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Abstract 

Reactive oxygen species (ROS) are by-products of aerobic metabolism involved in the onset 

and evolution of various pathological conditions. Among them, superoxide radical is of 

special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or 

peroxynitrite (ONOO
-
). Spin trapping coupled with ESR is a method of choice to characterize 

these species in chemical and biological systems and the metabolic stability of the spin 

adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main 

limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a 

triphenylphosphonium or cyclodextrin moiety have been synthesized and their spin adducts 

demonstrated increased stability in buffer. In the present manuscript, we studied the stability 

of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular 

fractions and biologically relevant reductants using an original set up combining a stopped-

flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were 

analyzed using an appropriate simulation program. Our results highlight the interest of new 

spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide 

with high stability of the superoxide adducts in the presence of liver microsomes. 
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Introduction 

Reactive oxygen species (ROS) are important mediators in aging
[1]

, cell signaling under 

physiological and pathological conditions such as inflammation, cancers, and 

neurodegenerative diseases
[2,3]

. Superoxide radical anion (O2
.-
) is a major contributor to 

oxidative stress, as it is the origin of damaging species such as H2O2, HO
.
, and ONOO

-
. 

Since its introduction in the 1970’s
[4]

, spin trapping coupled to electron spin resonance 

spectroscopy (ESR) has proved a valuable technique for free radical detection. The basic 

principle involves the reaction of a stable diamagnetic species (i.e. the spin trap) with a short-

lived radical to form a persistent radical (i.e. the spin adduct) that accumulates and can be 

detected by ESR. Some drawbacks such as the poor spin trapping rate, the short lifetime of 

the adducts, and their instability in biological media limit the application of this method
[5-7]

. 

Many efforts have been dedicated to increasing the spin trapping rate and the intrinsic adduct 

stability by modifying the structure of the spin trap, sometimes using theoretical calculations 

for rational design
[8-10]

. The cyclic nitrone 5,5-dimethyl-1-pyrroline N-oxide (DMPO, Scheme 

1)
[11]

 has been commonly used to trap O2
.-
 but its DMPO-OOH adduct spontaneously (non-

enzymatically) decays with a short half-life close to 1 min at neutral pH
[12]

. Several DMPO 

analogues bearing an alkoxycarbonyl (e.g. EMPO
[13]

, BMPO
[14]

) or dialkoxyphosphoryl 

substituent at position 5 (DEPMPO
[15]

, or DIPPMPO
[16]

) are now available, and offer some 

advantages as their superoxide adducts exhibit longer half-lives in phosphate buffer and do 

not spontaneously decompose to the corresponding hydroxyl adducts. The stability of their 

superoxide adducts in vivo or in the presence of biological material remains low and these 

adducts are easily transformed to diamagnetic compounds. However, most publications 

dedicated to spin trapping in enzymatic systems, cells or organs make use of these spin 

traps
[10, 17-24]

. Recently, cyclic nitrones bearing a triphenylphosphonium group (Mito-

DEPMPO and Mito-DIPPMPO, Scheme 1)
[25,26]

, or conjugated to a -cyclodextrin ring 
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(CDNMPO, CD-DEPMPO, CD-DIPPMPO)
[27,28]

 (Scheme 1) have been synthesized. They 

display higher reaction rates with superoxide (three times that of DEPMPO for Mito-

DEPMPO and CD-DEPMPO
[10]

) and their adducts show a highly increased stability in buffer 

in comparison with those of DEPMPO or BMPO. However the stability of the spin adducts of 

these new probes have not yet been evaluated in the presence of biological oxidoreductants 

and liver subcellular fractions that contain most of the enzymes involved in the metabolism of 

xenobiotics, such as cytochrome P450
[29]

. 

In a previous study
[30]

, we investigated the stability of the  superoxide and hydroxyl adducts 

of BMPO in the presence of rat liver microsomes (RLM) and rat liver cytosol (RLC) and 

identified the main pathways that result in the disappearance of the paramagnetic adducts. We 

highlighted the major roles of heme and hemeproteins, besides those of biological reductants 

such as ascorbic acid or glutathione, in the fast conversion of the BMPO-OOH and BMPO-

OH spin adducts to diamagnetic species. In the present study, we performed a comparison of 

the stability of the superoxide and hydroxyl adducts of the last generation of cyclic nitrones 

(Mito-DEPMPO, Mito-DIPPMPO, CD-DEPMPO, and CD-DIPPMPO, Scheme 1) with those 

of BMPO, DEPMPO, and DIPPMPO in the presence of RLM, RLC, and some biological 

reductants. We identified structural characteristics that strongly increase the selectivity of 

trapping and the stability of the adducts. These results should be useful in the choice of the 

better spin trap for biological applications and the design of new probes. 
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Experimental procedures 

 

Reagents 

DEPMPO was obtained from Radical Vision (Marseille, France). DIPPMPO, Mito-

DEPMPO, and CD-DEPMPO were synthesized according to previously published 

protocols
[16, 25, 26, 28]

