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ABSTRACT 

 

The three-dimensional structure of the enzyme 3-isopropylmalate dehydrogenase from the 

bacterium Thermus thermophilus in complex with Mn2+, its substrate isopropylmalate and its co-

factor product NADH at 2.0 Å resolution features a fully closed conformation of the enzyme. Upon 

closure of the two domains the substrate and the co-factor are brought into precise relative 

orientation and close proximity with the distance between the C2-atom of the substrate and the 

C4N-atom of the pyridine ring of the co-factor of about 3.0 Å. The structure further identifies 

binding of a K+-ion close to the active site and provides an explanation for its known 

activating effect. Hence, this structure is an excellent mimic for the enzymatically competent 

complex. Using high-level QM/MM calculations it can be demonstrated that in the observed 

arrangement of the reactants the transfer of a hydride from the C2-atom of IPM to the C4N-atom of 

the pyridine ring of NAD+ is easily possible with an activation energy E* of about 15 kcal/mol that 

is turned out to be about 4-6 kcal/mol higher upon omission of K+-ion. In the most plausible scenario, 

the -amino-group of Lys185 acts as a general base in the reaction aiding the deprotonation reaction 

prior to the hydride transfer by providing a low-barrier proton-shuttle mechanism via a water 

molecule. 
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INTRODUCTION 

 

Oxidative decarboxylation is an important oxidative process in biology. It is, for instance, 

employed in the ubiquitous citric acid cycle and in amino acid metabolism. Due to the loss of carbon 

dioxide in the course of the reaction, the reaction is essentially unidirectional. The oxidant is typically 

a pyridine nucleotide such as NAD+. One of the enzymes catalyzing such a reaction is  

3-isopropylmalate dehydrogenase, IPMDH [EC 1.1.1.85], a member of the -hydroxyacid oxidative 

decarboxylase family, to which also isocitrate dehydrogenase, homoisocitrate dehydrogenase, 

tartarate dehydrogenase and malic enzyme belong (cf. review [1]). In spite of differences in the R-

groups of their substrates, all enzymes of the family catalyse the same two-step reaction: a pyridine 

nucleotide dependent reversible oxidation followed by an irreversible decarboxylation step (Scheme 

1). IPMDH is part of the leucine biosynthesis pathway and catalyses the oxidation and 

decarboxylation of (2R,3S)-3-isopropylmalate (IPM) to 2-oxo-4-methyl-pentanoate with the help of 

NAD+ and a divalent cation (Mn2+ or Mg2+) [2]. IPMDH is an essential enzyme for the amino acid 

metabolism of bacteria, yeast and plants, but is absent in mammals, including humans. This qualifies 

IPMDH as a possible drug target against some bacteria. 

Although functional studies on IPMDHs are rather scarce [3-6], several crystal structures of 

IPMDHs have been determined [7-11], including the crystal structures of IPMDH from the extremely 

thermophilic organism, Thermus thermophilus (Tt) [12-17]. In terms of fold and quaternary structure, 

IPMDHs from the various origins exhibit great similarities. In all cases observed so far, IPMDHs 

form a symmetric homodimer (Figure 1A) whose subunits can be divided into two structural domains 

(Figure 1B). For a topology diagram of the structure and the naming convention of its various 

structure elements see Figure 1 in Gráczer et al. [17]. Two important regions located in the 

interdomain region have been identified (Hinge 1 and Hinge 2, cf. Figure 1B), which are responsible 

for the opening and closing of the two domains during the reaction [17].  

While the structures of complexes of IPMDH with NAD+ or NADH [13, 14, 16, 17], and 

complexes with Mn2+ and IPM have been determined [8, 11, 17], no crystal structure of IPMDH in 

complex with both bound substrates has been reported so far. The nucleotide substrate, NAD+ or the 

product, NADH has been known to bind to a specific nucleotide binding loop on one of the two 

structural domains [13, 17] and IPM resides between the two domains bound by amino acid side-

chains of both subunits [8, 17]. Substrate binding induces domain closure, albeit to a different extent 

in different complexes. As is the case for other multidomain enzymes [18, 19] including the -

hydroxy-decarboxylase family [20], domain movements play an essential role in IPMDH’s catalytic 

cycle. 
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A multiple sequence alignment of the members of -hydroxyacid oxidative decarboxylase 

family indicates a high degree of sequence similarity [1]. The conserved Tyr139 of Tt IPMDH, for 

instance, has been suggested from a mutagenesis study to serve as a general acid that might promote 

the keto-enol tautomerisation after decarboxylation [21]. No experimental evidences have yet been 

obtained concerning the roles of other conserved active site residues of Tt IPMDH, such as Lys185 

and the three metal-binding aspartates in the active site (Asp217, Asp241, Asp245), although, in 

analogy to isocitrate dehydrogenase [22], their participation in a proton relay from the substrate to the 

bulk solvent through a catalytic triad (Tyr-Asp-Lys) can be assumed [20]. Furthermore, the three 

conserved arginines, Arg94, Arg104 and Arg132 in the active site of Tt IPMDH are important to bind 

carboxylates of the substrate IPM electrostatically [17]. A mutagenesis study revealed that Arg 94 

also facilitates the stabilization of the transition state in the decarboxylation reaction [23]. Based on 

the sequence similarities, it appears that in spite of the differences in the R-groups of their substrates, 

all enzymes of the family catalyse the reaction according to the same principles. 

