
Design Procedure Based on VHDL Language Transformations

LÁSZLÓ VARGA, GÁBOR HOSSZÚ* and FERENC KOVÁCS

Department of Electron Devices, Technical University of Budapest, H-1111 Budapest, Goldmann Gy. t. 3., Hungary

(Received 20 July 1999; Revised 10 March 2000)

One of the major problems within the VHDL based behavioral synthesis is to start the design on higher
abstraction level than the register transfer level (RTL). VHDL semantics was designed strictly for
simulation, therefore it was not considered as high-level synthesis language. A novel synthesis
procedure was developed, which uses the methodology of high level synthesis. It starts from an abstract
VHDL model and produces an RTL VHDL description through successive language transformations
while preserving the VHDL standard simulation semantics. The steps of the synthesis do not use graph
representation or other meta-language, but apply the standard VHDL only. This VHDL representation
is simulatable and accessible, functional verification can be performed by simulation at any time, and
the simulation results can be used to guide the synthesis process. The output VHDL format is suitable to
continue the design flow with RTL based synthesis tools.

Keywords: Language transformations; High-level synthesis; VHDL; Simulation

INTRODUCTION

The increasing complexity of integrated circuits and the

aggressive time-to-market requirements have caused

growing interest in the synthesis of digital systems from

behavioral level specifications. Behavioral synthesis offers

significant productivity increase by raising the abstraction

level of digital design, and improvements in design quality

by exploring high-level trade-off. A behavioral description

represents an algorithmic specification of the functionality

of the digital system. It contains no structural information,

and the physical type “time” is not allowed, since the

structural implementation, and the cycle-by-cycle behavior

are introduced by the high-level synthesis tool.

The task of the synthesis is to convert the behavioral

description into a structural, register transfer level

architecture that is based on two separated but related

parts: data path and control block [1]. The data path

consists of macro blocks such as functional units (such as

multipliers, shifters, adders, etc.), storage units (such as

registers, memories, etc.), and interconnection units (such

as multiplexers and buses). Behavioral synthesis tools

typically compile a behavioral description into a suitable

intermediate format, such as control-data flow graph

(CDFG), and use the CDFG all along the synthesis

process. The result of the behavioral synthesis process

provides a register transfer level (RTL) specification of the

circuit typically described by a hardware description

language (HDL). Among the different HDLs for digital

circuit design, VHDL [2] is the most widely used and

standardized. VHDL can capture the design at several

abstraction levels and conveniently represents both the

behavioral specification and the RTL design.

Automated hardware synthesis starting from the VHDL

RTL description is well established. There are many

commercial CAD tools starting with the RTL structural

specification as input and yielding the complex documen-

tation for fabricating the circuit. However, there are still

open problems in starting the VHDL based design on a

higher abstraction level than the RTL. The main difficulty

lies in the fact that VHDL semantics are designed strictly

for simulation, therefore high-level synthesis with VHDL

has not found a common ground among the researchers,

but other formal description techniques than VHDL have

been considered (such as control/data flow graphs, timing

graphs, and structural graphs).

To overcome the obstacle of high-level synthesis of

digital circuits with VHDL, we have developed a series of

transformation steps, which converts each design rep-

resentation into a VHDL description utilizing the multi-

level description capability of VHDL while preserving the

VHDL standard semantics during synthesis. As a result,

ISSN 1065-514X print/ISSN 1563-5171 online q 2002 Taylor & Francis Ltd

DOI: 10.1080/10655140290011159

*Corresponding author. Tel.: þ361-463-4034. Fax: þ361-463-2973. E-mail: hosszu@nimrud.eet.bme.hu

VLSI Design, 2002 Vol. 14 (4), pp. 349–354

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42929944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the digital system design can be simulated together with

the behavioral model and/or RTL model of the macro

blocks, which are also described in VHDL. Simulation is

typical validation technique of current industry practice.

Fast and accurate feedback in the early design flow is a key

issue. A pure VHDL based high-level synthesis method-

ology is proposed in [3]. The design procedure presented

in this paper starts from the abstract high-level functional

model and produces an RTL description through

successive language transformations. The main benefits

of this approach are the following:

1. The purely behavioral VHDL provides consistency,

and takes advantage of coarse-grained high level

parallelism in the input language.

2. Only the VHDL as design representation is used

during the synthesis process. This VHDL represen-

tation is simulatable and accessible to the designer.

The behavior of a design can be verified at an early

design phase, functional verification can be performed

by simulation at any time, the simulation results can be

used to guide the synthesis process.

3. Simulation runs at all levels of abstraction. The pre-

simulation of the design behavior, the simulation in an

intermediate step of synthesis and post-simulation

after the synthesis are straightforward. The same

mechanism/tool/environment can be used, and multi-

level simulation is achieved. The design to simulate

can be inserted into the original test bench without

altering the test bench. The only modification in some

cases that the designer will have to retime the test

bench.