. The detailed synthesis and characterization of Mito-DIPPMPO and CD-

DIPPMPO will be published elsewhere. TOMER was synthesized according to Le Moigne et 

al.
[31]

 Purity was assayed by 
1
H NMR and HPLC coupled with mass spectrometry and was 

above 98%. NADPH, xanthine (X), xanthine oxidase (XO), superoxide dismutase (SOD), 

cytochrome c, catalase, methemoglobin (metHb), diethylene triamine pentaacetic acid 

(DTPA), ethylene diamine tetraacetic acid (EDTA), methyl orange, clotrimazole, and 

TEMPO were purchased from Sigma-Aldrich (St Quentin Fallavier, France). All 

cyclodextrins were obtained from Cyclolab Ltd, Hungary. All other chemicals and solvents 

were of the highest grade commercially available. Ultra pure water (ELGA, Antony, France, 

resistivity: 18.2 M) was used for the preparation of 0.1 M potassium phosphate buffer (pH 

7.4) containing 1 mM DTPA. H2O2 concentration was determined using 240 = 39.4 M
-1

cm
-

1[32]
. 

 

Preparation of rat liver microsomes (RLM) and cytosol (RLC) 

Male Sprague Dawley rats (200-250 g, Charles River, L’Arbresle, France) were provided 

laboratory chow and water ad libitum. After 7 days of adaptation, animals were treated with 

phenobarbital (PB) (20 mg kg
-1

, in corn oil, i.p. for 4 days) or dexamethasone (Dexa) (50 mg 

kg
-1

, in corn oil, i.p. for 4 days). RLC and RLM were prepared by differential centrifugation 

as previously reported
[33]

 and stored at -80 °C until use. Protein concentrations were 

determined by the Bradford assay with bovine serum albumin (BSA) as a standard
[34]

. 
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Cytochrome P450 (P450) contents were determined by the method of Omura and Sato
[35]

. 

Determination of XO activity was performed using the initial rate of reduction of ferric 

cytochrome c to ferrous cytochrome c by superoxide. Quartz cuvettes (total volume 150 L) 

contained 0.1 M phosphate buffer pH 7.4, 0.1 mM EDTA, 500 M X, 100 U/mL catalase, 

100 M cytochrome c, and variable amounts of XO. Spectra were recorded on a Uvikon 941 

spectrophotometer (Kontron Biotech) at 37°C and a 550 value of 21 000 M
-1

 cm
-1

 was used. 

Ascorbic acid
[36]

 and glutathione
[37]

 concentrations were determined following previously 

described methods. 

 

Spectral interactions between P450 Fe
III

-heme and TRIMEB-NH2 

Difference spectra were recorded at 21°C on a Uvikon 943 dual-beam scanning 

spectrophotometer (Kontron Biotech). Small volumes of 10
-1

 M stock solution of TRIMEB-

NH2 (Cyclolab Ltd, Hungary), a permethylated -cyclodextrin with one amine group at 

position 6, were added to a 1-cm path length sample cuvette containing 150 L of microsomal 

proteins (2 M P450) from Dexa-treated rats in 0.1 M phosphate buffer pH 7.4. The same 

volumes of buffer were added to the reference cuvette containing the same amount of 

microsomal proteins and difference spectra were recorded between 380 and 500 nm. At the 

end of the experiment, the integrity of the P450 was checked after reduction of both cuvette 

contents with sodium dithionite and bubbling with carbon monoxide in the sample cuvette. 

 

Stopped-flow apparatus/ESR spectroscopy 

Experiments were performed with the help of a three-syringe Bio-Logic MPS-51 stopped-

flow apparatus (Bio-Logic, Claix, France) connected to an AquaX quartz cell (Bruker, 

Wissembourg, France) fitted into an SHQ ESR-cavity (Fig. 1) following a previously 

described device
[30]

. All ESR spectra were recorded at 21°C with a Bruker Elexsys 500 ESR 
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spectrometer (Bruker, Wissembourg, France) operating at X-band (9.85 GHz). The following 

settings were used: modulation frequency, 100 kHz; modulation amplitude, 0.1 mT; time 

constant, 40.96 ms; conversion time, 40.96 ms; center field, 349.0 mT; sweep width, 15 mT; 

sweep time, 41.94 s; microwave power, 10 mW. Data acquisition and processing were 

performed using Bruker Xepr software. Calibration of the spectrometer sensitivity was 

deduced from the accurate computer simulation of spectra of TEMPO or TOMER solutions of 

known concentrations. Computer simulations of the ESR spectra were performed using the 

program of Rockenbauer and Korecz
[38]

. Sets of parameters applied throughout in the 

determination of the proportions of different spin adducts were derived from the simulation of 

the best-resolved signals. Decay kinetics of ESR spectra were analyzed as previously 

described
[30]

. When first order decay rates were observed, the characteristic half-lives of the 

adducts (t1/2, in min) are given. For reactions with ascorbic acid or glutathione, the initial 

kinetics were assumed to be second order and initial second order rate constants (k0) were 

extracted: 




d[Adduct]

dt











0

 k0[Adduct]0[Reductant]0  

with 



[Reductant]0 , the initial concentration of ascorbic acid or glutathione; 



[Adduct]0 , the 

initial spin adduct concentration; and 




d[Adduct]

dt











0

, the initial decay rate of the adduct. 

