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Abstract 

 

MASP-1 is a versatile serine protease that cleaves a number of substrates in human 

blood. In recent years it became evident that besides playing a crucial role in complement 

activation MASP-1 also triggers other cascade systems and even cells to mount a more 

powerful innate immune response. In this review we summarize the latest discoveries about 

the diverse functions of this multi-faceted protease. Recent studies revealed that among MBL-

associated serine proteases, MASP-1 is the one responsible for triggering the lectin pathway 

via its ability to rapidly autoactivate then cleave MASP-2, and possibly MASP-3. The crystal 

structure of MASP-1 explains its more relaxed substrate specificity compared to the related 

complement enzymes. Due to the relaxed specificity, MASP-1 interacts with the coagulation 

cascade and the kinin generating system, and it can also activate endothelial cells eliciting 

pro-inflammatory signaling. 
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1. Introduction 

 

In the blood a complex system of cells and molecules mediates the protection of the 

integrity of our body and maintains the homeostasis. In case of infection and/or trauma a 

number of response reactions are triggered that lead to the elimination of pathogens and repair 

of damaged tissues. A remarkable system that plays a central role in the above mentioned 

processes, is a network of serine proteases having chymotrypsin fold and trypsin-like 

specificity. Traditionally these proteases are considered members of independent proteolytic 

cascade systems, such as the complement, coagulation, kinin and fibrinolytic systems. In the 

recent years increasing number of evidences indicated that these cascade systems have 

common evolutionary origin and they interact with each other in various ways at numerous 

points (Markiewski et al., 2007; Amara et al., 2010; Oikonomopoulou et al., 2012). In this 

review we will concentrate on the role of MASP-1, a key protease of the lectin pathway of 

complement, in various cascade systems. We will discuss how MASP-1 initiates lectin 

pathway activation, how it contributes to inflammatory reactions through directly activating 

cells and releasing bradykinin from high molecular weight kininogen, and how it influences 

the activation of the coagulation system. 

In the innate immune system pattern recognition receptors and molecules monitor the 

inter- and extracellular space to detect the appearance of invading pathogens or dangerously 

altered self structures. Such receptors can be found on the cell surface (Toll-like receptors), 

inside the cells (Toll-like receptors, NOD-like, RIG-like receptors) or they can freely circulate 

in different body fluids. C1q, MBL and ficolins are pattern recognition molecules in the blood 

that consist of C-terminal globular domains and N-terminal collagen-like arms (Degn and 

Thiel, 2013). The globular domains bind to the dangerous structures which results in the 

activation of serine proteases associated with the collagen-like arms. The activated serine 

proteases initiate the complement cascade, a central effector arm of the immune system. The 

initiation complexes of the classical and the lectin pathways of complement activation contain 

a pattern recognition molecule and several serine protease zymogens, depending on the 

pathway. C1, the first component of the classical pathway of the complement system, consists 

of a C1q molecule and a tetramer of C1r and C1s proteases (C1s-C1r-C1r-C1s) (Gaboriaud et 

al., 2004). C1r is the enzyme that converts the recognition function of C1q into an enzymatic 

signal: it can autoactivate and cleave zymogen C1s. Activated C1s then generates the C3 

convertase complex (C4b2a) by cleaving C4 and C2. Cleavage of C3 is the central event of 

complement activation since it initiates the terminal reactions (i.e. formation of the membrane 
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attack complex, C3-opsonized particles and anaphylatoxins) and it also initiates the 

alternative pathway, which amplifies the original signal by a feedback loop. The alternative 

pathway C3 convertase (C3bBb) can also be formed as a result of the spontaneous and slow 

hydrolysis of C3 near a foreign surface.  

The same C3 convertase as in the classical pathway (C4b2a) is formed during lectin 

pathway activation, but the situation is much more complicated. There are several pattern 

recognition molecules (MBL, Ficolin-1/-2/-3, CL-K1, CL-L1) that can exist in different 

oligomeric forms (from dimer to hexamer or even higher), three serine proteases: MASP-1 

(alias MASP1 isoform 1), MASP-2 (alias MASP2 isoform 1), MASP-3 (alias MASP1 isoform 

2) and two non-catalytic variants of these proteases MAp19 (alias MASP2 isoform2 or MAP-

2 or sMAP) and MAp44 (alias MASP1 isoform3 or MAP-1), which are the alternative 

splicing products of the protease genes. Although we do not have a detailed picture, it seems 

very likely that the composition and the stoichiometry of the initiation complexes of the lectin 

pathway can be quite diverse. While in the classical pathway the C1r and C1s proteases are 

present in equimolar amounts (about 600 nM each), the concentrations of MASP-1 (143 nM), 

MASP-2 (6 nM) and MASP-3 (63 nM) in human serum are quite different (Thiel et al., 2012). 

