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ABSTRACT
The study is a contribution to the theory of screw conveyors. In contrast with previous investi-
gations the author starts from the differential equation of the screws with general position and
derives some valuable conclusions from its solution.

INTRODUCTION

The object of this study is the screw conveyor which is one of the oldest conveyor, that is used
for mainly horizontal, vertical and inclined conveying of dry, non sticky bulky and dusty ma-
terials. It can be mentioned, that the operational principle of screws is suitable for not only
conveying but mixing and pressing. First of all, this study deals with theoretical questions of
conveying, but it is possible that the results can be utilized in a wider range of other areas.

For the theoretical investigation we will use one of the simplest mechanical models, the so-
called particle that is known as a rough approximation of reality therefore does not reflect ex-
actly the real processes. In spite of this, in general, from the differential equation coming from
the equation of motion can be drawn valuable conclusions, or can be gained approximate solu-
tions that satisfy the demands of practice.

METHODS

Differential equation of particle moving on helical

Granular material in the tube can be considered as an individual particle (P). Let us analyse
the motion of the particle with respect to a set of moving coordinate axes P,t,n,b, which are in
turn moving in some known way with respect to an inertial (fixed) reference system O,x,y,z.
For the purpose of general description let axe z encloseangle with the direction of horizontal
(Fig. 1). Moreover, let us assume that the particle moves on a helical being on the edge of
screw blade and bordered by the tube and the coefficients of friction are constant.

As it is known, equation of motion to a rotating reference system can be obtained so that the
transport and Coriolis inertial forces are added to the forces of interaction with other bodies
acting on the particle. After this all equations and theorems of mechanics for relative motion
of the particle can be written exactly like the equations of absolute motion. In our case the
equation of motion:
(1) cs21 FFNBSSGr m ,
where: m mass of the particle,

r relative acceleration of the particle,
S1 friction force on the screw blade,
S 2 friction force on the tube,
B constrained force on the screw blade,
N constrained force on the tube,
0 angular velocity of the shaft of the screw,
s relative velocity of the particle,
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G gm force of gravitation,
F ( r)s 0 0  m[ ]  transport force,

)2( tF 0c sm   a Coriolis force.

Fig. 1 Coordinate systems and forces acting on the particle
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where:  helix angle at radius r,
 angle made by r with the x coordinate axe,
r projection of the radius vector r on the plane x,y,

R r / cos2the radius of the curvature.

Forces acting on the particle transforming into the moving coordinate system and substituting
into formula (1), we obtain the differential equation of particle moving on helical [1]:

(3)  sinsinsincoscoscos 1 NB 2 mgmgsm 

,cos2cossin
2

0
2
0 R

smsmrmgm


  N

B N  mg mgsin cos cos cos sin cos      2 ,

where is the direction of travel of the particle with respect to binormal vector.

The above non-linear second order differential equation particularly consists of the rule of mo-
tion for horizontal and vertical screw conveyors. Substitution =0 and =/2 yields the equa-
tions for horizontal and vertical screw conveyors.
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RESULT, DISCUSSION
Solution of the differential equation

For the solution of differential equation (3) it is necessary to introduce notation relative angle
of motion r . According to Fig. 2:

ds r d r
cos

.

Division by dt yields the relative velocity:

r
r

dt
dss 




cos
 ,

and the relative acceleration

r
rs 



cos

 ,

where ris the relative angular velocity and ris
the relative angular acceleration.
Substituting these expressions into equations (3) and

reducing them to the appropriate form we obtain:
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From equations (4) we have to eliminate angle which characterizes absolute position of the
particle, more precisely we have to write it as a function of the relative angle of motion.

Let 0 be the angle at the time t=0. Because rotation of the screw is negative and relative rota-
tion of the particle is positive, the

(4/f)      0 0( )t r .

Initial conditions for numerical solution of initial value problem can be given easily. At the
time t=0 the particle locates at angle =0 and the relative angle of motion is r(0)=0, the
relative angular velocity is also 0 i.e. 0)0( r .

As it is known differential equations of higher order can be converted into system of differen-
tial equations of first order and after conversion we can use the one of the well-known meth-
ods for solution. In general, the differential equation of second order (4) is:

),,( tf rrr   .

Let be zr  , after substitution the system of differential equations is:
),,( tzfz r ,

Fig. 2
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z g z tr ( , , ) .
The initial conditions are:

r z( ) ( )0 0 0 0 és .

The graphs of particular solutions obtained by the Runge-Kutta method of 4th order for a
horizontal and an inclined screw conveyor characterized by parameters 

1
=0.36, 

2
=0.6, 

=14.3, =0and 40, r=0.125 m, 
0
=10 1/s and initial conditions 

0
=161.93, 142.37can be

followed in Fig. 3.

The absolute position of the particles () as the function of time are shown in Fig. 3/a. At first
the curves decrease strictly and monotonously, later, after location of minimum the curves
tend to a constant value by damped oscillation.

