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Abstract

Standard common causal explanations of the EPR situation assume a so-called joint common

cause system that is a common cause for all correlations. However, the assumption of a joint

common cause system together with some other physically motivated assumptions concerning

locality and no-conspiracy results in various Bell inequalities. Since Bell inequalities are violated

for appropriate measurement settings, a local, non-conspiratorial joint common causal explana-

tion of the EPR situation is ruled out. But why do we assume that a common causal explanation

of a set of correlation consists in �nding a joint common cause system for all correlations and

not just in �nding separate common cause systems for the di�erent correlations? What are the

perspectives of a local, non-conspiratorial separate common causal explanation for the EPR sce-

nario? And �nally, how do Bell inequalities relate to the weaker assumption of separate common

cause systems?
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1 Introduction

In the history of probabilistic causation Reichenbach's de�nition (Reichenbach, 1956) was the �rst
formal grasp of the notion of common cause. The conceptual novelty of the Reichenbachian de�nition
has attracted immense interest among philosophers of science from the very beginning (Salmon,
1975; van Fraassen, 1982). From the physical side, the need for a common causal explanation of
the EPR situation called attention to the de�nition of the common cause, even though in standard
hidden variable strategies a slightly di�erent common causal concept than the Reichenbachian has
been applied (Bell, 1971; Jarrett, 1984; van Fraassen 1989). An important step in the conceptual
clari�cation of the common cause in the EPR-Bell situation was the paper of Belnap and Szabó
(1996) in which the di�erence between the so-called joint and separate common cause had been �rst
recognized. Belnap and Szabó pointed out that in standard common causal explanations of the EPR
correlations common cause is actually meant as a joint common cause accounting for all correlations.

Concerning the algebraic-probabilistic features of the Reichenbachian common cause Hofer-Szabó,
Rédei and Szabó (1999) proved the following proposition. Classical (and also non-classical) cor-
relations can be given a probabilistic common causal explanation in the sense that any classical
probability measure space with correlating pairs of events can be extended such that the extension
contains a Reichenbachian separate common cause for each correlation. (For the precise de�nitions
see below.) Then in (Hofer-Szabó, Rédei, Szabó, 2002) it was proven that this proposition does not
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apply if Reichenbachian separate common causes are replaced with Reichenbachian joint common
causes. In other words, classical probability measure spaces containing correlating pairs of events
generally cannot be extended such that the extension contains a Reichenbachian joint common cause
for all correlations. Thus, being a joint common cause of a set of correlations turned out to be a
much stronger demand than being a common cause of a single correlation.

The �rst to apply the concept of separate common cause to the EPR situation was Szabó (2000).
Since factorizability, locality and no-conspiracy together entail various types of Bell inequalities, EPR
correlations cannot be given a local, non-conspiratorial, joint common causal model. Now, Szabó's
idea was to replace the joint common causes with separate common causes and thus to give a separate
common causal model for the EPR correlations. He constructed a number of separate common causal
models which were local and non-conspiratorial in the usual sense that the measurement settings were
statistically independent of the di�erent common causes. However, the models were conspiratorial on
a deeper level. The measurement settings statistically correlated with various algebraic combinations
of the separate common causes. This fact called attention to the subtle but important di�erence
between the so-called weak no-conspiracy where statistically independence is required only from the
measure settings and the common causes themselves, and strong no-conspiracy where statistically
independence is required from any Boolean combination of the measure settings and any Boolean

combination of the common causes. After numerous computer simulations aiming to remove the
unwanted conspiracies Szabó concluded with the conjecture that EPR cannot be given a local,
strongly non-conspiratorial, separate common causal model.