MASP-2 has the lowest concentration, but it is essential, since it is the only lectin pathway 

protease that can cleave C4 for the C3 convertase. C2 is cleaved by both MASP-1 and MASP-

2. MASP-1 is the most abundant protease of the lectin pathway, its concentration far exceeds 

that of the other proteases. It can autoactivate but it cannot initiate the lectin pathway alone. 

The physiological role of MASP-1 has been a debated issue since its discovery. In the recent 

years it became evident that due to its high concentration and relaxed substrate specificity 

MASP-1 plays not only a central role in lectin pathway activation, but it also has substrates 

outside the complement system (Fig. 1A) through which it can influence other proteolytic 

cascades and physiological processes. 

 

2. The central role of MASP-1 in the initiation of the lectin pathway 

 

2.1. The mystery surrounding the role of MASP-1 

Due to its relatively high concentration MASP-1 was the first MBL-associated 

protease isolated and studied. At first MASP-1 was regarded as the only protease component 

of the initiation complex of the lectin pathway that has C1s-like activity cleaving C4 and C2 

(Matsushita and Fujita, 1992). Later on a second MBL-associated protease, denoted as 

MASP-2 was discovered, which was only a minor component of the original MASP samples, 
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but it was shown to be responsible for the C1s-like activity (Thiel et al., 1997). The 

autoactivating capacity of MASP-2 was also demonstrated, and complexes reconstituted from 

MBL molecules and MASP-2 dimers were able to initiate the lectin pathway (Vorup-Jensen 

et al., 2000). These experiments supported the general view that persisted for many years in 

textbooks stating that MASP-2 is the independent activator of the lectin pathway, and MASP-

1 has only a supportive role, if any. Paradoxically, the minor component proved to be 

essential, while the major protease component seemed to be unnecessary in the activation 

process. It was also suggested that MASP-1 can cleave C3, generating C3b before the 

assembly of the C3 convertase complexes (Matsushita et al., 2000). Detailed enzyme kinetic 

studies, however, revealed that although MASP-1 really cleaves C3, the catalytic efficiency 

(kcat/KM) of this reaction is very low (3X10
2
 M

-1
s

-1
) (Ambrus et al., 2003) compared to the 

efficiency of a real C3 convertase, which is three orders of magnitude higher. This low C3 

cleaving activity of MASP-1 might be able to initiate the alternative pathway on cell surface, 

however, this hypothesis has yet to be proven. Interestingly, MASP-1 cleaves C3 containing a 

reacted thiolester bond (C3i) 20 times more efficiently than it cleaves native C3, however, this 

cleavage is much less efficient than the C3i cleavage by Factor I in the presence of Factor H, 

casting doubt on the physiological relevance of this reaction. The only complement 

component that is cleaved rather efficiently by MASP-1 is C2 (3X10
4
 M

-1
s

-1
). This catalytic 

efficiency combined with the high concentration of MASP-1 in human serum could result in 

significant C2 cleavage during lectin pathway activation. Since MASP-1 cannot cleave C4, it 

was suggested that it can enhance the C3 generating ability of MASP-2 via C2 cleavage 

(Chen and Wallis, 2004).  

 

2.2. MASP-2 is activated by MASP-1 

A clue suggesting that MASP-1 may have a more significant role in lectin pathway 

activation came from the experiments using MASP-1/-3 deficient mouse serum. In lectin 

pathway activation experiments the MASP-1/-3 deficient mouse serum gave C3 and C4 

deposition on mannan-coated surface but the effect was lower compared to the normal mouse 

serum. The activation of MASP-2 was significantly delayed in the deficient serum. The above 

anomalies could be abolished by adding recombinant MASP-1 to the MASP-1/-3 deficient 

mouse serum. These results suggested that MASP-1 is not essential, but it facilitates the 

activation process. It was proposed that “MASP-1 contributes to the activation of the lectin 

pathway, probably through the activation of MASP-2” (Takahashi et al., 2008).  
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In order to unambiguously clarify the role of MASP-1 and MASP-2 in lectin pathway 

activation in normal human serum, we developed selective inhibitors against the MASPs 

(Kocsis et al., 2010; Héja et al., 2012a; Héja et al., 2012b). The physiological inhibitors of the 

lectin pathway (C1-inhibitor and antithrombin) inhibit both MASP-1 and MASP-2, therefore 

they are not suitable for selective inhibition (Paréj et al., 2013). We used directed evolution 

technique (phage display) to select highly specific and efficient inhibitors. As starting 

scaffolds we used naturally occurring canonical trypsin inhibitors and subjected the inhibitory 

loops to in vitro selection in the presence of the proteases. We managed to select two efficient 

inhibitors: SGMI-1 exclusively inhibits MASP-1 (Ki=7 nM) while SGMI-2 exclusively 

inhibits MASP-2 (Ki=6 nM). As expected, inhibition of MASP-2 completely abolished lectin 

pathway activation: no C4, C3 and MAC deposition could be detected on activating (mannan-

coated or acetylated BSA-coated) surfaces in the presence of SGMI-2. The big surprise came 

when we used the MASP-1 selective inhibitor in our experiments: lectin pathway activity was 

completely and permanently blocked just like in the case of MASP-2 inhibition. These 

experiments proved that both MASP-1 and MASP-2 are essential for lectin pathway 

activation in normal human serum. In order to figure out the role of MASP-1 in the activation 

process we performed two types of C4 cleavage experiments. In one experimental set up we 

pre-activated the MASPs in the serum on the activating surface before adding C4 and the 

inhibitors. In this case only SGMI-2 could prevent C4 deposition since only MASP-2 can 

cleave C4. If the MASPs are activated inhibition of MASP-1 has no effect on C4 cleavage. 

