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Abstract  26 

 27 

The ATP-sensitive homomeric P2X7 receptor (P2X7R) has received particular 28 

attention as a potential drug target because of its widespread involvement in 29 

inflammatory diseases as a key regulatory element of the inflammasome 30 

complex. However, it has only recently become evident that P2X7Rs also play a 31 

pivotal role in central nervous system (CNS) pathology. There is an explosion of 32 

data indicating that genetic deletion and pharmacological blockade of P2X7Rs 33 

alter responsiveness in animal models of neurological disorders, such as stroke, 34 

neurotrauma, epilepsy, neuropathic pain, multiple sclerosis, amyotrophic 35 

lateralsclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s 36 

disease. Moreover, recent studies suggest that P2X7Rs regulate the 37 

pathophysiology of psychiatric disorders, including mood disorders, implicating 38 

P2X7Rs as drug targets in a variety of CNS pathology.  39 

 40 

 41 

  42 
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It has been known for almost a decade that P2X7Rs convey important 43 

physiopathological functions in the CNS [1]. The aim and scope of the present 44 

review are to summarize the latest developments in the description of these 45 

functions, to redirect interest to those fields, where there are still significant gaps 46 

in our present understanding and to promote further development of those 47 

therapeutic areas, in which P2X7R is the most promising as a potential drug 48 

target.  49 

  50 

The structure and molecular physiology of P2X7Rs  51 

 52 

P2X7Rs are ATP-gated, non-selective cation channels belonging to the family of 53 

ionotropic P2X receptors. P2X7Rs function in homo-trimeric form and most 54 

mammalian P2X7R subunits comprise 595 amino acids [2]. The common 55 

structural motifs of P2X7Rs are the two transmembrane domains (TM1, TM2), a 56 

large, glycosylated, cysteine-rich extracellular loop, a short intracellular N-57 

terminal domain, and an intracellular C-terminal domain, which is longer than that 58 

of other P2X receptor subunits. Within the family of P2X receptors, so far only the 59 

crystal structure of zebrafish (zf)P2X4.1R has been solved in the closed [3] and 60 

ATP-binding, open state [4]; nevertheless, its considerable homology with 61 

mammalian P2X7Rs allowed for the structural modelling of the latter [2]. The 62 

molecular architecture of an individual P2X7R subunit is akin to a leaping 63 

dolphin, with the extracellular loop forming the body, and the TM domains 64 

forming the tail. When co-assembled as a trimeric unit, P2X7R has a chalice-like 65 
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structure, overarching the channel pore (Figure 1A). There are three ATP binding 66 

sites localized at the interface of the three subunits; occupancy of at least two of 67 

the three sites is necessary for the activation of the receptors [5]. The adenine 68 

base and the - and -phosphate groups of ATP form hydrogen bonds with the 69 

respective amino acid residues of the ATP binding pocket, as suggested for the 70 

zfP2X4.1R. However, because a residue corresponding to Leu217, which 71 

interacts with the ribose moiety, is missing in the mammalian P2X7R, the affinity 72 

of ATP to P2X7Rs is more than a hundredfold lower than to other P2XR-73 

subtypes [2]. On the other hand, non-conserved residues surrounding the ATP 74 

binding site might confer differences in agonist sensitivity between mammalian 75 

P2XR species, (i.e. rat P2X7Rs display substantially higher sensitivity to ATP and 76 

BzATP than their human and mouse counterparts [6]). A distinctive feature of the 77 

mouse P2X7R is that it can be activated by extracellular nicotinamide adenine 78 

dinucleotide (NAD+) by ADP-ribosylation with the ADP-ribosyltransferase 2 79 

ectoenzyme [7]. In contrast, less is known about the binding site of antagonists, 80 

although potent and selective antagonists of P2X7Rs are now widely available. 81 

Earlier data indicated that P2X7R subunits are able to form heterotrimers with 82 

P2X4Rs [8], but more recent studies did not confirm this (e.g. [9]). 83 

   There are several splice variants of mammalian P2X7Rs, all of which are 84 

widely expressed in the nervous system. Hence, a naturally occurring truncated 85 

isoform of the human P2X7R (P2X7B) has been found  in the CNS [10]; a C-86 

terminally truncated variant of mouse P2X7R has also been identified, which 87 

partly retains its functionality, when expressed in tissues of the P2rx7 gene 88 
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deficient mice [11]. Another mouse isoform is the P2X7(k) variant, which in 89 

contrast to P2X7(a), is sensitive to ADP-ribosylation [12, 13].  90 

   The gene encoding the human P2X7R (P2RX7) is also well known to exhibit a 91 

number of non-synonymous single nucleotide polymorphisms (NS-SNPs), which 92 

results in a change in amino acid sequence and the expression of different 93 

human P2X7 variants, further increasing the structural diversity of P2X7Rs. The 94 

functional consequence of several individual NS-SNPs has been determined in 95 

native and recombinant systems and their association with various human CNS 96 

disease states has been extensively investigated in genetic linkage studies [14]. 97 