 In this study, the crystal structure of the unproductive quaternary complex Tt-IPMDH-

Mn2+-IPM-NADH was determined at high resolution. The relative position and orientation of the two 

reacting substrates as deduced from this crystal structure poses the question, whether this arrangement 

presents a reasonable model of the reactant complex for the chemical reaction. In order to find an 

answer to this question, molecular dynamics simulations and ab initio QM/MM calculations on the 

hydride-transfer reaction, which is probably the rate-limiting step of the overall reaction, were 

undertaken. No such computational studies have yet been made with the other potentially active 

crystallographic structures of related enzymes, such as isocitrate dehydrogenase [20], tartrate 

dehydrogenase [24] and malic enzyme [25]. 

 

RESULTS and DISCUSSION 

 

Tt-IPMDH overall structure. As is evident from the refinement statistics presented in Table 1, 

the structure is well refined and of high general quality. The four individual protein chains in the 

asymmetric unit of the crystal are very similar to each other with r.m.s. differences between the chains 

of about 0.2 Å, which is not significantly larger than the overall coordinate error of the structure. Each 

of the four chains harbors one NADH, one IPM, one Mn2+ and two K+ ions, one of them bound close 

to the active site. The chains A-D assemble into two functional dimers (AB and CD), which both 

exhibit a fully closed conformation, only slightly better closed than the previously published structure 

of the ternary complex Tt-IPMDH-Mn2+-IPM [17]. Overlaying of the various open, partially and fully 

closed forms are illustrated by Fig. 2A and 2B. The very same closed conformation was observed in a 

different crystal form (data not shown), which lends support to the biological relevance of this 

conformation. 
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The quality of the structure is also illustrated by the observed electron densities of the 

substrate IPM, Mn2+ and the co-factor product NADH (Figure 3). The nicotinamide ring of the NADH 

is placed right above the substrate IPM with 3.0 Å distance between the C2 atom of IPM and the C4N 

atom of NADH. The fit of the ligands to the electron densities are excellent.  

 A surprising observation was that despite the fact that NADH was used in the 

crystallization experiment, the nicotinamide ring appears to be completely planar. 

Experimental evidence for this is shown in Figure 3, where the omit difference electron 

density of the NADH is displayed. Further evidence for the planarity of the nicotinamide ring 

is obtained when the dinucleotide is refined without any restraints (data not shown). Even in 

this case the nicotinamide ring stays planar and does not assume any puckered conformation 

as would be expected for NADH. There are two possible explanations for this phenomenon. 

The first is that NADH was somehow converted to NAD+ during the crystallization or the 

diffraction experiment and the second is that the protein conformation imposes planarity of 

the ring by steric pressure. While we cannot rule out the first explanation, it seems more 

likely to us that the enzyme imposes planarity of the nicotinamide ring. This would 

effectively enhance NAD+ binding over NADH-binding and could serve as a mechanism to 

release NADH after the reaction is completed. 

Tt-IPMDH active site architecture. The active site of IPMDH is located in a cavity between 

the two domains of one subunit (Figure 4). While Mn2+ and IPM bind mostly to residues of domain 2, 

NADH binds almost exclusively to residues of domain 1. The details of the substrate binding at the 

level of side-chain interactions are illustrated by Figures 5A and 5B. The complete list of the atomic 

distances (except the hydrophobic contacts) are summarized in Table 2. It is also important to note 

that amino acid residues from the second subunit of the dimeric enzyme, in particular Lys185’ (the 

prime denotes that the side chain belongs to the other subunit), complete the active site arrangement 

of the first subunit. Lys185’ and Asn187’ are located in a loop between f’ and I’ that extends 

across the subunit interface, as described in the previous structural work [17]. Furthermore, Asp217’ 

(Figure 5) is located in a helix (g’) at the subunit inteface. 

In the fully closed structure presented here, the nicotinamide ring of the NADH is placed right 

above the substrate IPM with a distance between the C2 atom of IPM and the C4N atom of NADH of 

about 3.0 Å (Figure 3). This distance is much shorter than even the shortest possible van der Waals 

contacts and requires some energy to achieve. The very short distance already suggests a partial 

overlap of the electron clouds of the two atoms and it seems feasible that such an arrangement would 

support the anticipated hydride transfer reaction. Another consequence of bringing the substrates into 

close proximity for reaction is that the enzyme forces the conformation of the substrate IPM away 

from its equilibrium state. In the quaternary complex the C1-C2-C3-C5 dihedral angle of IPM is –
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149° (Figure 6A), while in the ternary complex (without NADH, [17]) it is -175° (Figure 6B), This 

distortion may also be relevant to facilitate the chemical reaction. 