This picture changed dramatically when we added the inhibitors into fresh serum, which 

contains zymogen proteases, before incubating it on the activating surface. Inhibition of 

MASP-1 efficiently prevented the MASP-2 mediated C4 cleavage. This experiment 

unequivocally proved that the activity of MASP-1 is the prerequisite of MASP-2 activity, in 

other words if no MASP-1 activation occurs there will be no MASP-2 activation either. We 

can conclude that MASP-1 is the exclusive activator of MASP-2 in normal human serum 

(Fig. 1B). It was also quite surprising that the inhibition of MASP-1 permanently blocked 

MASP-2 activity, i.e. MASP-2 could not autoactivate even during long-time incubation on the 

activating surface. This result was reinforced using serum from a MASP-1/-3 deficient patient 

where the MASP-2 remained inactive due to the lack of MASP-1 activity (Degn et al., 2012). 

It seems very likely that the autoactivation capacity of MASP-2 plays no role in lectin 

pathway activation under physiological circumstances.  

 

2.3. Autoactivation and C2 cleavage  
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Measuring the kinetic constants of the individual proteolytic reactions supported the 

central role of MASP-1 in lectin pathway activation (Megyeri et al., 2013). The zymogen 

autoactivation rate of MASP-2 (1.4X10
-1

 M
-1

s
-1

) is negligible compared to that of MASP-1 

(4.5X10
2
 M

-1
s

-1
). Active MASP-1 cleaves zymogen MASP-1 (8.3X10

4
 M

-1
s

-1
) and zymogen 

MASP-2 (1.2X10
4
 M

-1
s

-1
) extremely efficiently. Actually, MASP-1 cleaves zymogen MASP-

2 20-times more efficiently than active MASP-2 cleaves its own zymogen. The initial 

enzymatic reaction in lectin pathway activation is the autoactivation of MASP-1. SGMI-1, 

which prevents autoactivation of MASP-1, is an efficient reagent to prevent lectin pathway 

activation. Using our selective inhibitors we could also determine the individual contributions 

of MASP-1 and MASP-2 to the C2 cleavage. It turned out that MASP-1 cleaves the majority 

(60%) of C2 which is incorporated into the C3 convertase (Héja et al., 2012b). This result 

validated the former hypothesis about the cooperation between MASP-1 and MASP-2 in the 

C3 convertase generation (Møller-Kristensen et al., 2007) and also underpinned the dominant 

role of MASP-1. 

 

2.4. Inhibition in whole blood  

An interesting observation is that while the Ki values of the two SGMIs are almost 

identical, the IC50 values in different assay systems are systematically smaller when using 

SGMI-1 than using SGMI-2, and this difference is much more pronounced in undiluted serum 

and in whole blood (IC50 SGMI-1 = 1.1 µM vs. IC50 SGMI-2 = 55.6 µM in C3 deposition assay) 

(Héja et al., 2012b). This phenomenon can be explained if we suppose that beside MASP-2, 

MASP-1 also activates another protease (or proteases) which exerts its function in 

concentrated serum. In this respect it is worth mentioning that we showed that MASP-1 

cleaves and activates MASP-3 quite efficiently (Megyeri et al., 2013). Although we do not 

know the physiological role of MASP-3, it was suggested that it might contribute to 

alternative pathway activation which is efficient only in concentrated serum (Iwaki et al., 

2011).  

 

 

3. The structure of MASP-1 and related proteins 

 

3.1 Structural basis of dimerization 

MASPs (MASP-1, MASP-2, and MASP-3) along with the classical pathway 

proteases, C1r and C1s form a family with identical domain structures (Gál et al., 2009). The 
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serine protease (SP) domain is preceded by five regulatory domains in an array of CUB1-

EGF-CUB2-CCP1-CCP2. The dimerization fragment of MASPs is the CUB-EGF region 

(Feinberg et al., 2003; Teillet et al., 2008) through which MASPs form tight Ca
2+

-dependent 

dimers (Paréj et al., 2014, Rosbjerg et al., 2014). It is notable that two other proteins exist in 

circulation derived from the MASP genes, but lacking protease activity. MAp19 is composed 

of the CUB1-EGF domains of MASP-2 plus 4 unique C-terminal residues, while MAp44 has 

a domain sequence of CUB1-EGF-CUB2-CCP1 (identical with the MASP-1/3 domains) plus 

it has 17 unique C-terminal residues. Both proteins have the capacity to dimerize (Gregory et 

al., 2004; Skjoedt et al., 2012) and interact with the pattern recognition molecules analogously 

with MASPs. Probably the best quality structure is the 2.3 Å resolution structure of MASP-

1/3 CUB1-EGF-CUB2 fragment, which clearly shows Ca
2+

 ions bound to all three domains. 

