 0.10243 

2,3-Dihydroxypropanoic acid 0.11743 0.17917 0.05039 -0.07240 -0.05233 -0.03445 -0.08930 0.15124 0.26091 -0.11220 

Fumarate 0.12301 0.07408 0.01419 0.08489 0.09874 -0.03145 0.03376 0.02390 -0.37902 0.05032 

Serine 0.14181 -0.10059 -0.02801 0.04505 -0.03650 0.00210 0.10424 0.06845 0.06310 0.01666 

2-Piperidinecarboxylic acid 0.11368 -0.05284 -0.13864 -0.02584 -0.03240 0.17345 -0.12935 -0.02566 -0.01655 -0.15663 

U1376_Unknown 0.08325 0.17123 0.04075 -0.24000 -0.26404 0.13455 0.14028 0.06300 -0.06737 -0.02057 

Threonine 0.13487 -0.06256 -0.07967 0.09079 0.10941 0.01448 0.04139 0.08230 0.09968 -0.02560 

-Alanine 0.12885 0.01056 -0.06861 0.05588 0.00295 -0.06495 0.12016 0.16667 -0.03633 -0.19702 

Malate 0.10683 0.13906 -0.01749 0.08392 0.02792 -0.27622 -0.03938 0.17073 0.06994 0.04725 

U1509_Unknown 0.09874 0.10841 0.18995 -0.16250 -0.11820 0.19776 -0.01306 0.13090 0.06383 -0.00324 

Methionine 0.13118 -0.14426 0.05189 0.04584 -0.09982 0.09705 -0.07595 0.11975 -0.09379 -0.00826 

Oxoproline 0.12129 -0.12692 -0.05559 -0.03002 -0.09307 -0.17938 -0.20151 0.03269 -0.05679 -0.11564 

Aspartic acid 0.14170 -0.05861 0.03769 0.11765 -0.01433 -0.12200 -0.03021 -0.06770 0.02699 0.04944 

-Aminobutyric acid 0.10742 -0.09539 -0.07180 0.07525 0.09296 0.15623 0.07931 0.01748 -0.15667 -0.22747 

Threonic acid 0.12753 0.06132 -0.06540 0.03050 0.14874 0.06925 -0.00152 0.17474 0.09729 -0.15499 

U1567_Unknown 0.12427 -0.12250 0.05805 -0.14205 -0.04765 0.05692 -0.23377 -0.06309 -0.07328 -0.11893 

U1586_Unknown 0.08795 -0.13502 0.16152 0.23998 0.01141 0.06083 0.09570 0.11240 0.20235 0.14930 
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Table S5-3.2. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1585_Unknown 0.12671 -0.09679 -0.03399 -0.10022 -0.09161 0.04652 -0.23145 -0.10954 -0.18795 -0.11516 

U1598_Unknown 0.03494 -0.21268 0.33237 -0.14476 0.15277 0.10128 -0.10168 0.10647 0.00675 0.06204 

Glutamic acid 0.14464 -0.03932 0.00715 0.09815 0.00361 0.05461 -0.06484 -0.12501 0.06440 0.06028 

Asparagine 0.11414 -0.20736 0.00193 0.13100 -0.14310 0.01759 -0.09250 0.02575 -0.09075 0.03157 

Phenylalanine 0.13410 -0.11669 -0.13731 -0.02352 -0.01841 -0.01392 -0.03380 -0.01655 0.07900 -0.01670 

Trihydroxypentanoic acid 0.14455 0.03465 0.04564 0.09131 0.04152 -0.05551 0.04999 0.00619 -0.02361 0.07813 

U1703_Unknown 0.12368 -0.06690 0.04295 0.08777 0.14882 0.06136 0.03182 -0.00842 -0.05322 -0.13864 

Glutamine 0.08935 -0.11087 0.05918 0.30089 -0.03720 0.02217 0.22400 0.07476 -0.02821 0.15386 

Putrescine 0.13493 -0.06363 -0.06892 0.06912 0.00492 -0.02053 -0.09673 -0.14531 0.07496 0.21024 

U1751_Unknown 0.12503 0.01623 -0.02214 -0.13387 -0.06934 0.10791 -0.15938 -0.26519 0.11494 0.07442 

U1755_Unknown 0.11971 0.02338 0.07703 0.05303 -0.13919 0.03076 0.03363 -0.19528 0.17584 0.07544 

USA1768_Unknown 0.12721 0.08970 -0.00504 0.03171 0.06142 0.09564 -0.07022 -0.14953 -0.12335 0.05706 

-glycerophosphate -0.05236 0.17415 -0.04237 0.21231 -0.04309 0.25950 -0.17962 0.17452 -0.01795 0.11442 

U1801_Unknown 0.01335 0.01012 0.31778 -0.18129 0.30960 0.02169 0.02502 0.10480 -0.01729 0.03403 

Citric acid 0.13917 -0.06988 0.03651 0.12540 0.03361 -0.01268 -0.04012 -0.08965 0.05904 0.04392 

Quinic acid 0.09689 0.06756 -0.07814 0.05173 0.23564 0.12642 0.30675 -0.00313 0.06099 -0.12978 

U1871_Unknown 0.01628 -0.19340 0.33316 -0.17409 0.23046 0.01570 -0.06659 0.06117 0.04112 0.07292 

Fructose 0.05600 -0.01313 -0.27379 -0.24729 0.09152 0.15159 0.01881 0.10096 -0.01145 0.36507 

Allantoin 0.14242 -0.04479 0.02799 0.09428 -0.01561 -0.07242 -0.13067 -0.09268 0.04269 0.14780 

Mannose 0.11777 0.00977 -0.14256 -0.08533 0.15946 -0.01709 0.04840 -0.03286 0.03844 0.16935 

Galactose -0.04914 0.15375 -0.05282 0.16554 -0.01816 0.29058 -0.17693 0.22632 -0.02507 0.28384 

Glucose 0.09215 0.02412 -0.25533 -0.18588 0.19931 0.09364 -0.06073 0.00607 -0.03810 0.24743 

Histidine 0.07940 -0.27693 -0.08437 0.01199 -0.14712 -0.18160 0.05809 0.12801 -0.09681 0.02391 

Lysine 0.13278 -0.15391 -0.04843 -0.05279 -0.01543 0.00551 0.01189 0.11091 -0.01000 -0.02397 

Mannitol 0.05515 0.15374 -0.08111 0.18319 0.09924 0.26452 -0.26056 0.19674 -0.13504 -0.05828 

Sorbitol 0.11570 0.18704 0.04831 0.05211 0.04614 -0.03548 -0.19320 0.14504 0.05711 -0.05072 

Tyrosine 0.12223 -0.14241 -0.09954 -0.11077 0.00050 -0.00315 0.00454 0.20919 0.02936 -0.07191 
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Table S5-3.2. Continuation (2). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1948_Unknown 0.05887 -0.17341 0.30946 -0.12227 0.19569 0.02644 -0.06582 -0.02553 -0.04994 0.03902 

UC2020_Unknown -0.05149 -0.10169 -0.15712 -0.21094 -0.01641 -0.15059 0.11729 0.30519 0.01888 0.31765 

Galactaric acid 0.12293 -0.01975 0.08604 -0.07594 -0.17222 0.21656 0.08577 -0.14606 -0.08753 0.03720 

Inositol 0.11715 0.01108 -0.15157 -0.09232 0.13848 0.14056 -0.06726 -0.27147 0.11009 -0.01507 

UC2105_Unknown 0.14279 0.09086 0.03879 0.03666 0.00779 0.01478 0.08384 -0.04835 0.05841 0.11499 

U2125_Unknown 0.09066 0.16232 0.15917 0.05707 -0.02357 -0.07630 0.14116 -0.00579 -0.33495 0.17239 

Caffeic acid 0.11536 0.18921 0.03195 0.04955 0.13619 -0.11933 0.04814 -0.04344 0.06499 -0.06074 

U2190_Unknown 0.12604 -0.10458 -0.11018 0.02552 -0.05640 0.04083 0.20586 0.02873 -0.14042 -0.04256 

Tryptophan 0.11380 -0.12513 0.03861 -0.12387 -0.04493 0.10972 0.07482 0.13513 -0.00260 -0.01402 

Spermidine 0.12015 0.11813 0.00826 0.00810 0.10389 -0.17763 -0.24107 0.12885 -0.02233 -0.04440 

Fructose-6-phosphate 0.11501 0.15892 0.00817 -0.05014 0.17996 -0.11122 0.04572 -0.10875 -0.17369 0.00521 

Galactosyl Glycerol 0.12176 0.02687 0.10776 0.17630 -0.03228 0.14427 0.04718 -0.03743 0.09785 -0.00113 

Glucose-6-phosphate 0.13126 0.02138 0.07126 -0.06567 -0.15135 0.03305 0.09446 -0.05761 0.09722 0.11194 

U2367_Unknown 0.14341 0.05888 0.00398 0.00498 0.09063 0.02945 0.15886 -0.00047 0.01707 -0.13325 

U2477b_Unknown 0.09024 0.19645 0.11206 -0.12882 -0.23415 -0.08781 0.00887 0.11673 0.06134 0.06801 

U2495_Unknown 0.10667 0.19877 0.03992 -0.18012 -0.07538 0.06136 0.04370 0.12094 0.08937 -0.13280 

U2502_Unknown 0.11326 0.17068 0.07262 -0.14551 -0.10902 0.07638 0.15642 -0.01191 -0.09579 -0.06706 