The reaction mechanism of IPMDH: QM/MM calculations. The reaction mechanism of 

oxidative decarboxylating enzymes consists of two major steps: (i) the redox reaction including a 

hydride transfer from the substrate to the co-factor NAD+ resulting in the formation of an -keto-

carboxylic acid and NADH and (ii) an entropically-driven decarboxylation step leading to the final 

product. Since the redox step is most probably the rate-limiting step of the overall reaction, the focus 

of this study was laid on it. The redox-step may be further dissected into the deprotonation of the 2-

hydroxyl group of the substrate and the actual hydride transfer. Consequently, in order to describe the 

reaction mechanism in detail, the following three questions need to be answered: (i) What is the 

ultimate proton acceptor in the deprotonation step of the reaction? (ii) What occurs first: 

deprotonation or hydride transfer? and (iii) Which is the rate-limiting step and how large are the 

barriers of the two processes? 

The identity of the general base. As mentioned in the introduction, the active site of IPMDH 

contains several basic residues (Arg94, Arg104, Arg132, Lys185’ etc.), as well as a divalent cation: 

either Mn2+ or Mg2+. Partial charge balance is achieved by the presence of a few acidic residues 

(Asp217’, Asp241 and Asp245) coordinating to the cation [17]. Nevertheless, the overall charge in the 

active site is positive, which certainly facilitates the binding of the negatively charged IPM. In the 

case of malate dehydrogenase [26], 6-phosphogluconate dehydrogenase [27, 28] and various 

isocitrate-dehydrogenase enzymes [20, 29] it has been proposed that the nearby lysine residue 

previously deprotonated by an aspartic acid residue could act as a general base to remove the 2-

hydroxyl proton of the substrate. Indeed, in the obtained structure of IPMDH the basic nitrogen atom 

of Lys185’ is located at a distance of around 3 Å from the 2-hydroxyl group suggesting its possible 

role as a base. The predicted pKa values of this Lys185’ are 5.9 in the absence and 8.1 in the presence 

of IPM. Although these predicted values may have to be taken with a grain of salt, they show that 

binding of IPM can shift the pKa value of Lys185’ to a sufficiently high value thus lending support to 

the hypothesis that Lys185’ is the general base [30]. It may therefore be assumed that prior to IPM 

binding Lys185’ is deprotonated; it can then act as the base to take up the proton from the 2-hydroxyl 

group of IPM. It this context, another important aspect is whether Lys185’ directly deprotonates the 

hydroxyl group of IPM or whether deprotonation occurs via a water-assisted proton shuttle process. 

Water molecules have been suggested to play a role in the deprotonation of the substrate in various 

enzyme complexes [31-34] and proton shuttle processes via water molecules usually occur through a 

very low barrier. In the structure a water molecule is indeed present in each subunit (w2013 in both 

chains A and B) very close (less than 3.1 Å) to both of the 2-hydroxyl group of IPM and to Lys185’ 

(Figure 5 and Table 2). During the molecular dynamics simulations the water molecule w2013 did not 
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exchange with bulk solvent indicating its structural and functional relevance for the deprotonation 

process.  

Reaction mechanism of the hydride transfer and deprotonation steps. The first question, 

which needs to be answered, is the sequence of events: does deprotonation occur before, after or 

simultaneously with the hydride transfer? The QM/MM calculations carried out in this study 

demonstrate convincingly that the deprotonation of the hydroxyl group of the substrate IPM occurs 

very easily and that deprotonation is a prerequisite of the hydride transfer step. Only after 

deprotonation, the electrons locked in the O-H bond of the hydroxyl group are mobilized, and are 

therefore able to allow the hydride transfer to occur in the next step (cf. Scheme 2). Proton transfer 

from the IPM-OH group via the above mentioned catalytic water molecule to Lys185’ occurs with a 

very low energy barrier (2.7-4.5 kcal/mol, see Figure 7). This is significantly lower than the barrier of 

7 kcal/mol obtained earlier for malate dehydrogenase in another computational study [35]. The 

intermediate (I) formed in this proton shuttle process is slightly lower in energy (by  

-0.5 to -7.5 kcal/mol) than the reactant complex. In this proton shuttle process the two protons (Hp 

originating on the 2-hydroxyl group of IPM and Hw originally belonging to the water molecule) move 

in a concerted fashion (cf. Figures 8A and 8B). The deprotonation process is facilitated by the 

presence of the Mg2+/Mn2+ cation as it interacts with the 2-hydroxyl group of IPM and stabilizes the 

negative charge accumulating on the O-atom. The low barrier of the reaction, and low energy of this 

intermediate implies that this process can occur easily, most likely also in the absence of NAD+. It 

may therefore be proposed that this proton transfer occurs already upon IPM binding to the active site, 

independent of the presence of NAD+. As mentioned above, the hydride transfer is, most probably, the 

rate-limiting step of the reaction (cf. transfer of Hh as depicted in Figures 8C, 8D and 8E). Values of 

14.4-18.3 kcal/mol were obtained for the energy of the intermediate after the deprotonation step (see 

the value of TS2* in Table 3). Zero-point energy corrections to the barrier would lower this barrier by 

about 3 kcal/mol based on previous studies of hydride transfer reactions [36]. It can therefore be 

estimated that the barrier of this process is about 12-15 kcal/mol, which is in good agreement with the 

calculated activation energy of 15 kcal/mol for the hydride transfer step of malate dehydrogenase 

enzyme [35]. The structure of the transition state and the obtained product are qualitatively shown in 

Figure 8. 