The CUB1-EGF segments dimerize in a head-to-tail arrangement, with the EGF module of 

each subunit forming extensive contact with the CUB1 module of the other subunit. The 

CUB2 domain does not participate in the dimerization, however, it provides additional 

binding sites for the collagen segment of the recognition molecules (Gingras et al., 2011). 

Interestingly in vitro MASP-1 and MASP-2 can form heterodimers with one another as 

efficiently as they form homodimers with themselves (Paréj et al., 2014). The relevance of 

this heterodimer formation in vivo is not yet known. Based on the structure of MASP-1/3 N-

terminal fragment (Teillet et al., 2008), that of MAp44 (Skjoedt et al., 2012), and the structure 

of MASP-1 C-terminal fragment (Dobó et al., 2009) a model of full length MASP-1 dimer is 

presented  in Fig. 2A. 

 

3.2. Proenzyme MASP structures 

By now the structures of the CCP1-CCP2-SP fragments for all three MASP 

proenzymes have been determined (Gál et al., 2005; Megyeri et al., 2013; Yongqing et al., 

2013). The first in the series described the structure of zymogen MASP-2 determined at 2.4 Å 

resolution. The MASP-2 proenzyme fragment has a remarkably high activity on C4 substrate. 

The basis of this high activity could lie in the fact that MASP-2 interacts with C4, in addition 

to the canonical binding site, through two exosites that stabilize the MASP-2:C4 interaction 

(Kidmose et al., 2012; Kjaer et al., 2013). Interaction with C4 presumably induces a 

conformational change in proenzyme MASP-2 that renders the serine protease domain to 

active conformation by an induced fit mechanism. Nevertheless MBL-bound proenzyme 

MASP-2 does not cleave C4 in the fluid phase (Chen and Wallis, 2004), because MBL 

probably occludes the accessory binding sites. Proenzyme MASP-2 is rather inactive on small 
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substrates, and its zymogen autoactivation rate is very low. In contrast, MASP-1 zymogen is 

fairly active on small substrates, and it autoactivates rapidly due to its relatively fast zymogen 

autoactivation step (Megyeri et al., 2013). Because the zymogenicity of MASP-1 shows very 

little substrate dependence, it is presumable that zymogen MASP-1 fluctuates between 

proenzymic and active-like forms in solution via the conformational selection mechanism 

spending about 1/200 fraction of its time in the active-like conformation (Megyeri et al., 

2013). The 2.5 Å structure of zymogen MASP-1 shows the enzyme “frozen” in the 

proenzyme conformation, however the structure provides some clues why it can easily turn 

into an active form (Fig. 2B). The catalytic triad of zymogen MASP-1 is in an active-like 

conformation, while the S1 pocket is blocked and the oxyanion hole is distorted, which are 

typical features of zymogen serine proteases. Upon activation, the new amino-terminus forms 

a salt-bridge with Asp
645

 (Asp
c194

, “c” stands for chymotrypsin numbering) rearranging the 

surface loops and allowing the oxyanion hole and the S1 pocket to form. In the structure of 

zymogen MASP-1 two positive side chains might be able to substitute for the amino-terminus 

aiding Asp
c194

 to rotate to the active-like position (Fig. 2B). 

Recently the structure of the zymogen MASP-3 G666E (Gly
c197

 to Glu) mutant has 

been solved at 2.6 Å resolution (Yongqing et al., 2013). This mutation is one among the 

several genetic alterations causing the 3MC syndrome, a developmental disorder caused by 

mutations in the MASP1 or the COLEC11 genes (Sirmaci et al., 2011; Rooryck et al., 2011). 

This mutation is found in the very conserved Gly-Asp-Ser
c195

-Gly-Gly sequence, two residues 

away from the catalytic Ser residue, hence it is no wonder that this mutant is inactive in the 

cleaved (“activated”) form of this enzyme. The large negative side chain removes the catalytic 

Ser side chain from its active position rendering the enzyme to be inactive. The structure of 

zymogen MASP-3 also shows that the CCP1-CCP2 and the CCP2-SP interfaces have some 

flexibility. Interestingly, while mutant proenzyme and inhibited active MASP-3 (Gaboriaud et 

al., 2013) fragments have been crystallized successfully, the wild-type enzyme by itself has so 

far resisted crystallization. 