Sucrose 0.10558 -0.03286 -0.20416 -0.10650 0.22865 0.09075 0.14098 -0.07017 -0.00296 -0.04898 

Galactinol 0.12984 0.06511 0.07640 0.05508 0.04102 0.01365 0.20977 -0.06220 0.07731 0.14321 

Chlorogenic acid 0.10183 0.16620 0.01565 -0.05592 0.06146 -0.18259 0.02630 -0.08569 -0.08855 -0.01085 
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Table S5-3.3. Loadings scores from PCA of non-polar metabolites identified by GC/MS in season 3 (2018/2019). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1595_Unknown -0.02083 0.18806 0.36194 0.00387 0.02780 -0.41851 -0.01441 0.25258 0.01364 -0.11028 

U1680_Unknown 0.08179 0.17142 0.28564 0.12191 0.24246 -0.06970 0.12851 -0.01045 -0.28766 0.48525 

Tetradecanoic acid 0.15561 0.07850 -0.07289 0.00761 -0.00485 -0.14651 -0.19947 0.04116 0.03768 0.15734 

U1762_Unknown 0.14552 0.16027 0.08486 0.08769 -0.16498 -0.17989 0.05957 0.12308 -0.22255 0.12353 

Br-pentadecanoic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentadecenoic acid 0.16329 0.11027 0.03382 0.00053 -0.02259 0.12485 -0.07817 -0.01671 0.05438 -0.06387 

Cinnamic acid 0.13807 -0.22256 0.05515 0.13475 0.07999 -0.24248 0.11828 0.14764 -0.08507 0.00742 

Pentadecanoic acid 0.16331 0.07993 -0.04772 0.01133 -0.14216 0.00323 -0.20419 0.07419 -0.14548 -0.05250 

U1845_Unknown 0.16936 -0.05374 0.02576 0.09192 0.09530 -0.08807 0.09482 0.01210 -0.10897 0.05841 

Hexadecenoic acid 0.16192 -0.01861 -0.00609 -0.00126 0.04138 -0.13256 0.00306 -0.08698 0.08415 0.07028 

Hexadecanoic acid 0.16968 0.02640 -0.06550 -0.16536 0.06240 -0.13181 -0.14692 -0.01580 -0.01139 0.04809 

Cinnamic acid 0.16846 -0.07013 0.08034 0.11967 0.14222 0.03206 0.07045 0.04089 -0.05468 0.11418 

Me-Hexadecanoic acid 0.12856 0.03934 -0.06914 -0.33313 0.12690 0.03255 0.31464 0.06047 -0.06406 0.16753 

Heptadecanoic acid 0.17239 0.06330 0.01207 0.01125 0.02985 0.10109 0.06768 -0.01829 0.06715 0.06870 

Linoleic acid 0.14134 -0.18464 -0.24146 -0.00620 0.00521 -0.18296 -0.11003 0.15121 0.00905 0.00089 

-linolenic acid 0.13193 -0.30092 0.02590 -0.02935 -0.11495 -0.08012 -0.14079 -0.07636 0.08020 0.13867 

Octadecenoic acid 0.13800 -0.15672 -0.02812 -0.08132 0.09644 -0.18073 -0.19512 -0.30324 0.04654 0.04247 

2OH-Hexadecanoic acid 0.17409 -0.03458 0.08714 -0.00308 -0.03586 0.07268 -0.08023 0.09724 0.05778 0.07566 

Noctadecanoic acid 0.17040 0.00849 0.02142 -0.11615 0.13802 0.13102 -0.05856 -0.04787 0.10515 0.14558 

Nonadecenoic acid 0.08324 0.10840 0.01874 -0.30536 -0.08847 0.16076 0.38912 0.20624 0.46508 -0.00316 

U2263_Unknown -0.01094 0.06287 0.43282 -0.00977 0.16112 -0.21830 0.09669 0.04536 0.32085 -0.31749 

Tricosane 0.14652 0.13892 -0.12995 0.01362 0.20579 0.07258 0.02973 -0.14948 -0.12861 -0.25288 

Eicosanoic acid 0.17539 0.00153 0.08751 -0.04412 -0.03371 0.14677 -0.11130 0.05831 0.07714 0.05959 

Heneicosanoic acid 0.16320 0.09753 -0.03038 -0.00014 0.02750 0.09216 -0.21584 0.10393 0.13783 0.14553 

Heneicosanol 0.11186 -0.02002 0.08685 0.34176 0.33169 0.08142 -0.08592 -0.23132 0.12282 -0.10887 

U2457_Unknown 0.13576 0.30435 0.00543 -0.06966 0.13193 0.12422 -0.04346 -0.01100 0.01996 0.01369 

U2466_Unknown 0.13391 0.31339 0.00595 -0.07232 0.15074 0.11733 -0.05150 0.00200 -0.01023 0.00254 
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Table S5-3.3. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U2510_Unknown 0.10089 0.23852 0.17924 -0.10396 -0.23354 -0.25664 -0.08138 -0.09020 -0.11475 -0.18508 

Docosanoic acid 0.17131 0.05463 0.07684 0.06795 -0.10814 0.08517 -0.11201 -0.00104 0.16219 -0.02144 

Docosanol 0.15982 -0.03295 0.05725 0.21737 0.05632 0.04668 0.00546 -0.09635 0.19045 -0.08464 

Tricosanoic acid 0.16931 0.08648 0.00644 0.02759 -0.13979 0.06815 -0.16888 0.05936 0.16890 0.04569 

Tricosanol 0.17085 -0.07211 -0.02694 0.09503 0.07048 -0.00921 0.09389 -0.00044 0.00199 -0.03738 

Tetracosanoic acid 0.15854 0.04716 0.11397 0.11957 -0.29354 -0.01283 -0.00576 0.01363 0.04915 0.02260 

Tetracosanol 0.16102 -0.02665 0.01645 0.22844 -0.19348 0.04832 0.09193 -0.01617 -0.00082 0.02008 

Pentacosanoic acid 0.15084 0.05661 -0.04446 0.05108 -0.24371 0.09775 -0.18397 -0.00546 0.01463 -0.12828 

2OH-Tetracosanoic acid 0.14635 -0.01343 0.07354 -0.10935 0.21948 0.22169 -0.11390 0.30763 -0.22655 -0.16807 

Hexacosanoic acid 0.15264 0.03846 -0.04735 0.06999 -0.32479 -0.03076 0.20071 0.08420 -0.03153 -0.00939 

Hexacosanol 0.15467 -0.09453 -0.06165 0.10408 -0.11104 0.10901 0.28670 0.02740 -0.01199 0.10656 

Heptacosanol 0.14831 -0.01897 -0.10443 -0.29661 0.08659 -0.13433 0.03006 0.03954 0.00235 0.01315 

Octacosanoic acid 0.16300 0.06266 -0.01938 0.05899 -0.13927 0.02099 0.09274 -0.18213 -0.12093 0.01010 

Octacosanol 0.16443 -0.11643 -0.04715 -0.01905 0.04369 -0.01309 0.22221 -0.07262 -0.09087 -0.02639 

Solanid-5-enol 0.04662 -0.28486 0.22330 -0.01801 0.00814 0.31743 -0.10096 0.40874 -0.30942 -0.25143 

Nonacosanoic acid 0.14738 0.06968 -0.07569 -0.19830 0.08317 -0.01474 0.00941 -0.25506 -0.11960 -0.31967 

Nonacosanol 0.14056 -0.05034 -0.13128 -0.31026 -0.09845 -0.19660 0.00795 -0.02922 -0.17868 -0.12917 

Stigmasterol 0.13211 -0.27298 0.02657 0.07513 -0.01467 -0.03541 0.06549 0.06502 0.13620 -0.11271 

Fucosterol 0.02112 -0.17823 0.40416 -0.22383 -0.05392 0.17799 -0.03506 -0.24876 -0.04387 0.07850 

-Sitosterol 0.11494 -0.28148 0.03613 -0.18652 0.14450 -0.13888 -0.17327 0.10330 0.13377 0.09131 

-5-Avenasterol -0.04049 -0.17071 0.37601 -0.23439 -0.21675 0.13295 0.00806 -0.32714 -0.10049 0.08991 

Triacontanoic acid 0.16062 0.01401 0.00629 0.07681 -0.01336 0.05572 0.20339 -0.16719 -0.16255 -0.24176 

Triacontanol 0.15174 -0.15191 -0.04019 0.07845 0.05981 -0.10855 0.21466 -0.04733 0.07454 -0.14237 

Stigmastadienol 0.00616 0.05474 0.41724 -0.23588 -0.06654 0.25942 0.07167 -0.26879 0.01107 -0.12195 
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Table S5-3.4. Loadings scores from PCA of all metabolites identified by GC/MS (polar/non-polar fraction) at 5 weeks after storage in season 3 (2018/2019).  