The conjecture of Szabó has been �rst proven by Grassho�, Portmann and Wüthrich (2005).
The proof consisted in deriving some Bell inequality from the same assumptions that Szabó intended
to apply in his separate common causal models for the EPR correlations. A crucial premise of
this derivation was that the (anti)correlation between some events be perfect. Assuming perfect
anticorrelations, however, turned the separate common causal explanations into a joint common
causal explanation. This fact has been shown in (Hofer-Szabó, 2008). In the same paper Hofer-
Szabó eliminated the assumption of perfect anticorrelations and presented a separate common causal
derivation of some Bell-like inequalities (Bell(δ) inequalities). At the same time Portmann and
Wüthrich (2007) presented a very similar result for the Clauser-Horne inequality replacing separate
common causes with the more general notion of the so-called separate common cause systems (see
below). Finally, in Hofer-Szabó (2011, 2012) a general recipe has been given how to derive any type
of Bell(δ) inequality provided that the original Bell inequality can be derived from a set of perfect
anticorrelations.

Although due to the above proofs the separate common causal explanation of the EPR scenario
has been excluded, there is a sense in which Szabó's conjecture is still not decided. Szabó's original
conjecture referred to the so-called Clauser�Horne set that is a set of four correlations violating the
Clauser�Horne inequality. His question was as to whether the Clauser�Horne set can be given a
local, strongly non-conspiratorial, separate common causal model. Interestingly enough�in the face
of the above results�this question is still open.

In Section 2 we make explicit the concepts and propositions introduced informally in the Intro-
duction. In Section 3 the standard joint common causal explanation of EPR correlations will be
recalled. In Section 4 and 5 we explicate what has been and what has not been proven in the local,
non-conspiratorial, separate common causal explanation of the EPR scenario. We conclude the paper
in Section 6.

2 Joint and separate common cause systems

Let us start the common causal explanation with Reichenbach's (1956) de�nition of the common
cause. Let (Σ, p) be a classical probability measure space and let A,B ∈ Σ be two positively
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correlating events, i.e.

p(A ∩B) > p(A)p(B) (1)

Reichenbach then de�nes the common cause of the correlation as follows:

De�nition 1. An event C ∈ Σ is said to be the Reichenbachian common cause of the correlation
between A and B, if the events A, B and C satisfy the following relations:

p(A ∩B|C) = p(A|C)p(B|C) (2)

p(A ∩B|C) = p(A|C)p(B|C) (3)

p(A|C) > p(A|C) (4)

p(B|C) > p(B|C) (5)

where C denotes the complement of C and the conditional probability is de�ned in the usual way.
Equations (2)-(3) are referred to as �screening-o�� properties and inequalities (4)-(5) as �positive
statistical relevance� conditions. (Here we do not discuss the problem as to whether conditions (2)-
(5) are necessary or su�cient conditions for an event C to be a common cause and simply take them
to be the de�nition of the common cause.)

Physicists use the notion of 'common cause' in a di�erent meaning. We obtain this meaning if (i)
we drop the positive statistical relevance conditions (4)-(5) from the de�nition, and (ii) we do not
restrict the screening-o� properties (2)-(3) to the partition {C,C} of Σ:

De�nition 2. Let (Σ, p) be a classical probability measure space and let (A,B) be a correlating
pair of events in Σ. A partition {Ck} (k ∈ K) of Σ is said to be the common cause system of the
pair (A,B) if for all k ∈ K the following conditions are satis�ed:

p(A ∩B|Ck) = p(A|Ck)p(B|Ck) (6)

The cardinality |K| (the number of events in the partition) is called the size of the common cause
system. We will refer to a common cause system of size 2 (that is of the form {C,C}) as a common

cause. (Sometimes we will also refer to C as a common cause.)