 

3.3. The structure of MASP-1 reflects its broad specificity  

MASP-1, compared to the related proteases (MASP-2, MASP-3, C1r, C1s), has a high 

number of substrates. It autoactivates rapidly, cleaves MASP-2, MASP-3, C2, and C3i among 

complement components, and it was shown to cleave fibrinogen, FXIII, high molecular 

weight kininogen, PAR4, and even prothrombin (see later). From an evolutionary point of 

view the SP domain of MASP-1 differs from those of the other four members (Endo et al., 
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1998; Dahl et al., 2001). The most important difference, from a structural point of view, is 

that MASP-1 has four disulfide bridges, while MASP-2, MASP-3, C1r, and C1s have only 

three in the SP domain, lacking the so-called histidine loop, a disulfide bond usually present 

in trypsin-like serine proteases. In many respect the SP domain of MASP-1 is closer to 

thrombin and in some respect to trypsin, than to the SP domains of the other members of the 

family. This difference is also reflected in its overall structure. Comparison of the surface area 

around the substrate-binding pocket (Dobó et al., 2009) revealed that MASP-1 has a relatively 

large open cleft allowing protein substrates to access the substrate-binding site (Fig. 2C). 

Although MASP-1 is relatively unspecific, it has some characteristics that restrict its activity 

and specificity. An internal salt bridge between the S1 Asp
c189

 and an Arg side chain, and a 

large surface loop on the substrate-binding side of the enzyme, the so-called 60-loop, are 

likely to contribute to the specific characteristics of MASP-1. 

 

4. The role of MASP-1 in cell activation 

 

4.1. Endothelial cell activation by MASP-1 

Serine proteases are quite diverse in regard to their substrate selectivity. Thrombin is a 

promiscuous serine protease with an open long substrate binding cleft (Bode et al., 1989). It 

can cleave proteins belonging to the coagulation pathway as well as transmembrane receptors 

on various cells initiating pro-inflammatory signaling. As we have seen, MASP-1 also has an 

open, relatively wide substrate binding cleft, similar to that of thrombin (Dobó et al., 2009). 

Therefore, it is not surprising that MASP-1 also has multiple substrates. It can cleave several 

members of protease activated receptors (PARs): PAR-1, PAR-2 and PAR-4 (Fig. 3). 

However, the relative efficiency towards the specific PARs is somewhat different from that of 

thrombin. MASP-1 prefers PAR-4 over PAR-1 and PAR-2, whereas thrombin cleaves PAR-1 

better than PAR-4 and has no effect on PAR-2 (Megyeri et al., 2009). Taking into account 

that distinct PARs have completely different expression profiles, signaling, recycling, 

desensitization and heterocomplex formation capacity (Adams et al., 2011), it is not 

unexpected that there are differences in the effects of thrombin and MASP-1 (Fig. 3). 

Thrombin induces a typical pro-inflammatory and pro-coagulant phenotype in endothelial 

cells. Thrombin activated endothelial cells produce cytokines/chemokines to attract and 

activate several types of white blood cells including monocytes and neutrophil granulocytes 

(Marin et al., 2001; Kawanami et al., 2011). In contrast, MASP-1 alone induces IL-6 and IL-8 
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production of endothelial cells mainly driven by p38 MAPK, which leads to chemotaxis of 

neutrophils but not monocytes (Fig. 3) (Jani et al., 2014). Moreover, MASP-1 elicits a 

transient elevation in E-Selectin expression in HUVECs leaving the levels of ICAM-1 and 

VCAM-1 unchanged (unpublished data), which also favors neutrophil transmigration. 

Various infections and other diseases are associated with the infiltration of very different 

white blood cell populations (e.g. in viral and intracellular bacterial infections as well as in 

atherosclerosis mostly monocytes/macrophages and T cells are recruited, whereas in 

extracellular bacterial and fungal infections, and also in tissue necrosis a massive neutrophil 

infiltration can be detected, followed by monocytes later on). It means that the difference in 

endothelial cell activation profiles elicited by thrombin and MASP-1 might be a sensitive 

regulatory mechanism by which the most relevant parts of the immune system are recruited. 

Thrombin is activated when blood vessels are injured, which requires a complete remodeling 

of the affected tissues coordinated by macrophages but also requires an active anti-bacterial 

protection by neutrophil granulocytes. MASP-1 is activated mainly by bacterial/fungal 

infections, where neutrophil chemotaxis and activation is indispensable. However, MASP-1 

elevates mRNA expression of MCP-1, TNF-α, ICAM-1 and VCAM-1 (Jani et al., 2014, and 

unpublished data), which may potentiate monocyte and T cell attraction if the infection 

becomes more serious. Here we compared the differential effects of MASP-1 and thrombin on 

the cellular immune response for didactical purposes, however, in vivo these two proteases as 

well as the two respective cascade systems may act synergistically, or complement each 

other's function (see below, part "The role of MASP-1 in the coagulation"). 