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Oxalate 0.04433 0.06187 0.07026 0.19513 -0.03240 -0.02383 0.05174 -0.06350 -0.01383 -0.06589 

Valine 0.06751 0.18331 0.08789 -0.05123 -0.04023 -0.03854 0.05956 -0.00532 -0.01740 -0.04596 

Urea -0.00946 0.00251 0.07322 -0.02234 -0.11861 0.14764 0.17260 -0.13823 -0.15575 0.19939 

Ethanolamine 0.07349 0.10520 0.11508 0.03383 0.06009 0.16482 -0.13379 0.06083 -0.04119 -0.01893 

Phosphate 0.02976 0.16346 0.12300 -0.08717 0.02071 -0.09244 0.00485 -0.05852 -0.11049 -0.05402 

Leucine 0.06983 0.18932 0.05056 -0.02809 -0.00126 0.05367 0.05745 0.01996 -0.04227 -0.10259 

Glycerol 0.08995 0.09903 0.03993 -0.00985 0.04597 0.21753 -0.06759 0.02418 -0.07582 -0.11486 

Isoleucine 0.07192 0.18487 0.03883 -0.03704 -0.05292 0.02709 0.08002 0.00624 -0.01829 -0.11761 

Proline -0.00614 0.09383 -0.00045 0.03777 0.01526 -0.23496 0.02740 -0.05154 -0.11077 -0.05920 

Glycine 0.09665 0.13971 -0.01444 -0.07720 -0.00499 -0.13463 -0.00517 -0.09405 -0.09364 0.06647 

Succinic acid 0.05087 0.11070 -0.07757 0.04445 -0.07765 0.26568 -0.06728 0.03914 0.10628 0.06799 

2,3-Dihydroxypropanoic acid 0.07440 0.16918 0.02635 0.11482 -0.04220 0.04071 -0.04041 0.00448 -0.07176 0.07031 

Fumarate 0.07214 0.16899 0.05513 0.09996 -0.01765 -0.08169 0.07046 -0.03032 0.00377 0.11343 

Serine 0.08190 0.16294 -0.02383 0.01568 0.07166 -0.15891 0.02402 -0.02679 -0.06499 0.01328 

2-Piperidinecarboxylic acid 0.02450 0.13117 -0.09824 0.04282 -0.06139 0.03834 0.01980 0.05435 -0.08911 0.09208 

U1376_Unknown 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Threonine 0.06987 0.16847 0.05271 -0.02201 0.05526 -0.10397 -0.03701 0.04873 -0.05673 0.11464 

-Alanine 0.09212 0.11349 0.02685 0.01675 -0.02290 -0.12720 0.12353 -0.06771 -0.07279 0.13165 

Malate 0.06728 -0.01159 0.19308 0.06606 0.02637 0.15017 0.04713 -0.12579 0.10992 0.19338 

U1509_Unknown 0.06354 0.08261 -0.17464 0.16510 0.03976 0.07402 -0.07276 -0.02023 -0.02201 0.07506 

Methionine 0.08884 0.16559 -0.08941 0.01893 -0.04575 0.02289 0.06924 0.04522 -0.00029 -0.08714 

Oxoproline 0.03792 0.08372 -0.09274 -0.14886 -0.06590 0.09463 0.20848 -0.00909 -0.13219 0.02535 

Aspartic acid 0.04745 0.00721 -0.00512 -0.01358 0.17798 0.22038 0.24435 -0.13841 -0.04745 0.05516 

-Aminobutyric acid 0.09064 0.07801 -0.00194 -0.10584 0.02091 -0.11178 0.15106 0.09362 0.13249 0.19383 

Threonic acid 0.06294 0.14937 0.11513 -0.09172 -0.08890 0.07662 -0.10676 -0.07937 0.04365 0.06277 

U1567_Unknown -0.03182 0.05433 -0.20427 -0.00882 -0.13450 0.16854 0.09659 -0.00898 -0.01900 -0.07716 

U1586_Unknown 0.07501 0.04972 -0.09460 0.18604 0.06233 0.10090 -0.04559 -0.08690 -0.04792 0.15893 
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Table S5-3.4. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1585_Unknown -0.06444 0.03923 -0.13768 -0.08355 -0.15076 0.12847 0.18533 0.03056 -0.06361 -0.11539 

U1598_Unknown 0.05519 0.08671 -0.17071 0.18871 0.01407 0.06776 -0.08879 0.07267 -0.01635 0.07435 

Glutamic acid 0.03823 0.13864 0.07041 0.02017 0.05358 -0.16279 -0.07284 -0.19203 -0.19633 -0.09018 

Asparagine 0.00941 0.14229 -0.12997 0.02410 -0.00029 -0.01560 0.17574 0.09514 -0.03217 -0.10022 

Phenylalanine 0.02388 0.19182 0.03094 0.02949 -0.11573 0.02863 0.08264 -0.03502 -0.02424 -0.09345 

Trihydroxypentanoic acid 0.08130 0.10231 0.09774 0.08564 0.09788 -0.13297 -0.01321 -0.11329 0.07710 -0.11608 

U1703_Unknown 0.08085 0.04249 -0.12147 -0.04722 0.11315 0.01649 0.12794 -0.06850 -0.00702 0.14791 

Glutamine 0.10858 0.05129 -0.04809 0.06450 0.10359 -0.09568 0.11868 0.00884 -0.08899 0.17295 

Putrescine 0.05276 0.02021 -0.09179 -0.15287 0.07607 0.04810 0.15240 0.06091 0.07548 0.27479 

U1751_Unknown -0.07845 0.02771 -0.18479 0.02360 -0.02720 0.03029 -0.18717 -0.10073 -0.07324 0.01148 

U1755_Unknown -0.01134 -0.06560 -0.04624 0.00319 0.24720 0.02399 0.07936 0.03943 0.18445 -0.02453 

USA1768_Unknown 0.03808 0.14894 0.01617 0.10808 -0.07309 0.18834 -0.08973 -0.03608 0.09535 -0.10138 

-glycerophosphate 0.06951 0.05372 0.14880 -0.12225 0.13422 0.11596 0.04243 0.16357 -0.06356 -0.07389 

U1801_Unknown 0.04756 0.06895 -0.14343 0.16582 0.07277 0.10139 -0.15121 0.09791 -0.00605 0.13426 

Citric acid 0.05384 0.09843 0.15832 0.13349 0.13355 0.01546 -0.02889 0.00382 0.00056 0.05673 

Quinic acid 0.01639 -0.00217 0.15075 0.05354 -0.19135 -0.10927 -0.14503 0.05043 0.12879 0.02851 

U1871_Unknown 0.05196 0.08547 -0.15012 0.16231 0.03621 0.09536 -0.14440 0.10754 0.00527 0.10989 

Fructose 0.05342 0.08939 -0.00444 -0.21143 -0.15878 -0.00480 -0.06230 0.05110 0.10946 0.11397 

Allantoin -0.00532 0.17255 0.05211 0.01392 0.07132 -0.07488 0.02862 -0.15473 -0.12325 0.00421 

Mannose 0.07343 0.09805 -0.01213 -0.20946 -0.01848 0.00487 -0.08446 0.02486 0.04054 0.11479 

Galactose 0.07203 0.02490 -0.07028 -0.16859 -0.03439 -0.01852 -0.08654 0.00908 0.20406 0.18429 

Glucose 0.03943 0.06482 -0.03243 -0.20713 -0.15711 0.01440 -0.06406 0.06721 0.15381 0.13974 

Histidine 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Lysine 0.06182 0.17634 -0.03012 0.03340 -0.08471 0.03914 0.05907 0.09589 0.06374 -0.09416 

Mannitol 0.03774 0.13659 -0.00775 0.09013 0.04933 -0.04320 0.15843 -0.05445 0.23526 -0.03182 

Sorbitol 0.00399 0.01170 0.02426 -0.00049 -0.03907 0.02978 0.29970 0.14434 -0.19902 0.02922 

Tyrosine 0.06338 0.16188 -0.03174 -0.02427 -0.07857 0.07466 0.07110 0.04369 0.03169 -0.17433 
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Table S5-3.4. Continuation (2). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1948_Unknown 0.03803 0.06538 -0.10896 0.18229 0.02297 0.01695 -0.13759 0.13506 0.02505 0.10180 

UC2020_Unknown 0.03393 0.06533 -0.02808 -0.22720 -0.15855 -0.02648 -0.07561 0.06175 0.14574 0.11927 

Galactaric acid 0.01821 0.03671 -0.23627 0.08262 0.02680 -0.02025 -0.09219 0.00639 0.10130 -0.14012 

Inositol -0.11811 0.08198 -0.03627 -0.09116 -0.05039 -0.08019 -0.11820 -0.00901 -0.06563 0.05309 

UC2105_Unknown 0.02485 0.11666 0.09639 0.01898 0.17756 -0.00149 -0.20664 -0.01980 0.10266 0.03595 

U2125_Unknown 0.07496 0.02333 -0.09461 0.19127 0.05492 -0.01722 0.01531 -0.16256 -0.08425 0.00525 

Caffeic acid -0.00496 -0.00651 0.22192 0.04482 0.10975 0.21145 0.01181 0.01380 0.00788 -0.02827 

U2190_Unknown 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Tryptophan 0.06589 0.14371 0.00641 -0.02771 -0.06964 0.01934 0.05854 0.07243 0.06736 -0.20173 

Spermidine 0.04179 0.08853 0.19611 0.01866 0.11738 0.07501 -0.04899 0.05701 -0.07867 -0.00971 

Fructose-6-phosphate 0.01771 -0.00824 0.10123 -0.01039 0.09137 -0.07784 -0.08792 0.34474 -0.16438 0.07447 

Galactosyl Glycerol 0.09910 0.01411 -0.13726 -0.11227 0.17522 0.07552 0.00839 -0.00059 -0.11419 -0.00882 

Glucose-6-phosphate -0.01158 -0.04657 0.12997 -0.07226 0.07425 -0.08786 -0.02358 0.30300 -0.21542 0.01819 

U2367_Unknown 0.03491 0.01649 0.12195 0.09565 0.05717 0.02556 -0.11099 0.36963 -0.06967 0.12937 