The functions of the relative angular velocity rcan be seen in Fig. 3/c. The functions of the
relative acceleration cut the axe of time at the location of maximum of the functions of the
relative angular velocity (Fig. 3/d). After the maximum location of the functions of the rela-
tive angular velocity decrease monotonously and oscillates around value r=10 1/s with de-
creasing amplitude and increasing period, i.e. the relative angular velocity tends to the angular
velocity of the screw. It means, the particle no longer accelerates and its velocity becomes
constant. All these can be followed also in Fig. 3/d, where after the minimum location the
value of relative acceleration increases monotonously and tends to zero.

Speciality of the solution is that in the section of the damped motion the direction of the abso-
lute velocity tends to ~=14.3, which is equal to , i.e. it is parallel to the axe z (Fig. 3/b ).
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Fig. 3: Particular solutions of the differential equation

(
0
=/2 

1
=0.36,

2
=0.6, =14.3, r=0.125 m, 

0
=10 1/s)

The damping of the curves are hardly perceptible because the amplitudes of the oscillation are
very small. The time of the oscillation depends on the accuracy of the solution. When the
space of the iteration is chosen very small e.g. h=0.00001, then the time of damping for , r,

r and values are very long. Fortunately, the amplitudes of the oscillation are became rap-
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idly negligible. In the practice, in the case of screws with ordinarily revolution, this time is
less than 1 s, therefore the screw conveyors reach the steady-state during less than 1/2 revolu-
tion, henceforth values of , r, r and can be considered constant.

In the possession of the particular solutions and graphs let us try to describe the motion of the
particle. At the time t=0 the particle travels with the screw blade and its relative velocity is
zero, therefore the absolute velocity (v) is equal to the circumferential velocity of the screw
blade (v

k
), and its direction is =/2. At the initial position (

0
) the particle slips on the

screw blade (assuming that its conditions are given) and gradually accelerates. During this
time the magnitude and direction () of the absolute velocity vector change. In the first section
of the motion the vector v inclines right to the binormal vector b and the second section in-
clines left. Thus the path of the motion will be an irregular spiral elevating in the direction of
the rotation. In the interval =0-/2, at displacement (=

a
) determining by the parameters

1
,

2, , the motion of the particle reaches steady-state. The relative acceleration becomes zero
i.e. 0r , and components of the forces acting on the particle in direction t will be equilib-
rium. The relative velocity will be:

0r ,

and the direction of the absolute velocity will be:

=.

The differential equation and its solution does not say too much for technical designers who
are rather interested in gaining new information about steady-state. However, the key to this
information is also the same system of equations (4). Therefore in the next sections we will
investigate the conditions for relative motion and analyse the steady-state.

Conditions of the relative motion

It can be a question, how to choose the angle belonging to t=0. Having determine the motion
of the particle we know the angle 0 has to be in such an interval where the conditions of the
relative motion are given. Therefore the question is, how to determine the low border of this
interval. Beginning of the relative motion at the time t=0 r (0)=0, 0)0( r and in border-
line case the 0)0( r . Moreover, we know that at this time v=v

k
, namely the direction of

vector v, angle is equal to /2, therefore




 cos
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  .

Substituting expressions above and initial conditions at the time t=0 into equations (4) we ob-
tain the following algebraical system of equations:

(5/a) g g
m m

cos cos cos sin sin cos          1 2 0
B N

,

where

(5/b)
N
m

g r sin cos  0
2,
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(5/c)
B N
m

g g
m

  sin cos cos cos sin sin      2 .

Writing equations (5/b and c) into (5/a), whence
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Let us introduce notation
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in this way
cos sin    2 0C .

After using the trigonometric identity cos sin  1 2 , we obtain

(6) sin sin2 2
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The positive root (
1
) of equation (6) determines a placement where the relative motion can

start. Therefore, when we give the initial conditions for 0 it has to be:

  0 1  .

The condition for right operation of screw conveyors is that the real solution of (25) exists,
namely the discriminator of the equation must be positive,
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Inserting value of C and using notation 
1
=tg, we get
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Let us solve the inequality above for 0. After some elementary steps, we have
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Let us introduce notation
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and using them, we get

 0
4

0
2 0  p q .

Transforming the right side of the inequality into full square, whence
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Solutions of the inequality are:
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Since 0 is on the second power, the feasible solution is:
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Putting back value of p and q, we obtain the maximum angular velocity:

(7) 


   0
2

1max cos ( )  
g
r 2

2 + sin tg .

Above this upper value the condition of the relative motion are not given. In the case of hori-
zontal screw conveyors =0, therefore

(8) 


0
2

1max  g
r 2

2 .

Consequently, the inclined and horizontal screw conveyors with given 
1
, 

2
, , parameters

have a maximum angular velocity (0max). Equation (6) has not got real solution above this
value, namely greater angular velocity than 0 max the condition of the relative motion are not
given. Therefore, there is no reason for increasing the revolution of inclined and horizontal
screw conveyors above the determined limit. This theoretical result is supported by empirical
formulas and its explanation that can be found in the literature.