 

4.2. Only MASP-1 activates endothelial cells among lectin pathway components 

We have to note that amongst lectin pathway proteases only MASP-1 has the 

properties described above (Megyeri et al., 2009; 2014). In contrast to MASP-1, MASP-2 has 

a partly occluded substrate binding cleft, and has only two major substrates - C2 and C4 

(Ambrus et al., 2003). Therefore, it is not unexpected that MASP-2 does not cleave any PARs 

nor has any effects on endothelial cells (Megyeri et al., 2009). We know much less about 

MASP-3 substrates and enzyme activity, but we know that it cannot activate endothelial cells 

similarly to MASP-2 (Megyeri et al., 2014). Although MBL binds to endothelial cells, it 

cannot activate them (Oroszlán et al., 2007). Moreover, MBL-MASP-1 complex formation 

does not affect the activation of endothelial cells by MASP-1 (Megyeri et al., 2014), which 

might not be evident considering the large size of the complex. Since the cellular effects of 
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MASP-1 can be completely abolished by C1-inhibitor or by using catalytically inactive 

S646A mutant MASP-1, it is reasonable to consider PARs as the only receptors of MASP-1 

on endothelial cells. The putative in vivo relevance of MASP-1 induced endothelial cell 

activation would be questionable if zymogen and active forms of the serine protease could 

equivalently exert their action. However, stable proenzyme MASP-1 mutant (R448Q) has no 

effects on endothelial cells (Megyeri et al., 2014), which means that MASP-1 induces 

endothelial cells only if it becomes activated by pathogen- or danger-associated molecular 

patterns (PAMPs or DAMPs, respectively). 

 

4.3. Importance of MASP-1 induced endothelial cell activation during various physiological 

and pathological conditions 

It is important to define, which molecular patterns may trigger MASP-1 induced 

endothelial cell activation and, as a consequence, a boosted anti-microbial immune response. 

Microbial sugar motives are the targets of MBL, whereas DNA, modified lipids and sugars 

are recognized by CL-K1 and ficolins (Matsushita et al., 2013; Henriksen et al., 2013). These 

data together suggest that beside microbial components, necrotic debris and aberrantly 

modified self macromolecules may also trigger MASP-1 induced cell activation. Indeed, in 

necrotic tissues evolved upon infarction, burning, edema, inflammation etc. neutrophil 

granulocyte infiltration is a common phenomenon. Mitochondrial formyl-peptides have long 

been known to directly attract neutrophils (Schiffmann et al., 1975) but this process can 

possibly be enhanced by nucleic acid triggered CL-K1/MASP-1 activation and as a 

consequence, IL-8 production by endothelial cells.  

 

4.4 Cleavage of high molecular weight kininogen by MASP-1 

Bradykinin, a vasoactive pro-inflammatory peptide, has an unquestionable role in 

hereditary angioedema (HAE), however, several types of triggering factors are needed to 

provoke edematous attacks (Zotter et al., 2014). Microbial infection, trauma and menstruation 

are three well known triggering factors of HAE attacks. Fibrin clot formed during trauma or 

menstruation may also activate MASP-1 via ficolin (Endo et al., 2010). Recently we showed 

that recombinant MASP-1 catalytic fragment and also MBL-MASP complexes can cleave 

high molecular weight kininogen, and we also demonstrated the release of bradykinin (Dobó 

et al., 2011). Although the cleavage efficiency was two orders of magnitude lower than for 

kallikrein, it is presumable that in the absence of other triggers bradykinin released by MASP-

1 can contribute to a more pronounced immune response in healthy individuals and elevated 
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levels of bradykinin in HAE patients. Since the majority of HAE cases are caused by 

functional C1-inhibitor deficiency, and C1-inhibitor is a major natural inhibitor of MASP-1, 

MASP-1 can be a contributing factor in the pathogenesis of HAE. 

Taken together, the cellular effects of MASP-1 may be a two-edged sword. In most 

microbial infections MASP-1 can enhance the effectiveness of immune response by boosting 

neutrophil granulocytes chemotaxis and activation via endothelial cells. On the other hand, if 

potent lectin pathway activators, such as modified lipids or DNA, are released and/or the 

natural inhibitors are depleted, MASP-1 can enhance tissue destruction or edema formation in 

several diseases. If this latter presumption is proved to be true, highly specific inhibitors of 

MASP-1 may be considered as supplementary therapy in these cases. 

 

5. The role of MASP-1 in blood coagulation 

 

5.1 Interactions between complement and coagulation in cardiovascular diseases 

Cardiovascular diseases still represent a major cause for morbidity and mortality in 

industrialized countries. We know that these diseases have a strong inflammatory component 

and there is increasing evidence for a prominent role of the complement system. In particular, 

many interactions between complement and coagulation seem to aggravate 

pathophysiological processes, promote the development of atherosclerosis and 

atherothrombosis, and lead to more severe complications (Oksjoki et al., 2007; Speidl et al., 

2011; Frauenknecht and Schroeder, 2012; Duehrkop and Rieben, 2014).  

For example, localized complement activation detected at the site of acute coronary 

thrombus formation is thought to amplify the vascular occlusion process in acute myocardial 

infarction (MI) via neutrophil recruitment (Distelmaier et al., 2009). But complement 

components also directly influence characteristics of fibrin clots (Shats-Tseytlina et al., 1994). 