 

Generation of the hydroxyl radical adducts and determination of their half-lives 

The hydroxyl radical adducts were generated by photolysis of a solution of 10 mM H2O2 in 

0.1 M phosphate buffer, pH 7.4, containing the studied nitrones (0.5 - 1 mM)
[39]

. After 5 to 10 

min of UV irradiation at 300 nm (Spectra Luminator, Oriel Instruments, Palaiseau, France), 

100 U/mL catalase and 1 mM DTPA (final concentrations) were added, and the mixture was 

introduced into syringe 3 of the stopped-flow apparatus. Syringe 2 was filled with 0.1 M 
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phosphate buffer pH 7.4 containing 1 mM DTPA and the studied biological or chemical 

materials in 4-fold higher concentrations than those finally required. Mixing of 900 L of 

syringe 3 (hydroxyl radical adduct) with 300 L of syringe 2 (studied materials) was 

performed in 2 s and coordinated to ESR data acquisition. 

 

Generation of the superoxide adducts and determination of their half-lives 

The superoxide adducts of the studied nitrones were obtained from incubation of the spin 

traps (20 - 25 mM) in the presence of 250 M X, 100 U/mL catalase, in 0.1 M phosphate 

buffer, pH 7.4, containing 1 mM DTPA, and the amount of XO adjusted to obtain a steady-

state concentration of about 25 M of the superoxide adduct after 15 min incubation in an 

open vial at 21°C. The solutions containing the superoxide adducts were then introduced into 

syringe 3 of the stopped-flow apparatus. Syringe 2 was filled with 0.1 M phosphate buffer, pH 

7.4, containing 1 mM DTPA, 340 U/mL SOD, and the studied biological or chemical 

materials in 4-fold higher concentrations than those finally present in the AquaX cell. 

Typically the P450-concentration of RLM from PB-treated rats was 1 M, NADPH was 1 

mM, metHb or hemin were 1 M, RLC from PB-treated rats protein content was 1 mg/mL, 

and methyl orange was 10 mM. The stopped-flow lines were primed with the solutions and 

900 L of syringe 3 (superoxide adduct) were mixed with 300 L of syringe 2 (SOD + 

studied materials). Mixing was performed in 2 s and coordinated to ESR data acquisition. 
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Results 

Hydroxyl radical adducts formation and decay 

The hydroxyl radical was generated by photolysis of a solution of H2O2 in phosphate buffer 

0.1 M, pH 7.4 and spin trapping was performed in the presence of 0.5-1 mM of the studied 

cyclic nitrones. The spectra of DEPMPO-OH and DIPPMPO-OH adducts were simulated 

with the program of Rockenbauer and Korecz
[38]

 using the hyperfine coupling constants (AP, 

AN, AH) given in Supplementary Table S1, and the observed ESR spectra displayed 

characteristic features in accordance with those previously described
[16, 40]

. In the case of 

DEPMPO and DIPPMPO, the hydroxyl radical adducts were the very predominant identified 

species. The half-lives of the DEPMPO-OH and DIPPMPO-OH adducts were greatly 

dependent upon their initial concentrations and their decays could be perfectly modeled using 

second order kinetics. In order to compare the stability of the spin adducts from the studied 

cyclic nitrones, all apparent half-lives were measured for an initial adduct concentration of 25 

M. Under these conditions, the spontaneous disappearance of the ESR signals of DEPMPO-

OH, DIPPMPO-OH, and BMPO-OH in phosphate buffer occurred with very similar half-lives 

(383, 433, and 414 min, respectively). 

In the case of Mito-DEPMPO, Mito-DIPPMPO, CD-DEPMPO and CD-DIPPMPO, very 

weak ESR signals were observed in these experiments. Thus, the formation and stability of 

these adducts were not investigated further. 

 

Metabolic stability of hydroxyl radical adducts in the presence of RLM and of RLC 

Half-lives of the adducts were not straightforward to compare since the photolysis reaction 

did not allow to finely choose the initial adduct concentration for the study and since the 

second order kinetics cannot be neglected at higher adduct concentration. Rapid mixing of 

DEPMPO-OH and DIPPMPO-OH adducts with RLM or RLC resulted in high increases in 
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the decay rates of their ESR signals (20% increase with RLM containing 1 M P450 and at 

least 100% increase with RLC containing 1 mg proteins/mL). The effect of RLM was further 

increased 2-fold by addition of NADPH, while the effect of RLC was mimicked by ascorbic 

acid. On the whole, it appears that the degradation mechanisms are not significantly different 

from those previously proposed for BMPO-OH
[30]

. 