4. The methodology gives the designer a powerful set of

tools, and preserves the designer’s ability to provide

control to the available options of synthesis algorithms

in order to perform efficient design space exploration

by interacting with the high-level synthesis process.

THE METHOD OF LANGUAGE

TRANSFORMATION

There are three main tasks to be performed in

transforming a high-level behavioral specification into

an RTL architecture. The first is the determination of the

cycle-by-cycle behavior of the design by scheduling of

each operation into control steps. The second one is the

allocation, which decides on the number and type of

hardware units that will be used to implement the

behavioral description. The third task is the binding,

which assigns each operation to one of the allocated

functional unit, each variable to one of the allocated

register, and creation of interconnections to complete the

data path.

For synthesis, two kinds of information are necessary: a

behavioral specification and a functional unit library. The

input behavioral specification is written in VHDL, which

describes an algorithm that the designer wants to

implement on a chip. This input is much more abstract

than a VHDL structural description that would be used as

the input to a logic synthesizer. The functional unit library

consists of the available elementary units, and provides

information about different parameters (attributes) of the

functional units [4]. Each unit in the library is described by

a VHDL entity. The entity declaration specifies the name

and the input/output port structure of the component

together with possible parametrized information. An

architecture body is used to specify the semantics of the

component.

Our synthesis methodology starts from a behavioral

VHDL description and reaches a RTL description through

the step-by-step transformations using the tools of the

high-level synthesis. The generated RTL architecture is

based on constraints imposed by the designer. The

designer can perform architectural design trade-off by

executing different algorithms and evaluates its result. The

simulation results, the performance, the estimated

implementation cost, or a specific objective function

(etc.) can be used to guide the synthesis process by

interacting with the design algorithms in order to obtain

better results. In addition to the algorithmic optimization

techniques, manual optimizations are also possible by

altering the VHDL code.

We have made some basic assumptions concerning the

input description style. The circuit to be synthesized

consists of a VHDL process, which will be mapped to

hardware in the form of a data path and a control finite

state machine [5]. In the next section we describe the steps

of the proposed methodology in details.

THE STEPS OF THE DESIGN PROCESS

The first step is the creation of the behavioral description.

The behavioral VHDL description is a purely algorithmic

description, which contains high-level operations. Most

algorithms have a common behavior in that they read

some input data, perform some calculation, produce some

output data and start over again. The behavioral

description can be written in many different styles,

which are semantically equivalent, but syntactically

different, and designs synthesized from semantically

equivalent and syntactically different descriptions may

differ in quality [6]. We provided with some basic rules

concerning the input description style, in order to describe

models that can be efficiently synthesized in hardware.

The overall structure of the design model comprises entity

declaration and architecture body. A process body

embodies the data and control flow of the design

specification for synthesis purposes, which will be

mapped to hardware in the form of a data path and a

control finite state machine (FSM). We assume that the

input data is loaded when the “start” signal is issued. After

completion of the calculations, when the result are at the

output ports, the circuit issues the “ready” signal. This

control construct provides the entity level timing for the

L. VARGA et al.350

design. The designer can write such a model in VHDL, or

can use a supplemented VHDL subset to derive a

simulatable architecture. A supplemented VHDL subset

called Abstract Functional Model (AFM) was developed

to provide a restricted design style to the designer

corresponding to our basic assumptions.

We demonstrate the methodology in detail with the aid

of an example. Consider the arithmetic expression y ¼

ðaþ bÞ £ absðc 2 dÞ: An example AFM input file for this

expression we use throughout this paper is shown in Fig. 1.

The high-level operations are respect to the functional

units in the library. We use integer data type, however any

types that can be mapped onto finite size bit patterns are

allowed. A tool was developed which converts the

Abstract Functional model into a VHDL description. The

tool generates also a test-bench skeleton along with the

design entity. The test-bench skeleton consists of a

declaration of the test-bench entity and its architecture,

which consists of a signal component corresponding to the

design. The I/O ports of the design entity will be

connected to signals, which will be used to capture the

simulation results. The designer can fill in some waveform

specification for the input ports of the design entity so that

specific test patterns can be used to check the desired

functionality. The test-bench skeleton also includes a

clock signal generator and the “start”, “ready” control

construction to control the simulation process.

Our initial VHDL model, called High-level Behavioral

Model (HBM) (see Fig. 2.) can be automatically derived

from the AFM. Predefined “start”, “ready” control

construction is used in the description of HBM to timing

the operation of the design. Variable equivalents for input

and output ports are created. The process is started with a

WAIT statement. The inputs are read, the algorithm is

calculated using variables, and the result is assigned to the

variable equivalents of the outputs. Finally, the output

ports are assigned from the variable equivalents. This

VHDL description is simulatable. The designer can

perform functional verification of VHDL specifications

before synthesis to check if the description has the

intended behavior. The HBM will be mapped to an RTL

description in the form of a data path and a control FSM

through successive transformations. Each transformation

incrementally augments the model with structural

information until a complete RTL design has evolved.