This is of pathophysiological relevance since fibrin clots with tightly packed, thin fibers are 

more resistant to fibrinolysis and are associated with a higher risk for thrombotic 

complications (Undas and Ariens, 2011). We have recently shown that complement C3 

becomes incorporated into fibrin clots and prolongs fibrinolysis (Richardson et al., 2013; 

Howes et al., 2012). Since C3 plasma levels are increased in patients with cardiovascular risk 

factors, especially with type-2 diabetes mellitus (T2DM), and vascular diseases, the 

incorporation of C3 into forming fibrin may contribute to the development of thrombotic 

complications (Schroeder et al., 2010; Hess et al., 2012a). 
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Not only do complement components influence fibrin clot formation and structure, 

also activated coagulation factors are able to cleave complement components and induce 

and/or alter their effects. Recently, described as a new complement activation pathway, 

thrombin is capable of activating C5 introducing a new cleavage site that leads to a membrane 

attack complex with significantly more lytic activity than C5b-9 generated by C5 convertase 

(Huber-Lang et al., 2006; Krisinger et al., 2012). Fibrinogen/fibrin may serve as a matrix for 

binding of complement components, in particular ficolins and MBL and thereby augment the 

lectin pathway (Endo et al., 2010) and this may have implications in thrombotic diseases as 

described below. 

 

5.2 MASP-1 interacts with coagulation factors and affects clot formation 

MASP-1 is a serine protease that shares many characteristics with thrombin, the 

executive serine protease in the coagulation cascade, in terms of structure, substrate 

specificity, and inhibitors (Ambrus et al., 2003; Presanis et al., 2004; Dobó et al., 2009). 

Furthermore, MASP-1 cleaves proteins which are thrombin substrates in the coagulation 

cascade such as fibrinogen, factor XIII (FXIII), and thrombin-activatable fibrinolysis inhibitor 

(TAFI) (Krarup et al., 2008; Gulla et al., 2010; Hess et al., 2012b). Thrombin activates 

fibrinogen by releasing fibrinopeptides A and B (FPA, FPB) from the N-termini of fibrinogen 

α- and β-chains, respectively. MASP-1, however, has been shown to release FPB, but not 

FPA cleaving the α-chain at different sites (Krarup et al., 2008). Therefore it is doubted that is 

capable of inducing fibrin formation directly. MASP-1 is able to activate FXIII, the fibrin 

crosslinking factor, directly, albeit at a lower catalytic efficiency compared with thrombin 

(Krarup et al., 2008; Hess et al., 2012b). Similarly, MASP-1 can also activate TAFI (Hess et 

al., 2012b) which inhibits fibrin-dependent fibrinolysis by tissue plasminogen activator (t-

PA). It was reported earlier that MASP-2 is able to activate prothrombin (Krarup et al., 2007). 

We have shown recently that MASP-1 also activates prothrombin and there is evidence that 

its effects on clot formation are mainly mediated by prothrombin activation (Hess et al., 

2012b; Jenny et al., 2013; and own unpublished data). Taken together, MASP-1 promotes 

fibrin formation, exerts synergistic effects to thrombin in plasma and whole blood clot 

formation, and also influences fibrin structure (Fig. 4) (Gulla et al., 2010; Hess et al., 2012b; 

Jenny et al., 2013). These effects on coagulation factors and clot formation are enhanced by 

activation of endothelial cells (Megyeri et al., 2009). As a consequence, a prothrombotic 

environment is created that is prone to vessel occlusion. First in vivo evidence for an 

involvement of MASP-1 in coagulation and thrombus formation was obtained from MASP-1 
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and MBL knockout mice which showed prolonged bleeding time on tail tip excision 

(Takahashi et al., 2011) and a significant decrease in FeCl3-induced thrombogenesis (La 

Bonte et al., 2012). 

 

5.3 MASPs in cardiovascular diseases 

MASP-1 seems to be a major link between the complement system and coagulation, 

yet the physiological relevance of results obtained in purified and non-human systems 

remains to be confirmed. In a first step, clinical studies have therefore looked at plasma levels 

of MASP-1, as well as MASP-2, MASP-3, and MAp44 in patients with cardio- and 

cerebrovascular diseases. In a pilot study, we found increased MASP-1 plasma levels in 

patients in the subacute phase of MI, but decreased levels of MASP-1 in patients with acute 

ischemic stroke (Frauenknecht et al., 2013). MASP-2 levels were lower in both MI and stroke 

patients compared with healthy controls, while MASP-3 and MAp44 did not differ between 

groups (Frauenknecht et al., 2013). In a cohort study of individuals with T2DM, MASP-2 

levels were significantly decreased in patients with acute cardiovascular events (Mellbin et 

al., 2012). MASP-2 levels were also lower in another study in patients with acute MI (Zhang 

et al., 2013). These first data suggest that MASP-1 and MASP-2, both of which interact with 

coagulation, are altered in patients with acute cardio- and cerebrovascular diseases. Whether 

these alterations are indeed associated with activation of the coagulation system and 

contribute to the vascular event, remains to be elucidated in further studies. 