A further interesting aspect of the obtained quaternary structure is the C1-C2-C3-C5 dihedral 

angle of the IPM molecule. In the Tt-IPMDH-Mn2+IPM ternary complex structure this dihedral angle 

was about -175°, while in the quaternary structure it is -149° in chain A (cf. Figure 6A) and -142° in 

chain B. Therefore, a potential energy surface scan around this dihedral angle in IPM was performed. 

In the -180° to -140° region, the rotation around the C2-C3 bond can occur very easily (with a barrier 

of less than 1 kcal/mol), implying that even weak secondary forces (e.g. dispersion) may be able to 

change its value. It is striking however, that in the QM/MM profile calculations the value of the 
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dihedral angle decreases from about -175° in the reactant complex to about -160° in the product state 

in each of the studied reaction profiles. This decrease may originate from the favourable dispersion 

interaction between the nicotinamide ring of NADH and the isopropyl group of IPM. It is also 

noteworthy that the dihedral angle of IPM bound to the quaternary structure is already close to that of 

the final reaction product, which can be observed in a further crystal structure of Tt-IPMDH in 

complex with its reaction products (Palló, A. and Weiss, M.S., unpublished work). A similar 

stereochemistry of the mechanism has been also established for the closely related ICDH, where the 

hydride-ion should be similarly transferred onto the re face of the coenzyme [37].  

The activating role of K+. In the active site of the quaternary complex a potassium ion was 

identified. It is coordinated by the main chain carbonyl O-atom of Gly70, the side-chain OG of Ser71 

from the -strand C, and by the side-chain carboxylate of Glu270 as well as the main chain O-atoms 

of Pro271 and His273 from the nucleotide-binding loop (Figure 5B). Further, the amide N-atom of the 

nicotinamide ring is positioned right above the K+-site at a distance of 2.7 Å. Activation of IPMDH by 

K+ has been known for a long time [4], but its structural background has not been explained. It seems 

to be a characteristic feature of IPMDH as no activation by K+ was observed for the homologue 

enzyme ICDH [38]. It may be hypothesized that the K+-ion increases the electron-withdrawing ability 

of the amide-group of NAD+ through electrostatic interactions. This would then in turn increase the 

electrophilic character of the nicotinamide ring and thereby facilitate the hydride transfer reaction.  

In order to provide support for our hypothesis, the QM/MM energy profile calculations were 

repeated for the Mn2+-containing systems QM2 by setting the charge of K+ to zero. The most 

important benefit of this approach was that it allowed us to selectively study the influence of K+ on 

the energy barrier of the hydride transfer reaction, since all other factors (e.g. geometric factors) were 

nearly identical in the corresponding profiles. The calculations revealed that the barrier of the proton 

transfer was not significantly affected by the presence of K+. However, the intermediate of the 

reaction was less stable by about 3 kcal/mol in the absence of K+, and the barrier of the hydride 

transfer reaction turned out to be about 4-6 kcal/mol higher. According to the Arrhenius equation this 

corresponds to a 1000-2000 fold increase in the reaction rate in the presence of K+. It should, 

however, be noted that this is an upper estimate of the rate acceleration caused by K+, as in a real 

system the position of K+ might be taken over by other cations present in the solution, thereby slightly 

compensating for the lack of K+. In fact, the kcat value of the Tt IPMDH catalysed reaction is decreased 

from 230 min-1 to 15 min-1 when 30 mM K+ present in the assay mixture, was replaced by Na+ 

(Gráczer, É., Palló, A., Oláh, J., Szimler, T., Konarev, P.V., Svergun, D.I., Závodszky, P., Weiss, 

M.S. and Vas, M., unpublished work). 

As a conclusion, based on the high resolution X-Ray structure of the quaternary non-

productive complex of IPMDH, which provided a snapshot of the relative geometry of the substrates 

before the reaction, and QM/MM calculations, the reaction mechanism of the oxidative 
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decarboxylation reaction catalyzed by IPMDH could be elucidated in detail. The first step of the 

reaction is the deprotonation of the OH-group of IPM with a low energy barrier of 2.7-4.5 kcal/mol. 

The central roles here are attributed to a water molecule and to the side-chain of Lys185’, the latter 

acting as a general base in the deprotonation reaction. Next along the reaction profile is the hydride 

transfer from the C2 atom of IPM to the C4N atom of NAD+ with a higher energy barrier of 12-15 

kcal/mol. The calculations showed that the presence of K+ accelerates the hydride transfer reaction by 

about 1000-2000 fold. The final step, the decarboxylation reaction is known to happen spontaneously 

with a very low energy barrier. Due to the production of CO2, the last reaction step drives the 

equilibrium of the reaction towards the products. 