 

ESR study of superoxide radical adducts formation and decay 

The superoxide adducts of the studied cyclic nitrones (Scheme 1) were generated in open 

vials at 21°C by incubation in the presence of X and XO, that produced a constant and 

controlled flux of superoxide radical anion, and the formation of the spin adducts was 

monitored by ESR. In comparison with similar concentrations of BMPO-OOH, the presence 

of a dialkoxyphosphoryl moiety increased the number of lines in the ESR signal of the 

superoxide adducts and resulted in a lower signal/noise ratio. The initial adduct concentration 

had thus to be increased. Twenty - 25 mM of the studied nitrones and twice as much XO were 

used in the present work in comparison with our previous study (50 mM BMPO and XO 

producing 100 M of O2
-

 in 15 min at 21°C)
[30]

. Under these conditions, the accumulation of 

superoxide spin adducts of these phosphorus-containing spin traps was more efficient than 

that of BMPO-OOH probably due to combined effects of a faster spin trapping reaction 

rate
[10]

 and an increased stability of the spin adducts. A concentration of about 25 M of the 

superoxide adducts was thus obtained in 15 min. Very minor formation of hydroxyl radical 

adducts was observed (Fig. 2). The signals of the superoxide adducts were simulated using the 

program of Rockenbauer and Korecz
[38]

 using the hyperfine coupling constants (AP, AN, AH, 

AH) given in Supplementary Table S1 and were in accordance with those described for 

DEPMPO-OOH and DIPPMPO-OOH in the literature
[15, 16]

. In phosphate buffer 0.1 M, pH 

7.4, the ESR signals of all the superoxide adducts under study spontaneously decayed to 
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diamagnetic species with negligible formation of hydroxyl radical adduct (5-10%). Analysis 

of the kinetic decays yielded half-lives for Mito-DEPMPO, Mito-DIPPMPO, and CD-

DEPMPO that were 1.5 – 2 fold higher than those of the parent nitrones DEPMPO and 

DIPPMPO and up to 3-fold in the case of CD-DIPPMPO (Fig. 2 and Supplementary Table 

S2). As previously observed with DEPMPO and DIPPMPO, the intrinsic stability of the 

superoxide adducts was increased when the pyrroline ring was substituted at position 5 with a 

diethoxyphosphoryl or a di-isopropyloxyphosphoryl group in comparison with BMPO
[12]

. For 

the DEPMPO and DIPPMPO analogues, cis-substitution at position C4 by a -cyclodextrin or 

a triphenylphosphonium moiety simplified the ESR spectral patterns due to slower 

conformational exchange and led to significant increase in half-lives, especially for -

cyclodextrin derivatives. 

It should be noticed that half-lives of spin adducts are greatly dependent on experimental 

conditions (microwave power, temperature, buffer composition)
[10]

 and some of our data 

appear significantly different than those previously reported in the literature
[40]

. However, our 

kinetics data were recorded under the same experimental conditions and could thus be safely 

compared. 

 

Stability of superoxide radical adducts in the presence of RLM 

Upon rapid mixing of the DEPMPO-OOH and DIPPMPO-OOH adducts with SOD and RLM 

(containing a final concentration of 1 M P450), the corresponding ESR spectra quickly 

disappeared with minor (10%) formation of DEPMPO-OH or DIPPMPO-OH. The initial 

decays fitted well with first-order kinetics and the half-lives could be compared to that 

obtained previously for BMPO-OOH
[30]

. As previously observed in buffer alone, the stability 

of the superoxide adducts of DEPMPO and DIPPMPO in the presence of RLM were higher 

than that of BMPO (t1/2  6.3 and 5.8 min versus 2.5 min, respectively) (Fig. 2 and 
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Supplementary Table S2). However the ratios of the t1/2 values of these superoxide adducts in 

the presence of RLM to those in buffer alone were very similar to that of BMPO (0.17 and 

0.15 versus 0.12, respectively), indicating that the phosphonate ester did not significantly 

protect against the disappearance of the ESR signals mediated by microsomal proteins. 

Mito-DEPMPO-OOH and Mito-DIPPMPO-OOH adducts also decayed rapidly in the 

presence of RLM (t1/2 of 14.5 and 17 min, respectively), with a slightly higher conversion 

(20%) to Mito-DIPPMPO-OH in the latter case (Fig. 2 and Supplementary Table S2). Some 

protection against microsomal action linked to the triphenylphosphonium moiety was also 

observed since the ratios of the t1/2 value in the presence of RLM to that in buffer alone 

represent 0.26 to 0.29 (almost twice the value obtained with the parent nitrones DEPMPO and 

DIPPMPO) (Fig. 2 and Supplementary Table S2). The addition of clotrimazole, a ligand of 

P450 heme iron
[41]

, inhibited the effect of RLM on Mito-DEPMPO-OOH and Mito-

DIPPMPO-OOH stability with significant increases in the t1/2 values (352 and 364 min, 

respectively, i.e. 70 and 55% of the values in buffer alone). Finally, the implication of the 

heme in the degradation of the Mito-DEPMPO-OOH and Mito-DIPPMPO-OOH adducts was 

demonstrated in experiments performed in the presence of metHb or hemin where half-lives 

of the adducts were strongly reduced (Fig. 2 and Supplementary Table S2). 