Now, let (Σ, p) be a classical probability measure space as before and let (A1, B1) and (A2, B2),
respectively be two positively correlating pairs of events in Σ, i.e. for i = 1, 2

p(Ai ∩Bi) 6= p(Ai)p(Bi) (7)

In order to give a common causal explanation for both correlating pairs we have two options. Either
we assume that the two correlations arise from the same causal source or we attribute di�erent causal
sources to the correlations. In the �rst case we explain the correlation by a so-called joint common
cause system, in the second case we employ two separate common cause systems. The de�nition of
joint and separate common cause systems, respectively are the following:

De�nition 3. A partition {Ck} (k ∈ K) of Σ is said to be the joint common cause system of
correlations (Ai, Bi) (i = 1, 2), respectively if for i = 1, 2 and k ∈ K the following relations are
satis�ed:

p(Ai ∩Bi|Ck) = p(Ai|Ck)p(Bi|Ck) (8)

De�nition 4. Two di�erent partitions {Cik} (i = 1, 2; k(i) ∈ K(i)) of Σ are said to be separate

common cause systems of the correlations (Ai, Bi) (i = 1, 2), respectively if for i = 1, 2 and k(i) ∈
K(i) the following relations hold:

p(Ai ∩Bi|Cik) = p(Ai|Cik)p(Bi|Cik) (9)
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Having de�ned di�erent common causal structures let us turn to the procedure of causal ex-
planation. A common causal explanation of a given correlation is realized mathematically by the
extension of the probabilistic measure space in such a way that for the original correlation there
exists a common cause system in the extended probabilistic measure space. In the case of two (or
more) correlations we can extend the algebra in two di�erent ways according to our causal intuition.
In order to model a joint common causal source of the correlations we extend the algebra such that
in the extended algebra all correlations have a joint common cause system. On the other hand to
account for separate causal mechanisms we extend the algebra such that in the extended algebra
di�erent correlations have separate common cause systems.

The extendability of the probabilistic measure spaces by joint respectively separate common
causal structures crucially depends on the size of the common cause system. In the case of a common
cause system of size 2 that is in the case of a common cause there is a great di�erence between joint
and separate common cause extensions as it is shown in the following two propositions:

Proposition 1. (Hofer-Szabó, Rédei, Szabó, 1999) Let (Σ, p) be a classical probability measure
space and let (A1, B1) and (A2, B2), respectively be two correlating pairs of events in Σ. Then
there always exists a (Σ′, p′) extension of (Σ, p) such that for the correlation (A1, B1) there exists a
common cause C1 and for the correlation (A2, B2) there exists a common cause C2 in (Σ′, p′).

Proposition 2. (Hofer-Szabó, Rédei, Szabó, 2002) There exists a (Σ, p) classical probability measure
space and two correlating pairs (A1, B1) and (A2, B2), respectively in Σ such that there is no (Σ′, p′)
extension of (Σ, p) which contains a joint common cause C in (Σ′, p′) for both correlations.

Proposition 1 claims that for two correlating pairs a separate common causal explanation is always
possible by extending the probability measure space in an appropriate way. (Moreover, if Σ contains
n ∈ N correlating pairs, each correlation can be given a separate common causal explanation.)
However, according to Proposition 2 this strategy does not work generally if we are going to obtain
the same common cause for the two (or more) correlating pairs. Thus, being a joint common cause
imposes much stronger demand on C than simply being a separate common cause.

However, strangely enough this di�erence between the common and separate common causal
extendability of a probability measure space disappears if the size of the common cause system is
not speci�ed. In other words, to �nd a joint common cause system of arbitrary size for a set of
correlations is not a stronger demand than to �nd separate common cause systems for the same set.
To see this, let (A1, B1) and (A2, B2) be two arbitrary correlating pairs in Σ. Then the partition

{A1 ∩B1, A1 ∩B2, A2 ∩B1, A2 ∩B2, }

is always a joint common cause system in Σ for both correlations. Obviously, this partition can
be regarded only as a trivial joint common cause system of the correlations. This makes it clear
that without further speci�cation a joint common causal explanation is not more compelling than a
separate common causal explanation. In the following sections we will see how these two types of
explanations diverge due to extra requirements.