   The activation of P2X7Rs results in the opening of the channel pore, allowing 98 

the passage of small cations (Na+, Ca2+, and K+). In addition, a hallmark feature 99 

of the P2X7R is the opening of a non-selective pore in response to repeated or 100 

prolonged activation, allowing the permeation of large molecular weight organic 101 

cations up to 600-800 Da. The pore forming property of P2X7Rs can be studied 102 

by the uptake of high molecular weight cations, such as NMDG+, or dyes, such 103 

as Yo-Pro-1 or ethidium bromide; nevertheless, its molecular mechanism has 104 

remained a highly debated issue, with two alternative, but non excluding 105 

possibilities, both having substantial experimental support (Figure 1 B, C). The 106 

first potential mechanism is the progressive dilation of the P2X7R-gated channel 107 

itself.  A conformational change of the receptor-protein could be the structural 108 

basis for channel dilation, as previously confirmed for other P2XRs (P2X2, P2X4) 109 

by electrophysiological methods [15]. In agreement with the pore dilation theory, 110 

the carboxyl terminal domain [16] and the TM2 region of the P2X7R protein are 111 
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essential for pore formation [17]. Moreover, recent studies revealed that the open 112 

channel conformation of the P2X7R can allow the passage of negatively charged 113 

fluorescent dyes with molecular diameters of  up to 1.4 nm [18], and occupation 114 

of one or two agonist binding sites favors transition to the desensitized state, 115 

whereas occupation of the third binding site favors the transition to the 116 

sensitized/dilated state [19].  117 

   The alternative mechanism involves the recruitment of an additional pore-118 

forming protein, most likely the pannexin-1 hemichannel (Panx1). Evidence 119 

derived from studies using genetic knockdown of Panx1 indicate that this protein 120 

is indispensable for the pore formation (e.g. [20]) and can be selectively affected 121 

pharmacologically by colhicine [21]. However, other data conflict with the 122 

involvement of Panx1 in the formation of the membrane pore (e.g. [22]). 123 

Therefore, it appears that although recruitment of pannexin hemichannels is a 124 

downstream signaling event closely linked to P2X7R activation, it is not an 125 

absolute requirement [23]. A potential dissolution of  conflicting results is that 126 

different P2X7R splice variants display distinct pore forming properties  [12, 23]. 127 

   The opening of the large pore might eventually result in membrane blebbing 128 

and cell death; however, this is not an obligatory consequence of P2X7R 129 

activation. Pore formation might gain significance in the pathological sensitization 130 

underlying chronic pain as highlighted by a recent study [24]. This paper reported 131 

that mutations of the gene encoding the P2X7R, which result in hypofunctional 132 

pore formation, affect chronic pain sensitivity in both mice and humans. Moreover 133 

treatment with a peptide corresponding to the P2X7R C-terminal domain, which 134 
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blocks pore formation, but not cation channel activity, selectively reduced 135 

allodynia only in mice with the pore-forming P2rx7 allele. These findings illustrate 136 

that the pore formation associated with P2X7R, by itself could be a potential 137 

target of personalized therapy to combat chronic pain disorders.  138 

    139 

Tissue and cell type specific distribution of P2X7Rs  140 

 141 

P2X7Rs are expressed by many cell types, including cells of hematopoietic origin 142 

(lymphocytes, monocyte-macrophages, microglia) and intrinsic cells of the 143 

nervous system (neurons, astrocytes, oligodendrocytes, Schwann cells). P2X7R 144 

binding sites have been explored in autoradiographic studies using the 145 

radioligand [³H]-A-804598, and a dense P2X7R binding was found throughout the 146 

brain and spinal cord [25], including hypothalamic nuclei, thalamic nuclei, 147 

hippocampus, spinal trigeminal nucleus and tract, cortical regions, cerebellum 148 

and caudate putamen [25]. Nevertheless, the cell-type specific localization of the 149 

P2X7Rs in the CNS has been the subject of a long-standing debate, which has 150 

not reached general consensus even after a decade: immunohistochemical 151 

findings are inhomogeneous and contradict findings obtained by physiological 152 

and neurochemical methods. Whereas early studies found a prominent 153 

expression of P2X7R immunoreactivity (IR) on excitatory nerve terminals [26], 154 

and later studies confirmed these findings throughout the CNS [27, 28]; other 155 

groups questioned these findings, revealing P2X7R-immunoreactivity in brain 156 

sections obtained from P2X7R deficient animals [29]. Subsequently however, 157 
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functional splice variants of rodent P2X7R [11, 12] were identified which are likely 158 

to be responsible for P2X7-pseudo-immunoreactivities, found in the brain of 159 

P2X7R-/- mice. These variants represent either gain- or loss-of function P2X7Rs, 160 

and may explain the high variability of responses induced by P2X7R stimulation. 161 

Other studies reported an activity-dependent expression pattern of P2X7Rs, 162 

induced or upregulated  following an insult such as a seizure [30], ischemia [31], 163 

sleep deprivation [32], undernourishment [33], or morphine tolerance [34]. A 164 

recent study utilizing single particle tracking photoactivated localization 165 

microscopy (sptPALM) revealed that Dendra2 tagged P2X7Rs transfected to 166 

hippocampal neurons formed two dynamic populations within the extrasynaptic 167 

membrane of proximal dendrites: one was composed of rapidly diffusing 168 

receptors and another stabilized within nanoclusters, both being rarely 169 

appositioned to synaptic sites [35].  170 

In contrast to immunohistochemistry, the available evidence on functional 171 

P2X7Rs on different cell types of the CNS is convincing. Functional studies, 172 

verifying P2X7Rs on neurons, astrocytes and microglia are presented in Table 1. 173 