U2477b_Unknown 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

U2495_Unknown 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

U2502_Unknown 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Sucrose -0.05196 0.13069 -0.10195 0.04514 -0.05220 -0.00797 0.09725 0.18347 0.10628 -0.01907 

Galactinol 0.06706 0.02393 -0.10078 0.18706 0.09778 -0.02628 0.08832 0.03577 0.08800 0.17538 

Chlorogenic acid -0.00135 -0.03292 0.10789 0.00753 0.04071 0.19140 -0.07417 0.15907 -0.11912 -0.15409 

U1595_Unknown 0.11370 0.06917 -0.02050 -0.16017 0.11681 0.00111 -0.07759 -0.02079 0.04519 -0.10129 

U1680_Unknown 0.06473 0.05416 0.17620 -0.03692 -0.02264 0.05016 -0.07527 -0.16266 0.19513 0.00009 

Tetradecanoic acid 0.05879 -0.01275 -0.01414 -0.12217 0.11660 0.15766 0.04573 -0.07205 0.14540 -0.00410 

U1762_Unknown 0.07110 0.00126 0.11274 -0.04229 0.16452 -0.08261 0.10367 0.04771 0.20637 0.01724 

Br-pentadecanoic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentadecenoic acid -0.12386 0.03304 0.06501 0.02641 0.05007 0.19197 -0.00443 -0.03162 -0.00326 -0.03770 

Cinnamic acid 0.00576 0.05459 0.08536 0.14223 -0.01020 -0.18444 0.09048 0.12388 0.25143 -0.12566 



 

215 
 

Table S5-3.4. Continuation (3). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentadecanoic acid -0.07844 0.07161 0.10554 -0.02299 0.22537 -0.03809 0.04290 -0.07965 0.02141 0.05775 

U1845_Unknown -0.11759 0.08977 0.03313 0.08346 0.01853 -0.03226 0.01564 0.05857 0.22003 -0.09418 

Hexadecenoic acid -0.12275 0.10397 0.03082 0.01907 0.03587 -0.02612 -0.13731 -0.13228 -0.01190 0.05809 

Hexadecanoic acid -0.13112 0.10701 -0.05674 -0.09281 0.04163 -0.06247 -0.06837 -0.04231 -0.02499 -0.04090 

Cinnamic acid -0.11800 0.12377 0.04420 0.04888 -0.08475 -0.01694 0.03375 0.05285 0.13445 -0.03809 

Me-Hexadecanoic acid -0.13004 0.11134 -0.05660 -0.03899 0.00047 -0.12542 0.00498 0.05586 -0.02869 0.02518 

Heptadecanoic acid -0.14666 0.09382 0.02210 -0.04112 0.02709 0.03676 0.05162 -0.00549 0.00174 0.03232 

Linoleic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

-linolenic acid -0.16782 0.03526 -0.00931 0.00577 -0.00666 0.03887 -0.02211 -0.03982 -0.01675 0.01688 

Octadecenoic acid -0.15626 0.02412 -0.01751 -0.04407 0.01087 -0.01686 -0.05369 0.01478 -0.09568 -0.01301 

2OH-Hexadecanoic acid -0.13559 0.09973 0.06097 -0.04852 0.00069 0.02202 0.01627 -0.04286 0.02337 0.11567 

Noctadecanoic acid -0.15910 0.07338 -0.05157 -0.02560 -0.01751 0.01648 -0.01250 0.02174 0.02064 0.01942 

Nonadecenoic acid -0.11879 0.06973 -0.04700 0.02226 0.00577 -0.08695 -0.06950 0.00177 0.07858 0.02805 

U2263_Unknown 0.04415 0.01785 -0.11997 -0.11871 0.24634 -0.03272 -0.11593 -0.03997 0.07581 -0.11328 

Tricosane 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Eicosanoic acid -0.16190 0.05277 -0.02160 -0.01543 0.03631 0.06041 -0.00542 -0.05008 0.03427 0.01964 

Heneicosanoic acid -0.13551 0.09478 0.00855 -0.06948 0.04727 0.09068 -0.02068 0.03065 -0.00364 -0.00464 

Heneicosanol -0.03625 0.08356 0.15272 -0.13043 -0.07412 0.12663 -0.14126 0.00158 -0.07219 0.07670 

U2457_Unknown 0.01407 0.08070 -0.11486 -0.16426 0.19205 0.01311 -0.04683 0.05969 0.03102 -0.10317 

U2466_Unknown 0.08124 0.06281 -0.06466 -0.14401 0.19067 0.00632 -0.08054 -0.00673 -0.01048 -0.15455 

U2510_Unknown -0.03634 0.04936 -0.09351 -0.11617 0.27859 0.00739 0.00696 0.02167 0.04316 -0.10851 

Docosanoic acid -0.15988 0.01500 -0.00228 -0.01879 0.06564 0.10669 0.05224 0.03056 0.01622 0.05169 

Docosanol -0.14751 0.05741 -0.00926 -0.02988 0.01818 0.09820 0.00325 0.11707 -0.01103 -0.00956 

Tricosanoic acid -0.15875 0.04235 -0.01803 -0.05446 0.05847 0.08150 -0.01898 -0.04818 0.00029 -0.00002 

Tricosanol -0.10545 0.06352 0.14174 0.04076 -0.04730 0.06542 0.00562 -0.11285 0.01365 0.02796 

Tetracosanoic acid -0.14035 -0.01935 -0.00031 0.01230 0.14376 0.08562 0.08810 -0.03887 0.11322 0.06617 

Tetracosanol -0.11784 -0.01164 0.14656 0.07609 -0.00711 0.10108 0.09293 0.02823 0.08535 -0.03690 
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Table S5-3.4. Continuation (4). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentacosanoic acid -0.13907 -0.03123 0.02684 -0.00525 0.11441 0.00351 0.06757 -0.06578 0.03681 0.10378 

2OH-Tetracosanoic acid -0.10255 0.13957 -0.03288 -0.09950 -0.01689 -0.03963 -0.10119 0.00798 -0.08627 0.07530 

Hexacosanoic acid -0.14582 0.02825 0.01735 0.02481 0.10831 -0.05913 0.11262 0.05897 0.03612 0.02216 

Hexacosanol -0.13445 0.05363 0.07449 0.12306 -0.07936 -0.03036 0.04247 0.05238 0.05644 -0.00921 

Heptacosanol -0.15013 0.03873 -0.10373 0.03085 0.02102 -0.05202 0.00408 0.09097 -0.00670 -0.06522 

Octacosanoic acid -0.15687 0.05942 0.00256 -0.02758 0.08122 -0.00976 0.01642 0.02688 0.02833 0.03861 

Octacosanol -0.15603 0.07126 0.01524 0.06540 -0.00480 -0.04112 0.02341 0.02838 0.07665 -0.00669 

Solanid-5-enol -0.13919 0.09638 0.03386 0.04160 -0.04208 -0.03053 -0.02958 -0.00166 -0.03846 -0.00390 

Nonacosanoic acid -0.15164 0.06162 -0.07963 -0.01633 0.06426 -0.05956 -0.00325 0.02950 -0.05306 0.02218 

Nonacosanol -0.15468 0.03116 -0.07548 0.02879 0.07663 -0.07639 0.02007 0.04537 -0.00361 -0.00347 

Stigmasterol -0.16371 0.05064 0.01756 0.01736 -0.00009 0.07844 0.02452 0.01397 -0.02532 0.02128 

Fucosterol -0.09106 0.05292 -0.05683 -0.00923 -0.00953 0.03965 -0.16362 -0.23292 -0.06696 -0.00212 

-Sitosterol -0.14114 0.09521 -0.04384 -0.04920 -0.04244 -0.02684 -0.02180 -0.02776 -0.00194 -0.00614 

-5-Avenasterol -0.16437 0.03486 -0.02538 -0.00199 0.05657 -0.00173 0.01510 0.00160 -0.06456 0.05998 

Triacontanoic acid -0.13781 0.08023 0.08321 0.00260 0.03628 -0.02017 0.03119 -0.02203 -0.03357 0.14776 

Triacontanol -0.13968 0.08500 0.04457 0.08747 -0.02048 0.00210 0.07480 0.06195 0.03715 0.06234 

Stigmastadienol -0.03958 0.02038 0.01081 0.04412 0.02112 -0.00115 0.08064 0.05599 -0.00595 0.09486 
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Table S5-3.5. Loadings scores from PCA of all metabolites identified by GC/MS (polar/non-polar fraction) at 43 weeks after storage in season 3 (2018/2019).   