3 No local, non-conspiratorial joint common cause system for

the EPR

Consider the standard EPR-Bohm experimental setup with a source emitting pairs of spin- 12 particles
prepared in the singlet state |Ψs〉. Let p(ai) denote the probability that the spin measurement
apparatus is set to measure the spin in direction ~ai (i ∈ I) in the left wing and let p(bj) denote the

same for direction ~bj (j ∈ J) in the right wing. Furthermore, let p(Ai) stand for the probability that
the spin measurement in direction ~ai in the left wing yields the result +1 ('up') and let p(Ai) denote
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the probability of the result −1 ('down'). Let p(Bj) and p(Bj) be de�ned in a similar way in the

right wing for direction ~bj . (See Fig. 1) Quantum mechanics then yields the following conditional
probabilities for the events in question:

p(Ai ∩Bj |ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2(

θaibj
2

) (10)

p(Ai|ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ I)) =

1

2
(11)

p(Bj |ai ∩ bj) = Tr(W|Ψs〉 (I ⊗ PBj )) =
1

2
(12)

whereW|Ψs〉 is the density operator pertaining to the pure state |Ψs〉; PAi
and PBj

denote projections

on the eigensubspaces with eigenvalue +1 of the spin operators associated with directions ~ai and ~bj ,

respectively; and θaibj denotes the angle between directions ~ai and ~bj .

Thus, for non-perpendicular directions ~ai and ~bj there is a conditional correlation

p(Ai ∩Bj |ai ∩ bj) 6= p(Ai|ai ∩ bj)p(Bj |ai ∩ bj) (13)

and for parallel directions there is a perfect anticorrelation between the outcomes:

p(Ai ∩Bj |ai ∩ bj) = 0 (14)

Now, consider a set {(Ai, Bj)}(i,j)∈I×J of EPR correlations in the sense of (13). A full-�edged
common causal explanation of the set {(Ai, Bj)}(i,j)∈I×J must comply with three demands on the
statistical level. Firstly, all the correlations must be screened-o� by a joint common cause system.
Secondly, statistical relations among the measurement outcomes and the measurement settings must
re�ect the spacetime location of these events in the sense that spatially separated events have to
be statistically independent. Thirdly, the measurement settings and the common cause should not
in�uence each other, they have to be statistically independent. We refer to these requirements in
turn as 'joint common cause system', 'locality' and 'no-conspiracy'. In the case of 'no-conspiracy'
we will distinguish two types: the 'weak' and the 'strong no-conspiracy'. The precise probabilistic
formulation of these demands is the following:

1. Joint common cause system: There exists a partition {Ck} of Σ such that for every Ai, Bj , ai
and bj in Σ (i ∈ I, j ∈ J) and for any k ∈ K the following factorization holds:

p(Ai ∩Bj |ai ∩ bj ∩ Ck) = p(Ai|ai ∩ bj ∩ Ck)p(Bj |ai ∩ bj ∩ Ck) (15)

2. Locality: For every Ai, Bj , ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K) the following screening-o�
relations hold:

p(Ai|ai ∩ bj ∩ Ck) = p(Ai|ai ∩ Ck) p(Bj |ai ∩ bj ∩ Ck) = p(Bj |bj ∩ Ck) (16)

3. a. Weak no-conspiracy: For every ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K) the following
independence holds:

p(ai ∩ bj ∩ Ck) = p(ai ∩ bj)p(Ck) (17)

b. Strong no-conspiracy: Consider two Boolean subalgebras A and C of Σ such that A is
generated by the partition of the di�erent measurement choices {aibj} (i ∈ I, j ∈ J) on the
opposite wings, and C is generated by the partition of the common cause system {Ck} (k ∈ K).
Then for any element E ∈ A and F ∈ C the following independence holds:

p(E ∩ F ) = p(E)p(F ) (18)
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It is straightforward to see that in the case of joint common cause systems (17) and (18) are equiv-
alent, the probabilistic independence of the Boolean combinations of common causes and the mea-
surement settings does not demand more than simply the probabilistic independence of the common
causes and the measurement settings themselves. Thus, in the case of the joint common cause system
type explanations equation (17) will su�ce as a no-conspiracy requirement.