 

MATERIALS and METHODS 

Reagents Threo-DL-3-isopropylmalic acid (IPM) was purchased form Wako 

Biochemicals GmbH (Neuss, Germary), NAD+ and NADH were Sigma (St. Louise, 

Missouri, USA) products. Isopropyl-1-thio-β-D-galactopyranoside (IPTG) (Fermentas, 

Thermo Fisher Scientific Inc., Waltham, M.A., USA), chloramphenicol, and ampicillin 

(Sigma) were used for fermentation. Chromatography media were obtained from GE 

Healthcare (Little Chalfont, UK).  

Structure determination and refinement. The C-terminally His-tagged variant of Tt-IPMDH 

was expressed and purified as described earlier [39]. Pure lyophilized Tt-IPMDH was dissolved in 

distilled water to a concentration of 30.8 mg/ml. Crystals were obtained within 3 days using the 

hanging drop method at 20°C by mixing 1 µl protein solution consisting of 20.5 mg/ml Tt-IPMDH, 

13.3 mM MnCl2, 9.0 mM IPM and 4.9 mM NADH with 1 µl reservoir solution consisting of 20% 

(w/v) PEG 6000, 0.1 M MOPS/KOH pH 7.6, and 10% (v/v) ethanol. Diffraction data to 2.0 Å 

resolution were collected from a single crystal on beamline BL14.1 of the Helmholtz-Zentrum Berlin 

(Germany) [40]. The data were processed using XDS [41] and the structure was determined using 

MOLREP [42] and the ternary complex structure of Tt-IPMDH-Mn2+-IPM [17] (PDB entry 2Y41) as 

a search model. Atomic coordinates were refined using REFMAC5 [43] and manually inspected using 

COOT [44]. All relevant statistics are presented in Table 1. The refined structure and the 

corresponding structure factor amplitudes were deposited with the PDB under Database ID: 4F7I. 

QM/MM calculations. For all modeling studies, the chains A and B of the PDB entry 4F7I 

reported here have been selected. NADH was transformed into NAD+ at the beginning of the system 

setup. Hydrogen atoms were added to the initial enzyme/substrate complexes, and their positions were 

optimized. The protonation states of acid and basic residues were predicted by using the PROPKA2.0 

program [45, 46]. Glu133 and Glu155 were protonated and Lys185 was deprotonated in all 

simulations. All histidine residues were -protonated. The structures were solvated within a 60 Å box 
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with 8000 pre-equilibrated water molecules, represented by the TIP3P model, centered on the C2 

carbon atom of IPM found in Chain B. The added water was then equilibrated by stochastic boundary 

MD at 300 K over 20 ps with respect to the substrate-bound enzyme structure and minimized. Water 

molecules more than 25 Å from the C2 carbon atom of IPM were removed. Then, all atoms within a 

25 Å sphere around C2 carbon atom of IPM were minimized, followed by stochastic boundary MD 

simulation of the whole system. Atoms farther than 25 Å from the C2 carbon atom of IPM were fixed 

throughout the simulations following the scheme proposed by van der Kamp [47]. All systems were 

heated to 300 K over 60 ps. Subsequent MD equilibrations at 300 K were carried out over 5000 ps. 

The CHARMM27 force field [48] has been used for protein and water molecules, while IPM was 

described by the CHARMM General Force Field (CGenFF) [49]. Atom typing and assignment of 

parameters and charges by analogy [50, 51] for IPM were done using the Paramchem interface [52]. 

The penalty scores obtained for parameters and charges indicated were very low in each case (less 

than 10) indicating the transferability of the parameters. All modeling calculations were carried out 

using the CHARMM software package [53]. 

The trajectory file of the MD simulation was analysed and several starting structures based on 

geometrical criteria were selected from the trajectory file of the MD simulation for the QM/MM 

calculations, similarly to previous works [36, 54]. Initial structures with short distances between C4N 

of NAD+ and HP (the transferable hydrogen) of IPM were chosen. Reaction energy profiles were 

generated by performing QM/MM energy minimization with a restraint (force constant: 4000 

kcal/mol/Å2) corresponding to the reaction coordinate. In the case of the proton transfer reaction the 

reaction coordinate was the sum of two distances: the distance of Hp(IPM)-Ow(catalytic water) and 

the distance of Hw(catalytic water)-NZ(Lys185). Its value decreased from about 3.18 Å in the 

reactant complex to about 2.08 Å.in the intermediate state. In the case of the hydride transfer 

reaction the distance of Hh (of IPM) and C4N of NAD+ was used as reaction coordinate whose value 

was systematically decreased from 2.10 Å in the intermediate state to about 1.12 Å in the product 

complex. In all cases forward and backward iterations along the reaction coordinates were carried out 

to obtain hysteresis free reaction profiles. The structure of the minima along the reaction profiles (i.e. 

of the reactant, intermediate and product states) was optimized without any restrain and the structures 

corresponding to the maxima of the obtained energy profiles were considered as transition states. One 

of the structures was selected as a starting structure for studying the two-dimensional potential energy 

surface of the hydride and proton transfer reactions, for which the two restrains mentioned above were 

used. 