By contrast, introduction of a -cyclodextrin as substituent at position 4 of the spin traps 

resulted in a strong protection against degradation of the superoxide adducts mediated by the 

P450 heme. RLM alone did not affect the CD-DEPMPO-OOH and CD-DIPPMPO-OOH 

adducts half-lives in comparison with those observed in buffer alone (t1/2 = 83 and 110 min, 

respectively, Fig. 2 and Supplementary Table S2). Addition of methyl orange (10 mM), a 

ligand of -cyclodextrin that prevents interaction of the aminoxyl radical with the 

cyclodextrin
[28, 42]

, did not significantly modify the stability of CD-DEPMPO-OOH and CD-

DIPPMPO-OOH in buffer alone or in the presence of RLM (Fig. 2 and Supplementary Table 
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S2), suggesting that the protection was not due to inclusion of the superoxide adducts in the 

cyclodextrin ring. However, the addition of NADPH, the cofactor of P450 and P450 

reductase, to RLM resulted in a rapid disappearance of the spin adduct (t1/2 = 8.3 and 9.5 min, 

respectively, Fig. 2 and Supplementary Table S2). Finally, the increased stability of the CD-

substituted superoxide adducts was not observed in the presence of hemin or metHb (t1/2 = 4.0 

and 7 min, respectively for CD-DEPMPO-OOH, t1/2 = 4.4 min for CD-DIPPMPO-OOH with 

hemin) (Fig. 2 and Supplementary Table S2). 

 

Stability of superoxide radical adducts in the presence of RLC 

Rapid mixing of RLC with all the studied superoxide adducts generated by the X/XO system 

resulted in a fast decay of the corresponding ESR spectra with the appearance of the ESR 

signals of the hydroxyl radical adducts as intermediates on the way to diamagnetic products 

(Fig. 3), as previously observed with BMPO
[30]

. Since the reactions proceeded rapidly (half-

lives for all adducts comprised between 1.5 and 6 min, Fig. 4 and Supplementary Table S3), 

small variations in the concentrations of each reactant yielded important variations in the half-

lives and errors under these conditions were greater than in the previous study with RLM. 

Moreover, simulations of the spectra were complicated by the superimposition of superoxide 

and hydroxyl radical adducts. As a consequence, we could not make out any significant 

difference between the studied superoxide spin adducts. The effect of RLC on BMPO-OOH 

was previously attributed mainly to the reduction by ascorbic acid and glutathione contained 

in the cytosolic fraction
[30]

. Incubations of the superoxide adducts with ascorbic acid using the 

stopped-flow ESR device were thus performed. When one equivalent of ascorbic acid was 

used, the superoxide adducts decayed rapidly to ESR silent products within a few minutes 

(80% loss in 3 min for CD-DEPMPO-OOH, Fig. 5). When a concentration of ascorbic acid 

much lower to the concentration of the superoxide adduct was used, the kinetics showed two 
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phases: an initial rapid decay ( 1 min) until all ascorbic acid was consumed and a second 

phase with a half-life close to that observed in buffer alone. The reaction not being studied 

under pseudo first-order reaction conditions by using excess ascorbic acid, we extracted 

second-order rate constants from the initial decays (Table 1). The dead time due to mixing 

( 2 s) led to underestimation of the true rate constants. However the results show that the 

initial rate constants of reaction of the various superoxide adducts with ascorbic acid were not 

significantly different, even though the -cyclodextrin-substituted adducts appeared slightly 

less reactive (1.5 to 2-fold) (Table 1). The reaction rates were several order of magnitude 

higher than that of sterically shielded aminoxyl radicals such as 4-oxo-TEMPO or CP
.
, and 

were similar to the reaction rates of hydroxyl radical adducts. The published kinetic rate 

constant for DMPO-OH is one order of magnitude higher but compatible with our results 

since it was measured with a different experimental set-up characterized by a much shorter 

dead-time
[45]

. 

We performed the same study with glutathione. In this case, the superoxide adducts of the 

studied nitrones also decayed following second-order kinetics but were partially converted to 

the corresponding hydroxyl radical adduct, via a direct two-electron process, as previously 

described for BMPO
[30]

 or DMPO
[46]

. The observed second order rate constants with 

glutathione were not significantly different for the various superoxide adducts (k0 = 5-12 M
-1

 

s
-1

), even though 2-fold slower values were recorded for -cyclodextrin-substituted adducts 

(k0 = 2.7-2.9 M
-1

 s
-1

) (Table 2). 
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Discussion 

In the present study, we compared the behavior of the hydroxyl and superoxide adducts of 

seven cyclic nitrones (BMPO, DEPMPO, DIPPMPO, Mito-DEPMPO, Mito-DIPPMPO, CD-

DEPMPO, and CD-DIPPMPO, Scheme 1) that result from the active research in the field of 

spin trap design in the last decades. All of these spin adducts displayed much higher half-lives 

in phosphate buffer, pH 7.4, than those of DMPO, a frequently used cyclic nitrone. 