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Oxalate 0.03784 0.09459 -0.09869 -0.18031 0.01480 -0.01866 -0.04470 -0.08242 0.06455 0.00984 

Valine 0.15809 0.15224 0.03403 0.02388 0.00561 -0.00481 -0.00932 0.01277 -0.07649 -0.06543 

Urea -0.02094 0.05798 -0.08211 0.11534 -0.18059 -0.05531 0.03352 -0.20967 0.01813 -0.12407 

Ethanolamine -0.01292 0.16480 -0.01572 -0.07829 -0.15276 0.03139 -0.09214 0.11007 0.07369 -0.03943 

Phosphate 0.09163 0.18340 0.01823 -0.07114 -0.00054 0.14189 0.05904 0.01452 0.01480 -0.02528 

Leucine 0.14464 0.07919 -0.00464 0.02284 -0.11338 0.12936 -0.07328 -0.02399 -0.12494 -0.11431 

Glycerol 0.01694 0.01031 -0.20107 -0.03932 0.03966 0.00186 0.01127 0.05738 0.11423 -0.04890 

Isoleucine 0.17217 0.09957 0.03151 0.05614 -0.05510 0.06223 0.01982 0.07566 -0.09251 -0.06073 

Proline 0.03395 0.01468 0.17385 0.01534 -0.06025 0.17467 -0.02232 -0.10915 -0.03551 0.02716 

Glycine 0.16728 0.11936 0.00810 -0.03531 0.02699 0.01708 0.07542 0.06196 -0.07162 -0.10763 

Succinic acid 0.01950 0.11653 -0.01080 0.06627 0.01946 -0.00828 0.15398 0.01488 -0.33679 -0.00827 

2,3-Dihydroxypropanoic acid 0.07351 0.10298 -0.08918 -0.02281 -0.01700 0.13925 -0.00091 -0.21053 0.08111 0.02363 

Fumarate 0.02253 0.20719 -0.02018 -0.00691 -0.02945 -0.02510 0.07990 0.08463 -0.05970 -0.04617 

Serine 0.18489 0.08330 -0.02124 -0.04334 -0.02258 0.06613 0.01417 -0.13824 -0.02584 0.02963 

2-Piperidinecarboxylic acid 0.10611 0.02521 0.05250 0.18292 0.09344 -0.03806 -0.12345 -0.09803 -0.05851 0.02704 

U1376_Unknown 0.07174 0.09442 0.08677 0.01115 -0.04953 -0.10764 0.01388 -0.02008 0.07978 -0.17305 

Threonine 0.15232 0.11933 0.02476 -0.00374 0.05949 -0.03002 -0.10705 -0.14081 0.00602 -0.04260 

-Alanine 0.04343 0.13798 -0.13224 -0.05792 0.08424 -0.05223 0.13536 -0.04046 -0.05267 -0.04423 

Malate -0.04641 0.19523 0.07319 -0.05911 -0.07953 -0.02006 0.01110 0.07596 -0.07927 0.00078 

U1509_Unknown 0.15607 -0.02880 -0.08948 0.12462 -0.08824 -0.05771 0.03465 0.04255 0.05790 -0.01834 

Methionine 0.19154 0.05801 -0.04301 0.07839 -0.03137 0.02443 -0.00325 0.05171 -0.01099 0.07151 

Oxoproline 0.10703 0.09612 -0.08687 0.12746 -0.07589 -0.06871 0.13299 -0.05306 -0.06217 0.05730 

Aspartic acid 0.07338 0.10976 -0.16953 0.00547 -0.06722 -0.01463 0.00081 -0.10691 0.05277 0.12635 

-Aminobutyric acid 0.05308 0.05980 -0.11788 -0.05623 0.12886 -0.12884 0.17252 0.03559 0.02648 0.11454 

Threonic acid 0.01898 0.16619 0.08593 -0.03104 0.09721 0.03607 0.11552 0.14307 -0.03833 -0.05902 

U1567_Unknown 0.12878 -0.06771 -0.06079 0.17004 -0.09851 -0.05546 0.07935 0.03333 0.03359 -0.02456 

U1586_Unknown 0.11428 0.03050 -0.12902 -0.02338 0.04671 0.04254 -0.04554 -0.04145 -0.06438 0.11277 
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Table S5-3.5. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1585_Unknown 0.10955 -0.04759 -0.06753 0.20087 -0.07005 -0.04483 0.07727 -0.00064 -0.04397 -0.03527 

U1598_Unknown 0.15994 -0.06634 -0.05357 0.12671 -0.05154 -0.02424 -0.01423 0.06725 0.09103 0.04225 

Glutamic acid 0.09713 -0.02415 -0.03769 0.15786 0.05028 0.15205 -0.17616 -0.02501 0.00202 -0.14240 

Asparagine 0.14629 -0.02859 -0.08647 0.17234 0.02296 0.00639 -0.06534 0.02025 -0.02348 0.02785 

Phenylalanine 0.12481 0.07391 0.14541 0.11132 0.00809 -0.06214 -0.07552 0.06265 -0.01762 0.04809 

Trihydroxypentanoic acid 0.03771 0.17283 0.01358 -0.09590 0.08506 0.07043 -0.00689 0.17892 -0.08733 0.03114 

U1703_Unknown 0.10475 0.02222 -0.06848 0.00106 0.01370 -0.04033 0.04063 0.05225 -0.12785 0.12541 

Glutamine 0.08728 0.06700 -0.16078 0.02750 0.10532 0.04040 -0.07785 -0.07438 -0.10660 0.10544 

Putrescine 0.12725 -0.00905 0.11636 -0.13517 -0.12897 -0.03457 0.01976 -0.05033 -0.02547 -0.06211 

U1751_Unknown -0.01028 -0.12562 0.12204 0.11296 -0.12888 0.11684 0.10068 0.01078 -0.03836 -0.03576 

U1755_Unknown 0.00260 0.00573 -0.17055 -0.06518 0.00558 0.08899 0.11122 0.04129 0.20030 0.02410 

USA1768_Unknown 0.02131 0.05009 0.06974 0.18576 -0.02947 -0.04646 -0.02112 0.15371 0.02519 0.01924 

-glycerophosphate 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

U1801_Unknown 0.02947 0.00629 0.04064 -0.05992 -0.08150 -0.12837 -0.05720 -0.12469 -0.00434 -0.13921 

Citric acid -0.01176 0.10869 -0.10842 0.10924 0.16032 0.03108 -0.04639 0.13256 0.00912 -0.09104 

Quinic acid -0.00901 0.13257 0.11046 -0.05703 0.17339 -0.06420 0.04066 0.04436 0.07519 -0.12298 

U1871_Unknown 0.17196 -0.03882 -0.03599 0.03593 -0.06790 -0.01516 -0.03795 0.07670 0.14327 0.03776 

Fructose 0.07421 0.01423 0.15355 -0.03534 0.04662 -0.18249 0.03176 -0.05933 0.13898 -0.15155 

Allantoin 0.07030 0.10071 -0.06178 0.03629 -0.10246 0.19102 -0.13214 -0.13049 0.01192 -0.13982 

Mannose 0.11426 0.05734 0.10021 -0.13910 0.04013 -0.02567 -0.04513 0.04250 0.00011 -0.15092 

Galactose 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Glucose 0.06574 -0.01594 0.15317 -0.04237 0.01365 -0.20171 0.07687 -0.07109 0.14230 -0.09655 

Histidine 0.17820 0.05975 -0.00567 0.11937 -0.02306 -0.00778 -0.01477 -0.01342 0.00438 0.12293 

Lysine 0.18675 0.02972 0.05969 0.09122 -0.02960 -0.04373 -0.01623 0.01421 0.06431 0.10966 

Mannitol -0.02842 -0.01246 -0.07895 0.02497 0.01643 -0.02610 0.13403 0.00792 0.04768 -0.02718 

Sorbitol 0.08375 0.04079 -0.05817 0.00794 -0.17180 -0.08340 0.07654 0.03446 0.21226 -0.09181 

Tyrosine 0.17093 0.07445 0.09110 0.06388 0.01071 -0.06666 -0.02394 0.05236 0.02215 0.13914 
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Table S5-3.5. Continuation (2). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1948_Unknown 0.14222 -0.02751 -0.13641 0.02582 -0.03113 0.01312 -0.02858 0.00384 0.12459 0.01294 

UC2020_Unknown 0.06764 -0.00522 0.10852 -0.02935 -0.04514 -0.22629 0.06870 -0.04809 0.21747 -0.05133 

Galactaric acid 0.07739 -0.12978 -0.05313 0.06358 -0.10826 0.11537 0.11942 0.19655 -0.03019 0.02492 

Inositol 0.00183 -0.07020 0.19208 0.08663 0.00400 0.10013 -0.02319 -0.10612 0.00903 0.13026 

UC2105_Unknown 0.08683 0.09997 0.02412 -0.14386 0.03681 0.10592 -0.19443 -0.00126 -0.00567 -0.09256 

U2125_Unknown 0.01052 0.03626 -0.17841 -0.05017 0.03458 0.03651 -0.00391 -0.06656 0.09997 0.11158 

Caffeic acid -0.13576 0.12918 0.06510 -0.01079 -0.13697 -0.01226 -0.07776 -0.01607 0.06716 0.08141 

U2190_Unknown 0.17727 0.02787 0.06402 0.08775 0.05624 -0.04533 -0.07614 -0.00308 0.02188 0.10426 

Tryptophan 0.16934 0.01038 0.04158 0.07438 0.00378 -0.02361 -0.07569 0.09071 0.08258 0.13512 

Spermidine 0.05769 0.11175 -0.00655 0.05310 0.02808 -0.02234 0.21464 0.09745 0.01365 -0.13105 

Fructose-6-phosphate -0.07039 -0.01713 0.06861 -0.11887 -0.08447 0.00182 0.07046 -0.07627 -0.05611 0.11910 

Galactosyl Glycerol 0.06254 -0.04445 -0.20707 -0.01805 -0.01368 0.01087 0.06383 0.06378 0.08026 -0.08687 

Glucose-6-phosphate 0.08522 0.04624 0.06447 -0.11713 -0.14999 0.04236 0.17990 0.07827 -0.04704 0.05810 

U2367_Unknown 0.00914 0.11655 -0.00166 -0.04454 0.23859 -0.13770 0.03070 0.06467 -0.02546 0.09505 

U2477b_Unknown -0.05803 0.04443 0.02720 -0.02564 -0.19226 -0.14431 -0.07173 -0.06562 0.03067 -0.01225 