Three different atom partitioning schemes QM1-3 were tested. In each case, care was taken to 

avoid cutting polar bonds. The charges of MM atoms (and the groups they belong to) bonded to QM 

atoms were set to zero in order to avoid unphysical effects due to the strong polarization of the QM 

wave function due to the proximity of large point charges. The smallest QM-region tested (QM1) 
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contained the nicotinamide ring of NAD+, the IPM molecule, Lys185’ (the prime denotes the side 

chain from the other subunit) and a water molecule (w2013) located close to both IPM and Lys185’. 

As the calculations on QM1 indicated a rather large favorable MM contribution to the activation 

energy of the system, arising from charge-charge interactions, the calculations were repeated using 

larger QM regions. QM2 contained in addition to the atoms of QM1 the side-chains of Arg132 and 

Tyr139, as well as the Mn2+ ion including its first solvation shell (the carboxyl and -methylene group 

of Asp217’ and of Asp 241 and two additional water molecules). QM2 thus contained 102 atoms and 

6 link atoms. The largest QM-region investigated, QM3, contained in addition the side chains of 

Arg94 and Arg104. However, the inclusion of these two amino acids did not result in any significant 

differences compared to QM2; consequently, QM2 was used in all remaining calculations. All 

QM/MM calculations were repeated using magnesium ions instead of manganese ions, in order to test 

the effect of the identity of the metal ion. These calculations also included the QM/MM optimization 

of all structures along the reaction profiles. The potassium ion was described by the molecular 

mechanics force field, more specifically by its charge and Lennard-Jones parameters, which are 

known to provide a good description of the non-bonding interaction of K+. The positions of atoms 

being further than 20 Å from the C2 of IPM were fixed in the QM/MM optimizations and the charges 

of atoms further than 25 Å from the C2 of IPM were set to zero. Energy and force calculations on the 

QM region were carried out with the Gaussian 09 software package [55] with the B3LYP functional 

in conjunction with the 6-31G* basis set on all atoms with the exception of manganese for which the 

SDD ECP and basis set were used. Through electronic embedding of the point charges representing 

the protein environment in the Hamiltonian of the QM calculation, the electrostatic interaction among 

atoms of the QM and MM regions has been taken into account. 

The MM region was modeled using the TINKER program [56, 57] and the CHARMM27 

force field [48]. The QoMMMa program [58], was used to couple the input and output files generated 

by the Gaussian 09 and TINKER program packages.  

Single point calculations were carried out on the critical points of the energy profiles 

(reactants, products and transition states) to investigate the effect of basis set size at the B3LYP/6-

311++G**/MM level of theory. Calculations on Mg2+ containing systems were carried out using a 

restricted Kohn-Sham formalism, while the Mn2+ containing systems were studied in the sextet spin 

state described by an unrestricted KS formalism. The QM/MM calculations employed a dispersion 

correction using the DFT-D3 program [59]. 
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Tables 
 

Table 1. Diffraction Data Collection and Processing and Structure Refinement Statistics. The 

numbers in parenthesis refer to the highest resolution shell.  

 
Data Collection and Processing 

  Wavelength (Å) 
  Crystal to detector distance (mm) 
  Rotation range per image (°) 
  Total rotation range (°) 
  Exposure time per image (s) 
  Space group 
  Cell constants a, b, c, β (Å, °)  
  Resolution range  
  Mosaicity [°] 
  Rr.i.m. 
  Completeness (%) 
  No.of observed reflections 
  No. of unique reflections  
  Mean I/σ(I) 
  Overall B-factor from Wilson plot (Å2) 
  Optical resolution [Å] 

0.91841 
197 
0.2 
193 
2.5 
C2 
148.34, 50.72, 178.24, 93.09 
48.0-2.00 (2.12-2.00) 
0.066 
0.081 (0.578) 
99.4(98.4) 
363224 (57821) 
89792 (14286) 
13.9 (2.6) 
27.1 
1.60 

Structure Refinement 
  Resolution [Å] 
  No. of reflections, working set  
  No. of reflections, test set 
  Rcryst 
  Rfree  
  DPI [Å] 
  No. of protein atom 
  No. of ions 
  No. of atoms (IPM) 
                       (NADH) 
                      (other organic) 
  No. of water molecules 
  R.m.s. deviations bonds (Å) 
                              angles (°) 
  Average B-factors protein(Å2) 
                                ions 
                                IPM 
                                NADH 
                                other organic 
                                water molecules 
  Ramachandran plot, most favoured (%) 
                                   allowed (%) 

30.0 – 2.0 
88855 (6133) 
898 (69) 
0.152 
0.196 
0.1407 
10581 
11 
48 
176 
225 
440 
0.02 
1.99 
17.0 
29.3 
29.9 
23.5 
45.7 
35.2 
96.3 
3.7 
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Table 2. Atomic interactions in the active site of Tt-IPMDH-Mn2+-IPM-NADH structure 

The atomic distances were derived from the crystallographic coordinates (pdb: 4F7I). H-bonds and 
electrostatic interactions are considered with the distance limits of 3.5 and 4.5 Å-s, respectively. 
 