The most parsimonious explanation for the contradictory findings is that the 174 

expression of P2X7Rs dynamically changes in response to experimental 175 

variables such as age or different levels of stressful stimuli prior to sample 176 

collection (freshly prepared vs. fixed sections). Moreover, under in vivo conditions 177 

even mild stimuli, such as saline injection, may cause a dramatic change in the 178 

expression level of P2X7Rs.  179 

 180 
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Physiopathology of P2X7 receptors  181 

 182 

P2X7R function can be studied with a selection of pharmacological and genetic 183 

tools (Box 1). The activation of P2X7Rs is followed by Ca2+ influx and a variety of 184 

cellular responses depending on the cell type investigated (Figure 2). Outside the 185 

nervous system, the most prominent role of P2X7R is in the regulation of 186 

cytokine response to inflammatory challenge. In fact, P2X7R is a key regulatory 187 

element of the inflammasome molecular complex, providing the external stimulus 188 

necessary for the posttranslational modification and subsequent release of the 189 

pro-inflammatory cytokine IL-1. The role of P2X7Rs has been confirmed in the 190 

regulation of central cytokine response after LPS priming [36]. This effect could 191 

be involved in physiological and pathological actions controlled by P2X7Rs, such 192 

as memory formation [37]; sleep [32], fever [38], hyperalgesia [39] and 193 

depression [40, 41].  194 

However, a major caveat in our understanding of the physiopathology of 195 

P2X7R function is how the endogenous activation of P2X7Rs is achieved, given 196 

the low affinity of the endogenous agonist ATP. ATP is present in the synaptic 197 

vesicles and is co-released as a co-transmitter with various other transmitters in 198 

the autonomic nervous system under physiological conditions [42]. This holds 199 

also true to a certain extent for central synapses and the increase in extracellular 200 

ATP in response to normal neuronal activity might transiently reach the high 201 

micromolar concentration required for the activation of P2X7R, at least in the 202 

synaptic cleft. However, a more widespread activation of P2X7Rs is expected 203 
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under pathological conditions, when tissue damage, trauma or other pathological 204 

signals provide an ATP-rich extracellular milieu, which might lead to the 205 

activation of extrasynaptic and extraneuronal P2X7Rs. In addition, the possibility 206 

of constitutive activity without the presence of the endogenous agonist cannot be 207 

excluded either and should be further investigated. In the CNS, the best 208 

characterized consequence of P2X7R activation is the release of 209 

neurotransmitters, in particular of glutamate to the extracellular space [43]. This 210 

effect could be evoked both from synaptosomes [44] and from astrocytes [45]. In 211 

nerve terminals and cell lines expressing recombinant P2X7Rs, the P2X7R 212 

mediated glutamate release appears to be both exocytotic and non-exocytotic, 213 

[46, 47]. P2X7R mediated excitatory amino acid efflux can be detected in acutely 214 

prepared brain slices by neurochemical (e.g. [48, 49]) and electrophysiological 215 

techniques [50]. In rat hippocampal (hilar neurons; [51] CA1 neurons [52]), and 216 

midbrain slices (locus coeruleus; [50]), stimulation of P2X7Rs by BzATP elicited 217 

an increase of the frequency but not amplitude of spontaneous excitatory 218 

postsynaptic currents (sEPSCs) and miniature (m)EPSCs. Occasionally [49, 50] 219 

the P2X7R-mediated glutamate release was sensitive to blockade by fluorocitric 220 

acid, a glia-selective metabolic poison, and to antagonists of glutamate receptors. 221 

These findings imply that glutamate release induced by P2X7R stimulation from 222 

neurons could also be indirect, mediated by glutamate release from astrocytes, 223 

acting subsequently on glutamatergic nerve terminals. 224 

   To add further complexity to neuron-glia and glia-neuron P2X7R signaling, 225 

P2X7R stimulation elicits or reinforces the release of ATP, thereby providing an 226 
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auto-stimulatory loop. This effect was observed in retinal ganglion cells [53] 227 

hippocampal brain slices [49] and cultured spinal cord astrocytes [54]. The 228 

mechanism of P2X7R-driven ATP release could be exocytotic, as observed by 229 

total internal reflection microscopy in neuroblastoma cells [55], whereas in other 230 

studies it appears to involve connexin and/or pannexin hemichannels [49, 54].  231 

      A further interesting function of P2X7Rs is to regulate differentiation and cell-232 

fate during development. P2X7Rs are expressed by both embryonic [56] and 233 

adult neural progenitor cells (NPCs) in the subventricular zone of the lateral 234 

ventricle [57]. Whereas stimulation of P2X7Rs induces neuronal differentiation in 235 

embryonic NPCs [56], other studies indicated that P2X7Rs stimulate gliogenesis 236 

[58]. In contrast, the activation of P2X7Rs on adult, cultured NPCs decrease cell 237 

proliferation and induce necrotic/apoptotic cell death [57].  238 

   Of note, a very recent study showed that P2X7Rs regulate ion channel density 239 

and protein composition/function of the axon initial segment, a key structural 240 

element of neuronal excitability and in consequence action potential initiation in 241 

cultured hippocampal neurons and brain slices [59].  242 

It has been known for a long time that P2X7R activation might lead to cell death 243 

through pore formation as it has been described for peripheral immune cells. 244 

However, a more recently emerging view is that P2X7Rs also convey trophic 245 

function against cell-death promoting physiological or pathological stimuli: for 246 

example the microglial “suicide” P2X7R promotes cell cycle progression and 247 

proliferation [60, 61], and this receptor might act as a scavenger for the removal 248 

of apoptotic cells in the absence of its ATP ligand [62, 63]. 249 
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 250 