The first transformation step separates the data path and

the control part of the design. (See Fig. 3.) The separation

makes it possible to handle the basic operations by

algorithmic synthesis tools. The control of the timing will

be concentrated in the process, whereas the data path

will be collected into a block outside of the process.

The block is “guarded”, wherein “guarded” concurrent

signal assignments are present. The concurrent signal

FIGURE 1 Abstract functional model.

FIGURE 2 High-level behavioral model.

FIGURE 3 Value-trace block.

VHDL REPRESENTATION 351

assignments statements describes the data dependency

among the operations. The targets of concurrent assign-

ments are ordered to the values of variables of the HBM.

The assignments are executed if the “guard” expression

changes to a true value or if the “guard” expression is true

and in the same time there is an event on the signal in the

right side. The “guard” expressions are controlled by the

instructions of the process body. The functions in the

right-side expressions of the transactions cover their

implementations among the functional unit library. For

faster simulation, however, the according behavioral

model can be used, too. For example, the behavioral

model of the addition function may be as simple as the

VHDL plus operator, but in the case of non-simple

operator, at least its behavioral function is required. We

call this model as Value Trace Block (VTB) [7]. The

signals had to be declared for the data exchange among the

process and block, respectively. The type pltype is defined

as an enumerated type with the block control elements

empty and token. The signal df0 is used to control the

block dfb0. High-level synthesis systems generally have

the CDFG behavioral representation. The graph represen-

tation has a special format, they do not provide the

possibility of simulation, or provide it in an adjunct

simulation environment to a high-level synthesis system,

which is different from an HDL environment. The VTB

model is given in VHDL, it can be simulated, and

describes the data- and control-flow with the same

expressivity as the CDFGs.

Scheduling of each operation and functional unit

allocation are performed in the second transformation

step. The result of this transformation step is shown in Fig.

4. (The control description is omitted for brevity.) Each

block represents one control step in the schedule. The

operations scheduled in different control steps will be

placed into different blocks. The process is responsible of

the scheduled start of each block. The after clause in a

signal assignment represents the delay times of each

operation, if its behavioral model is used. Most of the well

known scheduling and allocation algorithm can be used.

The designer has the task to choose among the available

algorithms and its parameters according to the actual

constraints. The designer set the demands for the

restarting time, has the specification of the number of

architectural components such multipliers, adders, etc.

that are allowed in the design along with their delay times,

but other constraints, such as testability or power issues [8]

can be considered, too. According to this, there are several

behavioral architectures among this transformation step. If

the actual design do not satisfactory, re-scheduling or

behavioral transformations [9] can be applied in this step

to meet the design constraints. Different implementations

of the operations are distinguished. A component with

many different implementations can exist simultaneously

in the library which have different characteristic, and

selection of components during the synthesis process is

possible. For example, the selected implementation (such

as serial ripple-carry or parallel look-ahead-carry) of an

addition function is distinguished according the name of

the implementation in the library.

After scheduling and allocation, the behavioral model

of the controller is created using state register denoted as

FSM. In the third transformation step register and

multiplexer allocation and final binding are performed.

(See Fig. 5.) The allocated registers are connected to the

operator units (through multiplexers if necessary) to

complete the data path. We use the point-to-point

interconnection model, however, interconnections, which

are not used simultaneously, can be merged into buses to

reduce the required number of multiplexers. For synthesis,

the behavioral models of operators are substituted with

their selected library implementation.

After completing the data path, we substitute the

behavior model of the control part with an FSM model.

The FSM is generated according to the data path. This is

accomplished by inserting a specific part into a general

FIGURE 4 Scheduling and allocation.

FIGURE 5 RTL architecture.

L. VARGA et al.352

RTL template using interactive tools. The data path and

the controller model together form the RTL implemen-

tation of the input specification. This RTL code is suitable

to feed into commercial logical synthesis tools in order to

obtain a gate-level implementation of the circuit.

IMPLEMENTATION

The language transformations described in the previous

chapter can be automated by elaborating and following an

appropriate strategy, which is applied in a program system

called Synthesis Based on Language Transformation

(SYLANT). The SYLANT software generates step-by-

step the required RTL model by starting from the initial

description. Its output model, and the transformation step

from the output model of the previous step to its output

model define each step. A program in the SYLANT

system parses the VHDL construct according the previous

output model, performs the task of the transformation step,

and outputs the result according to its output model. The

transformation from AFM to HBM, and from HBM to

VTB model typically requires no interaction from the

designer. These transformations are well automated and

correct by construction. The most significant part of the

system is the scheduling and allocation algorithm, which

requires interaction in order to meet the requirements. It

may be cycles in the synthesis flow, iterative transform-

ations can be applied to obtain better result. The

methodology is open to apply many scheduling and

allocation algorithm. A power aware scheduling technique

[10] was adopted and used on the example presented in

this paper. The register and multiplexer allocation and

final binding step are automated, however, they can be

performed under the control of the designer.