However, as it is well-known (15)-(17) result in various Bell inequalities which are violated for
special measurement settings in the EPR experiment. For the simplest set of correlations, namely
for the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH where CH = I × J with I = {1, 2} and J = {3, 4} the
Bell theorem is the following:

Proposition 3. (Clauser, Horne, 1974) For some measurement directions ~a1,~a2 and ~b3,~b4 there can-
not exist extension of the probability space (Σ, p) such that the extension contains local, (weakly or
strongly) non-conspiratorial joint common cause systems for all EPR correlations of {(Ai, Bj)}(i,j)∈CH .

Consequently, EPR correlations fall short of a local, non-conspiratorial, joint common cause
system type explanation. One premise has to be given up.

4 Local, weakly non-conspiratorial separate common cause sys-

tems do exist for the EPR

Strategies aiming to avoid Bell inequalities and to give a common causal explanation for the EPR
correlations can be grouped according the abandoned premise. The �rst group consists of approaches
abandoning locality and preserving the joint common causal background and no-conspiracy. Bohmian
mechanics is an eminent representative of this group. The second group consists of less attractive
models in which no-conspiracy is given up. Examples of this approach are Brans' and Szabó's models
(Brans, 1988; Szabó, 1995). In these models the authors relinquished no-conspiracy and provided
a local, deterministic but conspiratorial joint common cause system type explanation for the EPR.
(For the problem of free will and no-conspiracy see (SanPedro, 2013.) In this paper, however, we will
follow a third strategy which gives up the hypothesis of a joint common cause system. The key idea
here is to replace the concept of joint common cause system with that of separate common cause
systems and to provide a local, non-conspiratorial, separate common cause system type explanation
for the EPR. A separate common cause system type explanation for a set {(Ai, Bj)}(i,j)∈I×J consists

in �nding for every (i, j) ∈ I × J index pair a separate partition {Cijk } (k(ij) ∈ K(ij)) such that
screening-o�, locality, and (weak or strong) no-conspiracies holds in the following sense:

1. Separate common cause systems: For every Ai, Bj , ai and bj in Σ (i ∈ I, j ∈ J) there exists

a separate partition
{
Cijk

}
of Σ such that for any k(ij) ∈ K(ij) the following factorization

holds:

p(Ai ∩Bj |ai ∩ bj ∩ Cijk ) = p(Ai|ai ∩ bj ∩ Cijk )p(Bj |ai ∩ bj ∩ Cijk ) (19)

2. Locality: For every i ∈ I, j ∈ J and k(ij) ∈ K(ij) the following screening-o� relations hold:

p(Ai|ai ∩ bj ∩ Cijk ) = p(Ai|ai ∩ Cijk ), p(Bj |ai ∩ bj ∩ Cijk ) = p(Bj |bj ∩ Cijk ) (20)

3. a. Weak no-conspiracy: For every ai, bj and C
i′j′

k in Σ (i, i′ ∈ I; j, j′ ∈ J ; k(i′j′) ∈ K(i′j′))
the following independence holds:

p(ai ∩ bj ∩ Ci
′j′

k ) = p(ai ∩ bj)p(Ci
′j′

k ) (21)
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b. Strong no-conspiracy: Consider again two Boolean subalgebras A and C of Σ such that A is
generated by the partition of the di�erent measurement choices {aibj} (i ∈ I, j ∈ J) and C is

generated by the partition of all the di�erent common cause systems
{
∩ijCijk

}
(k ∈ K). Then

for any element E ∈ A and F ∈ C the following independence holds:

p(E ∩ F ) = p(E)p(F ) (22)

Here, requirement (21) does not entail (22), that is the independence of the separate common cause
systems of the choice of the measurement settings does not assure that any Boolean combination

of the common causes will also be independent of any Boolean combination of the measurement
settings. Thus, in the case of separate common cause system type explanations one has to take into
consideration two di�erent versions of no-conspiracy.