 

Atom 1 Atom 2 Distance (Å) 
Arg94:NH1 IPM:O4 2.64 
 w2015:O 3.04 
Arg94:NH2 Glu270:OE1 4.47 
 Glu270:OE2 2.89 
 IPM:O3 2.65 
 IPM:O4 3.49 
Arg104:NH1 Asp241:OD1 4.10 
 IPM:O2 3.22 
Arg104:NH2 Glu270:OE2 4.44 
 IPM:O2 3.11 
 IPM:O3 3.54 
 w2010:O 2.68 
 w2022:O 3.10 
Arg132:NH1 IPM:O2 4.10 
 IPM:O4 3.27 
Arg132:NH2 Tyr139:OH 3.16 
 Asp241:OD1 4.45 
 IPM:O4 2.65 
 IPM:O5 3.59 
Tyr139:OH Asp241:OD2 3.64  
 Lys185’:NZ 3.71  
 IPM:O5 2.66 
Lys185’:NZ IPM:O1 3.07 
 IPM:O5 2.85 
 Asp241:OD1 3.30 
 Asp241:OD2 2.62 
 Asp217’:OD1 3.78 
 Asp217’:OD2 3.60 
 w2013:O 2.88 
Asn187’:ND2 NADH:O2D 2.85 
 w2013:O 2.85 
Asp217’:OD1 w2004:O 2.89 
Asp217’:OD2 IPM:O1 3.20 
 w2001:O 3.41 
 w2002:O 2.95 
 w2004:O 3.13 
 w2013:O 3.58  
Asp241:OD1 IPM:O1 3.01 
 IPM:O2 3.18  
 w2001:O 2.97 
 w2006:O 3.44 
Asp245:OD1 w2001:O 2.76 
 w2002:O 3.10 
Asp245:OD2 w2006:O 2.60 
Glu270:OE1 NADH:N7N 2.78 
Glu270:OE2 w2010:O 2.80 
 w2012:O 2.86 
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K+ Gly70:O 2.59 
 Ser71:OG 2.89 
 Pro271:O 2.58 
 His273:O 2.86 
 Glu270:OE1 2.67 
 NADH:N7N 2.71 
Mn2+ Asp217’:OD2 2.05 
 Asp241:OD1 2.11 
 IPM:O1 2.09 
 IPM:O2 2.42 
 w2001:O 2.25 
 w2002:O 2.16 
w2013:O IPM:O1 3.06 
w2013:O w2004:O 2.82 
w2002:O IPM:O2 3.10 
w2022:O IPM:O2 3.29 
 IPM:O3 2.63 
 NADH:N7N 2.86 
w2004:O NADH:O1N 2.68 
w2023:O NADH:O1N 2.63 
w2006:O w2002:O 2.74 
 w2004:O 2.89 
IPM:O2 NADH:N7N 3.49 
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Table 3. Calculated relative energies (in kcal/mol at the B3LYP/6-311++G**/MM level): C1-C2-C3-C5 dihedral angle (D, in degrees) of IPM, and the 

intramolecular C4N(NAD+)-C2(IPM) distance (in Å) of reactants (R), transition states (TS1 and TS2), intermediates (I) and products (P) along the reaction profiles. 

The geometrical parameters were obtained at the B3LYP/6-31G*/MM level. The value of TS2* shows the activation energy of the hydride transfer reaction with 

respect to the intermediate. 

The three different profiles represent results with three parallel calculations applying the QM2 region in each case, as given in the Experimental Section. 

The reference values of the C4N(NAD+)-C2(IPM) distance measured in the X-ray structure for the two subunits is 3.01 Å (chain A) and 3.02 Å (chain B), and those 

of the C1-C2-C3-C5 dihedral angles are -149° (chain A) and -142° (chain B), respectively. 

 
 Mn2+  Mg2+ 

 Profile 1 Profile 2 Profile 3  Profile 1 Profile 2 Profile 3 

 ΔE D C4N-
C2 ΔE D C4N-

C2 ΔE D C4N-
C2  ΔE D C4N-

C2 ΔE D C4N-
C2 ΔE D C4N-

C2 

R 0.0 -173.1 3.059 0.0 -177.4 3.014 0.0 -175.4 2.997  0.0 -172.2 3.060 0.0 -176.7 3.030 0.0 -174.2 3.006 

TS1 4.5 -171.6 3.038 2.7 -176.9 2.989 3.1 -174.2 2.974  4.1 -171.4 3.040 3.0 -176.0 2.997 3.2 -173.0 2.977 

I -3.4 -171.7 2.993 -1.9 -176.4 2.947 -7.5 -172.5 2.959  -2.4 -171.3 3.009 -0.5 -175.4 2.961 -6.6 -171.7 2.971 

TS2 11.6 -168.4 2.654 14.7 -174.6 2.599 10.8 -168.6 2.629  12.1 -162.5 3.029 15.1 -172.7 2.641 9.9 -170.4 2.579 

P 5.9 -159.5 2.983 11.1 -166.0 2.870 7.8 -162.3 2.867  6.4 -159.1 3.092 12.0 -166.2 2.860 5.9 -161.1 2.901 

TS2* 15.0   16.6   18.3    14.5   15.6   16.5   
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Scheme Legends 