P2X7R as a potential target in neurological diseases  251 

 252 

ATP is released in large quantities following any kind of cell injury, and the 253 

ensuing stimulation of the low affinity P2X7R results in necrosis/apoptosis or 254 

proliferation as the two opposing end-points of neuroinflammation. P2X7R 255 

antagonists are potential therapeutics of traumatic brain injury, stroke, epilepsy, 256 

neuropathic pain, and neurodegenerative illnesses, because in these cases 257 

secondary cell damaging conditions accompany the primary pathological 258 

condition. 259 

Middle cerebral artery occlusion, the most widely used animal model of 260 

cerebral ischemia, results in cell death in the core of the affected neuronal tissue, 261 

while around it, in the so called penumbra, the cellular damage is reversible. Both 262 

infarct size and neurological deficits were reduced by P2X7R antagonists [64, 263 

65]. In combination with the sequential up-regulation of P2X7R-IR in microglia 264 

and then in astrocytes and neurons, this receptor-type was considered to be a 265 

primary target of the considerable amounts of ATP released. Similar results were 266 

reported for subarachnoid hemorrhage [66], traumatic brain [67, 68] or spinal 267 

cord injury [69] and ischemic retina degeneration [70]. However, a later study 268 

failed to reconfirm the protective action of P2X7R in spinal cord injury [71].  269 

Reperfusion after transient global cerebral ischemia exacerbates the 270 

consequences of oxygen/glucose deprivation (OGD) due to microglial and 271 

astroglial activation [72]. The ensuing neuroinflammatory reaction is also 272 
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alleviated by P2X7R antagonists [73, 74].     BBG partially reversed the OGD-273 

induced anoxic depolarization and cell damage in cultured oligodendrocyte cells 274 

[75]. Accordingly, left common carotid artery occlusion decreased P2X7R-275 

immunoreactivity at oligodendrocyte precursor cells in cerebral cortex, subcortical 276 

white matter and hippocampus [76].    277 

 Status epilepticus (SE)-like seizures, modelled in rodents by pilocarpine or 278 

kainate, up-regulate P2X7R-immunoreactivity in microglial cells [77] astrocytes 279 

and neurons [78]; quantification by western-blotting confirmed these results [79, 280 

80].  Utilizing the intra-amygdala application of kainate as an epileptic stimulus  281 

[79, 80], it was shown that (1) Bz-ATP facilitated and prolonged the EEG activity 282 

caused by seizures, and (2) P2X7R antagonists had a neuroprotective effect 283 

after epilepsy due to suppression of IL- production and microglial response. 284 

More recent findings suggest that the effect of P2X7Rs during SE depends on 285 

the nature of the chemical stimulus used. A-438079 decreased pilocarpin-286 

induced seizure susceptibility in mice by interrupting a direct facilitatory 287 

interaction between P2X7- and muscarinic receptors [81] or blockade of the 288 

release of the protective TNF- [82]. P2X7R activation also influenced leukocyte 289 

infiltration [83] and reactive astrogliosis following SE [84]. 290 

 The involvement of P2X7Rs in different models of inflammatory and 291 

neuropathic pain and the potential therapeutic effect of P2X7R antagonists are 292 

well documented [85]. Down regulation of P2X7Rs with siRNA or BBG prevented 293 

the induction of spinal long-term potentiation in vitro and at the same time 294 

alleviated mechanical allodynia in naive rats in vivo [39].  Central sensitization of 295 
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nociceptive neurons could be produced by intrathecal superfusion of Bz-ATP and 296 

was depressed by P2X7R antagonists [86].  Additional studies extended these 297 

findings to mechanisms participating in the development of neuropathic or 298 

orofacial pain [87-89], bone cancer pain [90] and migraine [91]. Recent studies 299 

highlighted the association between human P2X7R variants with chronic pain 300 

sensitivity [24]. 301 

   Multiple sclerosis (MS) is a chronic degenerative disease of the CNS that is 302 

characterized by focal lesions with inflammation, infiltration of immune cells, 303 

demyelination, oligodendroglial death and axonal damage [92]. A putative 304 

association of the P2X7R gene with this illness was indicated by the most 305 

frequent expression of the gain-of-function T allele of rs17525809 polymorphism 306 

of the receptor, which yields an Ala-76 to Val change in its extracellular domain 307 

[93]. The overexpression of P2X7Rs was detected in experimental autoimmune 308 

encephalomyelitis (EAE), an animal model of SM [94], whereas the amelioration 309 

of EAE was found in P2X7R deficient animals [95, 96], but see [97]. Further, 310 

pannexin-1 knockout mice with restricted ability to mediate pore development/dye 311 

uptake after P2X7R stimulation, also displayed a delayed onset of clinical signs 312 

of EAE and decreased mortality when compared with wild-type mice [98]. 313 

    Amyotrophic lateral sclerosis (ALS) is characterized by the progressive 314 

degeneration of motor neurons in the spinal cord, brainstem and motor cortex, 315 

leading to respiratory failure and death of the affected patients within a few years 316 

of diagnosis [99]. Microglia and astrocytes are major contributors to motor neuron 317 

dysfunction in ALS through the maintenance of a chronic inflammatory response. 318 
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Transgenic mice expressing a mutant protein Cu+/Zn+ superoxide dismutase 319 