The idea to replace the concept of a joint common cause system with that of separate common
cause systems and to provide a local, non-conspiratorial separate common cause system type explana-
tion for the EPR was �rst raised by Szabó (2000). Actually, Szabó replaced the joint common cause
system with separate common cause systems of size 2 that is with separate common causes. Szabó
provided a number of separate common causal models for the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH
such that the models were local and non-conspiratorial in the weak sense of (22). In a precise form,
Szabó's proposition was the following:

Proposition 4. (Szabó, 2000) Let {(Ai, Bj)}(i,j)∈CH be the Clauser�Horne set of correlations in

(Σ, p). Then for any measurement directions ~a1,~a2 and ~b3,~b4 there exists an extension of the proba-
bility space (Σ, p) such that the extension contains local, weakly non-conspiratorial separate common
causes for the correlations of {(Ai, Bj)}(i,j)∈CH .

The common causal models provided by Szabó, however, were all conspiratorial in the strong

sense of (22). After numerous computer simulations aiming to remove the unwanted conspiracies
Szabó �nally concluded with the conjecture that EPR cannot be given any local, separate common
causal model free from all type of conspiracies.

5 Local, strongly non-conspiratorial separate common cause

systems for the EPR?

Szabó's conjecture is then the following:

Conjecture 1. For some measurement directions ~a1,~a2 and~b3,~b4 there cannot exist extension of the
probability space (Σ, p) such that the extension contains local, strongly non-conspiratorial separate
common cause systems for the correlations of {(Ai, Bj)}(i,j)∈CH .

Although a lot has happened since 2000 in understanding the status of the separate common
causal explanation of the EPR scenario, Szabó's conjecture in its original form is still an open

question. What has actually been excluded, is not a local, strongly non-conspiratorial separate
common causal explanation of the the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH , but that of another set.
Let I = J = {1, 2, 3, 4} and let PA be the following subset of I × J :

PA = {(1, 1), (2, 2), (3, 3), (4, 4)}

Then one can prove the following proposition:

Proposition 5. For some measurement directions {~a1,~a2,~a3,~a4
}
and

{
~b1,~b2,~b3,~b4

}
there cannot

exist extension of the probability space (Σ, p) such that the extension contains local, strongly non-
conspiratorial separate common cause systems for all EPR correlations of {(Ai, Bj)}(i,j)∈PA.
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The above proposition was �rst proved by Grassho�, Portmann and Wüthrich (2005). They have
shown that no local, strongly non-conspiratorial separate common cause systems are possible for all
correlations of {(Ai, Bj)}(i,j)∈PA, if for any index pair (i, j) ∈ PA there is a perfect anticorrelation

(hence the denotation 'PA') in the sense of (14).
The assumption of perfect anticorrelations, however, was unsatisfactory in two respects. The �rst

problem concerns experimental testability. Since perfect anticorrelations cannot be tested experi-
mentally with absolute precision, the proof of Grassho�, Portmann and Wüthrich did not provide
an experimentally veri�able refutation of a separate common causal explanation of the EPR.

The second problem was more conceptual. Standard derivations of the Bell inequalities assume a
joint common cause system. The chief virtue of the proof of Grassho�, Portmann and Wüthrich was
that it avoided this strong concept of a joint common cause system and used the weaker concept of
separate common cause systems instead. However, in the perfect anticorrelation case the assumptions
of separate common cause systems turned out to be reducible to the assumptions of the standard
joint common cause system as it was shown in the following proposition:

Proposition 6. (Hofer-Szabó, 2008) Let
{
Cijk

}
(i,j)∈PA

be local, strongly non-conspiratorial sepa-

rate common cause systems for the correlations of {(Ai, Bj)}(i,j)∈PA. Then the partition {Dl} :={
∩ijCijk

}
generated by the intersections of the di�erent separate common cause systems is a local,

non-conspiratorial joint common cause system of the same correlations of {(Ai, Bj)}(i,j)∈PA.