U2495_Unknown 0.06757 0.09573 0.02562 -0.08295 0.09176 0.17766 0.07802 0.01143 0.13299 -0.08161 

U2502_Unknown -0.03779 -0.02963 -0.03542 -0.00146 -0.10498 -0.07290 -0.15062 0.06087 0.08615 0.04098 

Sucrose 0.06271 -0.02566 0.17798 -0.08908 0.03100 -0.11395 0.09213 -0.05011 -0.01117 0.07597 

Galactinol 0.04410 0.12676 0.02990 -0.12150 0.08380 -0.15937 0.15080 0.10859 0.02517 0.05632 

Chlorogenic acid -0.11024 0.10956 0.09072 -0.02529 -0.14747 -0.05087 -0.07502 0.01630 0.02042 0.13459 

U1595 -0.06794 -0.06548 -0.08299 -0.04264 0.07099 -0.04840 0.02240 0.10927 0.15980 -0.09968 

U1680 -0.09003 0.03649 0.06877 0.12298 0.13702 0.04968 0.03142 0.04179 -0.04931 0.10853 

Tetradecanoic acid -0.03423 0.06370 -0.04673 0.05908 -0.04571 0.17170 -0.04407 0.12154 -0.14211 -0.06551 

U1762 -0.08877 0.02081 -0.13400 0.12955 0.11518 -0.02188 0.03294 0.05900 0.08820 0.06871 

Br-pentadecanoic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentadecenoic acid -0.03290 0.12533 -0.02525 0.00465 -0.10979 0.00285 -0.02044 -0.06861 0.02624 -0.06456 

Cinnamic acid -0.12694 0.06173 0.03062 0.04181 0.10592 0.13037 -0.01762 0.04714 0.07878 0.08184 
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Table S5-3.5. Continuation (3). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentadecanoic acid -0.05979 0.08197 -0.09833 0.01851 -0.10529 0.06399 -0.11937 0.02449 0.20981 0.16660 

U1845 -0.04070 0.11835 0.09123 0.09020 0.12221 -0.09920 -0.03439 0.03854 -0.01782 0.13592 

Hexadecenoic acid -0.01168 0.10687 -0.01313 0.02391 0.07230 0.14967 -0.13064 -0.04175 -0.10163 0.02228 

Hexadecanoic acid 0.04682 0.06086 0.03085 -0.11295 0.00591 0.14878 0.02259 0.28727 0.08996 0.06165 

Cinnamic acid -0.07801 0.10602 0.09042 0.18144 0.02484 -0.03093 0.02035 0.02588 0.03407 -0.03078 

Me-Hexadecanoic acid 0.04627 -0.01696 0.10892 -0.02010 0.13079 0.09723 0.24848 -0.04845 0.09132 0.09873 

Heptadecanoic acid -0.06111 0.12420 0.03919 0.10183 0.06736 -0.02099 -0.07062 -0.03006 -0.04822 -0.07872 

Linoleic acid 0.01967 0.09864 0.02911 -0.14868 -0.12964 0.08127 -0.08799 0.13994 0.01419 0.06167 

-linolenic acid -0.04601 0.13200 0.01660 -0.11259 -0.16443 -0.06252 -0.11722 0.10380 0.00521 0.10800 

Octadecenoic acid -0.00132 0.01349 0.09482 -0.12135 -0.07361 0.11975 -0.10451 0.13684 0.02646 -0.09099 

2OH-Hexadecanoic acid -0.08919 0.08493 -0.04279 0.17484 -0.07841 -0.10140 0.08917 -0.00220 0.12235 -0.07436 

Noctadecanoic acid -0.05665 0.05557 0.14789 0.15237 -0.04637 -0.06080 0.02638 0.12357 0.08182 0.08283 

Nonadecenoic acid -0.00163 -0.04363 -0.03809 -0.00032 0.08156 -0.02582 0.11208 -0.17940 -0.06957 -0.12971 

U2263 -0.04203 -0.02316 0.06105 0.09804 0.00145 0.06861 0.10878 -0.08183 -0.17797 -0.05340 

Tricosane 0.05673 0.06706 0.07765 0.08658 0.08607 0.11633 -0.00207 -0.08327 0.18713 -0.07703 

Eicosanoic acid -0.12096 0.08857 -0.03121 0.13917 -0.13756 0.01903 0.07905 0.04146 0.03533 0.01119 

Heneicosanoic acid -0.11251 0.04237 0.00650 0.09942 -0.18936 -0.00874 -0.06007 0.07224 0.04374 0.06891 

Heneicosanol -0.06856 0.03801 0.06657 0.13140 0.07552 -0.07394 -0.21910 0.05851 0.04067 -0.19493 

U2457 -0.05740 -0.06315 0.03173 0.13275 0.15380 0.06352 0.02846 0.04953 -0.02767 -0.04457 

U2466 -0.02983 -0.07423 0.02709 0.16922 0.16953 0.04084 0.03372 0.09569 0.05108 -0.01866 

U2510 -0.02139 -0.03969 -0.16719 -0.07063 0.13813 0.04321 -0.06189 0.11021 0.09019 -0.04535 

Docosanoic acid -0.13885 0.08038 -0.09490 0.07679 -0.06549 0.00014 0.05795 0.04001 0.02605 -0.10406 

Docosanol -0.12793 0.07828 -0.01362 0.13740 0.00259 -0.01716 -0.07457 -0.02970 0.04636 -0.12359 

Tricosanoic acid -0.10758 0.08974 -0.13631 0.04728 -0.09472 0.02159 0.03986 0.08229 -0.07522 -0.04926 

Tricosanol -0.06333 0.12503 0.06224 0.10266 0.02714 0.09294 -0.01892 0.02920 0.15039 -0.07401 

Tetracosanoic acid -0.11211 0.08292 -0.18449 0.05024 0.00663 -0.00151 0.03207 -0.03737 -0.04135 0.03100 

Tetracosanol -0.08292 0.19106 -0.06502 0.02177 0.00241 0.00042 0.06098 -0.03061 -0.03544 -0.00586 
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Table S5-3.5. Continuation (4). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentacosanoic acid -0.01549 0.09413 -0.11809 -0.00867 -0.10154 -0.00107 0.11672 0.04899 0.04903 -0.16851 

2OH-Tetracosanoic acid 0.00006 -0.02065 0.12763 0.14237 -0.00915 0.13917 0.12988 -0.02729 0.13617 0.11264 

Hexacosanoic acid -0.05042 0.08025 -0.15043 0.00705 0.07018 -0.10291 0.12571 -0.13595 0.03146 0.05477 

Hexacosanol -0.06066 0.19465 0.04650 -0.02452 -0.01912 -0.05701 0.04047 -0.09624 -0.05903 0.09996 

Heptacosanol 0.01283 -0.06030 0.07324 -0.00919 -0.04218 0.20747 0.21551 -0.04690 0.12483 0.09236 

Octacosanoic acid -0.08945 0.13858 -0.03908 0.04842 0.06589 0.01131 -0.13026 -0.06590 0.09946 0.09161 

Octacosanol -0.07110 0.12325 0.12232 -0.01237 0.05288 0.05593 0.01962 -0.04348 0.16949 0.18743 

Solanid-5-enol -0.02961 0.12273 -0.00121 0.09733 -0.10952 0.00486 0.10672 -0.25558 -0.08775 0.07256 

Nonacosanoic acid 0.10022 0.00382 0.07706 -0.00021 0.11810 0.13265 0.00868 -0.11858 0.14883 -0.19549 

Nonacosanol 0.07540 -0.07827 -0.01833 -0.09613 -0.06314 0.23128 0.06157 -0.12215 0.12334 0.13570 

Stigmasterol -0.08854 0.13783 0.03945 0.06517 -0.11870 0.00433 0.11140 -0.06766 0.02105 0.01790 

Fucosterol -0.08848 0.08055 0.06099 0.02649 -0.03608 0.17844 0.18602 -0.01112 0.01336 -0.01732 

-Sitosterol -0.01273 -0.05334 0.11473 0.11089 -0.10826 0.11398 0.09160 0.16029 0.02470 -0.08546 

-5-Avenasterol -0.06467 0.02729 0.06733 -0.04299 0.03804 0.17476 0.11746 -0.09711 0.05794 -0.14967 

Triacontanoic acid -0.03403 0.11120 0.00153 0.05489 0.13302 0.05741 -0.06945 -0.16179 0.18347 0.05782 

Triacontanol -0.03182 0.12880 0.04099 0.03913 0.10659 0.00314 -0.05100 -0.08076 0.04545 0.01798 

Stigmastadienol -0.04031 0.06742 0.05748 0.04235 0.02268 0.08133 0.03505 -0.05651 0.05782 -0.06784 
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Table S5-3.6. Loadings scores from PCA of all metabolites identified by GC/MS in Shelford varieties from two different locations in season 3 (2018/2019).   