SOD1-G93A, which directly enhances the activity of the main reactive oxygen 320 

species producing enzyme in microglia (NADPH oxidase 2; NOX2) is used widely 321 

as a model of ALS [100]. P2X7R activation by BzATP induced the death of motor 322 

neurons in mixed astrocytic/neuronal cultures prepared from wild-type mice [101]. 323 

Further, apyrase, an enzyme degrading ATP or BzATP, decreased neuronal 324 

death observed in cultures prepared from SOD-G93A spinal cord. Bz-ATP also 325 

increased the activity of NOX2, leading to motor neuron damage, an effect which  326 

did not occur in primary microglia cultures of SOD-G93A mice lacking P2X7Rs 327 

[102]. 328 

    A neuropathological hallmark of Alzheimer’s disease (AD) is the appearance of 329 

plaques consisting of extracellular -amyloid peptide (A) surrounded by reactive 330 

microglial cells [103]. A triggered increases in intracellular Ca2+, ATP release, 331 

IL-1 secretion and plasma membrane permeabilization in microglia from wild-332 

type but not P2X7R-/- mice [104]. These findings and the neuroprotective effects 333 

of BBG against intrahippocampally injected A suggest that A activates a 334 

purinergic autocrine/paracrine stimulatory loop of which the P2X7R is an 335 

obligatory component. In fact, in vivo inhibition of the P2X7R in mice transgenic 336 

for mutant human APP indicated a significant decrease of the number of 337 

hippocampal amyloid plaques [105]. 338 

     Parkinson’s disease (PD) is a motor disease affecting the striatal 339 

dopaminergic system, by damaging dopaminergic neurons in the substantia 340 

nigra. In the disease model induced by unilateral intrastriatal injection of 6-341 
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hydroxydopamine, BBG and A-438079 prevented the ensuing synaptotoxicity, 342 

gliosis and neurotoxicity [106]. In another study, A-438079 prevented the 343 

depletion of striatal dopamine stores by 6-hydroxydopamine treatment, but this 344 

was not associated with a reduction of dopaminergic cell loss [107]. Similarly, the 345 

effects of P2X7R antagonists appeared to depend on the neurotoxin used, 346 

because in MPTP- or rotenone-induced Parkinson models, the genetic deletion of 347 

the P2X7R did not increase survival rates of mice compared to wild-type 348 

counterparts [108]. 349 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative 350 

disorder caused by a triplet repeat expansion coding for a polyglutamine 351 

sequence in the N-terminal region of the huntingtin protein. A higher P2X7R level 352 

was documented by western-blot analysis in the striatum of transgenic mice 353 

models of this disease [109]. In addition, P2X7R antagonists prevented neuronal 354 

apoptosis and attenuated body weight loss and motor-coordination deficits. 355 

 356 

P2X7R as a potential target in psychiatric disorders  357 

 358 

Mood disorders arise from complex interactions between genetic, developmental 359 

and environmental factors [110, 111]. Linkage studies suggested that variations 360 

of the chromosome 12q24.31 containing candidate genes for P2X7R, P2X4R and 361 

calmodulin-dependent protein kinase b (CaMKKb) may be associated with major 362 

depressive, bipolar and anxiety disorders. It has repeatedly been reported that 363 

the NS-SNP rs2230912 coding for the P2X7R-Glu460Arg is associated with 364 
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major depressive disorder [112, 113]. Further, relevant SNP mutations identified 365 

by linkage studies were introduced into the human recombinant P2X7R and were 366 

expressed in human embryonic kidney cells [114]. The measurement of their 367 

functional properties by the patch-clamp technique indicated that some of them, 368 

including Glu460Arg, exhibited a strong impairment of the current response to 369 

ATP, while other mutants demonstrated significant increases in sensitivity. In 370 

contrast, other studies failed to confirm the allelic or genotypic association of 371 

rs2230912 or other SNPs of P2X7R with mood disorders [115, 116]. The reasons 372 

for this discrepancy are presently unknown. Eventually, variations in the P2X7R 373 

gene were described to be associated with cognitive manic symptoms in bipolar 374 

disorders [117], but not in schizophrenia [118]. 375 

Production of TNF- and IL-6 is initiated by the activation of Toll-like receptors 376 

(TLRs) by e.g. bacterial lipopolysaccharide. The formation of IL-1 also requires 377 

TLR4 induction of gene transcription but requires an additional step, the 378 

processing of pro-IL-1 to the mature form of IL-1, which is then released via 379 

NLRP3 referred to as the “inflammasome” [110, 119]. P2X7Rs are indispensable 380 

activators of NLRP3. Inflammatory cytokines have been suggested to play key 381 

roles in the development of depressive behavior. Their levels are elevated in 382 

depressed patients [110, 120] and rodents exposed to stressful stimuli [111]. 383 

These cytokines are potent activators of the hypothalamic-pituitary-adrenal axis 384 

through which the secretion of hypothalamic corticotropin releasing hormone 385 

(CRH), pituitary adrenocorticotropic hormone (ACTH) and corticosterone are 386 

stimulated. In this respect it is interesting to note that P2X7R stimulation also 387 
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directly leads to increased ACTH secretion from the terminals of hypothalamic 388 

magnocellular neurons [121].  389 

The interrelationship between inflammatory cytokines, P2X7Rs and mood 390 

related behavior has been intensively studied in animal models. The genetic 391 

deletion of P2X7Rs resulted in antidepressive-like behavior in the forced swim 392 

and tail suspension tests and alleviated amphetamine induced hyperactivity   [40, 393 