Application of the ESR/spin trapping technique to biological systems using cyclic nitrones is 

often impaired by the lack of stability of the spin adducts. The origins of the loss of ESR 

signal are partially understood since a limited number of studies have addressed this 

question
[30, 39, 47, 48]

. At the beginning of this study, we wondered whether the improvement in 

intrinsic half-lives of the spin adducts could correlate their metabolic stability when exposed 

to subcellular fractions, enzymes, or biological reductants and whether some lessons can be 

drawn regarding the design of new more metabolically stable spin traps. 

An important data was the ability to use lower concentrations of the new spin traps bearing a 

Mito- or a CD-moiety to obtain EPR spectra of the superoxide adducts with as intense 

features as those obtained with DMPO or BMPO, despite the increased number of peaks due 

to the introduction of a P-atom (20-25 mM, compared to 50 mM). This result is of interest 

since the introduction of lower amounts of spin trap should reduce the potential toxicity of the 

molecules. This result could be due to 3-fold increased spin trapping rates
[10]

 combined to 

lower rates of spontaneous decay of the spin-adducts. 

Another important data concerns the selective trapping of superoxide radical by Mito- and 

CD-derived spin traps, these compounds leading to very low amounts of the hydroxyl radical 

adducts under our conditions (0.5-1 mM spin traps and photolysis of H2O2). When the spin 

trap concentration was increased (up to 20 mM), small amounts of Mito-DEPMPO-OH 

adduct were observed under Fenton reaction conditions
[25]

. This is likely due to competition 
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of several sites of the spin trap for the reaction with hydroxyl radical, the nitrone function 

playing a minor part. The rate of the reaction of hydroxyl radical with -cyclodextrin, 

tetraphenylphosphonium ion or bromide ion have been measured as 4.2 10
9
 M

-1
 s

-1[49]
, 7.2 10

9
 

M
-1

 s
-1[50]

, and 1.1 10
10

 M
-1

 s
-1[51]

, respectively, close to diffusion-controlled rates. This 

selectivity of Mito- and CD-derived spin traps towards superoxide could be of interest to 

discriminate between superoxide and hydroxyl formation in biological systems or cells since 

it makes a control incubation with SOD unnecessary. 

As a general observation from our study, the half-lives of the studied spin adducts in 

phosphate buffer were very significantly increased in comparison with those of BMPO 

adducts. However the mechanisms of their decay in the presence of RLM and RLC seem to 

remain very similar to those we previously described in the case of BMPO (Scheme 2)
[30]

. 

We highlighted the role of the ferric heme proteins in the degradation of both adducts 

involving oxidation of the aminoxyl moiety of BMPO-OH to an unstable oxoammonium 

cation that further evolved to yield a -hydroxynitrone and its cyclic hydroxamic acid 

tautomers
[52-54]

 (Scheme 2, c), while the alkylhydroperoxide moiety of BMPO-OOH would be 

cleaved either homolytically into ring-opened diamagnetic products or heterolytically into 

BMPO-OH
[29]

 (Scheme 2, a). Besides, biological reductants such as ascorbic acid and 

glutathione, and flavin dependent reductases, including P450 reductase, were involved in the 

rapid loss of the ESR signals of both BMPO-OOH and BMPO-OH in the presence of RLC. 

Thiols and glutathione were able to reduce BMPO-OOH to BMPO-OH (Scheme 2, a)., while 

ascorbic acid alone reduced both adducts probably to an unstable hydroxylamine that would 

yield back BMPO after dehydration or elimination of H2O2
[48]

 (Scheme 2, b). 

In the present study, clotrimazole, a ligand of Fe
III

 heme
[41]

, inhibited the disappearance of 

Mito-DEPMPO-OOH and Mito-DIPPMPO-OOH in the presence of RLM, suggesting that 

this effect was also dependent upon Fe
III

 P450 (Supplementary Table S2). Interestingly, 
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distinct behaviors of the spin adducts were identified with CD-derived nitrones where RLM 

alone had no effect on the decay rates of the superoxide adducts. However addition of 

NADPH led to a rapid reduction of the CD-spin adducts. This could be explained by the 

hypothesis that steric constraints would prevent the entrance to the P450 active site and inhibit 

the reaction of the spin adducts (hydroperoxides) catalyzed by the Fe
III

 heme. The 

approximate dimensions of the -cyclodextrin moiety are 0.78 nm in height and 1.53 nm in its 

larger diameter
[55]

. Supporting this hypothesis, our spectral interaction study did not allow any 

variation in the spin state of the P450 heme to be detected in the presence of up to 2.6 mM 

TRIMEB-NH2 and it is thus likely that the -cyclodextrin does not significantly enter the 

active site of P450. It is noteworthy that randomly substituted methyl--cyclodextrin can 

diversely affect (inhibit or enhance) P450 activity, these effects being attributed to the 

disruption of the microsomal membrane
[56]

. In our case, such an effect cannot be ruled out. By 

contrast, the fast disappearance of CD-DEPMPO-OOH and CD-DIPPMPO-OOH signals 

observed with RLM in the presence of NADPH could involve a direct reaction of the adducts 

with the reductases, including P450 reductases. 