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Oxalate 0.10928 0.08592 0.03280 0.06226 -0.09254 0.04843 0.04971 -0.03158 0.00455 0.03368 

Valine 0.12301 0.02566 -0.06978 0.06449 -0.02945 0.03594 -0.07706 0.00942 0.02051 0.01097 

Urea 0.11526 0.04996 0.03212 -0.07474 -0.06518 -0.03482 -0.03694 0.10665 -0.01062 -0.05202 

Ethanolamine 0.12073 0.06739 0.01851 0.02576 -0.05862 0.00918 0.02200 -0.01636 -0.00588 0.02446 

Phosphate 0.10663 0.05478 0.01293 -0.11746 0.13903 -0.02403 0.06581 -0.08724 0.05707 0.02441 

Leucine 0.12212 -0.00358 -0.07986 -0.00562 -0.08677 -0.00787 -0.06264 0.01603 -0.02045 0.02463 

Glycerol 0.10464 0.08517 0.00421 0.14095 -0.00581 0.05018 0.01507 -0.02292 0.07799 0.01959 

Isoleucine 0.12077 0.02241 -0.07178 0.08079 -0.05782 0.03086 -0.06539 0.01308 0.00468 0.01579 

Proline 0.11370 -0.02827 -0.01347 -0.08031 -0.10252 -0.08127 0.07058 -0.05525 -0.14785 0.07464 

Glycine 0.12214 0.05432 -0.03198 0.03525 0.04835 0.03203 0.00224 -0.06329 0.06162 0.01174 

Succinic acid 0.10579 0.03234 -0.00491 -0.12977 0.12461 -0.08278 0.07460 0.02655 -0.02552 -0.01603 

2,3-Dihydroxypropanoic acid 0.08766 0.07912 0.03577 0.18863 -0.11953 0.07218 0.04041 -0.01696 0.01058 0.01116 

Fumarate 0.08639 0.05877 0.00896 -0.03997 0.26349 -0.07185 0.05235 -0.02505 0.09468 0.00786 

Serine 0.12180 0.03308 -0.07655 0.05871 0.03991 0.04189 -0.05688 -0.03051 0.03322 0.00350 

2-Piperidinecarboxylic acid 0.11342 0.04435 0.01834 0.09803 -0.07271 -0.00337 -0.08497 0.00893 -0.13226 -0.02079 

U1376_Unknown 0.09159 0.07461 0.03495 0.16036 -0.14753 0.07698 0.02856 -0.04058 -0.00188 0.05923 

Threonine 0.11587 0.05667 -0.03633 0.01485 0.12445 0.00442 -0.04013 -0.05310 0.04548 -0.00048 

-Alanine 0.12310 0.01987 -0.06268 0.05278 0.03885 0.00976 0.03843 -0.07045 0.08525 0.06345 

Malate 0.10967 0.07790 0.03624 -0.01341 0.04816 -0.12416 -0.01927 0.09568 0.06627 -0.02284 

U1509_Unknown 0.05317 0.12023 -0.04685 0.19236 0.03018 0.03835 0.08182 0.19234 -0.01737 -0.02672 

Methionine 0.10379 0.06711 -0.06496 0.11804 0.11138 0.06341 -0.04999 -0.01105 0.03676 -0.03702 

Oxoproline 0.11803 -0.00882 -0.07684 -0.10872 0.04697 -0.02803 -0.09631 0.01018 -0.01771 0.02535 

Aspartic acid 0.12048 0.02689 -0.01541 -0.11051 0.01047 -0.05487 -0.08032 0.06571 -0.04933 -0.01238 

-Aminobutyric acid 0.09536 0.06030 -0.02488 -0.00663 0.21962 0.03439 0.05524 -0.13100 0.14478 0.00990 

Threonic acid 0.10023 0.09088 0.02968 0.03768 0.12847 0.00983 0.08848 -0.06516 0.12751 0.00877 

U1567_Unknown 0.11692 0.06448 -0.05078 -0.02895 0.04271 0.07902 -0.00740 0.04897 0.03451 0.02818 

U1586_Unknown 0.04225 0.08273 -0.07107 0.21304 0.09646 -0.08779 0.04553 0.23056 -0.11439 -0.00745 
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Table S5-3.6. Continuation (1). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1585_Unknown 0.12083 0.03310 -0.00778 -0.08922 0.05672 0.01075 -0.06252 -0.01412 -0.05691 0.00835 

U1598_Unknown -0.01370 0.08770 -0.21411 0.00912 0.13489 0.09578 0.06258 0.29895 -0.01777 -0.02366 

Glutamic acid 0.11593 0.04959 0.04814 -0.10945 0.02869 -0.07463 0.00210 0.03092 -0.07028 -0.00397 

Asparagine 0.10348 -0.01240 -0.06699 0.02312 0.13399 -0.02185 -0.22835 -0.05461 -0.19689 0.00419 

Phenylalanine 0.11923 0.00578 -0.03412 -0.07883 -0.02013 -0.06458 -0.11474 0.11464 -0.07760 0.00823 

Trihydroxypentanoic acid 0.11524 0.07888 0.02960 0.02215 0.04813 0.00134 0.05280 -0.07888 0.01953 0.01817 

U1703_Unknown 0.10338 0.07116 -0.01146 -0.00208 0.16237 0.00958 0.06926 -0.13602 0.06387 0.01365 

Glutamine 0.06981 0.03602 -0.08470 0.14105 0.17453 -0.15016 -0.11284 -0.01163 -0.26592 -0.02570 

Putrescine 0.11130 0.03103 0.01405 -0.15415 0.02731 -0.10625 -0.06271 0.04971 0.03970 -0.00474 

U1751_Unknown 0.10715 0.05521 0.07383 -0.08547 -0.13390 -0.05833 0.04872 0.07252 -0.07018 -0.00211 

U1755_Unknown 0.11283 0.05498 0.03756 -0.07453 -0.03237 -0.05717 -0.02931 0.12666 0.03517 -0.05371 

USA1768_Unknown 0.10579 0.09641 0.05549 0.06880 -0.05534 0.00516 0.05905 -0.01052 0.00229 0.02671 

-glycerophosphate -0.05430 0.04812 0.08819 0.13446 0.08941 -0.29421 -0.11925 -0.04307 0.01406 -0.02861 

U1801_Unknown -0.06360 0.09031 -0.13283 -0.00393 0.03002 0.06051 0.14352 0.27836 -0.07757 -0.07602 

Citric acid 0.11324 0.06048 0.01782 -0.10925 0.07528 -0.04332 0.05560 0.01320 -0.01124 0.01783 

Quinic acid 0.09472 0.06879 0.11026 -0.07819 -0.12482 -0.06610 -0.00039 0.12907 -0.06847 -0.02163 

U1871_Unknown -0.02866 0.07899 -0.20538 -0.05500 0.09202 0.12413 0.07542 0.28204 0.00109 -0.05868 

Fructose 0.07560 0.03162 -0.04730 -0.12546 -0.15992 -0.13273 -0.19944 0.08461 0.26032 0.01427 

Allantoin 0.11682 0.05180 0.04556 -0.11173 0.01562 -0.06038 0.01054 0.00520 -0.04978 -0.00923 

Mannose 0.10242 0.05918 0.02503 -0.07232 -0.15024 -0.06047 -0.12316 0.10029 -0.02287 -0.05021 

Galactose -0.04079 0.04134 0.05133 0.08639 0.03871 -0.28750 -0.15183 -0.08181 0.20426 0.04055 

Glucose 0.09035 0.05929 0.00041 -0.06079 -0.18682 -0.11175 -0.13717 0.02145 0.19012 0.00980 

Histidine 0.08459 -0.07260 -0.16999 -0.00860 0.10572 0.03495 -0.16899 -0.04800 -0.06803 0.01351 

Lysine 0.10953 0.03656 -0.12320 0.08657 0.03787 0.08382 -0.09431 0.02297 0.01648 -0.00342 

Mannitol 0.01248 0.08288 0.21270 0.13217 0.05715 -0.20456 -0.11787 0.05239 -0.03916 -0.01862 

Sorbitol 0.08639 0.09445 0.11780 0.11661 -0.06147 0.04251 -0.06659 -0.01203 0.04464 -0.02905 

Tyrosine 0.09863 0.03509 -0.14279 0.08898 0.03944 0.08326 -0.15823 0.00935 -0.04306 -0.02587 
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Table S5-3.6. Continuation (2). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

U1948_Unknown 0.03121 0.08726 -0.14484 -0.07591 0.19746 0.18050 0.16234 0.05867 0.15422 -0.03960 

UC2020_Unknown -0.03441 -0.05009 -0.19766 0.00514 -0.10620 0.04598 -0.19751 -0.03998 0.37379 0.06045 

Galactaric acid 0.11402 0.08839 0.03006 0.01506 -0.04890 0.00993 0.05650 0.02334 -0.01230 -0.00241 

Inositol 0.10966 0.04991 0.08845 -0.10182 -0.08208 -0.03985 0.02603 0.03375 -0.10329 -0.00551 

UC2105_Unknown 0.10825 0.06883 0.07084 -0.11414 0.03709 -0.08552 -0.01839 0.03396 -0.06786 -0.00248 

U2125_Unknown 0.05907 0.11048 -0.05024 0.18895 0.10948 -0.05477 0.11110 0.12672 -0.03300 -0.02878 

Caffeic acid 0.09773 0.07474 0.06884 0.11170 -0.15478 0.03267 0.02418 0.05094 -0.02631 -0.02666 

U2190_Unknown 0.11538 0.00607 -0.06477 0.09530 0.00921 0.05151 -0.15817 -0.07875 -0.05787 0.00160 

Tryptophan 0.08647 0.05605 -0.15261 0.08368 0.09641 0.10180 -0.09436 0.00465 -0.01587 -0.03798 

Spermidine 0.10472 0.07617 0.02321 0.12964 -0.06278 0.06753 0.07320 -0.05307 0.07162 0.04311 

Fructose-6-phosphate 0.10700 0.07991 0.04614 0.03751 -0.12930 0.02342 0.06904 -0.05295 -0.03743 0.02213 

Galactosyl Glycerol 0.08919 0.10216 0.03702 0.16550 -0.02308 0.00948 0.05220 -0.03845 0.08708 0.03432 