41]. Although P2X7Rs are present at peripheral/central immunocytes, glial cells 394 

and neurons, it was shown that macrophages and microglia are not responsible 395 

for the detected changes in mood measured by tail suspension test and 396 

amphetamine-induced hyperlocomotion in P2X7R-/- mice [41]. On a larger scale, 397 

several potential mechanisms were identified for the antidepressant phenotype of 398 

P2X7R-/- mice, such as the absence of P2X7R-mediated glutamate release, 399 

elevated basal brain-derived neurotrophic factor (BDNF) production, enhanced 400 

neurogenesis and increased serotonin bioavailability in the hippocampus [48]. It 401 

has also been observed that P2X7Rs are downregulated in the hippocampus in 402 

response to chronic stress [122] and P2X7R-/- mice exhibited impaired adaptive 403 

coping responses to repeated stress [123], which enlighten the potential role of 404 

P2X7Rs as a protective adaptive mechanism in the process leading to mood 405 

disorders.  406 

The above data illustrate that P2X7R seems to be activated in a number of 407 

different pathological conditions raising the possibility that the receptor is one 408 

common avenue of cellular stress signaling pathways (Figure 2). However, one 409 

should keep in mind that the pathophysiology of CNS diseases is very complex 410 
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involving a multiplicity of mediators and signaling pathways and the P2X7R is 411 

only one among the multiple signaling pathways activated. Moreover, the 412 

significance of this avenue is probably not uniform in all CNS pathologies and 413 

could be more prominent in certain disease conditions (e.g. chronic pain, status 414 

epilepticus) than in other ones (e.g. Parkinson’s disease), depending on the 415 

expression of P2X7Rs in the brain area afflicted. Finally, important physiological 416 

functions mediated by P2X7Rs should not be neglected. For instance, taking into 417 

account that the purportedly necrotic/apoptotic P2X7Rs also convey trophic and 418 

adaptive changes, their role might vary or even reverse during the course of the 419 

same disease, because neuroinflammation, regulated by P2X7Rs has also a 420 

double-faced role. In fact, inflammation initially is a protective reaction and 421 

becomes detrimental only, when it progresses to an excessive or chronic phase. 422 

These aspects serve as explanations to conflicting results with P2X7R inhibition 423 

on the disease outcome (e.g. [95-97]) and should also be addressed when 424 

P2X7R is considered as a potential human drug-target. 425 

 426 

 427 

Current development of P2X7R ligands     428 

 429 

Although end-products of the pioneering developments of P2X7R antagonists, 430 

such as CE-224,535 [124] and AZD 9056 [125] have not proved efficacious in 431 

Phase II trials in rheumatoid arthritis patients, clinical studies revealed an 432 

acceptable safety and tolerability profile of such antagonists as a whole [124-433 
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126], opening up the possibility  of developing P2X7R-targeting compounds in 434 

new areas, such as CNS disorders.  435 

   In recent years, a number of different classes of small molecular weight, drug-436 

like P2X7R ligands have been developed (Table 2), and P2X7Rs have been 437 

qualified as the most “druggable” target within the P2X receptor family [85, 127].  438 

More recently, the development of centrally penetrating potent P2X7R 439 

antagonists has also been reported (Table 2). In addition, systematic search 440 

through compound libraries resulted in the further discovery of novel P2X7R 441 

antagonists and allosteric modulators utilizable either for basic research or drug 442 

development. Analyses of natural compounds have also resulted in several 443 

valuable P2X7R ligands (Table 2). 444 

 445 

 Concluding remarks 446 

 447 

In conclusion, P2X7R mediated pathways appears to be a common avenue  of 448 

many CNS disorders of different aetiology and  P2X7R antagonists are potential 449 

drugs to treat them. Their immense advantage may lie in the absence or low 450 

density of P2X7Rs in healthy tissue and therefore in the limited systemic side 451 

effects of these compounds. However, major caveats in our understanding of the 452 

physiopathological functions of central P2X7Rs should be further elucidated (Box 453 

2). Though the majority of known antagonists fail to pass the blood-brain barrier, 454 

BBG and some new and high affinity P2X7R antagonists readily enter the CNS 455 

[128]. Further, recently identified negative allosteric modulators of P2X7Rs (e.g. 456 
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certain phenothiazine-type antipsychotic drugs), already registered for human 457 

use [129], may become important therapeutic tools.  458 

   The future development of new P2X7R antagonists has to take into 459 

consideration that P2X7R isoforms may exhibit large variability between different 460 

species in their agonist/antagonist sensitivities. Therefore, the classic search for 461 

new pharmacologically active compounds based on the use of laboratory 462 

animals, may lead to spurious negative or positive results. A further complicating 463 

factor is the presence of numerous splice variants and SNPs widely distributed in 464 

the animal and human organism; their sensitivities to pharmacological blockade 465 

is often different from that of the wild-type receptor. Hence, the development of 466 

new and therapeutically valuable P2X7R antagonists is a tedious task but the 467 

reward may be enormous.  468 
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Boxes 904 