All the presently studied spin adducts seem to behave roughly the same towards biological 

reductants such as ascorbic acid and glutathione, the main reducing agents contained in the 

cytosol (Fig. 4). However, the second order rate constants of the reaction of the spin adducts 

with either ascorbic acid or glutathione showed some differences (Tables 1 and 2) with 

smaller reaction rates observed with CD-derived spin adducts. This could be consistent with 

the fact that the aminoxyl radical is involved in a dynamic exchange between the bulk of the 

solution and the primary methoxy crown of the -cyclodextrin, thus affording a partial 

protection against reduction
[28]

. 
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Conclusion 

Regarding the detection of intracellular superoxide production, the spin adducts from cyclic 

nitrones display weaknesses that reside in the hydroperoxide function that is the target of 

peroxidase activities (P450
[30]

, glutathione peroxidase
[47]

, thioredoxine reductase
[57]

 ...) and in 

the nitroxide (aminoxyl radical) moiety that supports the ESR signature and that cannot be 

shielded from reduction by bulky substituents (a strategy proposed for “stable” nitroxides) 

without lowering the rate of the spin trapping reaction
[10]

. However our last results highlight 

the fact that the spin adducts have to get access to the sites of transformations, the Fe
III

 heme 

of hemeproteins for oxidative pathways, or the cellular compartments that contain biological 

reductants or flavin-dependent reductases, in order to be converted to diamagnetic 

compounds. In this respect, CD-derived spin traps are not likely to enter the cells, since the -

cyclodextrin moiety is highly hydrophilic and was shown not to significantly enter 

membranes or cells
[58, 59]

. Therefore their adducts are potentially less subject to degradation 

by heme proteins, reductases, and biological reducing agents, which are mainly located within 

the cell. CD-DEPMPO and CD-DIPPMPO could then prove superior spin traps to study 

extracellular superoxide production, with high specificity on superoxide detection over other 

ROS, provided that they are used at low concentrations, so as not to disturb the cell 

membrane
[58]

. Assays of these spin traps with cells are currently underway to test this 

hypothesis. 
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Abbreviations 

BMPO, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide; CD-DEPMPO, 6-monodeoxy-

6-mono-4-[(5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxyde)-ethylenecarbamoyl-(2,3-

di-O-methyl) hexakis (2,3,6-tri-O-methyl)]--cyclodextrin; CD-DIPPMPO, 6-monodeoxy-6-

mono-4-[(5-diisopropoxyphosphoryl-5-methyl-1-pyrroline-N-oxyde)-ethylenecarbamoyl-

(2,3-di-O-methyl) hexakis (2,3,6-tri-O-methyl)]--cyclodextrin; CDNMPO, 5-N--

cyclodextrin-5-carboxamide-5-methyl-1-pyrroline N-oxide; CP
.
, 3-carboxy-2,2,5,5- 

tetramethyl-pyrrolidin-1-oxyl; DEPMPO, 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-

oxide; Dexa, dexamethasone; DIPPMPO, 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline N-

oxide; DMPO, 5,5-dimethyl-1-pyrroline N-oxide; DTPA, diethylene triamine pentaacetic 

acid; EDTA, ethylene diamine tetraacetic acid; ESR, electron spin resonance (equivalent to 

EPR, electron paramagnetic resonance); metHb, methemoglobin; Mito-DEPMPO, (4R*, 

5R*)-5-(diethoxyphosphoryl)-5-methyl-4-[({[2-

(triphenylphosphonio)ethyl]carbamoyl}oxy)methyl]pyrroline N-oxide bromide; Mito-

DIPPMPO, (4R*, 5R*)-5-(diisopropyloxyphosphoryl)-5-methyl-4-[({[2-

(triphenylphosphonio)ethyl]carbamoyl}oxy)methyl]pyrroline N-oxide bromide; P450, 

cytochrome P450; PB, phenobarbital; RLC, rat liver cytosol; RLM, rat liver microsomes; 

ROS, reactive oxygen species; SOD, superoxide dismutase; t1/2, half lifetime; TEMPO, 

(2,2,6,6-tetramethyl)piperidine-1-oxyl; TOMER, 2-diethoxyphosphoryl-2,5,5-trimethyl-

pyrrolidin-1-oxyl 
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Tables 

Table 1: Second order rate constants (k0) for the reaction of various aminoxyl radicals with 

ascorbic acid extracted from initial reaction rates or from the literature. 

Aminoxyl radical k0 (M
-1

 s
-1

) Reference 

BMPO-OOH >30010
a
 

[30]
, this work 

DEPMPO-OOH >24020
a
 this work 

Mito-DEPMPO-OOH >35040
a
 this work 

CD-DEPMPO-OOH >18040
a
 this work 

CD-DIPPMPO-OOH >16030
a
 this work 

N

O

O 4-oxo-TEMPO 

7.20.8
b
 

6.90.7
a
 

[44] 

this work 

N

O

O

OH

CP
.
 

0.110.01
b
 

[44] 

DMPO-OH >5200200
c
 

[45] 

BMPO-OH >21010
a
 

[30]
, this work 

DEPMPO-OH >350110
a
 this work 

a
 Solutions of superoxide or hydroxyl radical adducts were prepared as described under 

Experimental procedures, and loaded into syringe 3 of the stopped-flow apparatus. 