CONCLUSIONS

We presented a method of high-level synthesis from

behavioral VHDL, which uses language transformations

to reach a structural architecture while preserving standard

VHDL simulation semantics. The most significant

advantage of the presented method is, that the steps of

the synthesis do not use graph representation or other

meta-language, but apply the standard VHDL only. The

method does not take the control of the architectural

design process from the designer and does not restrict the

designer to produce the best possible design. The

intermediate design representations are in fact VHDL

models, their simulation can be performed to verify the

functionality and, more importantly the timing of the

system. The designer can use the simulation results to

guide the synthesis process by interacting with the

synthesis algorithms which gives an opportunity for

creative exploration in the design space. In addition to the

algorithmic optimization, manual optimizations are also

possible. Another advantage of the language transform-

ation method is that the generated RTL VHDL output can

be used directly as input to a logic synthesis tool which

accepts VHDL as input specification language.

Acknowledgements

The authors wish to thank to P. Keresztes for his encourage

of the research. This work was supported by projects No.

T 029331 and No. T 023963 of the Hungarian Academy of

Sciences.

References

[1] Gajski, D. and Ramachandran, L. (1994) “Introduction to high-level
synthesis”, IEEE Design and Test of Computers, 44–54.

[2] IEEE Standard VHDL Reference Manual, New York, 1988.
[3] Hosszú, G., Kovács, F., Varga, L. (1999). “Design procedure based

on VHDL language transformations”, IEEE Int. Symposium on
Circuit and Systems, ISCAS’99, Orlando.

[4] Jerraya, A.A., Ding, H., Kission, P. and Rahmouni, M. (1997)
Behavioral Synthesis and Component Reuse With VHDL (Kluwer
Academic Publishers, Boston).

[5] Gajski, D., Vahid, F., Narayan, S. and Gong, J. (1994) Specification
and Design of Embedded Systems (Prentice Hall, Englewood Cliffs,
NJ).

[6] Pirmez, L., Rahmouni, M., Kission, P., Pedroza, A., Mesquita, A.
and Jerraya, A.A. (1996) “Analysis of different protocol description
styles in VHDL for high-level synthesis”, Proceedings of European
Design Automation Conference.

[7] Keresztes, P. and Ágotai, I. (1993) “The concept of superprocesses
for high level synthesis and their VHDL Modeling”, Proceedings of
European VHDL Conference, Hamburg, 480–485.

[8] Varga, L., Hosszú, G. and Kovács, F. (1999) “Resource sharing for
low-power in high-level synthesis”, Proceedings of Electronic
Devices and Systems Conference, Brno.

[9] Chandrakasan, A., Potkonjak, M., Mehra, R., Rabaey, J. and
Brodersen, R.W. (1995) “Optimizing power using transformations”,
IEEE Trans. On Computer Aided Design of Integrated Circuit and
Systems Jan..

[10] Monteiro, J., Devadas, S., Ashar, P. and Mauskar, A. (1996)
“Scheduling techniques to enable power management”, Proceed-
ings of Design Automation Conference, Las Vegas.

Authors’ Biographies

László Varga received his MS degree in electrical

engineering from the Technical University of Budapest,

Hungary. Currently he is working toward on his PhD

degree in electrical engineering at the Budapest University

of Technology and Economics. He presented several

conference papers about his work on high-level design

methodologies. His research interests include high-level

synthesis with VHDL, design automation and synthesis

for low-power systems.

Gábor Hosszú received the ME degree from Technical

University of Budapest in electrical engineering and the

Academic degree of Technical Sciences (PhD) in 1992.

After graduation he received a three-year grant of the

Hungarian Academy of Sciences, then he continued his

research in the Microelectronics Co. In 1990 he joined the

Electron Devices Department of the Budapest University

VHDL REPRESENTATION 353

of Technology and Economics, where he is currently

Associate Professor. He published several papers on CAD

methods and VHDL modeling. His further research fields

are multicasting and media streaming technologies.

Ferenc Kovács received the ME degree from the

Technical University of Budapest in 1959, and the

Academic Degree of Doctor of Technical Sciences in

1999. He joined the Research Institute for Electronics in

1959 where he worked in the field of microelectronic

design and testing. Since 2000 he has been Professor of the

Electron Devices Department of the Budapest University

of Technology and Economics. He published more than

100 technical papers and three books on semiconductor

and IC applications. His further areas of research are real-

time control and signal processing.

L. VARGA et al.354

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