 905 

Box 1.  Tools to study P2X7 receptors  906 

 907 

The continuously evolving interest in this receptor resulted in the generation 908 

of various tools to study its function. P2X7Rs could be identified based on 909 

the following distinctive pharmacological features: 910 

 The affinity of the endogenous agonist ATP is low, in the high micromolar-911 

millimolar range. 912 

 BzATP is a more potent agonist than ATP itself. It has been frequently 913 

used mistakenly as a selective agonist of P2X7R. This is, however, not 914 

valid, because BzATP also binds to other P2X receptors with high affinity.  915 

 The effect of ATP and BzATP are potentiated by a low Ca2+/no Mg2+-916 

containing external medium.  917 

 There are several potent antagonists available, such as A-438079, A-918 

740003, the negative allosteric modulator AZ-10606120 and Brilliant blue 919 

G (BBG); among them BBG is selective in concentrations below 1 µM.    920 

This antagonist is also a useful tool in in vivo experiments. The 921 

penetration of BBG through the blood-brain barrier has already been 922 

determined and using doses not higher than 50 mg/kg, the resultant brain 923 

concentration remains below 1 µM [105]. It should be noted, however, 924 

that many P2X7R antagonists, including BBG also inhibit Panx1 925 

channels. Therefore, BBG alone is inadequate to prove the involvement 926 
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of P2X7Rs [130]. In this respect, a valuable compound could be Brilliant 927 

blue FCF, which inhibits Panx1, but not P2X7R [131]. 928 

 Novel radioligands, i.e. [³H]A-804598 are also available to characterize 929 

the affinity of newly developed compounds to rodent P2X7Rs [25].  930 

In addition to pharmacological approaches, 931 

 genetic knock-down by siRNA has been increasingly used to silence 932 

P2X7Rs in the past years in both in vitro and in vivo studies (e.g. [34, 39]).  933 

 Mouse lines, genetically deficient in P2X7Rs, initially generated by the 934 

companies Glaxo (LacZ gene and neomycin cassette insertion into exon 935 

1; [132]) and Pfizer (Neo insertion in exon 13, close to the carboxyl 936 

terminal; [133]), have also been widely used. However, none of these 937 

mouse lines could be regarded as fully deficient in P2X7Rs, as individual 938 

splice variants evaded inactivation [11, 12].  939 

 For studies of P2X7R function in morphologically identified neurons, 940 

astrocytes or microglia, the GFP-P2X7 reporter mouse seems to be a 941 

crucial tool [134].  942 

 943 

  944 
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Box 2. Outstanding Questions  945 

 946 

Despite the large interest in P2X7Rs and the correspondingly high number of 947 

publications dealing with this receptor, many questions still remain unresolved. 948 

 The C-terminus of the P2X7R has been implicated in regulating receptor 949 

function including signaling pathway activation, cellular localization, protein-950 

protein interactions, and post-translational modification [135]. It would be 951 

important to learn the three-dimensional structure of the P2X7R C-terminal 952 

tail, which is yet to be determined [4].  953 

 Although repetitive or long-lasting stimulation of P2X7Rs by ATP allows the 954 

passage of 600-800 Da organic molecules through the cell membrane, the 955 

mechanism of pore opening is still a matter of debate. There are good 956 

arguments favouring an accessory protein, with Panx1-hemichannels 957 

probably involved in this effect, but the cationic channel-dilation theory is also 958 

an attractive alternative. 959 

 Original work based on co-immunoprecipitation with epitope tagged subunits 960 

demonstrated that overexpressed recombinant P2X1-6 subunits could form 961 

hetero-oligomeric complexes, while P2X7 was able to form only homomeric 962 

receptor channels [136]. However, it remains to be established whether true 963 

functional P2X4/7 heteromers are formed in native systems, which might have 964 

great significance for CNS immune functions e.g. in microglia.  965 

 A lot of controversy has arisen on the issue of whether P2X7Rs are located 966 

exclusively at microglia and astroglia in the CNS or also at neurons (see the 967 
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discussion on “Tissue and cell type specific distribution of P2X7Rs”). The 968 

solution of this enigma might be that under normal conditions P2X7Rs are 969 

dormant but after various types of damaging conditions (mechanical trauma, 970 

ischemia, inflammation, etc.) they become unmasked, mostly at central 971 

immunocytes but probably also at neurons. Already the tissue damage 972 

afflicted to cells during the culturing procedure or the preparation of brain 973 

slices may be sufficient to induce the expression of previously absent 974 

P2X7Rs. 975 

 Although endogenous activation of P2X7Rs under disease conditions has 976 

repeatedly been proven, its exact mechanism is not fully understood, given 977 

the low affinity of ATP. The possibility of constitutive activity of this receptor as 978 

well as its potential endogenous ligands other than ATP should be explored. 979 

 Whereas available gene deficient  mouse models are not fully deficient in 980 

P2X7Rs, more advanced mouse models, such as cell-type specific and/or 981 

inducible knockouts, optogenetic constructs, as well as humanized mouse 982 

models reproducing human gene polymorphisms in rodents are yet to be 983 

generated for probing P2X7R function.  984 

 985 

  986 
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Tables 987 

Table 1. Examples from recent studies verifying functional P2X7Rs on different 988 

cell types of the rodent central nervous system.  989 

Cell type/Brain area, 

preparation 

Technique Refs 

Neurons 

Cerebral cortex, purified 

synaptosomes 

neurochemistry, Ca2+ 

fluorimetry 

[44] 