Alternatively a solution of 4-oxo-TEMPO was used. They were rapidly mixed with the SOD 

+ ascorbic acid or ascorbic acid solution in buffer contained in syringe 2. The ESR signals 

were recorded (with a  2 s dead-time) and analyzed as described under Experimental 

procedures. 

b
 Rates were measured at 20°C in sodium phosphate buffer (0.3 M, pH 7.4).

 

c
 DMPO-OH was prepared by sonication of an argon-saturated solution of DMPO (2.0 mM) 

in sodium phosphate buffer (0.1 M, pH 7.4). Rapid mixing with ascorbic acid was performed 

in 50 ms using a stopped-flow module. ESR measurements were performed at 25°C.
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Table 2: Second order rate constants (k0) for the reaction of various superoxide spin adducts 

with glutathione extracted from initial reaction rates.
a
 

Aminoxyl radical k0 (M
-1

 s
-1

) 

BMPO-OOH 7.50.8 

DEPMPO-OOH 5.60.6 

Mito-DEPMPO-OOH 112 

Mito-DIPPMPO-OOH 93 

CD-DEPMPO-OOH 2.90.4 

CD-DIPPMPO-OOH 2.70.3 
a
 Solutions of superoxide adducts were prepared as described under Experimental procedures, 

and loaded into syringe 3 of the stopped-flow apparatus. They were rapidly mixed with the 

SOD + glutathione solution in buffer contained in syringe 2. The ESR signals were recorded 

(with a  2 s dead-time) and analyzed as described under Experimental procedures. 

 

Legends for Figures and Schemes 

Figure 1: Schematic description of the stopped-flow apparatus connected to the AquaX cell 

fitted in the SHQ ESR cavity of a X-band ESR spectrometer. 

 

Figure 2: Half-lives (t1/2 in min) of the superoxide adducts in the presence of buffer alone, 

RLM with or without NADPH cofactor, or hemin. A solution of about 25 M superoxide 

adduct prepared by incubation of 20-25 mM cyclic nitrone in the presence of a X/XO 

generating system in 0.1 M phosphate buffer pH 7.4 with 1 mM DTPA, was rapidly mixed 

with a solution containing SOD alone, SOD + RLM (from PB-treated rats, 1 M P450) with 

or without NADPH (1 mM), or SOD + hemin (1 M). The ESR signals were recorded and 

analyzed as described under Experimental procedures. Half-lives are the means + S.D. from 

2-3 experiments. Values marked with an asterisk have not been determined. See 

Supplementary Table S2 for more details. 
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Figure 3: A. Evolution with time of the ESR spectra of CD-DIPPMPO-OOH in the presence 

of RLC (1.0 mg protein/mL) showing decay and partial conversion to CD-DIPPMPO-OH. 

Noise in the spectra was filtered using the SVD procedure described by Lauricella et al. 
[43]

. 

B. The kinetic curves were obtained from simulation of the above spectra as described under 

Experimental procedures. Simulated spectra for CD-DIPPMPO-OOH and CD-DIPPMPO-OH 

are given in the inset. 

 

Figure 4: Half-lives (t1/2 in min) of the superoxide spin-adducts in the presence of buffer 

alone or RLC. A solution of about 25 M superoxide adduct prepared by incubation of 20-25 

mM cyclic nitrone in the presence of a X/XO generating system in 0.1 M phosphate buffer pH 

7.4 with 1 mM DTPA, was rapidly mixed with a solution containing SOD alone or SOD + 

RLC (from PB-treated rats, 1 mg protein/mL). The ESR signals were recorded and analyzed 

as described under Experimental procedures. Half-lives are the means + S.D. from 2-3 

experiments. See Supplementary Table S3 for more details. 

 

Figure 5: Decay of CD-DEPMPO-OOH in the absence or presence of ascorbic acid. In this 

typical experiment, CD-DEPMPO-OOH was generated at 21°C by the reaction of X with XO 

in 0.1 M phosphate buffer, pH 7.4, containing 1 mM DTPA and 20 mM CD-DEPMPO. Spin 

adduct was stored in syringe 3 of the stopped-flow apparatus and rapidly mixed with the 

content of syringe 2 containing SOD in buffer alone (open circles), or SOD and ascorbic acid, 

either 25 M final (open triangles) or 50 M final (open squares). Mixing of the solutions 

was coordinated to ESR data acquisition. Further analysis and simulation of the ESR spectra 

was performed as described in Experimental procedures. 

 

Scheme 1: Structures of the spin traps under study and general structures for superoxide and 
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hydroxyl adducts. 

 

Scheme 2: Possible mechanisms for the disappearance of superoxide or hydroxyl radical 

adducts of the studied cyclic nitrones, involving the oxidation or reduction of the 

hydroperoxide (a) or the aminoxyl radical (nitroxide) functions (b and c). (See Bézière et 

al.
[30]

, and references therein for further details). 
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Figure 5:  

 

 



 31 

Schemes 

Scheme 1: 

 

Scheme 2: 
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