 

Scheme 1 General catalytic mechanism of oxidative decarboxylases. R represents an alkyl-group 

and E symbolizes the enzyme. 

 

Scheme 2 Proposed reaction mechanism of IPMDH. iPr represents the isopropyl-group. Step 1 and 

Step 2 represent deprotonation and hydride transfer, respectively. 
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Scheme 1 

 

 
 

Scheme 2 
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Figure Legends 

 

Figure 1. Crystal structure (ribbon diagram) of IPMDH in complex with NADH, IPM and Mn2+. (A) 

IPMDH dimer with one subunit coloured in red and the other in grey. (B) IPMDH monomer with the two 

structural domains coloured in red and cyan, respectively. The positions of MnIPM and NADH in the 

structure are identified by black and grey ball-and-sticks, respectively.  

 

Figure 2. Comparison of the protein chain conformations of Tt-IPMDH in the various crystal 

structures The C traces of the present structure of Tt-IPMDH-Mn2+-IPM-NADH (red), the previously 

determined Tt-IPMDH-Mn2+-IPM (green), Tt-IPMDH-Mn2+-NADH (blue) and apo-Tt-IPMDH (black) 

structures are superimposed according to the inner -strands of domain 1 (A) and domain 2 (B), respectively 

 

Fig. 3 Omit difference electron density map (contoured at the 1.0  level) of the ligands bound to 

the quaternary Tt-IPMDH-Mn2+-IPM-NADH. The electron density clearly shows that the 

nicotinamide ring of the NADH is planar as it would be expected for the co-factor substrate NAD+. 

The distance between C2 atom of IPM and the C4N atom of the bound NADH is indicated.  

 

Figure 4. Illustration of binding of IPM, Mn2+ and NADH in the active site cavity of Tt-IPMDH 

monomer (surface-covered model) located between its two domains. The stick models of the substrates 

are coloured according to their atoms; Mn2+ is coloured as purple. This and the above structural figures have 

been prepared by the aid of software Insight II 95.0 (Biosym/MSI, San Diego, CA, USA). 

 

Figure 5. Binding details of IPM, Mn2+, NADH and K+ at the level of side-chain interactions. (A) and 

(B) are overlapping, but illustrate different aspects of the active site interactions. Locations of the ligands, 

Mn2+ and K+ in the active site of Tt-IPMDH-Mn2+-IPM-NADH complex are represented schematically. The 

interacting side-chains from the two different subunits are coloured black and green, respectively. IPM and 

NAD+ are coloured red, while the metals ion is coloured purple and the water molecules are coloured blue. 

The side chains are illustrated irrespective of their protonation state. The most important atomic contacts (H-

bonds and electrostatic interactions with the distance limits of 3.5 and 4.5 Å-s, respectively) are shown by 

the dashed lines. More complete list of the contacts are summarised in Table 2. The two bound cations are 

about 9 Å distant from each other. For clarity, the numerous hydrophobic contacts of the carbonic atoms are 

not illustrated. The figure was prepared by using MDL ISIS Draw 2.5. 

 

 

Fig. 6 The conformation of IPM molecules bound in the quaternary (A) and the ternary (B) complexes, 

respectively. The C1-C2-C3-C5 dihedral angles of the IPM molecules bound to the quaternary and the 

ternary complexes, respectively, are indicated. The substrates are colored according to atoms.  
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Figure 7. Two-dimensional potential energy surface of the hydride and proton transfer reactions of the 

Mg2+ containing system. TS1 and TS2 refer to the transition states of proton transfer and hydride transfer, 

respectively. The abbreviations R, I and P stand for the reactant, intermediate and the product. 

 

Figure 8. Schematic representation of the critical points along the reaction profiles of the IPMDH-

catalyzed reaction. (A) reactant state; (B) transition state for proton transfer (TS1) from the hydroxyl group 

of IPM to Lys185’ via a water molecule (w) that corresponds to w2013 in the X-ray structure; (C) 

intermediate; (D) transition state of hydride transfer (TS2) to NAD+, (E) product state; (F) reaction energy 

diagram, where the energy values on the profiles match those for profiles 1, 2, and 3 for the IMPDH-IPM-

NAD+-Mg2+ complex shown in Table 3. Hp and Hw denote the protons originally belonging to the OH-group 

of IPM and the catalytic water molecule, respectively. Hh denotes the hydride-ion to be transferred. 
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