Midbrain, synaptic terminals Ca2+ microfluorimetry [137] 

Neurohypophysis, nerve 

terminals 

patch clamp 

electrophysiology 

[138] 

Caudal brainstem, nerve 

terminals 

neurochemistry [139] 

Hippocampus, isolated hilar 

neurons 

patch clamp 

electrophysiology 

[51] 

Retina, isolated ganglion cells patch clamp 

electrophysiology 

[53] 

Suprachiasmatic nucleus, 

isolated neurons 

Ca2+ imaging [140] 

Embryonic spinal cord, cultured 

neurons 

neurochemistry [141] 

Cortex, cultured neurons neurochemistry [142] 

Astrocytes 
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Cortex, in situ patch clamp 

electrophysiology 

[143] 

Cortex, cultured patch clamp 

electrophysiology 

[144] 

Cerebellum, cultured neurochemistry [145] 

Human, cultured Ca2+ fluorimetry [146] 

Bergmann glia 

Cerebellum, in situ patch clamp 

electrophysiology, Ca2+ 

imaging 

[147] 

Satellite glia 

Immature dorsal root ganglion, 

isolated 

electrophysiology [148] 

 

Microglia  

Cortex, in situ patch clamp 

electrophysiology 

[149] 

N9 microglia, cultured neurochemistry [150] 

 990 

  991 
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Table 2. Non-comprehensive list of different classes of P2X7 receptor 992 

antagonists and allosteric modulators. For more information see [151] 993 

 994 

Class/Compound Function Refs 

Novel, small molecule 

 (1H-pyrazol-4-yl) 

acetamides 

antagonist [152, 153] 

benzamides antagonist [154, 155] 

tetrasubstituted-

imidazoles 

antagonist [156] 

2-oxo-N-(phenymethyl)-

4- 

imidazolinecarboxamides 

antagonist [157] 

Novel, small molecule, CNS active 

JNJ-47965567 antagonist [128] 

polycyclic carboranes antagonist [158] 

Identified by screening compound libraries 

clemastine Positive allosteric 

modulator 

[159] 

perazine-type 

antipsychotic drugs 

Negative allosteric 

modulator 

[129] 

ivermectine Negative allosteric 

modulator 

[160] 
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Natural compounds 

teniposide antagonist [161] 

 995 

  996 
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Figure Legends 997 

 998 

Figure 1. The simplified schematic structure of the P2X7R in open state (A) and 999 

during pore formation (B and C). The P2X7R functions as a homo-trimer, forming 1000 

a chalice-like structure, while the individual P2X7R subunit is akin to a leaping 1001 

dolphin. The agonist binding sites are located at the subunit interfaces and the 1002 

occupation of two out of three binding sites is necessary for opening of the 1003 

channel. In addition to ATP, which is the presumed endogenous agonist, the 1004 

mouse P2X7R receptor could also be activated by NAD+ through ADP-1005 

ribosylation. The activation of the receptor-ion channel leads to the inward flux of 1006 

cationic current.  Prolonged and /or repeated activation of P2X7R and occupation 1007 

of the third agonist binding site renders the membrane permeable for high 1008 

molecular weight organic cations and dyes such as NMDG+ and Yo-Pro-1+ (B 1009 

and C). B. One potential mechanism of the pore formation is the dilation of the 1010 

P2X7R-mediated channel pore itself. C. Alternatively, but not exclusively, 1011 

additional pore forming proteins, such as pannexin (Panx1) might be recruited, 1012 

which seem to be indispensable for pore formation under certain circumstances.  1013 

 1014 

 1015 

Figure 2. Common disease mechanism by P2X7R mediated pathways in CNS 1016 

disorders of different etiology. P2X7 receptors are expressed on nerve terminals, 1017 

astrocytes and microglia and they are upregulated upon various disease 1018 

conditions. Stress signals, such as hypoxia/ischemia (metabolic limitations), 1019 
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mechanical injury, and bacterial or chemical toxins elicit the endogenous 1020 

activation of P2X7R and leads to a self-amplifying ATP release and to further 1021 

activation of P2X7 receptors on neighbouring cells.  Following the influx of Ca2+ 1022 

through the receptor ion channel complex, P2X7 receptor activation (a) releases 1023 

glutamate from nerve terminals and astrocytes by both exocytotic and non-1024 

exocytotic mechanisms, which may give rise excitotoxicity; (b)  leads to the 1025 

posttranslational processing of pro-IL-1 to the leaderless, mature IL- and to its 1026 

further release by the NLRP3 inflammasome and that of other cytokines, which 1027 

contribute to neuroinflammation; (c) enhance ROS production and thereby 1028 

aggravate protein  misfolding and neuronal damage;  (d) leads directly or 1029 

indirectly to cell death and the following reactive astrogliosis (e) directly or 1030 

indirectly downregulates the production of BDNF and the following 1031 

neuroplasticity. These key mechanisms could be manifested and contribute to 1032 

disease pathology in Alzheimer’s disease (AD), Parkinson’s disease (PD), 1033 

Huntington’s disease (HD), status epilepticus (SE), amyotrophic lateral sclerosis 1034 

(ALS), multiple sclerosis (MS), stroke, pain and mood disorders in different forms 1035 

and proportion, depending on the etiology.  GLU, glutamate, ROS, reactive 1036 

oxygen species.  1037 
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