 

6. Conclusions 

After more than two decades of its discovery, MASP-1 is still one of the most 

intriguing proteases of the complement system whose physiological importance and relevance 

to health and disease is not completely understood. During the last few years, new and 

important discoveries were made on the biochemistry and structure of MASP-1, and its 

central role in lectin pathway activation has been unambiguously demonstrated. Structural 

data and enzymatic measurements proved that MASP-1 has a relaxed substrate specificity, 

compared to the other complement proteases. While the other members of the C1r/C1s/MASP 

protease family have only a few physiological substrates, MASP-1 was shown to cleave more 

than a dozen proteins in the human blood (Table 1). This relaxed substrate specificity enables 

MASP-1 to establish connections between the different proteolytic cascade systems and to 

directly activate cells. In the future more translational studies will be needed to investigate the 

in vivo relevance of the putative functions of this interesting serine protease. 
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Figure legends 

 

Fig. 1. The multiple roles of MASP-1 in the initiation of the innate immune response. (A) 

MASP-1 cleaves both complement and non-complement substrates. MASP-1 is a serine 

protease with relaxed substrate specificity. After autoactivation it initiates lectin pathway 

activation via cleavage of complement proteins, while at the same time it contributes to the 

development of a more effective innate immune response through cleavage of non-

complement substrates. (B) The central role of MASP-1 in the activation of the lectin 

pathway. After the pattern recognition molecules bind to the activation surface MASP-1 

autoactivates. Active MASP-1 then activates MASP-2 and MASP-3. MASP-2 cleaves C4 for 

the C3 convertase but C2 is cleaved by both MASP-1 and MASP-2. MASP-3 might 

contribute to the complement activation by cleaving factor B. 

 

Fig. 2. Structure of MASP-1. (A) Structural model of a MASP-1 dimer. Structures of 

MASP-1 CUB1-EGF-CUB2 (red, PDB code: 3dem), MAp44 (pink, PDB code: 4aqb) and 

MASP-1 CCP1-CCP2-SP (blue and green, PDB code: 3gov) were structurally overlaid 

showing the overall shape of the MASP-1 dimer. Ca
2+

 ions are depicted as bright green 

spheres on the ribbon representation (above). The dimer is shown by surface representation in 

the same orientation below. (B) Comparison of proenzyme and active MASP-1. Zymogen 

(PDB code: 4igd) and active (PDB code: 3gov) MASP-1 SP domains were structurally 

aligned. The catalytic triad (Asp
552

, His
490

, Ser
646

) is in the same position in both structures. 

Asp
645

 forms a salt bridge with the new N-terminus (Ile
449

) in active MASP-1. Loops in 

zymogen MASP-1 that change conformation upon activation are shown in green. Two 

positive residues that can potentially aid zymogen MASP-1 to attain and active-like 

conformation are shown in magenta. (C) The substrate binding cleft of MASP-1 is open and 

relatively wide. The substrate binding cleft is potentially accessible for a wide range of 

protein substrates, however, the large 60-loop (orange) can contribute to the specific 

characteristics of MASP-1. The catalytic triad is colored red, and the S1 pocket is found 

below the active site in this picture. 

 

Fig. 3. Distinct effects of thrombin and MASP-1 signaling via PARs. MASP-1 and 

thrombin cleave protease activated receptors localized on the cell surface. Signaling of PARs 

leads to cytokine production amongst several outcomes. Finally, cytokines attract and activate 

different leukocyte populations depending on the pattern of the cytokines produced. 
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Thickness of the arrows from thrombin/MASP-1 to PARs represents the relative activity of 

the enzyme towards the specific PAR, whereas the size of the PARs is proportional to their 

relative mRNA expression in HUVECs. 

 

Fig. 4. Role of MASP-1 in coagulation and thrombus formation. In the pro-inflammatory 

and pro-coagulant environment of atherosclerosis, low level activation of complement and 

coagulation occurs, possibly leading to MASP-1 activation and fibrin formation. MASP-1 

activates endothelial cells (EC), which can then attract platelets leading to platelet adhesion 

and activation. Fibrin can act as a matrix for binding of MBL and ficolins, generating more 

autoactivated MASP-1. This in turn activates more endothelial cells. Furthermore, MASP-1 

activates the coagulation factors prothrombin (PT) and factor XIII (FXIII), and the 

antifibrinolytic factor thrombin-activatable fibrinolysis inhibitor (TAFI). Thrombin (Thr), 

generated by MASP-1-induced activation of PT, in turn activates fibrinogen (Fbg), FXIII, 

TAFI, and platelets. These events eventually lead to formation of an occlusive thrombus. 

MASP-1 may play an important role in feeding and potentiating this vicious circle of 

coagulation activation and thrombus formation. (Platelets are shown in beige, erythrocytes in 

red, fibrin fibers in grey, and MBL in blue.) 
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