Glucose-6-phosphate 0.10086 0.04812 0.01190 -0.20589 0.02754 -0.05150 0.03195 -0.02005 0.00210 -0.01653 

U2367_Unknown 0.11149 0.08088 0.02073 0.06763 -0.07907 0.03468 0.03126 0.04586 -0.01962 -0.01794 

U2477b_Unknown 0.07966 0.01870 -0.01067 -0.18247 0.22881 -0.04774 0.05322 -0.04815 0.13067 -0.04633 

U2495_Unknown 0.08219 0.07727 0.03510 0.19677 -0.12635 0.09794 0.04199 -0.03060 0.02730 0.00197 

U2502_Unknown 0.09330 0.08303 0.03209 0.16171 -0.09031 0.08930 0.06966 -0.04418 0.05303 0.04358 

Sucrose 0.10552 0.06269 0.00864 -0.06976 -0.12141 0.00168 0.08268 -0.05767 0.01070 0.05342 

Galactinol 0.08692 0.10723 0.05249 -0.03499 -0.08577 -0.03590 0.01516 -0.03261 -0.02650 0.05065 

Chlorogenic acid 0.10277 0.06874 0.03214 -0.13218 -0.06527 -0.03076 0.09166 -0.01257 0.02256 -0.00520 

U1595_Unknown -0.01646 0.03755 -0.04692 0.12577 0.08942 -0.40831 0.00123 -0.01536 0.07620 0.11173 

U1680_Unknown 0.02054 -0.10515 -0.01976 0.13311 -0.02354 -0.19939 0.24569 -0.10657 0.10782 -0.29365 

Tetradecanoic acid 0.08761 -0.05976 -0.08523 -0.01331 -0.01080 -0.09022 0.04412 -0.21452 -0.26599 0.06673 

U1762_Unknown 0.06080 -0.14254 -0.10502 0.05292 -0.00487 -0.13220 0.07207 0.02891 -0.02640 0.05355 

Br-pentadecanoic acid 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentadecenoic acid 0.05525 -0.14537 -0.03835 0.04123 -0.01389 -0.05465 -0.06561 0.05210 0.09045 0.25604 

Cinnamic acid 0.10698 -0.04624 0.04649 -0.05948 -0.02621 -0.14816 0.11901 0.05456 -0.00075 -0.21998 
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Table S5-3.6. Continuation (3). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentadecanoic acid 0.06577 -0.13504 -0.13551 0.03797 0.01189 -0.00275 -0.08287 -0.11346 -0.10349 -0.05787 

U1845_Unknown 0.09767 -0.11662 -0.02373 0.07702 -0.01623 -0.03280 -0.02540 0.05206 0.02921 -0.00427 

Hexadecenoic acid 0.08679 -0.09457 0.00256 0.03237 0.02750 -0.02569 0.08971 0.14074 -0.05836 0.09999 

Hexadecanoic acid 0.09972 -0.11583 -0.03477 0.01462 0.07525 0.02050 -0.05788 -0.04737 0.00449 0.05755 

Cinnamic acid 0.08411 -0.12973 -0.00472 0.06500 0.05829 0.00566 0.04923 -0.03794 0.02573 0.03225 

Me-Hexadecanoic acid 0.06471 -0.15498 0.02077 0.03184 0.03978 -0.01377 0.08239 -0.08315 0.03944 -0.15741 

Heptadecanoic acid 0.08032 -0.14663 0.01869 0.00323 0.02912 0.01924 0.05000 0.01421 -0.04001 0.08624 

Linoleic acid 0.11332 -0.00265 -0.11130 -0.11922 -0.01892 0.02737 0.02100 -0.04397 -0.05388 0.05894 

-linolenic acid 0.07344 -0.00760 0.21059 -0.04875 0.12040 0.16792 -0.14101 0.00941 0.02731 0.05896 

Octadecenoic acid 0.06634 -0.09457 0.14360 0.09586 0.04156 0.14010 -0.05537 -0.12092 -0.01888 -0.21582 

2OH-Hexadecanoic acid 0.09372 -0.12574 0.03418 -0.00594 0.05259 0.03365 -0.05702 0.01109 0.00419 0.11110 

Noctadecanoic acid 0.07321 -0.15019 0.07460 0.00812 0.02671 0.05221 -0.05557 -0.00918 -0.03623 0.05028 

Nonadecenoic acid 0.00849 -0.09845 0.08551 0.03252 -0.01105 -0.00770 0.19432 0.13432 -0.01421 0.53476 

U2263_Unknown -0.04726 -0.05299 0.12054 0.15215 0.06428 -0.24815 0.14861 0.20192 0.08251 0.05270 

Tricosane 0.05933 -0.13281 -0.12274 0.04224 -0.10415 -0.04291 -0.00785 -0.03744 0.05209 -0.21304 

Eicosanoic acid 0.07511 -0.14786 0.06830 0.02400 0.05964 0.03081 0.01962 -0.01701 -0.03224 0.01435 

Heneicosanoic acid 0.06269 -0.15254 -0.09733 0.00678 -0.00396 -0.02072 0.02177 0.04884 -0.08924 0.12224 

Heneicosanol 0.08185 -0.12440 -0.03625 0.00832 0.06468 0.02289 0.06928 0.00328 0.15308 0.17275 

U2457_Unknown 0.02458 -0.16615 -0.11469 0.07607 -0.03666 -0.07949 0.08998 -0.00918 -0.04208 0.07009 

U2466_Unknown 0.02659 -0.16326 -0.12754 0.08484 -0.03147 -0.07678 0.05305 -0.01948 -0.06173 0.04554 

U2510_Unknown 0.00691 -0.10475 0.07748 0.16810 0.15057 -0.07963 -0.28189 0.14431 0.02445 0.02430 

Docosanoic acid 0.06189 -0.15903 0.05955 0.03284 0.03262 0.01095 0.07256 0.05220 0.11402 -0.04812 

Docosanol 0.07547 -0.12977 0.03233 0.02451 0.02102 0.03232 0.08332 -0.08199 0.08886 0.09238 

Tricosanoic acid 0.07039 -0.15503 0.01462 -0.04744 0.00227 0.02292 0.03830 -0.01568 -0.06753 0.02332 

Tricosanol 0.09543 -0.11392 -0.05029 0.00626 -0.04786 -0.02378 0.02261 -0.09842 -0.06684 -0.05298 

Tetracosanoic acid 0.05821 -0.13147 0.14699 0.05362 0.08056 0.05032 0.04332 0.03692 -0.05943 -0.17062 

Tetracosanol 0.08538 -0.11466 0.02264 0.02476 -0.05493 0.03384 0.05532 0.05452 0.13266 -0.24891 
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Table S5-3.6. Continuation (4). 

Metabolite Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 Load 9 Load 10 

Pentacosanoic acid 0.06375 -0.11053 -0.00082 -0.04660 -0.08980 0.07180 -0.13640 0.16081 0.23656 0.02426 

2OH-Tetracosanoic acid 0.05713 -0.15767 -0.07640 0.02944 0.01506 -0.03962 0.10773 0.06897 0.05224 -0.08891 

Hexacosanoic acid 0.05706 -0.13661 -0.00838 -0.06685 -0.07473 0.01395 -0.06583 0.28570 0.01425 -0.03175 

Hexacosanol 0.08841 -0.12337 0.03677 0.01093 -0.06284 0.05040 0.06750 0.05478 -0.00530 0.13193 

Heptacosanol 0.07752 -0.14841 -0.00776 0.01611 -0.02260 -0.01282 0.08684 0.06323 0.07144 0.00749 

Octacosanoic acid 0.06443 -0.14347 0.05809 -0.00789 -0.04469 0.09127 -0.05972 0.01256 -0.15254 -0.06252 

Octacosanol 0.10046 -0.11728 0.04881 -0.01588 -0.02055 0.00706 0.05970 0.02968 -0.03018 -0.06962 

Solanid-5-enol 0.05500 -0.02601 0.26041 -0.08112 0.13361 0.07474 -0.03321 0.08022 -0.00122 -0.00996 

Nonacosanoic acid 0.07263 -0.14572 0.00043 0.00443 -0.06124 0.00632 -0.11342 0.11797 0.06442 -0.07177 

Nonacosanol 0.09607 -0.12601 0.08717 0.01650 -0.00822 0.01233 -0.01322 0.08611 0.00288 -0.05700 

Stigmasterol 0.11747 -0.01390 0.07548 -0.06913 0.02567 0.00644 0.10842 -0.02924 0.10413 0.01502 

Fucosterol -0.01140 -0.03571 0.22987 0.06639 0.12150 0.03612 -0.02082 0.12096 -0.06714 -0.05606 

-Sitosterol 0.10854 -0.03907 0.12394 -0.06224 0.11056 0.06322 0.03941 -0.02224 0.02591 0.03172 

-5-Avenasterol -0.03561 -0.02419 0.27710 0.06727 0.11534 0.12837 -0.09350 0.03818 0.02876 -0.01587 

Triacontanoic acid 0.07357 -0.14548 -0.00219 0.01741 -0.02420 -0.02811 0.03723 0.04631 0.08671 -0.21397 

Triacontanol 0.11821 -0.03587 0.02777 -0.01206 -0.04030 -0.01397 0.06294 -0.10698 -0.02984 -0.03313 

Stigmastadienol -0.02691 -0.07729 0.24650 0.04842 0.08833 0.16388 -0.10314 0.06595 0.02966 0.06491 

 

 

 