In the case of vertical screw conveyors beginning of the relative motion is independent of
angle , i.e. inserting =/2 into equation (5) the members consisting are eliminated, thus

   g
m m

sin cos   1 2 0
B N
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r 0
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and substituting 
1
=tg, we have the result:
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which is identical the well known critical angular velocity given in the cited references [2],
[4].

The formulas (7-9) have great importance in the practice since they determine the maximum
or minimum angular velocity. Above the maximum or under minimum angular velocity the
conditions for relative motion are missed, practically, screw conveyors do not work.

Examination of steady-state motion

In context of the solution and steady-state motion there are two important practical questions:
(1) what is the direction of absolute velocity in steady-state and where is the placement of
steady-state, (2) whether steady-state exist everywhere or not in the interval =0-/2.

In the particular solutions examined before, at first the angular velocity of relative motion of
particle increased, later after the maximum place it decreased monotonously and tended to 

0
,

namely in steady-state 0r and 0r . The numerical examination of the process leaded
to the next conclusion. In the case of unchanged 1, 2, , parameters the particle reach the
steady-state at the same place =a independently choosing of 0 and 0, but naturally as-
sumed that 00max, and at placement 0 the condition of relative motion are given. Cor-
rectness of this result can be easily realized if we examine the equations (4/b) and (4/d) thor-
oughly. Substituting the result of steady-state 0r into (4/b) and (4/d) then 0 is elimi-
nated and a will be only the function of 1, 2, , parameters.

After a short digression we return to the original questions. At first approach let us suppose
that in steady-state 0r therefore let us substitute 0r into equation (4/d), whence
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from which =, namely in steady-state direction of absolute velocity is parallel with the
shaft of the screw. (Let us remember the shaft of the screw was fitted to axle z.)

For the second part of the first question (where is the placement of steady-state) we can gain
answer such a way, that we substitute 0r , 0r and =into system of equations (4).
In this way the right side of (4/a) will be 0 and the members of (4/b) which consist 0 will
eliminate, namely

(10/a) g g
m m

cos cos cos sin sin sin          1 2 0
B N

,

where

(10/b)
N
m

g sin cos ,

(10/c)
B N
m

g g
m

  sin cos cos cos sin cos      2 .

Writing (10/b and c) into (10/a) and reshaping
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Using again identity 1=tgand introducing notations
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we gain a second-degree equation:

(11) 01sin2sin)1( 222  BABA  .

From equation (11) angle a which belongs to steady-state can be calculated. On the other
hand, conditions of real solution give answer to the second question. Coefficients of the equa-
tion

a A    2
2
2 21 1  tg ( ) ,

)(tgtg22 2
2   ABb ,

c B    2 21 1tg tg2  ( ) .

The condition of feasible solution

b a c2 4 0  .

Solving it for 

(12)
1

2 2
2

tg
tg tg

( ) 
  


   h.

What can be read from the result (12). The steady-state characterized by 0 r can be
reached only to a limited h border where h is determined by the angles , and the friction
coefficient 2.

Above the border h the motion obtains steady-state at only =90. However, the direction of
the absolute velocity of the particle is not parallel with axle z, namely and value of r
never reach value of 0. We can follow it in Fig. 4, where two particular solutions are shown
for a vertical and an inclined (=80) screw. Other parameters for the two solutions are the
same (

1
=0.36, 

2
=0.6, =17.66, r=0.125 m, 

0
=15 1/s,

0
=/2).

The results for inclined (>h) screw seems to be most interesting in the figure. According to
the graph the angle which characterizes direction of absolute motion, the relative angular
velocity and acceleration periodically change around a mean value. However, against the pre-
vious results the amplitudes of the functions do not decrease and the motion does not reach
steady-state. It can be assumed that the continuous change of velocity requires considerable
energy. The proof of this assumption needs measuring in the future.

The messages of curves for vertical screw are the same than the previously published results
for vertical screws [2], [4]. The solution of differential equation confirms the cited authors
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who wrote the equilibrium equations resuming steady-state. Naturally equilibrium equations
can be gained from system of equations (4) putting the condition of steady-state into them.
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Fig. 4: Solution of the differential equation for vertical and inclined screws

(1=0.36, 2=0.6,=17.66, r=0.125 m, 0=15 1/s, 0=/2).

For vertical screw =/2 and 0r , whence
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From algebraical system of equations the relative angular velocity rand the direction of ab-
solute velocity, angle can be calculated with any numerical method.

SUMMARY

Differential equation of particle moving on helical and its particular solutions are applicable to
realize and analyze operation of the screw conveyors but in this study the full advantage of the
equation have not been taken yet. With assistance of system of equations we can specify the
conditions of relative motion and steady-state. From these conditions the greatest and critical
revolution of horizontal, vertical and inclined screws can be derived. The placement of steady-
state motion which probably effects to the cross-section of the material flow can be calculated
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very easily. Moreover, it has been proved that the steady-state can be only obtained to a lim-
ited border (h).

Confirmation by measure and clarify the limitation of the theory are the task of the further in-
vestigations.
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