The assumption of perfect anticorrelations, however, turned out not to be indispensable in the
proof of Proposition 5. Portmann and Wüthrich (2007) and Hofer-Szabó (2008) have shown that
Proposition 5 also holds if one only assumes that the correlations to be explained form an almost

perfect anticorrelation set, {(Ai, Bj)}(i,j)∈PA(δ), in the sense that there exists a δ of some small but
not zero value such that

p(Ai ∩Bj |ai ∩ bj) 6 δ (23)

for any index pair (i, j) ∈ PA(δ).
Finally, Hofer-Szabó (2011, 2012) generalized this proof by deriving arbitrary Bell(δ) inequality�

that is to say, an inequality di�ering from the corresponding Bell inequality in a term of order δ. The
recipe of this derivation is roughly the following. Consider a Bell inequality resulting from the local,
non-conspiratorial joint common causal explanation of a given set of correlations {(Ai, Bj)}(i,j)∈I×J
(not necessarily {(Ai, Bj)}CH). Now, de�ne the set PA for {(Ai, Bj)}(i,j)∈I×J as follows: let PA
contain all the index pairs (k, k) in (I ∪ J) × (I ∪ J) that is all indices appearing either on the left
or the right hand side of the correlations in {(Ai, Bj)}(i,j)∈I×J .

Now consider the set {(Ai, Bj)}PA(δ) of almost perfect anticorrelations and suppose that it has
a local, strongly non-conspiratorial separate common causal explanation. This assumption results
in a Bell(δ) inequality di�ering from the original Bell inequality in a term of order of δ where
the exact magnitude of this term is the function of the approximation. Choose the setting which
violates the Bell inequality maximally. If the δ term is smaller than the violation of the original
Bell inequality, then the Bell(δ) inequality will also be violated, excluding a local, strongly non-
conspiratorial separate common causal explanation of the set {(Ai, Bj)}PA(δ).

6 Conclusions

In the paper, �rst, di�erent common causal concepts ranging from Reichenbach's de�nition to the
most general concept of the common cause system have been listed. Then the role of the di�erent
causal notions in the common causal explanation of the EPR scenario has been exposed. It was said
that a completely satisfactory common causal explanations of the EPR would consist in �nding a
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joint common causal source for all correlations which is local and non-conspiratorial. Since these
assumptions together entail various Bell inequalities one assumption has to be abandoned. The
ambition of the separate common cause system type approach of the EPR was to preserve the latter
two physically motivated assumptions of locality and no-conspiracy at the expense of replacing the
strong concept of the joint common cause system with the weaker concept of separate common
cause systems. It has been shown, however, that the weakening of the common causal concept does
not provide a solution to this problem since the weakened assumptions still entail some Bell and
Bell(δ) inequalities. Consequently, there exists neither a local, (weakly or strongly) non-conspiratorial
separate common causal explanation of the EPR.

A weakness of all the above no-go theorems, however, is that they are all based on either perfect
or almost perfect EPR correlations. As it was made clear in Proposition 6 the separate common
causal explanation of such correlations is always parasitic on some joint common causal explanation.
Therefore it would be highly desirable to derive some Bell inequality form a local, strongly non-
conspiratorial separate common causal explanation of a set of genuine (not almost perfect) EPR
correlations. For example it would be widely wanted to prove or falsify Szabó's original conjecture
(Conjecture 1)�that is for the set {(Ai, Bj)}(i,j)∈CH violating the Clauser�Horne inequality

(i) either to derive the Clauser�Horne inequality (or some other constraint) from the assump-
tion that {(Ai, Bj)}(i,j)∈CH has a local, strongly non-conspiratorial separate common causal
explanation;

(ii) or to show up local, strongly non-conspiratorial separate common cause systems for the set
{(Ai, Bj)}(i,j)∈CH .

Neither option seems to be a trivial task.
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